1
|
Qian ZM, Li W, Guo Q. Lactoferrin/lactoferrin receptor: Neurodegenerative or neuroprotective in Parkinson's disease? Ageing Res Rev 2024; 101:102474. [PMID: 39197711 DOI: 10.1016/j.arr.2024.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Lactoferrin (Lf) is a multifunctional protein in the transferrin family. It is involved in many physiological functions, including the regulation of iron absorption and immune response. It also has antibacterial, antiviral, anti-inflammatory, anticancer and antioxidant capabilities under pathophysiological conditions. The mammalian lactoferrin receptor (LfR) plays a key role in mediating multiple functions of Lf. Studies have shown that Lf/LfR is abnormally expressed in the brain of Parkinson's disease, and the excessive accumulation of iron in the brain caused by the overexpression of Lf and LfR is considered to be one of the initial causes of the degeneration of dopaminergic neurons in Parkinson's disease. On the other hand, a number of recent studies have reported that Lf/LfR has a significant neuroprotective effect on Parkinson's disease. In other words, it seems paradoxical that Lf/LfR has both neurodegenerative and neuroprotective effects in Parkinson's disease. This article focuses on recent advances in the possible mechanisms of the neurodegenerative and neuroprotective effects of Lf/LfR in Parkinson's disease and discusses why Lf/LfR has a seemingly contradictory role in the development of Parkinson's disease. Based on the evidence obtained so far, we believed that Lf/LfR has a neuroprotective effect on Parkinson's disease, while as to whether the overexpressed Lf/LfR is the cause of the development of Parkinson's disease, the current evidence is insufficient and further investigation needed.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co.Ltd. / 411 Hospital, Shanghai University, Shanghai, China; Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong 226001, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wei Li
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong 226001, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qian Guo
- Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co.Ltd. / 411 Hospital, Shanghai University, Shanghai, China; Laboratory of Drug Delivery, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
2
|
Nagashima D, Mizukami N, Ogawa N, Suzuki S, Ohno M, Aoki R, Furukawa M, Izumo N. Bovine Lactoferrin Promotes Neurite Outgrowth in PC12 Cells via the TrkA Receptor. Int J Mol Sci 2024; 25:11249. [PMID: 39457031 PMCID: PMC11508191 DOI: 10.3390/ijms252011249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Lactoferrin (LF) is a multifunctional protein abundant in breast milk that modulates the functions of neural stem cells. Recent studies have demonstrated the efficacy of bovine LF (bLF) in mitigating behavioral changes; however, the molecular mechanisms on the nervous system have not yet been elucidated. The presented study aimed to characterize the molecular mechanisms of bLF on nerve extension in PC12 cells. PC12 cells were treated with 0.01-1000 µg/mL of bLF, and cell viability was determined using the cell counting kit-8 assay after treatment for 24 h. Morphometric evaluation was performed after 24 or 72 h of treatment with 50 ng/mL nerve growth factor (NGF) or 100-500 µg/mL bLF. The molecular mechanisms were investigated using Western blotting and real-time quantitative PCR. Cell viability was significantly decreased after treatment with 600-1000 µg/mL bLF for 24 h compared with the control group. Morphometric evaluation revealed neurite outgrowth after 72 h of NGF treatment, with a significant increase in neurite outgrowth after treatment with 250 µg/mL bLF. The phosphorylated p44/42 expression ratio peaked at 5 min and persisted for up to 10 min. Quantitative real-time PCR revealed a significant decrease in MAP2 expression. Our findings suggested that bLF enhanced PC12 cell neurite outgrowth to a similar extent as NGF. These effects are thought to be mediated via the TrkA receptor and activated by the phosphorylated ERK signaling pathway. Therefore, this study demonstrates that bLF promotes neurite outgrowth via a pathway similar to that of NGF.
Collapse
Affiliation(s)
- Daichi Nagashima
- Laboratory of Clinical Pharmaceutics, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan;
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Noa Mizukami
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Nana Ogawa
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Sayaka Suzuki
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Megumi Ohno
- NRL Pharma Inc., Kawasaki 213-0012, Kanagawa, Japan
| | - Ryoken Aoki
- Center for Pharmaceutical Education, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Megumi Furukawa
- Center for Pharmaceutical Education, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Nobuo Izumo
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| |
Collapse
|
3
|
Xu SF, Cui JH, Liu X, Pang ZQ, Bai CY, Jiang C, Luan C, Li YP, Zhao Y, You YM, Guo C. Astrocytic lactoferrin deficiency augments MPTP-induced dopaminergic neuron loss by disturbing glutamate/calcium and ER-mitochondria signaling. Free Radic Biol Med 2024; 225:374-387. [PMID: 39406276 DOI: 10.1016/j.freeradbiomed.2024.10.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 10/20/2024]
Abstract
Increased levels of lactoferrin (Lf) are present in the aged brain and in the lesions of various neurodegenerative diseases, including Parkinson's disease (PD), and may contribute to the cascade of events involved in neurodevelopment and neuroprotection. However, whether Lf originates from astrocytes and functions within either the normal or pathological brain are unknown. Here, we employed mice with specific knockout of the astrocyte lactoferrin gene (named Lf-cKO) to explore its specific roles in the pathological process of PD. We observed a decrease in tyrosine hydroxylase-positive cells, mitochondrial dysfunction of residual dopaminergic neurons, and motor deficits in Lf-cKO mice, which were significantly aggravated after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. To further explore how astrocytic lactoferrin deficiency exacerbated PD-like manifestation in MPTP-treated mice, the critical molecules involved in endoplasmic reticulum (ER)-mitochondria contacts and signaling pathways were investigated. In vitro and in vivo models, we found an aberrant level of effects implicated in glutamate and calcium homeostasis, mitochondrial morphology and functions, mitochondrial dynamics, and mitochondria-associated ER membranes, accompanied by signs of oxidative stress and ER stress, which increase the fragility of dopaminergic neurons. These findings confirm the existence of astrocytic Lf and its influence on the fate of dopaminergic neurons by regulating glutamate/calcium metabolism and ER-mitochondria signaling. Our findings may be a promising target for the treatment of PD.
Collapse
Affiliation(s)
- Shuang-Feng Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Jun-He Cui
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xin Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Zhong-Qiu Pang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chen-Yang Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chao Jiang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chuang Luan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yun-Peng Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yan Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yi-Ming You
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chuang Guo
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
4
|
Li T, Liu Y, Cao J, Pan C, Ding R, Zhao J, Liu J, He D, Jia J, Cheng X. LTF ameliorates cartilage endplate degeneration by suppressing calcification, senescence and matrix degradation through the JAK2/STAT3 pathway. J Cell Mol Med 2024; 28:e18267. [PMID: 39392081 PMCID: PMC11467740 DOI: 10.1111/jcmm.18267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 10/12/2024] Open
Abstract
Intervertebral disc degeneration (IDD)-induced cervical and lumbar herniations are debilitating diseases. The function of intervertebral disc (IVD) mainly depends on the cartilage endplate (CEP), which provides support and waste removal. Therefore, IDD stems from the degeneration of CEP. Our study shows that the expression of lactotransferrin (LTF), an iron-binding protein, is significantly decreased in degenerated human and rat CEP tissues. In addition, we found that LTF knockdown promoted calcification, senescence, and extracellular matrix (ECM) degradation in human endplate chondrocytes. Furthermore, the in vivo experiment results confirmed that the JAK2/STAT3 pathway inhibitor AG490 significantly reversed these effects. In addition to investigating the role and mechanism of LTF in CEP degeneration, this study provides a theoretical basis and experimental evidence to improve IDD treatment.
Collapse
Affiliation(s)
- Tao Li
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yuchi Liu
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jian Cao
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Orthopedics of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Chongzhi Pan
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Rui Ding
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jiangminghao Zhao
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jiahao Liu
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Dingwen He
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Orthopedics of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangChina
| | - Jingyu Jia
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Orthopedics of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangChina
| | - Xigao Cheng
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Orthopedics of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangChina
| |
Collapse
|
5
|
Gogna T, Housden BE, Houldsworth A. Exploring the Role of Reactive Oxygen Species in the Pathogenesis and Pathophysiology of Alzheimer's and Parkinson's Disease and the Efficacy of Antioxidant Treatment. Antioxidants (Basel) 2024; 13:1138. [PMID: 39334797 PMCID: PMC11429442 DOI: 10.3390/antiox13091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's (AD) and Parkinson's Disease (PD) are life-altering diseases that are characterised by progressive memory loss and motor dysfunction. The prevalence of AD and PD is predicted to continuously increase. Symptoms of AD and PD are primarily mediated by progressive neuron death and dysfunction in the hippocampus and substantia nigra. Central features that drive neurodegeneration are caspase activation, DNA fragmentation, lipid peroxidation, protein carbonylation, amyloid-β, and/or α-synuclein formation. Reactive oxygen species (ROS) increase these central features. Currently, there are limited therapeutic options targeting these mechanisms. Antioxidants reduce ROS levels by the induction of antioxidant proteins and direct neutralisation of ROS. This review aims to assess the effectiveness of antioxidants in reducing ROS and neurodegeneration. Antioxidants enhance major endogenous defences against ROS including superoxide dismutase, catalase, and glutathione. Direct neutralisation of ROS by antioxidants protects against ROS-induced cytotoxicity. The combination of Indirect and direct protective mechanisms prevents ROS-induced α-synuclein and/or amyloid-β formation. Antioxidants ameliorate ROS-mediated oxidative stress and subsequent deleterious downstream effects that promote apoptosis. As a result, downstream harmful events including neuron death, dysfunction, and protein aggregation are decreased. The protective effects of antioxidants in human models have yet to directly replicate the success seen in cell and animal models. However, the lack of diversity in antioxidants for clinical trials prevents a definitive answer if antioxidants are protective. Taken together, antioxidant treatment is a promising avenue in neurodegenerative disease therapy and subsequent clinical trials are needed to provide a definitive answer on the protective effects of antioxidants. No current treatment strategies have significant impact in treating advanced AD and PD, but new mimetics of endogenous mitochondrial antioxidant enzymes (Avasopasem Manganese, GC4419 AVA) may be a promising innovative option for decelerating neurodegenerative progress in the future at the mitochondrial level of OS.
