1
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
2
|
Vaidya B, Padhy DS, Joshi HC, Sharma SS, Singh JN. Ion Channels and Metal Ions in Parkinson's Disease: Historical Perspective to the Current Scenario. Methods Mol Biol 2024; 2761:529-557. [PMID: 38427260 DOI: 10.1007/978-1-0716-3662-6_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition linked to the deterioration of motor and cognitive performance. It produces degeneration of the dopaminergic neurons along the nigrostriatal pathway in the central nervous system (CNS), which leads to symptoms such as bradykinesias, tremors, rigidity, and postural instability. There are several medications currently approved for the therapy of PD, but a permanent cure for it remains elusive. With the aging population set to increase, a number of PD cases are expected to shoot up in the coming times. Hence, there is a need to look for new molecular targets that could be investigated both preclinically and clinically for PD treatment. Among these, several ion channels and metal ions are being studied for their effects on PD pathology and the functioning of dopaminergic neurons. Ion channels such as N-methyl-D-aspartate (NMDA), γ-aminobutyric acid A (GABAA), voltage-gated calcium channels, potassium channels, HCN channels, Hv1 proton channels, and voltage-gated sodium channels and metal ions such as mercury, zinc, copper, iron, manganese, calcium, and lead showed prominent involvement in PD. Pharmacological agents have been used to target these ion channels and metal ions to prevent or treat PD. Hence, in the present review, we summarize the pathophysiological events linked to PD with an emphasis on the role of ions and ion channels in PD pathology, and pharmacological agents targeting these ion channels have also been listed.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Dibya S Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Hem C Joshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India.
| | - Jitendra Narain Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India.
| |
Collapse
|
3
|
Moore H, Lega BC, Konopka G. Riding brain "waves" to identify human memory genes. Curr Opin Cell Biol 2022; 78:102118. [PMID: 35947942 DOI: 10.1016/j.ceb.2022.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
While there is extensive research on memory-related oscillations and brain gene expression, the relationship between oscillations and gene expression has rarely been studied. Recently, progress has been made to identify specific genes associated with oscillations that are correlated with episodic memory. Neocortical regions, in particular the temporal pole, have been examined in this line of research due to their accessibility during neurosurgical procedures. By harnessing this accessibility, a unique and powerful study design has allowed gene expression and intracranial oscillatory data to be sourced from the same human patients. These studies have identified a plethora of understudied gene targets that should be further characterized with respect to human brain function. Future work should extend to other brain regions to increase our understanding of the genetic signatures of oscillations and, ultimately, human cognition.
Collapse
Affiliation(s)
- Haley Moore
- Department of Neuroscience, UT Southwestern Medical Center, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, USA; Department of Neurosurgery, UT Southwestern Medical Center, USA
| | - Bradley C Lega
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, USA; Department of Neurosurgery, UT Southwestern Medical Center, USA.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, USA.
| |
Collapse
|
4
|
Deschamps C, Uyttersprot F, Debris M, Marié C, Fouquet G, Marcq I, Vilpoux C, Naassila M, Pierrefiche O. Anti-inflammatory drugs prevent memory and hippocampal plasticity deficits following initial binge-like alcohol exposure in adolescent male rats. Psychopharmacology (Berl) 2022; 239:2245-2262. [PMID: 35314896 DOI: 10.1007/s00213-022-06112-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Binge drinking during adolescence impairs learning and memory on the long term, and many studies suggest a role of neuroinflammation. However, whether neuroinflammation occurs after the very first exposures to alcohol remains unclear, while initial alcohol exposure impairs learning for several days in male rats. OBJECTIVES To investigate the role of neuroinflammation in the effects of only two binge-like episodes on learning and on neuronal plasticity in adolescent male rat hippocampus. METHODS Animals received two ethanol i.p. injections (3 g/kg) 9 h apart. Forty-eight hours later, we recorded long-term depression (LTD) and potentiation (LTP) in CA1 area of hippocampus slices. In isolated CA1, we measured immunolabelings for microglial activation and Toll-like receptor 4 (TLR4) and mRNA levels for several cytokines. RESULTS Forty-eight hours after the two binges, rats performed worse than control rats in novel object recognition, LTD was reduced, LTP was increased, and excitatory neurotransmission was more sensitive to an antagonist of the GluN2B subunit of the NMDA receptor. Exposure to ethanol with minocycline or indomethacin, two anti-inflammatory drugs, or with a TLR4 antagonist, prevented all effects of ethanol. Immunolabelings at 48 h showed a reduction of neuronal TLR4 that was prevented by minocycline pretreatment, while microglial reactivity was undetected and inflammatory cytokines mRNA levels were unchanged. CONCLUSION Two binge-like ethanol exposures during adolescence in rat involved neuroinflammation leading to changes in TLR4 expression and in GluN2B functioning inducing disturbances in synaptic plasticity and cognitive deficits. Anti-inflammatory drugs are good candidates to prevent brain function and memory deficits induced by few binge-drinking episodes.
