1
|
Jang S, Choi B, Lim C, Kim M, Lee JE, Lee H, Baek E, Cho KS. Neuronal fatty acid-binding protein enhances autophagy and suppresses amyloid-β pathology in a Drosophila model of Alzheimer's disease. PLoS Genet 2024; 20:e1011475. [PMID: 39561115 PMCID: PMC11575808 DOI: 10.1371/journal.pgen.1011475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Fatty acid-binding proteins (FABPs) are small cytoplasmic proteins involved in intracellular lipid transport and bind free fatty acids, cholesterol, and retinoids. FABP3, the major neuronal FABP in the adult brain, is upregulated in the CSF of patients with Alzheimer's disease (AD). However, the precise role of neuronal FABPs in AD pathogenesis remains unclear. This study investigates the contribution of fabp, the Drosophila homolog of FABP3 and FABP7, to amyloid β (Aβ) pathology using a Drosophila model. Neuronal knockdown of fabp shortened the lifespan of flies and increased age-related protein aggregates in the brain. In an AD model, fabp knockdown in neurons increased Aβ accumulation and Aβ-induced neurodegeneration, whereas fabp overexpression ameliorated Aβ pathology. Notably, fabp overexpression stimulated autophagy, which was inhibited by the knockdown of Eip75B, the Drosophila homolog of the peroxisome proliferator-activated receptor (PPAR). The PPAR activator rosiglitazone restored autophagy impaired by fabp knockdown and reduced fabp knockdown-induced increased Aβ aggregation and cell death. Furthermore, knockdown of either fabp or Eip75B in the wing imaginal disc or adult fly brain reduced the expression of Atg6 and Atg8a. Additionally, treatment of the fabp knockdown AD model flies with polyunsaturated fatty acids, such as docosahexaenoic acid or linoleic acid, partially alleviated cell death in the developing eye, restored impaired autophagy flux, reduced Aβ aggregation, and attenuated Aβ-induced cell death. Our results suggest that Drosophila fabp plays an important role in maintaining protein homeostasis during aging and protects neurons from Aβ-induced cell death by enhancing autophagy through the PPAR pathway. These findings highlight the potential importance of neuronal FABP function in AD pathogenesis.
Collapse
Affiliation(s)
- Seokhui Jang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Byoungyun Choi
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chaejin Lim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Minkyoung Kim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Ji-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyungi Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Eunji Baek
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
- Korea Hemp Institute, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
3
|
Preis L, Villringer K, Brosseron F, Düzel E, Jessen F, Petzold GC, Ramirez A, Spottke A, Fiebach JB, Peters O. Assessing blood-brain barrier dysfunction and its association with Alzheimer's pathology, cognitive impairment and neuroinflammation. Alzheimers Res Ther 2024; 16:172. [PMID: 39085945 PMCID: PMC11290219 DOI: 10.1186/s13195-024-01529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Blood-brain barrier (BBB) alterations may contribute to AD pathology through various mechanisms, including impaired amyloid-β (Aβ) clearance and neuroinflammation. Soluble platelet-derived growth factor receptor beta (sPDGFRβ) has emerged as a potential biomarker for BBB integrity. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) offers a direct assessment of BBB permeability. However, the relationship between BBB dysfunction, cognitive impairment, and AD pathology remains unclear, with inconsistent findings in the literature. METHODS We conducted a cross-sectional study using data from the DELCODE and DESCRIBE cohorts to investigate BBB dysfunction in participants with normal cognition (NC), mild cognitive impairment (MCI), and AD dementia. BBB function was assessed using DCE-MRI and sPDGFRβ levels in cerebrospinal fluid and AD biomarkers Aβ and tau were measured. In a subset of patients, the CSF/plasma-ratio of albumin (QAlb) as a standard marker of BBB integrity and markers of neuroinflammation were