Collapse
Affiliation(s)
- Talin Gogna
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| | - Benjamin E Housden
- Living Systems Institute, Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Annwyne Houldsworth
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| |
Collapse
|
6
|
Yong SJ, Veerakumarasivam A, Teoh SL, Lim WL, Chew J. Lactoferrin Protects Against Rotenone-Induced Toxicity in Dopaminergic SH-SY5Y Cells through the Modulation of Apoptotic-Associated Pathways. J Mol Neurosci 2024; 74:88. [PMID: 39297981 DOI: 10.1007/s12031-024-02267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
Parkinson's disease (PD) is a common motor neurodegenerative disease that still lacks effective therapeutic options. Previous studies have reported that lactoferrin exhibited neuroprotective effects in cellular and animal models of PD, typically induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP+) synthetic toxin. However, the neuroprotective capacity of lactoferrin in the rotenone-induced cellular model of PD remains relatively less established. Unlike MPTP/MPP+, rotenone is a naturally occurring environmental toxin known to induce chronic toxicity and increase the risk of PD in humans. In this study, we constructed a cellular model of PD by differentiating SH-SY5Y neuroblastoma cells with retinoic acid into mature dopaminergic neurons with increased β-tubulin III and tyrosine hydroxylase expression, followed by 24 h of rotenone exposure. Using this cellular model of PD, we showed that lactoferrin (1-10 µg/ml) pre-treatment for 48 h decreased loss of cell viability, mitochondrial membrane potential impairment, reactive oxygen species generation and pro-apoptotic activities (pan-caspase activation and nuclear condensation) in cells exposed to rotenone (1 and 5 µM) using biochemical assays, Hoechst 33342 staining and immunocytochemical techniques. We further demonstrated that 48 h of lactoferrin (10 µg/ml) pre-treatment decreased Bax:Bcl2 ratio and p42/44 mitogen-activated protein kinase expression but increased pAkt expression in 5 µM rotenone-exposed cells. Our study demonstrates that lactoferrin neuroprotective capacity is present in the rotenone-induced cellular model of PD, further supporting lactoferrin as a potential PD therapeutic that warrants further studies.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Abhi Veerakumarasivam
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
7
|
Guo W, Ji M, Li Y, Qian M, Qin Y, Li W, Nie H, Lv W, Jiang G, Huang R, Lin C, Li H, Huang R. Iron ions-sequestrable and antioxidative carbon dot-based nano-formulation with nitric oxide release for Parkinson's disease treatment. Biomaterials 2024; 309:122622. [PMID: 38797119 DOI: 10.1016/j.biomaterials.2024.122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Nondestructive penetration of the blood-brain barrier (BBB) to specifically prevent iron deposition and the generation of reactive oxygen species (ROS) shows great potential for treating Parkinson's disease (PD). However, effective agents with distinct mechanisms of action remain scarce. Herein, a N-doping carbon dot (CD) emitting red light was prepared, which can sacrifice ROS and produce nitric oxide (NO) owing to its surface N-involved groups conjugated to the sp2-hybrided π-system. Meanwhile, CD can chelate iron ions, thus depressing the catalytic Fe cycle and *OH detaching to inhibit the Fenton reaction. By modifying lactoferrin (Lf) via polyethylene glycol (PEG), the resulting CD-PEG-Lf (CPL) can nondestructively cross the BBB, targeting the dopaminergic neurons via both NO-mediated reversible BBB opening and Lf receptor-mediated transportation. Accordingly, it can serve as an antioxidant, reducing oxidative stress via its unique iron chelation, free radical sacrificing, and synergy with iron reflux prevention originating from Lf. Thus, it can significantly reduce brain inflammation and improve the behavioral performance of PD mice. Additionally, CPL can image the PD via its red fluorescence. Finally, this platform can be metabolized out of the brain through cerebrospinal fluid circulation without causing obvious side effects, promising a robust treatment for PD.
Collapse
Affiliation(s)
- Wei Guo
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Min Ji
- Shanghai Yangpu District Mental Health Center, Shanghai, 200093, China
| | - Yingjie Li
- Shanghai Yangpu District Mental Health Center, Shanghai, 200093, China
| | - Min Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Yanhui Qin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Wenshuai Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Huifang Nie
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Wenxin Lv
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, China
| | - Guangwei Jiang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Rong Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Chenteng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Hongyuan Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
8
|
Su Y, Jiao Y, Cai S, Xu Y, Wang Q, Chen X. The molecular mechanism of ferroptosis and its relationship with Parkinson's disease. Brain Res Bull 2024; 213:110991. [PMID: 38823725 DOI: 10.1016/j.brainresbull.2024.110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) have complex pathogenetic mechanisms. Genetic, age, and environmental factors are all related to PD. Due to the unclear pathogenesis of PD and the lack of effective cure methods, it is urgent to find new targets for treating PD patients. Ferroptosis is a form of cell death that is reliant on iron and exhibits distinct morphological and mechanistic characteristics compared to other types of cell death. It encompasses a range of biological processes, including iron/lipid metabolism and oxidative stress. In recent years, research has found that ferroptosis plays a crucial role in the pathophysiological processes of neurodegenerative diseases and stroke. Therefore, ferroptosis is also closely related to PD, This article reviews the core mechanisms of ferroptosis and elucidates the correlation between PD and ferroptosis. In addition, new compounds that have emerged in recent years to exert anti PD effects by inhibiting the ferroptosis signaling pathway were summarized. I hope to further elaborate the relationship between ferroptosis and PD through the review of this article, and provide new strategies for developing PD treatments targeting ferroptosis.
Collapse
Affiliation(s)
- Yan Su
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yue Jiao
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Sheng Cai
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yang Xu
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qi Wang
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Xianwen Chen
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| |
Collapse
|
9
|
Nongthombam PD, Haobam R. Targeting phosphodiesterase 4 as a potential therapy for Parkinson's disease: a review. Mol Biol Rep 2024; 51:510. [PMID: 38622307 DOI: 10.1007/s11033-024-09484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Phosphodiesterases (PDEs) have become a promising therapeutic target for various disorders. PDEs are a vast and diversified family of enzymes that degrade cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have several biochemical and physiological functions. Phosphodiesterase 4 (PDE4) is the most abundant PDE in the central nervous system (CNS) and is extensively expressed in the mammalian brain, where it catalyzes the hydrolysis of intracellular cAMP. An alteration in the balance of PDE4 and cAMP results in the dysregulation of different biological mechanisms involved in neurodegenerative diseases. By inhibiting PDE4 with drugs, the levels of cAMP inside the cells could be stabilized, which may improve the symptoms of mental and neurological disorders such as memory loss, depression, and Parkinson's disease (PD). Though numerous studies have shown that phosphodiesterase 4 inhibitors (PDE4Is) are beneficial in PD, there are presently no approved PDE4I drugs for PD. This review presents an overview of PDE4Is and their effects on PD, their possible underlying mechanism in the restoration/protection of dopaminergic cell death, which holds promise for developing PDE4Is as a treatment strategy for PD. Methods on how these drugs could be effectively delivered to develop as a promising treatment for PD have been suggested.
Collapse
Affiliation(s)
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, India.
| |
Collapse
|
10
|
Xiao Z, Wang X, Pan X, Xie J, Xu H. Mitochondrial iron dyshomeostasis and its potential as a therapeutic target for Parkinson's disease. Exp Neurol 2024; 372:114614. [PMID: 38007207 DOI: 10.1016/j.expneurol.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Abnormal iron accumulation has been implicated in the etiology of Parkinson's disease (PD). Understanding how iron damages dopaminergic neurons in the substantia nigra (SN) of PD is particularly important for developing targeted neurotherapeutic strategies for the disease. However, it is still not fully understood how excess iron contributes to the neurodegeneration of dopaminergic neurons in PD. There has been increased attention on mitochondrial iron dyshomeostasis, iron-induced mitochondrial dysfunction and ferroptosis in PD. Therefore, this review begins with a brief introduction to describe cellular iron metabolism and the dysregulation of iron metabolism in PD. Then we provide an update on how iron is delivered to mitochondria and induces the damage of dopaminergic neurons in PD. In addition, we also summarize new research progress on iron-dependent ferroptosis in PD and mitochondria-localized proteins involved in ferroptosis. This will provide new insight into potential therapeutic strategies targeting mitochondrial iron dysfunction.