Collapse
Affiliation(s)
- Chloé Deschamps
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Floriane Uyttersprot
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Margot Debris
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Constance Marié
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Grégory Fouquet
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Ingrid Marcq
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Catherine Vilpoux
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Mickael Naassila
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France
| | - Olivier Pierrefiche
- UMR1247 INSERM, Groupe de Recherche Sur L'Alcool Et Les Pharmacodépendances, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Chemin du Thil, 80025, Amiens, France.
| |
Collapse
|
5
|
The promise of the TGF-β superfamily as a therapeutic target for Parkinson's disease. Neurobiol Dis 2022; 171:105805. [PMID: 35764291 DOI: 10.1016/j.nbd.2022.105805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
A large body of evidence underscore the regulatory role of TGF-β superfamily in the central nervous system. Components of the TGF-β superfamily modulate key events during embryonic brain development and adult brain tissue injury repair. With respect to Parkinson's disease (PD), TGF-ß signaling pathways are implicated in the differentiation, maintenance and synaptic function of the dopaminergic neurons, as well as in processes related to the activation state of astrocytes and microglia. In vitro and in vivo studies using toxin models, have interrogated on the dopaminotrophic and protective role of the TGF-β superfamily members. The evolution of genetic and animal models of PD that more closely recapitulate the disease condition has made possible the dissection of intracellular pathways in response to TGF-ß treatment. Although the first clinical trials using GDNF did not meet their primary endpoints, substantial work has been carried out to reappraise the TGF-β superfamily's clinical benefit.
Collapse
|
6
|
The Effect of TGF-β1 Reduced Functionality on the Expression of Selected Synaptic Proteins and Electrophysiological Parameters: Implications of Changes Observed in Acute Hepatic Encephalopathy. Int J Mol Sci 2022; 23:ijms23031081. [PMID: 35163004 PMCID: PMC8835518 DOI: 10.3390/ijms23031081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
Decreased platelet count represents a feature of acute liver failure (ALF) pathogenesis. Platelets are the reservoir of transforming growth factor 1 (TGF-β1), a multipotent cytokine involved in the maintenance of, i.a., central nervous system homeostasis. Here, we analyzed the effect of a decrease in TGF-β1 active form on synaptic proteins levels, and brain electrophysiology, in mice after intraperitoneal (ip) administration of TGF-β1 antibody (anti-TGF-β1; 1 mg/mL). Next, we correlated it with a thrombocytopenia-induced TGF-β1 decrease, documented in an azoxymethane-induced (AOM; 100 mM ip) model of ALF, and clarified the impact of TGF-β1 decrease on blood–brain barrier functionality. The increase of both synaptophysin and synaptotagmin in the cytosolic fraction, and its reduction in a membrane fraction, were confirmed in the AOM mice brains. Both proteins’ decrease in analyzed fractions occurred in anti-TGF-β1 mice. In turn, an increase in postsynaptic (NR1 subunit of N-methyl-D-aspartate receptor, postsynaptic density protein 95, gephyrin) proteins in the AOM brain cortex, but a selective compensatory increase of NR1 subunit in anti-TGF-β mice, was observed. The alterations of synaptic proteins levels were not translated on electrophysiological parameters in the anti-TGF-β1 model. The results suggest the impairment of synaptic vesicles docking to the postsynaptic membrane in the AOM model. Nevertheless, changes in synaptic protein level in the anti-TGF-β1 mice do not affect neurotransmission and may not contribute to neurologic deficits in AOM mice.