analyzed. RESULTS 91 participants (NC: 44, MCI: 21, AD: 26) were included in the analysis. The average age was 74.4 years, 42% were female. Increased hippocampal BBB disruption was observed in the AD-group (Ktrans: 0.55 × 10- 3 min- 1 ± 0.74 × 10- 3 min- 1) but not the MCI-group (Ktrans: 0.177 × 10- 3 min- 1 ± 0.22 × 10- 3 min- 1), compared to the NC group (Ktrans: 0.19 × 10- 3 min- 1 ± 0.37 × 10- 3 min- 1, p < .01). sPDGFRβ was not significantly different between the cognitive groups. However, sPDGFRβ levels were significantly associated with age (r = .33, p < .01), independent of vascular risk factors. Further, sPDGFRβ showed significant positive associations with soluble Aβ levels (Aβ40: r = .57, p < .01; Aβ42: r = .39, p < .01) and YKL-40 (r = .53, p < .01), a marker of neuroinflammation. sPDGFRβ/DCE-MRI was not associated with overall AD biomarker positivity or APOE-status. CONCLUSION In dementia, but not MCI, hippocampal BBB disruption was observed. sPDGFRβ increased with age and was associated with neuroinflammation independent of cognitive impairment. The association between Aβ and sPDGFRβ may indicate a bidirectional relationship reflecting pericytes' clearance of soluble Aβ and/or vasculotoxic properties of Aβ.
Collapse
Affiliation(s)
- Lukas Preis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany.
| | - Kersten Villringer
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, 50924, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Köln, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Center for Neurology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Köln, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Center for Neurology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jochen B Fiebach
- Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Oliver Peters
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| |
Collapse
|
4
|
Casanova F, Tian Q, Atkins JL, Wood AR, Williamson D, Qian Y, Zweibaum D, Ding J, Melzer D, Ferrucci L, Pilling LC. Iron and risk of dementia: Mendelian randomisation analysis in UK Biobank. J Med Genet 2024; 61:435-442. [PMID: 38191510 DOI: 10.1136/jmg-2023-109295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Brain iron deposition is common in dementia, but whether serum iron is a causal risk factor is unknown. We aimed to determine whether genetic predisposition to higher serum iron status biomarkers increased risk of dementia and atrophy of grey matter. METHODS We analysed UK Biobank participants clustered into European (N=451284), African (N=7477) and South Asian (N=9570) groups by genetic similarity to the 1000 genomes project. Using Mendelian randomisation methods, we estimated the association between genetically predicted serum iron (transferrin saturation [TSAT] and ferritin), grey matter volume and genetic liability to clinically defined dementia (including Alzheimer's disease [AD], non-AD dementia, and vascular dementia) from hospital and primary care records. We also performed time-to-event (competing risks) analysis of the TSAT polygenic score on risk of clinically defined non-AD dementia. RESULTS In Europeans, higher genetically predicted TSAT increased genetic liability to dementia (Odds Ratio [OR]: 1.15, 95% Confidence Intervals [CI] 1.04 to 1.26, p=0.0051), non-AD dementia (OR: 1.27, 95% CI 1.12 to 1.45, p=0.00018) and vascular dementia (OR: 1.37, 95% CI 1.12 to 1.69, p=0.0023), but not AD (OR: 1.00, 95% CI 0.86 to 1.15, p=0.97). Higher TSAT was also associated with increased risk of non-AD dementia in participants of African, but not South Asian groups. In survival analysis using a TSAT polygenic score, the effect was independent of apolipoprotein-E ε4 genotype (with adjustment subdistribution Hazard Ratio: 1.74, 95% CI 1.33 to 2.28, p=0.00006). Genetically predicted TSAT was associated with lower grey matter volume in caudate, putamen and thalamus, and not in other areas of interest. DISCUSSION Genetic evidence supports a causal relationship between higher TSAT and risk of clinically defined non-AD and vascular dementia, in European and African groups. This association appears to be independent of apolipoprotein-E ε4.