Collapse
Affiliation(s)
- Zhixin Xiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Xiaoya Wang
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Xuening Pan
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Ianiro G, Niro A, Rosa L, Valenti P, Musci G, Cutone A. To Boost or to Reset: The Role of Lactoferrin in Energy Metabolism. Int J Mol Sci 2023; 24:15925. [PMID: 37958908 PMCID: PMC10650157 DOI: 10.3390/ijms242115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Many pathological conditions, including obesity, diabetes, hypertension, heart disease, and cancer, are associated with abnormal metabolic states. The progressive loss of metabolic control is commonly characterized by insulin resistance, atherogenic dyslipidemia, inflammation, central obesity, and hypertension, a cluster of metabolic dysregulations usually referred to as the "metabolic syndrome". Recently, nutraceuticals have gained attention for the generalized perception that natural substances may be synonymous with health and balance, thus becoming favorable candidates for the adjuvant treatment of metabolic dysregulations. Among nutraceutical proteins, lactoferrin (Lf), an iron-binding glycoprotein of the innate immune system, has been widely recognized for its multifaceted activities and high tolerance. As this review shows, Lf can exert a dual role in human metabolism, either boosting or resetting it under physiological and pathological conditions, respectively. Lf consumption is safe and is associated with several benefits for human health, including the promotion of oral and gastrointestinal homeostasis, control of glucose and lipid metabolism, reduction of systemic inflammation, and regulation of iron absorption and balance. Overall, Lf can be recommended as a promising natural, completely non-toxic adjuvant for application as a long-term prophylaxis in the therapy for metabolic disorders, such as insulin resistance/type II diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antonella Niro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| |
Collapse
|
12
|
Eker F, Bolat E, Pekdemir B, Duman H, Karav S. Lactoferrin: neuroprotection against Parkinson's disease and secondary molecule for potential treatment. Front Aging Neurosci 2023; 15:1204149. [PMID: 37731953 PMCID: PMC10508234 DOI: 10.3389/fnagi.2023.1204149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease and is largely caused by the death of dopaminergic (DA) cells. Dopamine loss occurs in the substantia nigra pars compacta and leads to dysfunctions in motor functions. Death of DA cells can occur with oxidative stress and dysfunction of glial cells caused by Parkinson-related gene mutations. Lactoferrin (Lf) is a multifunctional glycoprotein that is usually known for its presence in milk, but recent research shows that Lf is also found in the brain regions. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a known mitochondrial toxin that disturbs the mitochondrial electron transport chain (ETC) system and increases the rate of reactive oxygen species. Lf's high affinity for metals decreases the required iron for the Fenton reaction, reduces the oxidative damage to DA cells caused by MPTP, and increases their surveillance rate. Several studies also investigated Lf's effect on neurons that are treated with MPTP. The results pointed out that Lf's protective effect can also be observed without the presence of oxidative stress; thus, several potential mechanisms are currently being researched, starting with a potential HSPG-Lf interaction in the cellular membrane of DA cells. The presence of Lf activity in the brain region also showed that lactoferrin initiates receptor-mediated transcytosis in the blood-brain barrier (BBB) with the existence of lactoferrin receptors in the endothelial cells. The existence of Lf receptors both in endothelial cells and DA cells created the idea of using Lf as a secondary molecule in the transport of therapeutic agents across the BBB, especially in nanoparticle development.
Collapse
Affiliation(s)
| | | | | | | | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
13
|
Weber C, Dilthey A, Finzer P. The role of microbiome-host interactions in the development of Alzheimer´s disease. Front Cell Infect Microbiol 2023; 13:1151021. [PMID: 37333848 PMCID: PMC10272569 DOI: 10.3389/fcimb.2023.1151021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Alzheimer`s disease (AD) is the most prevalent cause of dementia. It is often assumed that AD is caused by an aggregation of extracellular beta-amyloid and intracellular tau-protein, supported by a recent study showing reduced brain amyloid levels and reduced cognitive decline under treatment with a beta-amyloid-binding antibody. Confirmation of the importance of amyloid as a therapeutic target notwithstanding, the underlying causes of beta-amyloid aggregation in the human brain, however, remain to be elucidated. Multiple lines of evidence point towards an important role of infectious agents and/or inflammatory conditions in the etiology of AD. Various microorganisms have been detected in the cerebrospinal fluid and brains of AD-patients and have thus been hypothesized to be linked to the development of AD, including Porphyromonas gingivalis (PG) and Spirochaetes. Intriguingly, these microorganisms are also found in the oral cavity under normal physiological conditions, which is often affected by multiple pathologies like caries or tooth loss in AD patients. Oral cavity pathologies are mostly accompanied by a compositional shift in the community of oral microbiota, mainly affecting commensal microorganisms and referred to as 'dysbiosis'. Oral dysbiosis seems to be at least partly mediated by key pathogens such as PG, and it is associated with a pro-inflammatory state that promotes the destruction of connective tissue in the mouth, possibly enabling the translocation of pathogenic microbiota from the oral cavity to the nervous system. It has therefore been hypothesized that dysbiosis of the oral microbiome may contribute to the development of AD. In this review, we discuss the infectious hypothesis of AD in the light of the oral microbiome and microbiome-host interactions, which may contribute to or even cause the development of AD. We discuss technical challenges relating to the detection of microorganisms in relevant body fluids and approaches for avoiding false-positives, and introduce the antibacterial protein lactoferrin as a potential link between the dysbiotic microbiome and the host inflammatory reaction.
Collapse
|
14
|
Kopaeva MY, Azieva AM, Cherepov AB, Zarayskaya IY. Lactoferrin Modulates Induction of Transcription Factor c-Fos in Neuronal Cultures. Int J Mol Sci 2023; 24:ijms24098373. [PMID: 37176079 PMCID: PMC10179438 DOI: 10.3390/ijms24098373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lactoferrin (Lf) is a multifunctional protein from the transferrin family. Of particular interest is the ability of Lf to affect a wide range of neuronal processes by modulating the expression of genes involved in long-term neuroplasticity. The expression of the immediate early gene c-fos that is rapidly activated in response to external influences, and its product, transcription factor c-Fos, is widely used as a marker of long-term neuronal plasticity. The present study aims to examine the effect of human Lf on the induction of transcription factor c-Fos in the primary mouse neuronal cultures after stimulation and to determine the cellular localization of human Lf and its colocalization with induced c-Fos protein. Primary dissociated cultures of hippocampal cells were obtained from the brains of newborn C57BL/6 mice (P0-P1). On day 7 of culturing, human Lf was added to the medium. After 24 h (day 8 in culture), c-Fos protein was induced in cells by triple application of 50 mM KCl. c-Fos content was analyzed using the immunofluorescent method 2 h after stimulation. Stimulation promoted exogenous Lf translocation into the nuclei of cultured neuronal cells, which correlated with increased induction of transcription factor c-Fos and was accompanied by nuclear colocalization of these proteins. These results attest to the potential of Lf as a modulator of neuronal processes and open up new prospects in studying the mechanisms of the regulatory effects of lactoferrin on cell function.
Collapse
Affiliation(s)
- Marina Yu Kopaeva
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
| | - Asya M Azieva
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
| | - Anton B Cherepov
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Irina Yu Zarayskaya
- Research Institute of Normal Physiology Named after P.K. Anokhin, 8 Baltiyskaya St., 125315 Moscow, Russia
| |
Collapse
|
15
|
Aslam Saifi M, Hirawat R, Godugu C. Lactoferrin-Decorated Cerium Oxide Nanoparticles Prevent Renal Injury and Fibrosis. Biol Trace Elem Res 2023; 201:1837-1845. [PMID: 35568769 DOI: 10.1007/s12011-022-03284-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022]
Abstract
Renal fibrosis is a hallmark feature of chronic kidney diseases (CKDs). However, despite the increased prevalence of renal fibrosis, there is no approved antifibrotic drug for the management of renal fibrosis. Cerium oxide nanoparticles (CONPs) have been demonstrated to possess a number of properties including antioxidant, anti-inflammatory and nephroprotective activity. As the kidneys are rich in lactoferrin (Lf) receptors, we synthesised the lactoferrin-CONP (Lf-CONP) system to be used for active targeting of the kidneys and provide antifibrotic effects of CONPs to the kidneys. We used the unilateral ureteral obstruction (UUO)-induced renal fibrosis model and treated the animals with Lf-CONP to observe the antifibrotic effects of Lf-CONP. Lf-CONP was found to inhibit the progression of renal fibrosis in a superior manner when compared to CONPs alone.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Rishabh Hirawat
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
16
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
17
|
Xing X, Zhang C, Ji P, Yang J, Li Q, Pan H, An Q. Effects of Different Iron Supplements on Reproductive Performance and Antioxidant Capacity of Pregnant Sows as Well as Iron Content and Antioxidant Gene Expression in Newborn Piglets. Animals (Basel) 2023; 13:ani13030517. [PMID: 36766406 PMCID: PMC9913290 DOI: 10.3390/ani13030517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
To improve the reproductive performance of sows and the iron nutrition of newborn piglets, we studied the effects of dietary iron on reproductive performance in pregnant sows as well as antioxidant capacity and the visceral iron content of sows and newborn piglets. Forty pregnant sows were divided into four groups, the iron deficiency group (Id group) was fed a basic diet while sows in the treatment groups were fed diets supplemented with 200 mg/kg lactoferrin (LF group), 0.8% heme-iron (Heme-Fe group), or 500 mg/kg iron-glycine complex (Fe-Gly group). The results indicated that (1) different sources of iron had no significant effect on litter size, live litter size, and litter weight of sows; (2) the three additives improved iron nutrition in newborn piglets, with LF and Heme-Fe having better improvement effects; and (3) the addition of different iron sources improved the level of serum antioxidant biochemical indexes of sows and newborn piglets, and it can have an effect on gene level, among which lactoferrin has the best effect. Thus, adding LF, Heme-iron, or Fe-Gly to the diet of sows during the second and third trimester of gestation can improve the antioxidant capacity of the sows. The supplementation of LF in pregnant sow diets can also improve the antioxidant capacity and the iron nutrition of newborn piglets, with better additive effects than in Heme-Fe and Fe-Gly.