Collapse
|
7
|
Fauser M, Loewenbrück KF, Rangnick J, Brandt MD, Hermann A, Storch A. Adult Neural Stem Cells from Midbrain Periventricular Regions Show Limited Neurogenic Potential after Transplantation into the Hippocampal Neurogenic Niche. Cells 2021; 10:3021. [PMID: 34831242 PMCID: PMC8616334 DOI: 10.3390/cells10113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
The regulation of adult neural stem or progenitor cell (aNSC) proliferation and differentiation as an interplay of cell-intrinsic and local environmental cues remains in part unclear, impeding their role in putative regenerative therapies. aNSCs with all major properties of NSCs in vitro have been identified in a variety of brain regions beyond the classic neurogenic niches, including the caudal periventricular regions (PVRs) of the midbrain, though active neurogenesis is either limited or merely absent in these regions. To elucidate cell-intrinsic properties of aNSCs from various PVRs, we here examined the proliferation and early differentiation capacity of murine aNSCs from non-neurogenic midbrain PVRs (PVRMB) compared to aNSCs from the neurogenic ventricular-subventricular zone (PVRV-SVZ) 7 days after transplantation into the permissive pro-neurogenic niche of the dentate gyrus (DG) of the hippocampus in mice. An initial in vitro characterization of the transplants displayed very similar characteristics of both aNSC grafts after in vitro expansion with equal capacities of terminal differentiation into astrocytes and Tuj1+ neurons. Upon the allogenic transplantation of the respective aNSCs into the DG, PVRMB grafts showed a significantly lower graft survival and proliferative capacity compared to PVRV-SVZ transplants, whereby the latter are exclusively capable of generating new neurons. Although these differences might be-in part-related to the transplantation procedure and the short-term study design, our data strongly imply important cell-intrinsic differences between aNSCs from neurogenic compared to non-neurogenic PVRs with respect to their neurogenic potential and/or their sensitivity to neurogenic cues.
Collapse
Affiliation(s)
- Mareike Fauser
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany;
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
| | - Kai F Loewenbrück
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Tatzberg 41, 01307 Dresden, Germany
| | - Johannes Rangnick
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Tatzberg 41, 01307 Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
- Translational Neurodegeneration Section, “Albrecht-Kossel”, Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany;
- German Centre for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Gehlsheimer Straße 20, 18147 Rostock, Germany
| |
Collapse
|
8
|
Gradari S, Herrera A, Tezanos P, Fontán-Lozano Á, Pons S, Trejo JL. The Role of Smad2 in Adult Neuroplasticity as Seen through Hippocampal-Dependent Spatial Learning/Memory and Neurogenesis. J Neurosci 2021; 41:6836-6849. [PMID: 34210778 PMCID: PMC8360684 DOI: 10.1523/jneurosci.2619-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
Adult neural plasticity is an important and intriguing phenomenon in the brain, and adult hippocampal neurogenesis is directly involved in modulating neural plasticity by mechanisms that are only partially understood. We have performed gain-of-function and loss-of-function experiments to study Smad2, a transcription factor selected from genes that are demethylated after exercise through the analysis of an array of physical activity-induced factors, and their corresponding gene expression, and an efficient inducer of plasticity. In these studies, changes in cell number and morphology were analyzed in the hippocampal dentate gyrus (cell proliferation and survival, including regional distribution, and structural maturation/differentiation, including arborization, dendritic spines, and neurotransmitter-specific vesicles) of sedentary male mice, after evaluation in a battery of behavioral tests. As a result, we reveal a role for Smad2 in the balance of proliferation versus maturation of differentiating immature cells (Smad2 silencing increases both the proliferation and survival of cycling cells in the dentate granule cell layer), and in the plasticity of both newborn and mature neurons in mice (by decreasing dendritic arborization and dendritic spine number). Moreover, Smad2 silencing specifically compromises spatial learning in mice (through impairments of spatial tasks acquisition both in long-term learning and working memory). These data suggest that Smad2 participates in adult neural plasticity by influencing the proliferation and maturation of dentate gyrus neurons.SIGNIFICANCE STATEMENT Smad2 is one of the main components of the transforming growth factor-β (TGF-β) pathway. The commitment of cell fate in the nervous system is tightly coordinated by SMAD2 signaling, as are further differentiation steps (e.g., dendrite and axon growth, myelination, and synapse formation). However, there are no studies that have directly evaluated the role of Smad2 gene in hippocampus of adult animals. Modulation of these parameters in the adult hippocampus can affect hippocampal-dependent behaviors, which may shed light on the mechanisms that regulate adult neurogenesis and behavior. We demonstrate here a role for Smad2 in the maturation of differentiating immature cells and in the plasticity of mature neurons. Moreover, Smad2 silencing specifically compromises the spatial learning abilities of adult male mice.