Collapse
Affiliation(s)
- Francesco Casanova
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Qu Tian
- Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, Bethesda, Maryland, USA
| | - Janice L Atkins
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Andrew R Wood
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | - Yong Qian
- Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, Bethesda, Maryland, USA
| | - David Zweibaum
- Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, Bethesda, Maryland, USA
| | - Jun Ding
- Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, Bethesda, Maryland, USA
| | - David Melzer
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Luigi Ferrucci
- Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, Bethesda, Maryland, USA
| | - Luke C Pilling
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
5
|
Xu Y, Jiang H, Zhu B, Cao M, Feng T, Sun Z, Du G, Zhao Z. Advances and applications of fluids biomarkers in diagnosis and therapeutic targets of Alzheimer's disease. CNS Neurosci Ther 2023. [PMID: 37144603 DOI: 10.1111/cns.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease with challenging early diagnosis and effective treatments due to its complex pathogenesis. AD patients are often diagnosed after the appearance of the typical symptoms, thereby delaying the best opportunity for effective measures. Biomarkers could be the key to resolving the challenge. This review aims to provide an overview of application and potential value of AD biomarkers in fluids, including cerebrospinal fluid, blood, and saliva, in diagnosis and treatment. METHODS A comprehensive search of the relevant literature was conducted to summarize potential biomarkers for AD in fluids. The paper further explored the biomarkers' utility in disease diagnosis and drug target development. RESULTS Research on biomarkers mainly focused on amyloid-β (Aβ) plaques, Tau protein abnormal phosphorylation, axon damage, synaptic dysfunction, inflammation, and related hypotheses associated with AD mechanisms. Aβ42 , total Tau (t-Tau), and phosphorylated Tau (p-Tau), have been endorsed for their diagnostic and predictive capability. However, other biomarkers remain controversial. Drugs targeting Aβ have shown some efficacy and those that target BACE1 and Tau are still undergoing development. CONCLUSION Fluid biomarkers hold considerable potential in the diagnosis and drug development of AD. However, improvements in sensitivity and specificity, and approaches for managing sample impurities, need to be addressed for better diagnosis.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongshi Sun
- Department of Pharmacy, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Advanced Overview of Biomarkers and Techniques for Early Diagnosis of Alzheimer's Disease. Cell Mol Neurobiol 2023:10.1007/s10571-023-01330-y. [PMID: 36847930 DOI: 10.1007/s10571-023-01330-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The development of early non-invasive diagnosis methods and identification of novel biomarkers are necessary for managing Alzheimer's disease (AD) and facilitating effective prognosis and treatment. AD has multi-factorial nature and involves complex molecular mechanism, which causes neuronal degeneration. The primary challenges in early AD detection include patient heterogeneity and lack of precise diagnosis at the preclinical stage. Several cerebrospinal fluid (CSF) and blood biomarkers have been proposed to show excellent diagnosis ability by identifying tau pathology and cerebral amyloid beta (Aβ) for AD. Intense research endeavors are being made to develop ultrasensitive detection techniques and find potent biomarkers for early AD diagnosis. To mitigate AD worldwide, understanding various CSF biomarkers, blood biomarkers, and techniques that can be used for early diagnosis is imperative. This review attempts to provide information regarding AD pathophysiology, genetic and non-genetic factors associated with AD, several potential blood and CSF biomarkers, like neurofilament light, neurogranin, Aβ, and tau, along with biomarkers under development for AD detection. Besides, numerous techniques, such as neuroimaging, spectroscopic techniques, biosensors, and neuroproteomics, which are being explored to aid early AD detection, have been discussed. The insights thus gained would help in finding potential biomarkers and suitable techniques for the accurate diagnosis of early AD before cognitive dysfunction.