Collapse
|
18
|
The Influence of Lactoferrin in Plasma and Peritoneal Fluid on Iron Metabolism in Women with Endometriosis. Int J Mol Sci 2023; 24:ijms24021619. [PMID: 36675136 PMCID: PMC9863839 DOI: 10.3390/ijms24021619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to investigate the relationship between lactoferrin and iron and its binding proteins in women with endometriosis by simultaneously measuring these parameters in plasma and peritoneal fluid. Ninety women were evaluated, of whom 57 were confirmed as having endometriosis. Lactoferrin was measured by ELISA, transferrin, ferritin and iron on a Cobas 8000 analyser. Lactoferrin and transferrin in peritoneal fluid were lower compared to plasma, in contrast to ferritin and iron. In plasma, lactoferrin showeds associations with iron and transferrin in endometriosis and with ferritin in the group without endometriosis. Lactoferrin in peritoneal fluid correlated with lactoferrin, iron and transferrin of plasma in patients without endometriosis. The ratio of lactoferrin concentration in peritoneal fluid to plasma differentiated stage I versus IV of endometriosis and was negatively correlated with the iron ratio in patients without endometriosis. The ferritin ratio differentiated women with and without endometriosis. The very high ferritin ratios, especially in advanced stages of endometriosis, suggest the protective involvement of this protein in peritoneal fluid and the loss of this role by lactoferrin. The results demonstrate the validity of assessing iron metabolism in women with endometriosis, which may be useful as a marker of the disease and its progression.
Collapse
|
19
|
Artym J, Zimecki M. Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review. Biomedicines 2023; 11:biomedicines11010114. [PMID: 36672622 PMCID: PMC9856106 DOI: 10.3390/biomedicines11010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
In this article, we review the benefits of application of colostrum and colostrum-derived proteins in animal models and clinical trials that include chemotherapy with antimetabolic drugs, radiotherapy and surgical interventions. A majority of the reported investigations was performed with bovine colostrum (BC) and native bovine or recombinant human lactoferrin (LF), applied alone, in nutraceutics or in combination with probiotics. Apart from reducing side effects of the applied therapeutics, radiation and surgical procedures, BC and LF augmented their efficacy and improved the wellness of patients. In conclusion, colostrum and colostrum proteins, preferably administered with probiotic bacteria, are highly recommended for inclusion to therapeutic protocols in cancer chemo- and radiotherapy as well as during the surgical treatment of cancer patients.
Collapse
|
20
|
Naidu SAG, Wallace TC, Davies KJA, Naidu AS. Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19. J Diet Suppl 2023; 20:218-253. [PMID: 33977807 DOI: 10.1080/19390211.2021.1922567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Overall mental health depends in part on the blood-brain barrier, which regulates nutrient transfer in-and-out of the brain and its central nervous system. Lactoferrin, an innate metal-transport protein, synthesized in the substantia nigra, particularly in dopaminergic neurons and activated microglia is vital for brain physiology. Lactoferrin rapidly crosses the blood-brain barrier via receptor-mediated transcytosis and accumulates in the brain capillary endothelial cells. Lactoferrin receptors are additionally present on glioma cells, brain micro-vessels, and neurons. As a regulator of neuro-redox, microglial lactoferrin is critical for protection/repair of neurons and healthy brain function. Iron imbalance and oxidative stress are common among patients with neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, dementia, depression, and multiple sclerosis. As an endogenous iron-chelator, lactoferrin prevents iron accumulation and dopamine depletion in Parkinson's disease patients. Oral lactoferrin supplementation could modulate the p-Akt/PTEN pathway, reduce Aβ deposition, and ameliorate cognitive decline in Alzheimer's disease. Novel lactoferrin-based nano-therapeutics have emerged as effective drug-delivery systems for clinical management of neurodegenerative disorders. Recent emergence of the Coronavirus disease-2019 (COVID-19) pandemic, initially considered a respiratory illness, demonstrated a broader virulence spectrum with the ability to cross the blood-brain barrier and inflict a plethora of neuropathological manifestations in the brain - the Neuro-COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are widely reported in Parkinson's disease, Alzheimer's disease, dementia, and multiple sclerosis patients with aggravated clinical outcomes. Lactoferrin, credited with several neuroprotective benefits in the brain could serve as a potential adjuvant in the clinical management of Neuro-COVID-19.
Collapse
Affiliation(s)
- Sreus A G Naidu
- N-terminus Research Laboratory, Yorba Linda, California, USA
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
- Think Healthy Group, Washington, District of Columbia, USA
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, California, USA
- Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California, USA
- Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
21
|
Nagashima D, Ishibashi Y, Kawaguchi S, Furukawa M, Toho M, Ohno M, Nitto T, Izumo N. Human Recombinant Lactoferrin Promotes Differentiation and Calcification on MC3T3-E1 Cells. Pharmaceutics 2022; 15:pharmaceutics15010060. [PMID: 36678689 PMCID: PMC9861834 DOI: 10.3390/pharmaceutics15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Lactoferrin (LF), known to be present in mammalian milk, has been reported to promote the proliferation of osteoblasts and suppress bone resorption by affecting osteoclasts. However, the mechanisms underlying the effects of human sources LF on osteoblast differentiation have not yet been elucidated, and almost studies have used LF from bovine sources. The presented study aimed to characterize the molecular mechanisms of bovine lactoferrin (IF-I) and human recombinant lactoferrin (LF-II) on MC3T3-E1 pre-osteoblast cells. MC3T3-E1 cells were treated with LF, ascorbic acid, and β-glycerophosphate (β-GP). Cell proliferation was analyzed using the MTT assay. Alkaline phosphatase activation and osteopontin expression levels were evaluated via cell staining and immunocytochemistry. The differentiation markers were examined using quantitative real-time PCR. The cell viability assay showed the treatment of 100 μg/mL LF significantly increased; however, it was suppressed by the simultaneous treatment of ascorbic acid and β-GP. Alizarin red staining showed that the 100 μg/mL treatment of LF enhanced calcification. Quantitative real-time PCR showed a significant increase in osterix expression. The results suggest that treatment with both LFs enhanced MC3T3-E1 cell differentiation and promoted calcification. The mechanisms of calcification suggest that LFs are affected by an increase in osterix and osteocalcin mRNA levels.
Collapse
Affiliation(s)
- Daichi Nagashima
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
- Pharmaceutical Education Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Yukiko Ishibashi
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Sachiko Kawaguchi
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Megumi Furukawa
- Pharmaceutical Education Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Masahiro Toho
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | | | - Takeaki Nitto
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Nobuo Izumo
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
- Correspondence: ; Tel.: +81-45-859-1300
| |
Collapse
|
22
|
Chen L, Zhao Q, Du X, Chen X, Jiao Q, Jiang H. Effects of oxidative stress caused by iron overload on arachidonic acid metabolites in MES23.5 cells. J Biosci 2022. [DOI: 10.1007/s12038-022-00321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Lactoferrin: from the structure to the functional orchestration of iron homeostasis. Biometals 2022; 36:391-416. [PMID: 36214975 DOI: 10.1007/s10534-022-00453-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/25/2022] [Indexed: 11/02/2022]
Abstract
Iron is by far the most widespread and essential transition metal, possessing crucial biological functions for living systems. Despite chemical advantages, iron biology has forced organisms to face with some issues: ferric iron insolubility and ferrous-driven formation of toxic radicals. For these reasons, acquisition and transport of iron constitutes a formidable challenge for cells and organisms, which need to maintain adequate iron concentrations within a narrow range, allowing biological processes without triggering toxic effects. Higher organisms have evolved extracellular carrier proteins to acquire, transport and manage iron. In recent years, a renewed interest in iron biology has highlighted the role of iron-proteins dysregulation in the onset and/or exacerbation of different pathological conditions. However, to date, no resolutive therapy for iron disorders has been found. In this review, we outline the efficacy of Lactoferrin, a member of the transferrin family mainly secreted by exocrine glands and neutrophils, as a new emerging orchestrator of iron metabolism and homeostasis, able to counteract iron disorders associated to different pathologies, including iron deficiency and anemia of inflammation in blood, Parkinson and Alzheimer diseases in the brain and cystic fibrosis in the lung.
Collapse
|
24
|
New Players in Neuronal Iron Homeostasis: Insights from CRISPRi Studies. Antioxidants (Basel) 2022; 11:antiox11091807. [PMID: 36139881 PMCID: PMC9495848 DOI: 10.3390/antiox11091807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Selective regional iron accumulation is a hallmark of several neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. The underlying mechanisms of neuronal iron dyshomeostasis have been studied, mainly in a gene-by-gene approach. However, recent high-content phenotypic screens using CRISPR/Cas9-based gene perturbations allow for the identification of new pathways that contribute to iron accumulation in neuronal cells. Herein, we perform a bioinformatic analysis of a CRISPR-based screening of lysosomal iron accumulation and the functional genomics of human neurons derived from induced pluripotent stem cells (iPSCs). Consistent with previous studies, we identified mitochondrial electron transport chain dysfunction as one of the main mechanisms triggering iron accumulation, although we substantially expanded the gene set causing this phenomenon, encompassing mitochondrial complexes I to IV, several associated assembly factors, and coenzyme Q biosynthetic enzymes. Similarly, the loss of numerous genes participating through the complete macroautophagic process elicit iron accumulation. As a novelty, we found that the impaired synthesis of glycophosphatidylinositol (GPI) and GPI-anchored protein trafficking also trigger iron accumulation in a cell-autonomous manner. Finally, the loss of critical components of the iron transporters trafficking machinery, including MON2 and PD-associated gene VPS35, also contribute to increased neuronal levels. Our analysis suggests that neuronal iron accumulation can arise from the dysfunction of an expanded, previously uncharacterized array of molecular pathways.