Collapse
Affiliation(s)
- Simona Gradari
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Antonio Herrera
- Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - Patricia Tezanos
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Ángela Fontán-Lozano
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
- Department of Physiology, School of Biology, University of Sevilla, 41004 Sevilla, Spain
| | - Sebastián Pons
- Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - José Luis Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| |
Collapse
|
9
|
TGF-β/Smad Signalling in Neurogenesis: Implications for Neuropsychiatric Diseases. Cells 2021; 10:cells10061382. [PMID: 34205102 PMCID: PMC8226492 DOI: 10.3390/cells10061382] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
TGF-β/Smad signalling has been the subject of extensive research due to its role in the cell cycle and carcinogenesis. Modifications to the TGF-β/Smad signalling pathway have been found to produce disparate effects on neurogenesis. We review the current research on canonical and non-canonical TGF-β/Smad signalling pathways and their functions in neurogenesis. We also examine the observed role of neurogenesis in neuropsychiatric disorders and the relationship between TGF-β/Smad signalling and neurogenesis in response to stressors. Overlapping mechanisms of cell proliferation, neurogenesis, and the development of mood disorders in response to stressors suggest that TGF-β/Smad signalling is an important regulator of stress response and is implicated in the behavioural outcomes of mood disorders.
Collapse
|
10
|
Berto S, Fontenot MR, Seger S, Ayhan F, Caglayan E, Kulkarni A, Douglas C, Tamminga CA, Lega BC, Konopka G. Gene-expression correlates of the oscillatory signatures supporting human episodic memory encoding. Nat Neurosci 2021; 24:554-564. [PMID: 33686299 PMCID: PMC8016736 DOI: 10.1038/s41593-021-00803-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
In humans, brain oscillations support critical features of memory formation. However, understanding the molecular mechanisms underlying this activity remains a major challenge. Here, we measured memory-sensitive oscillations using intracranial electroencephalography recordings from the temporal cortex of patients performing an episodic memory task. When these patients subsequently underwent resection, we employed transcriptomics on the temporal cortex to link gene expression with brain oscillations and identified genes correlated with oscillatory signatures of memory formation across six frequency bands. A co-expression analysis isolated oscillatory signature-specific modules associated with neuropsychiatric disorders and ion channel activity, with highly correlated genes exhibiting strong connectivity within these modules. Using single-nucleus transcriptomics, we further revealed that these modules are enriched for specific classes of both excitatory and inhibitory neurons, and immunohistochemistry confirmed expression of highly correlated genes. This unprecedented dataset of patient-specific brain oscillations coupled to genomics unlocks new insights into the genetic mechanisms that support memory encoding.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miles R Fontenot
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Seger
- Department of Neurosurgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fatma Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emre Caglayan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Connor Douglas
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bradley C Lega
- Department of Neurosurgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Wang ZJ, Yasuhara T. An Examination of Mobile Spinal Cord Stimulators on Treating Parkinson Disease. Brain Circ 2021; 7:8-12. [PMID: 34084970 PMCID: PMC8057101 DOI: 10.4103/bc.bc_6_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/24/2022] Open
Abstract
In animal models of Parkinson disease (PD), spinal cord stimulation (SCS) exhibits neuroprotective effects. Recent advancements in SCS technology, most importantly mobile stimulators, allow for the conventional limitations of SCS such as limited stimulation time and restricted animal movements to be bypassed, offering potential avenues for improved clinical translation to PD patients. Small devices that could deliver continuous SCS to freely moving parkinsonian rats were shown to significantly improve behavior, preserve neurons and fibers in the substantia Nigra/striatum, reduce microglia infiltration, and increase laminin-positive area of the cerebral cortex. Through possible anti-inflammatory and angiogenic mechanisms, it has been demonstrated that there are behavioral and histological benefits to continuous SCS in a time-dependent manner. This review will discuss the benefits of this technology as well as focus on the limitations of current animal models.