Collapse
|
25
|
Cui C, Han Y, Li H, Yu H, Zhang B, Li G. Curcumin-driven reprogramming of the gut microbiota and metabolome ameliorates motor deficits and neuroinflammation in a mouse model of Parkinson's disease. Front Cell Infect Microbiol 2022; 12:887407. [PMID: 36034698 PMCID: PMC9400544 DOI: 10.3389/fcimb.2022.887407] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/06/2022] [Indexed: 12/28/2022] Open
Abstract
Background Parkinson's disease (PD) is a common neurodegenerative disorder, accompanied by motor deficits as well as gastrointestinal dysfunctions. Recent studies have proved that the disturbance of gut microbiota and metabolism contributes to the pathogenesis of PD; however, the mechanisms underlying these effects have yet to be elucidated. Curcumin (CUR) has been reported to provide neuroprotective effects on neurological disorders and modulate the gut flora in intestinal-related diseases. Therefore, it is of significant interest to investigate whether CUR could exert a protective effect on PD and whether the effect of CUR is dependent on the intestinal flora and subsequent changes in metabolites. Methods In this study, we investigated the neuroprotective effects of CUR on a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 16S rRNA sequencing was performed to explore the profile of the gut microbiota among controls, MPTP-treated mice and CUR-treated mice. Then, antibiotic treatment (ABX) and fecal microbiota transplantation (FMT) experiments were conducted to examine the role of intestinal microbes on the protective effects of CUR in PD mice. Furthermore, ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based metabolomics analysis was used to identify the landscape of the CUR-driven serum metabolome. Finally, Pearson's analysis was conducted to investigate correlations between the gut flora-metabolite axis and CUR-driven neuroprotection in PD. Results Our results showed that CUR intervention effectively improved motor deficits, glial cell activation, and the aggregation of α-synuclein (α-syn) in MPTP-treated mice. 16S rRNA sequencing showed elevated abundances of Muribaculaceae, Lactobacillaceae, Lachnospiraceae and Eggerthellaceae but depleted abundances of Aerococcaceae and Staphylococcaceae in CUR-treated mice when compared with MPTP mice. ABX and FMT experiments further confirmed that the gut microbiota was required for CUR-induced protection in PD mice. Serum metabolomics analysis showed that CUR notably upregulated the levels of tyrosine, methionine, sarcosine and creatine. Importantly, strong correlations were identified among crucial taxa (Aerococcaceae, Staphylococcaceae, Muribaculaceae, Lactobacillaceae, Lachnospiraceae and Eggerthellaceae), pivotal metabolites (tyrosine, methionine, sarcosine and creatine) and the motor function and pathological results of mice. CUR treatment led to a rapid increase in the brain levels of tyrosine and levodopa (dopa) these changes were related to the abundances of Lactobacillaceae and Aerococcaceae. Conclusions CUR exerts a protective effect on the progression of PD by modulating the gut microbiota-metabolite axis. Lactobacillaceae and Aerococcaceae, along with key metabolites such as tyrosine and dopa play a dominant role in CUR-associated neuroprotection in PD mice. Our findings offer unique insights into the pathogenesis and potential treatment of PD.
Collapse
Affiliation(s)
- Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
26
|
Wang Y, Tang B, Zhu J, Yu J, Hui J, Xia S, Ji J. Emerging Mechanisms and Targeted Therapy of Ferroptosis in Neurological Diseases and Neuro-oncology. Int J Biol Sci 2022; 18:4260-4274. [PMID: 35844784 PMCID: PMC9274504 DOI: 10.7150/ijbs.72251] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/27/2022] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a novel type of cell death characterized by iron-dependent lipid peroxidation that involves a variety of biological processes, such as iron metabolism, lipid metabolism, and oxidative stress. A growing body of research suggests that ferroptosis is associated with cancer and neurodegenerative diseases, such as glioblastoma, Alzheimer's disease, Parkinson's disease, and stroke. Building on these findings, we can selectively induce ferroptosis for the treatment of certain cancers, or we can treat neurodegenerative diseases by inhibiting ferroptosis. This review summarizes the relevant advances in ferroptosis, the regulatory mechanisms of ferroptosis, the participation of ferroptosis in brain tumors and neurodegenerative diseases, and the corresponding drug therapies to provide new potential targets for its treatment.
Collapse
Affiliation(s)
- Yajie Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Junguo Hui
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Shuiwei Xia
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China.,School of medicine, Lishui University, Lishui, 323000, People's Republic of China.,Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Hangzhou 310016, People's Republic of China
| |
Collapse
|
27
|
Schirmbeck GH, Sizonenko S, Sanches EF. Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. Nutrients 2022; 14:2923. [PMID: 35889882 PMCID: PMC9322498 DOI: 10.3390/nu14142923] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Early adverse fetal environments can significantly disturb central nervous system (CNS) development and subsequently alter brain maturation. Nutritional status is a major variable to be considered during development and increasing evidence links neonate and preterm infant impaired brain growth with neurological and psychiatric diseases in adulthood. Breastfeeding is one of the main components required for healthy newborn development due to the many "constitutive" elements breastmilk contains. Maternal intake of specific nutrients during lactation may alter milk composition, thus affecting newborn nutrition and, potentially, brain development. Lactoferrin (Lf) is a major protein present in colostrum and the main protein in human milk, which plays an important role in the benefits of breastfeeding during postnatal development. It has been demonstrated that Lf has antimicrobial, as well as anti-inflammatory properties, and is potentially able to reduce the incidence of sepsis and necrotizing enterocolitis (NEC), which are particularly frequent in premature births. The anti-inflammatory effects of Lf can reduce birth-related pathologies by decreasing the release of pro-inflammatory factors and inhibiting premature cervix maturation (also related to commensal microbiome abnormalities) that could contribute to disrupting brain development. Pre-clinical evidence shows that Lf protects the developing brain from neuronal injury, enhances brain connectivity and neurotrophin production, and decreases inflammation in models of perinatal inflammatory challenge, intrauterine growth restriction (IUGR) and neonatal hypoxia-ischemia (HI). In this context, Lf can provide nutritional support for brain development and cognition and prevent the origin of neuropsychiatric diseases later in life. In this narrative review, we consider the role of certain nutrients during neurodevelopment linking to the latest research on lactoferrin with respect to neonatology. We also discuss new evidence indicating that early neuroprotective pathways modulated by Lf could prevent neurodegeneration through anti-inflammatory and immunomodulatory processes.
Collapse
Affiliation(s)
- Gabriel Henrique Schirmbeck
- Biochemistry Post-Graduate Program, Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil;
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
28
|
Bioactive Natural Compounds for Therapeutic and Nutraceutical Applications in Neurodegeneration. Nutrients 2022; 14:nu14112216. [PMID: 35684015 PMCID: PMC9182781 DOI: 10.3390/nu14112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Figure 1 summarizes the neuroprotective effects played by bioactive compounds examined in this Special Issue [...].
Collapse
|
29
|
Zhang XB, Xu SQ, Hui YG, Zhou HY, Hu YC, Zhang RH, Gao XD, Zheng CM. Lactotransferrin promotes intervertebral disc degeneration by regulating Fas and inhibiting human nucleus pulposus cell apoptosis. Aging (Albany NY) 2022; 14:4572-4585. [PMID: 35613904 PMCID: PMC9186764 DOI: 10.18632/aging.204100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/11/2022] [Indexed: 11/25/2022]
Abstract
Background: In recent years, intervertebral disc (IVD) degeneration (IDD) has increased in age. There is still a lack of effective treatment in clinics, which cannot improve the condition of IDD at the level of etiology. Objective: To explore IDD pathogenesis at the cellular and gene levels and investigate lactotransferrin (LTF) expression in IDD patients and its possible mechanism. Methods: We downloaded the IDD data set from the Gene Expression Omnibus (GEO) database, screened the differentially expressed genes (DEGs) and hub genes and performed Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to construct a protein–protein interaction (PPI) network. Subsequently, we verified LTF's regulatory mechanism through cell experiments. IL-1β was used to intervene in nucleus pulposus cells (NPCs) to construct the IDD cell model, and LTF and Fas expression was detected by qRT–PCR. LTF inhibitor, Fas inhibitor, LTF mimic, and Fas mimic were used to intervene in each group. Western blotting was used to detect Fas, Caspase-3, Bax, and Bcl-2 expression. Results: A total of 131 DEGs and 10 hub genes were screened. LTF mRNA in the IDD model was significantly higher than that in the control group, while Fas' mRNA was significantly lower. When LTF was upregulated or downregulated in NPCs, apoptosis marker expression showed the opposite trend. The rescue test showed that LTF and Fas' overexpression greatly enhanced NPC apoptosis. Conclusion: LTF promotes IDD progression by regulating Fas in NPCs, and it may be an effective gene therapy target.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an, Shanxi 710000, PR China
| | - Si-Qi Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an, Shanxi 710000, PR China
| | - Yi-Geng Hui
- Department of Spine Surgery, Honghui Hospital, Xi'an, Shanxi 710000, PR China
| | - Hai-Yu Zhou
- Department of Spine Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Yi-Cun Hu
- Department of Spine Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Rui-Hao Zhang
- Department of Spine Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Xi-Dan Gao
- Department of Spine Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Chang-Ming Zheng
- Department of Spine Surgery, Honghui Hospital, Xi'an, Shanxi 710000, PR China
| |
Collapse
|
30
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
31
|
Kowalczyk P, Kaczyńska K, Kleczkowska P, Bukowska-Ośko I, Kramkowski K, Sulejczak D. The Lactoferrin Phenomenon-A Miracle Molecule. Molecules 2022; 27:2941. [PMID: 35566292 PMCID: PMC9104648 DOI: 10.3390/molecules27092941] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023] Open
Abstract
Numerous harmful factors that affect the human body from birth to old age cause many disturbances, e.g., in the structure of the genome, inducing cell apoptosis and their degeneration, which leads to the development of many diseases, including cancer. Among the factors leading to pathological processes, microbes, viruses, gene dysregulation and immune system disorders have been described. The function of a protective agent may be played by lactoferrin as a "miracle molecule", an endogenous protein with a number of favorable antimicrobial, antiviral, antioxidant, immunostimulatory and binding DNA properties. The purpose of this article is to present the broad spectrum of properties and the role that lactoferrin plays in protecting human cells at all stages of life.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarności 12 St., 03-411 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego 3c St., 02-106 Warsaw, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 St., 15-089 Bialystok, Poland;
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
32
|
Darmawan KK, Karagiannis TC, Hughes JG, Small DM, Hung A. Molecular modeling of lactoferrin for food and nutraceutical applications: insights from in silico techniques. Crit Rev Food Sci Nutr 2022; 63:9074-9097. [PMID: 35503258 DOI: 10.1080/10408398.2022.2067824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lactoferrin is a protein, primarily found in milk that has attracted the interest of the food industries due to its health properties. Nevertheless, the instability of lactoferrin has limited its commercial application. Recent studies have focused on encapsulation to enhance the stability of lactoferrin. However, the molecular insights underlying the changes of structural properties of lactoferrin and the interaction with protectants remain poorly understood. Computational approaches have proven useful in understanding the structural properties of molecules and the key binding with other constituents. In this review, comprehensive information on the structure and function of lactoferrin and the binding with various molecules for food purposes are reviewed, with a special emphasis on the use of molecular dynamics simulations. The results demonstrate the application of modeling and simulations to determine key residues of lactoferrin responsible for its stability and interactions with other biomolecular components under various conditions, which are also associated with its functional benefits. These have also been extended into the potential creation of enhanced lactoferrin for commercial purposes. This review provides valuable strategies in designing novel nutraceuticals for food science practitioners and those who have interests in acquiring familiarity with the application of computational modeling for food and health purposes.
Collapse
Affiliation(s)
- Kevion K Darmawan
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Jeff G Hughes
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Darryl M Small
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, Australia
| |
Collapse
|
33
|
Li XX, Zhang F. Targeting TREM2 for Parkinson's Disease: Where to Go? Front Immunol 2022; 12:795036. [PMID: 35003116 PMCID: PMC8740229 DOI: 10.3389/fimmu.2021.795036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is one of most common neurodegenerative disorders caused by a combination of environmental and genetic risk factors. Currently, numerous population genetic studies have shown that polymorphisms in myeloid cell-triggered receptor II (TREM2) are associated with a variety of neurodegenerative disorders. Recently, TREM2 has been verified to represent a promising candidate gene for PD susceptibility and progression. For example, the expression of TREM2 was apparently increased in the prefrontal cortex of PD patients. Moreover, the rare missense mutations in TREM2 (rs75932628, p.R47H) was confirmed to be a risk factor of PD. In addition, overexpression of TREM2 reduced dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of PD. Due to the complex pathogenesis of PD, there is still no effective drug treatment. Thus, TREM2 has received increasing widespread attention as a potential therapeutic target. This review focused on the variation of TREM2 in PD and roles of TREM2 in PD pathogenesis, such as excessive-immune inflammatory response, α-Synuclein aggregation and oxidative stress, to further provide evidence for new immune-related biomarkers and therapies for PD.
Collapse
Affiliation(s)
- Xiao-Xian Li
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
34
|
Li B, Zhang B, Liu X, Zheng Y, Han K, Liu H, Wu C, Li J, Fan S, Peng W, Zhang F, Liu X. The effect of lactoferrin in aging: role and potential. Food Funct 2021; 13:501-513. [PMID: 34928288 DOI: 10.1039/d1fo02750f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging is frequently accompanied by various types of physiological deterioration, which increases the risk of human pathologies. Global public health efforts to increase human lifespan have increasingly focused on lowering the risk of aging-related diseases, such as diabetes, neurodegenerative diseases, cardiovascular disease, and cancers. Dietary intervention is a promising approach to maintaining human health during aging. Lactoferrin (LF) is known for its physiologically pleiotropic properties. Anti-aging interventions of LF have proven to be safe and effective for various pharmacological activities, such as anti-oxidation, anti-cellular senescence, anti-inflammation, and anti-carcinogenic. Moreover, LF has a pivotal role in modulating the major signaling pathways that influence the longevity of organisms. Thus, LF is expected to be able to attenuate the process of aging and greatly ameliorate its effects.
Collapse
Affiliation(s)
- Bing Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Bo Zhang
- Henan Key Laboratory of Rare Earth Functional Materials, The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Xudong Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Yidan Zheng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Kuntong Han
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Henan Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Changjing Wu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Jin Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Shuhua Fan
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Weifeng Peng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Fuli Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| |
Collapse
|
35
|
Zhou HH, Wang G, Luo L, Ding W, Xu JY, Yu Z, Qin LQ, Wan Z. Dietary lactoferrin has differential effects on gut microbiota in young versus middle-aged APPswe/PS1dE9 transgenic mice but no effects on cognitive function. Food Nutr Res 2021; 65:5496. [PMID: 34776831 PMCID: PMC8559448 DOI: 10.29219/fnr.v65.5496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022] Open
Abstract
Background Existing evidence suggest that lactoferrin might be beneficial for Alzheimer’s disease, while precise mechanisms are not fully elucidated. Objective To determine the effects of lactoferrin intervention on cognitive function from APPswe/PS1dE9 (APP/PS1) mice, and potential mechanisms involved. Design Both the young and middle-aged male APP/PS1 mice were divided into the control and lactoferrin intervention groups with 16 weeks’ intervention. Results Lactoferrin had no effects on cognitive function for both the young and middle-aged mice, and no key markers involved in Aβ, tau pathology, neuro-inflammation and synaptic plasticity were altered after lactoferrin intervention. With regards to gut microbiota profiles, in the young APP/PS1 mice, lactoferrin elevated the α diversity index including ACE and Chao 1, and reduced the relative abundance of the genera Bacteroides and Alistipes and elevated Oscillibacter; in addition, Oscillibacter, Anaerotruncus, EF096579_g, EU454405_g, Mollicutes_RF39, EU474361_g, EU774448_g, and EF096976_g were specifically abundant via linear discriminant analysis with effect size (LEfSe) analysis. In the middle-aged APP/PS1 mice, the relative abundance of the phylum Proteobacteria, as well as the genera Oscillospira, Coprococcus, and Ruminococcus was significantly reduced post lactoferrin; additionally, S24_7, Bacteroidia, Bacteroidetes, and Methylobacterium were specific via LEfSe analysis in the lactoferrin group. Conclusions Dietary lactoferrin might be beneficial for gut microbiota homeostasis although it might have no effects on cognition.
Collapse
Affiliation(s)
- Huan-Huan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Guiping Wang
- School of Physical Education, Soochow University, Suzhou, China.,Laboratory Animal Center, Medical College of Soochow University, Suzhou, China
| | - Lan Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Wei Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Ryskalin L, Biagioni F, Busceti CL, Polzella M, Lenzi P, Frati A, Ferrucci M, Fornai F. Lactoferrin Protects against Methamphetamine Toxicity by Modulating Autophagy and Mitochondrial Status. Nutrients 2021; 13:nu13103356. [PMID: 34684361 PMCID: PMC8537867 DOI: 10.3390/nu13103356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Lactoferrin (LF) was used at first as a vehicle to deliver non-soluble active compounds to the body, including the central nervous system (CNS). Nonetheless, it soon became evident that, apart from acting as a vehicle, LF itself owns active effects in the CNS. In the present study, the effects of LF are assessed both in baseline conditions, as well as to counteract methamphetamine (METH)-induced neurodegeneration by assessing cell viability, cell phenotype, mitochondrial status, and specific autophagy steps. In detail, cell integrity in baseline conditions and following METH administration was carried out by using H&E staining, Trypan blue, Fluoro Jade B, and WST-1. Western blot and immuno-fluorescence were used to assess the expression of the neurofilament marker βIII-tubulin. Mitochondria were stained using Mito Tracker Red and Green and were further detailed and quantified by using transmission electron microscopy. Autophagy markers were analyzed through immuno-fluorescence and electron microscopy. LF counteracts METH-induced degeneration. In detail, LF significantly attenuates the amount of cell loss and mitochondrial alterations produced by METH; and mitigates the dissipation of autophagy-related proteins from the autophagy compartment, which is massively induced by METH. These findings indicate a protective role of LF in the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Carla L. Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Maico Polzella
- Aliveda Laboratories, Viale Karol Wojtyla, 19, 56042 Crespina Lorenzana, Italy;
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
- Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135 Rome, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
- Correspondence:
| |
Collapse
|
37
|
Shao Y, Zhang X, Zhang H, Tian B, Weng Y, Huang J, Lu CD, Shi H. Effects of Dietary Supplementation of Bovine Lactoferricin on Rumen Microbiota, Lactation, and Health in Dairy Goats. Front Nutr 2021; 8:722303. [PMID: 34552955 PMCID: PMC8450446 DOI: 10.3389/fnut.2021.722303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the biological effects of supplementation of bovine lactoferricin (BLFc) at the rate of 100 mg/kg/day (LF-1) or 200 mg/kg/day (LF-2) in lactating dairy goats. Dietary BLFc supplementation increased the concentration of lactoferrin (LF) in the milk and serum (p < 0.05) without affecting the feed intake. In the LF-1 group, serum Fe, total antioxidant (T-AOC), and immunoglobulin A (IgA) were increased (p < 0.05), while malondialdehyde (MDA) was decreased (p < 0.05). In the LF-2 group, ruminal fluid pH value was decreased (p < 0.05), and the composition of ruminal microflora on day 42 was more diversified. Firmicutes phylum in the LF-2 group was the most abundant phyla. In contrast, Bacteroidetes phylum in the control group and the LF-1 group were the most abundant. Lower milk somatic cell count and higher IgA were observed in the LF-1 group and the LF-2 group than those in the control group (p < 0.05). These results suggested beneficial effects of supplementation of 100 mg/kg/day BLFc on reducing the oxidative stress and altering diversity of ruminal microflora.