Collapse
Affiliation(s)
- Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
12
|
Kuwahara K, Sasaki T, Yasuhara T, Kameda M, Okazaki Y, Hosomoto K, Kin I, Okazaki M, Yabuno S, Kawauchi S, Tomita Y, Umakoshi M, Kin K, Morimoto J, Lee JY, Tajiri N, Borlongan CV, Date I. Long-Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in Experimental Parkinson's Disease. Front Aging Neurosci 2020; 12:164. [PMID: 32612523 PMCID: PMC7309445 DOI: 10.3389/fnagi.2020.00164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Spinal cord stimulation (SCS) exerts neuroprotective effects in animal models of Parkinson's disease (PD). Conventional stimulation techniques entail limited stimulation time and restricted movement of animals, warranting the need for optimizing the SCS regimen to address the progressive nature of the disease and to improve its clinical translation to PD patients. OBJECTIVE Recognizing the limitations of conventional stimulation, we now investigated the effects of continuous SCS in freely moving parkinsonian rats. METHODS We developed a small device that could deliver continuous SCS. At the start of the experiment, thirty female Sprague-Dawley rats received the dopamine (DA)-depleting neurotoxin, 6-hydroxydopamine, into the right striatum. The SCS device was fixed below the shoulder area of the back of the animal, and a line from this device was passed under the skin to an electrode that was then implanted epidurally over the dorsal column. The rats were divided into three groups: control, 8-h stimulation, and 24-h stimulation, and behaviorally tested then euthanized for immunohistochemical analysis. RESULTS The 8- and 24-h stimulation groups displayed significant behavioral improvement compared to the control group. Both SCS-stimulated groups exhibited significantly preserved tyrosine hydroxylase (TH)-positive fibers and neurons in the striatum and substantia nigra pars compacta (SNc), respectively, compared to the control group. Notably, the 24-h stimulation group showed significantly pronounced preservation of the striatal TH-positive fibers compared to the 8-h stimulation group. Moreover, the 24-h group demonstrated significantly reduced number of microglia in the striatum and SNc and increased laminin-positive area of the cerebral cortex compared to the control group. CONCLUSIONS This study demonstrated the behavioral and histological benefits of continuous SCS in a time-dependent manner in freely moving PD animals, possibly mediated by anti-inflammatory and angiogenic mechanisms.
Collapse
Affiliation(s)
- Ken Kuwahara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yosuke Okazaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kakeru Hosomoto
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yousuke Tomita
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
TGF-β/Smad3 Signalling Modulates GABA Neurotransmission: Implications in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21020590. [PMID: 31963327 PMCID: PMC7013528 DOI: 10.3390/ijms21020590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
γ-Aminobutiryc acid (GABA) is found extensively in different brain nuclei, including parts involved in Parkinson’s disease (PD), such as the basal ganglia and hippocampus. In PD and in different models of the disorder, an increase in GABA neurotransmission is observed and may promote bradykinesia or L-Dopa-induced side-effects. In addition, proteins involved in GABAA receptor (GABAAR) trafficking, such as GABARAP, Trak1 or PAELR, may participate in the aetiology of the disease. TGF-β/Smad3 signalling has been associated with several pathological features of PD, such as dopaminergic neurodegeneration; reduction of dopaminergic axons and dendrites; and α-synuclein aggregation. Moreover, TGF-β/Smad3 intracellular signalling was recently shown to modulate GABA neurotransmission in the context of parkinsonism and cognitive alterations. This review provides a summary of GABA neurotransmission and TGF-β signalling; their implications in PD; and the regulation of GABA neurotransmission by TGF-β/Smad3. There appear to be new possibilities to develop therapeutic approaches for the treatment of PD using GABA modulators.
Collapse
|
14
|
Neural mechanisms underlying GABAergic regulation of adult hippocampal neurogenesis. Cell Tissue Res 2017; 371:33-46. [PMID: 28948349 DOI: 10.1007/s00441-017-2668-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/01/2017] [Indexed: 12/25/2022]
Abstract
Within the dentate gyrus of the adult hippocampus is the subgranular zone, which contains a neurogenic niche for radial-glia like cells, the most primitive neural stem cells in the adult brain. The quiescence of neural stem cells is maintained by tonic gamma-aminobutyric acid (GABA) released from local interneurons. Once these cells differentiate into neural progenitor cells, GABA continues to regulate their development into mature granule cells, the principal cell type of the dentate gyrus. Here, we review the role of GABA circuits, signaling, and receptors in regulating development of adult-born cells, as well as the molecular players that modulate GABA signaling. Furthermore, we review recent findings linking dysregulation of adult hippocampal neurogenesis to the altered GABAergic circuitry and signaling under various pathological conditions.
Collapse
|
15
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by the loss of memory, multiple cognitive impairments and changes in the personality and behavior. Several decades of intense research have revealed that multiple cellular changes are involved in disease process, including synaptic damage, mitochondrial abnormalities and inflammatory responses, in addition to formation and accumulation of amyloid-β (Aβ) and phosphorylated tau. Although tremendous progress has been made in understanding the impact of neurotransmitters in the progression and pathogenesis of AD, we still do not have a drug molecule associated with neurotransmitter(s) that can delay disease process in elderly individuals and/or restore cognitive functions in AD patients. The purpose of our article is to assess the latest developments in neurotransmitters research using cell and mouse models of AD. We also updated the current status of clinical trials using neurotransmitters' agonists/antagonists in AD.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P. Hemachandra Reddy
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|