Collapse
Affiliation(s)
- Yuexin Shao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xian Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huawen Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bowen Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yunan Weng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiangtao Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Christopher D Lu
- College of Agriculture, Forestry and Natural Resource Management, University of Hawaii, Hilo, HI, United States
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
38
|
Reseco L, Atienza M, Fernandez-Alvarez M, Carro E, Cantero JL. Salivary lactoferrin is associated with cortical amyloid-beta load, cortical integrity, and memory in aging. ALZHEIMERS RESEARCH & THERAPY 2021; 13:150. [PMID: 34488875 PMCID: PMC8422723 DOI: 10.1186/s13195-021-00891-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aging is associated with declining protective immunity and persistent low-grade inflammatory responses, which significantly contribute to Alzheimer's disease (AD) pathogenesis. Detecting aging-related cerebral vulnerability associated with deterioration of the immune system requires from non-invasive biomarkers able to detect failures in the brain-immunity connection. Reduced levels of salivary lactoferrin (sLF), an iron-binding protein with immunomodulatory activity, have been related to AD diagnosis. However, it remains unknown whether decreased sLF is associated with increased cortical amyloid-beta (Aβ) load and/or with loss of cortical integrity in normal aging. METHODS Seventy-four cognitively normal older adults (51 females) participated in the study. We applied multiple linear regression analyses to assess (i) whether sLF is associated with cortical Aβ load measured by 18F-Florbetaben (FBB)-positron emission tomography (PET), (ii) whether sLF-related variations in cortical thickness and cortical glucose metabolism depend on global Aβ burden, and (iii) whether such sLF-related cortical abnormalities moderate the relationship between sLF and cognition. RESULTS sLF was negatively associated with Aβ load in parieto-temporal regions. Moreover, sLF was related to thickening of the middle temporal cortex, increased FDG uptake in the posterior cingulate cortex, and poorer memory. These associations were stronger in individuals showing the highest Aβ burden. CONCLUSIONS sLF levels are sensitive to variations in cortical Aβ load, structural and metabolic cortical abnormalities, and subclinical memory impairment in asymptomatic older adults. These findings provide support for the use of sLF as a non-invasive biomarker of cerebral vulnerability in the general aging population.
Collapse
Affiliation(s)
- Lucia Reseco
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Eva Carro
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain. .,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.
| |
Collapse
|
39
|
Li YQ, Guo C. A Review on Lactoferrin and Central Nervous System Diseases. Cells 2021; 10:cells10071810. [PMID: 34359979 PMCID: PMC8307123 DOI: 10.3390/cells10071810] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Central nervous system (CNS) diseases are currently one of the major health issues around the world. Most CNS disorders are characterized by high oxidative stress levels and intense inflammatory responses in affected tissues. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, plays a significant role in anti-inflammatory, antibacterial, antiviral, reactive oxygen species (ROS) modulator, antitumor immunity, and anti-apoptotic processes. Previous studies have shown that Lf is abnormally expressed in a variety of neurological diseases, especially neurodegenerative diseases. Recently, the promotion of neurodevelopment and neuroprotection by Lf has attracted widespread attention, and Lf could be exploited both as an active therapeutic agent and drug nanocarrier. However, our understanding of the roles of Lf proteins in the initiation or progression of CNS diseases is limited, especially the roles of Lf in regulating neurogenesis. This review highlights recent advances in the understanding of the major pharmacological effects of Lf in CNS diseases, including neurodegenerative diseases, cerebrovascular disease, developmental delays in children, and brain tumors.
Collapse
Affiliation(s)
| | - Chuang Guo
- Correspondence: ; Tel.: +86-24-8365-6109
| |
Collapse
|
40
|
Huang L, Chen R, Liu L, Zhou Y, Chen Z. Lactoferrin ameliorates pathological cardiac hypertrophy related to mitochondrial quality control in aged mice. Food Funct 2021; 12:7514-7526. [PMID: 34223567 DOI: 10.1039/d0fo03346d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pathological myocardial hypertrophy, which lacks effective prevention and treatment strategies, makes the elderly susceptible to various cardiovascular diseases. Based on the beneficial attributes of lactoferrin in aging-related diseases, we aimed to investigate whether lactoferrin could exert protection against aging-related cardiac hypertrophy and further explore the underlying mechanisms. Here, we assessed the effects of lactoferrin on myocardial pathology, apoptotic proteins, mitochondrial morphology, kinetics, autophagy, and aging-related markers, including lipofuscin deposition, overloaded iron, and oxidative stress, which are known to destabilize the mitochondrial-lysosomal axis in aged mice. Upon the administration of lactoferrin, aged hearts showed amelioration of pathological cardiac hypertrophy, which was associated with decreased apoptosis, improved morphology, rearrangement of mitochondrial dynamics, increased lysosome-dependent autophagy, and inhibition of factors detrimental to the mitochondrial-lysosomal axis. In conclusion, lactoferrin ameliorated pathological cardiac hypertrophy, potentially by improving the mitochondrial quality related to mitochondrial dynamics and the mitochondrial-lysosomal axis, thus reducing mitochondria-dependent apoptosis, which is the pivotal factor for cardiac hypertrophy in aged mice.
Collapse
Affiliation(s)
- Lishan Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, China.
| | | | | | | | | |
Collapse
|
41
|
Ma J, Wang R, Chen T, Jiang S, Xu A. Protective effects of baicalin in a Caenorhabditis elegans model of Parkinson's disease. Toxicol Res (Camb) 2021; 10:409-417. [PMID: 34141154 DOI: 10.1093/toxres/tfaa107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of the central nervous system. However, the pathogenetic mechanisms of PD are far from understood. The aim of this study was to determine the protective effect of baicalin in a Caenorhabditis elegans model of PD. C. elegans worms were stimulated for 24 h with 6-hydroxydopamine (6-OHDA, 50 mM) and treated with or without baicalin (1, 10, or 100 μM). At all tested concentrations, baicalin improved the reversal and omega turn behavioral phenotypes, as well as the survival, of 6-OHDA-stimulated worms. It also inhibited 6-OHDA-induced oxidative stress by decreasing malondialdehyde levels, increasing superoxide dismutase, glutathione reductase, catalase, and glutathione levels and up-regulating mRNA expression of the antioxidant-related genes sod-1, sod-2, sod-3, daf-2, and daf-16. Additionally, it significantly decreased the expression of the apoptosis-related gene ced-3 and increased that of the anti-apoptosis-related gene ced-9. The expression levels of cleaved caspase-3 and B-cell lymphoma 2 in 6-OHDA-treated worms were reversed by baicalin. Apoptosis was suppressed by 6-OHDA in loss-of-function strains via the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, the apoptotic effects of 6-OHDA were blocked in sek-1 and pmk-1 mutants. Finally, the mRNA expression of sek-1 and pmk-1 and the protein expression of p38 MAPK and stress-activated protein kinase/extracellular signal-regulated kinase 1 were up-regulated by 6-OHDA and reversed by baicalin. Baicalin may protect against 6-OHDA injury by inhibiting apoptosis and decreasing oxidative stress through the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P. R. China
| | - Ranran Wang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P. R. China
| | - Ting Chen
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P. R. China
| | - Shaowei Jiang
- Emergency Department, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P. R. China
| | - Ajing Xu
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P. R. China
| |
Collapse
|
42
|
Yan J, Ma H, Lai X, Wu J, Liu A, Huang J, Sun W, Shen M, Zhang Y. Artemisinin attenuated oxidative stress and apoptosis by inhibiting autophagy in MPP +-treated SH-SY5Y cells. ACTA ACUST UNITED AC 2021; 28:6. [PMID: 33632304 PMCID: PMC7908802 DOI: 10.1186/s40709-021-00137-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. METHODS We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. RESULTS No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. CONCLUSION Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Junqiang Yan
- Molecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, Henan, 471003, People's Republic of China. .,Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
| | - Hongxia Ma
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Xiaoyi Lai
- Molecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, Henan, 471003, People's Republic of China
| | - Jiannan Wu
- Molecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, Henan, 471003, People's Republic of China
| | - Anran Liu
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Jiarui Huang
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Wenjie Sun
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | | | - Yude Zhang
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| |
Collapse
|
43
|
Ameliorative effect of recombinant human lactoferrin on the premature ovarian failure in rats after cyclophosphamide treatments. J Ovarian Res 2021; 14:17. [PMID: 33478578 PMCID: PMC7821665 DOI: 10.1186/s13048-020-00763-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022] Open
Abstract
This study investigated the effect of recombinant human lactoferrin (rhLF) on the premature ovarian failure (POF) of rats. After cyclophosphamide treatments, the POF rats were divided into the following groups: normal control group (NC), low-dose group (LD), medium-dose group (MD) and high-dose group (HD) of rhLF. After drug administrations, the ovarian indexes and hormonal levels were detected. After follicle number count, the proliferation and apoptosis were analyzed with the expressions of genes related with oogenesis, reactive oxygen species (ROS) production and apoptosis detected, followed by the calculation of oxidative stress and protein expressions. After 4-hydroperoxy cyclophosphamide (4-HC) treatments, the effect of rhLF on the proliferation, ROS production and gene expressions of primary rat granulosa cells (GCs) cultured in vitro were detected. After mating, the fertilities of POF rats were recorded. The result showed that the rhLF administrations up-regulated the ovarian index with the number of developing follicles increased and the decreases of hormonal levels conferred. The Ki-67 intensities of the MD and HD groups were up-regulated with the Tunnel intensities decreased. The rhLF treatments significantly promoted the expression of oogenesis, antioxidant and anti-apoptosis related genes. The expression of Bax and Caspase 3 were decreased with the expression of Bcl-2 up-regulated after rhLF administrations. The in vitro treatments of rhLF effectively conferred the toxicity of 4-HC on primary rat GCs. The fertility assessment showed the rhLF treatments up-regulated the offspring’s’ folliculogenesis, which confirmed the ameliorative role of rhLF on the POF damages via the inhibition of ROS production in GCs.
Collapse
|
44
|
Hadi F, Akrami H, Totonchi M, Barzegar A, Nabavi SM, Shahpasand K. α-synuclein abnormalities trigger focal tau pathology, spreading to various brain areas in Parkinson disease. J Neurochem 2021; 157:727-751. [PMID: 33264426 DOI: 10.1111/jnc.15257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/28/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder, whose prevalence is 2~3% in the population over 65. α-Synuclein aggregation is the major pathological hallmark of PD. However, recent studies have demonstrated enhancing evidence of tau pathology in PD. Despite extensive considerations, thus far, the actual spreading mechanism of neurodegeneration has remained elusive in a PD brain. This study aimed to further investigate the development of α-synuclein and tau pathology. We employed various PD models, including cultured neurons treated with either 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or with recombinant α-synuclein. Also, we studied dopaminergic neurons of cytokine Interferon-β knock-out. Moreover, we examined rats treated with 6-hydroxydopamine, Rhesus monkeys administrated with MPTP neurotoxin, and finally, human post-mortem brains. We found the α-synuclein phosphorylation triggers tau pathogenicity. Also, we observed more widespread phosphorylated tau than α-synuclein with prion-like nature in various brain areas. We optionally removed P-tau or P-α-synuclein from cytokine interferon-β knock out with respective monoclonal antibodies. We found that tau immunotherapy suppressed neurodegeneration more than α-synuclein elimination. Our findings indicate that the pathogenic tau could be one of the leading causes of comprehensive neurodegeneration triggered by PD. Thus, we can propose an efficient therapeutic target to fight the devastating disorder.
Collapse
Affiliation(s)
- Fatemeh Hadi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Mehdi Totonchi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute, ACECR, Tehran, Iran
| | | | - Seyed Massood Nabavi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute, ACECR, Tehran, Iran
| |
Collapse
|
45
|
Kopaeva MY, Cherepov AB, Nesterenko MV, Zarayskaya IY. Pretreatment with Human Lactoferrin Had a Positive Effect on the Dynamics of Mouse Nigrostriatal System Recovery after Acute MPTP Exposure. BIOLOGY 2021; 10:24. [PMID: 33401480 PMCID: PMC7823682 DOI: 10.3390/biology10010024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 01/26/2023]
Abstract
We studied the effect of human lactoferrin (hLf) on degenerative changes in the nigrostriatal system and associated behavioral deficits in the animal model of Parkinson disease. Nigrostriatal dopaminergic injury was induced by single administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 40 mg/kg) to five-month-old C57Bl/6 mice. Behavioral disturbances were assessed in the open field and rotarod tests and by the stride length analysis. Structural deficits were assessed by the counts of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and optical density (OD) of TH-immunolabeled fibers in the striatum. Acute MPTP treatment induced long-term behavioral deficit and degenerative changes in the nigrostriatal system. Pretreatment with hLf prevented body weight loss and promoted recovery of motor functions and exploratory behavior. Importantly, OD of TH-positive fibers in the striatum of mice treated with hLf almost returned to normal, and the number of TH-positive cells in the substantia nigra significantly increased on day 28. These results indicate that hLf produces a neuroprotective effect and probably stimulates neuroregeneration under conditions of MPTP toxicity in our model. A relationship between behavioral deficits and nigrostriatal system disturbances at delayed terms after MPTP administration was found.
Collapse
Affiliation(s)
- Marina Yu. Kopaeva
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| | - Anton B. Cherepov
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| | | | - Irina Yu. Zarayskaya
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| |
Collapse
|
46
|
Nakamura M, Matsuzaki T, Iimori A, Sato A. Harnessing the chondroitin sulfate-binding characteristics of human lactoferrin to neutralize neurite outgrowth inhibition. Biochem Biophys Res Commun 2020; 534:1076-1082. [PMID: 33129446 DOI: 10.1016/j.bbrc.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
Human lactoferrin (hLF) is a glycosaminoglycan (GAG)-binding protein involved in various biological functions. It consists of two globular functional domains, referred to as the N- and C-lobes. Both heparin (HP) and heparan sulfate (HS) bind to the N-lobe domain of hLF. Although some biological functions of hLF such as neuroprotective effects and cancer growth inhibition are regulated by its binding to HS, the binding characteristics of hLF with other GAG subtypes, and their effects on biological activities are still poorly understood. Here, we report that hLF binds to chondroitin sulfate (CS)-E, a GAG subtype involved in various neurodegenerative diseases. The α-helical content of hLF, which is an indicator of changes in the secondary structure of hLF, increased in the presence of CS-C, CS-D, or CS-E, but not in the presence of HP, HS, CS-A, or CS-B. This structural change was also observed in the N-lobe, the N-terminal half region of the hLF. Additionally, the thermal stability of the N-lobe showed a dose-dependent improvement in the presence of CS-E, but not in the presence of HP. This indicates that the binding mode of hLF/N-lobe to CS-E may differ from that of HP. hLF was also found to neutralize CS-E-induced inhibition of neurite outgrowth and neuronal growth cone collapse, which are neurodegenerative responses to spinal cord injury, in cultured dorsal root ganglion neurons. Thus, hLF is a promising drug candidate for the treatment of CS-E-induced neurodegenerative diseases such as spinal cord injury.
Collapse
Affiliation(s)
- Masao Nakamura
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan; Department of Peptidomics, Sasaki Institute, Sasaki Foundation, 2-2 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Takumi Matsuzaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Ami Iimori
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Atsushi Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
47
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
48
|
Elzoghby AO, Abdelmoneem MA, Hassanin IA, Abd Elwakil MM, Elnaggar MA, Mokhtar S, Fang JY, Elkhodairy KA. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 2020; 263:120355. [PMID: 32932142 PMCID: PMC7480805 DOI: 10.1016/j.biomaterials.2020.120355] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Recent progress in protein-based nanomedicine, inspired by the success of Abraxane® albumin-paclitaxel nanoparticles, have resulted in novel therapeutics used for treatment of challenging diseases like cancer and viral infections. However, absence of specific drug targeting, poor pharmacokinetics, premature drug release, and off-target toxicity are still formidable challenges in the clinic. Therefore, alternative protein-based nanomedicines were developed to overcome those challenges. In this regard, lactoferrin (Lf), a glycoprotein of transferrin family, offers a promising biodegradable well tolerated material that could be exploited both as an active therapeutic and drug nanocarrier. This review highlights the major pharmacological actions of Lf including anti-cancer, antiviral, and immunomodulatory actions. Delivery technologies of Lf to improve its pries and enhance its efficacy were also reviewed. Moreover, different nano-engineering strategies used for fabrication of drug-loaded Lf nanocarriers were discussed. In addition, the use of Lf for functionalization of drug nanocarriers with emphasis on tumor-targeted drug delivery was illustrated. Besides its wide application in oncology nano-therapeutics, we discussed the recent advances of Lf-based nanocarriers as efficient platforms for delivery of anti-parkinsonian, anti-Alzheimer, anti-viral drugs, immunomodulatory and bone engineering applications.
Collapse
Affiliation(s)
- Ahmed O Elzoghby
- Center for Engineered Therapeutics, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA, 02139, USA; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Mona A Abdelmoneem
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, 22516, Egypt
| | - Islam A Hassanin
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Mahmoud M Abd Elwakil
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Manar A Elnaggar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo (AUC), New Cairo, 11835, Egypt
| | - Sarah Mokhtar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|