Collapse
|
7
|
Brosseron F, Maass A, Kleineidam L, Ravichandran KA, Kolbe CC, Wolfsgruber S, Santarelli F, Häsler LM, McManus R, Ising C, Röske S, Peters O, Cosma NC, Schneider LS, Wang X, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Schott BH, Buerger K, Janowitz D, Dichgans M, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Görß D, Laske C, Munk MH, Düzel E, Yakupow R, Dobisch L, Metzger CD, Glanz W, Ewers M, Dechent P, Haynes JD, Scheffler K, Roy N, Rostamzadeh A, Spottke A, Ramirez A, Mengel D, Synofzik M, Jucker M, Latz E, Jessen F, Wagner M, Heneka MT. Serum IL-6, sAXL, and YKL-40 as systemic correlates of reduced brain structure and function in Alzheimer's disease: results from the DELCODE study. Alzheimers Res Ther 2023; 15:13. [PMID: 36631909 PMCID: PMC9835320 DOI: 10.1186/s13195-022-01118-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/06/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Neuroinflammation constitutes a pathological hallmark of Alzheimer's disease (AD). Still, it remains unresolved if peripheral inflammatory markers can be utilized for research purposes similar to blood-based beta-amyloid and neurodegeneration measures. We investigated experimental inflammation markers in serum and analyzed interrelations towards AD pathology features in a cohort with a focus on at-risk stages of AD. METHODS Data of 74 healthy controls (HC), 99 subjective cognitive decline (SCD), 75 mild cognitive impairment (MCI), 23 AD relatives, and 38 AD subjects were obtained from the DELCODE cohort. A panel of 20 serum biomarkers was determined using immunoassays. Analyses were adjusted for age, sex, APOE status, and body mass index and included correlations between serum and CSF marker levels and AD biomarker levels. Group-wise comparisons were based on screening diagnosis and routine AD biomarker-based schematics. Structural imaging data were combined into composite scores representing Braak stage regions and related to serum biomarker levels. The Preclinical Alzheimer's Cognitive Composite (PACC5) score was used to test for associations between the biomarkers and cognitive performance. RESULTS Each experimental marker displayed an individual profile of interrelations to AD biomarkers, imaging, or cognition features. Serum-soluble AXL (sAXL), IL-6, and YKL-40 showed the most striking associations. Soluble AXL was significantly elevated in AD subjects with pathological CSF beta-amyloid/tau profile and negatively related to structural imaging and cognitive function. Serum IL-6 was negatively correlated to structural measures of Braak regions, without associations to corresponding IL-6 CSF levels or other AD features. Serum YKL-40 correlated most consistently to CSF AD biomarker profiles and showed the strongest negative relations to structure, but none to cognitive outcomes. CONCLUSIONS Serum sAXL, IL-6, and YKL-40 relate to different AD features, including the degree of neuropathology and cognitive functioning. This may suggest that peripheral blood signatures correspond to specific stages of the disease. As serum markers did not reflect the corresponding CSF protein levels, our data highlight the need to interpret serum inflammatory markers depending on the respective protein's specific biology and cellular origin. These marker-specific differences will have to be considered to further define and interpret blood-based inflammatory profiles for AD research.
Collapse
Affiliation(s)
- Frederic Brosseron
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anne Maass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Luca Kleineidam
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kishore Aravind Ravichandran
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Carl-Christian Kolbe
- grid.15090.3d0000 0000 8786 803XInstitute of Innate Immunity, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.420044.60000 0004 0374 4101Bayer AG, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany
| | - Steffen Wolfsgruber
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Francesco Santarelli
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Lisa M. Häsler
- grid.10392.390000 0001 2190 1447Hertie Institute for Clinical Brain Research, Department Cellular Neurology, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Róisín McManus
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christina Ising
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.452408.fExcellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany
| | - Sandra Röske
- grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Oliver Peters
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicoleta-Carmen Cosma
- grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Luisa-Sophie Schneider
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Xiao Wang
- grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Josef Priller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany ,grid.6936.a0000000123222966Department of Psychiatry and Psychotherapy, Technical University Munich, 81675 Munich, Germany
| | - Eike J. Spruth
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Slawek Altenstein
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Anja Schneider
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Klaus Fliessbach
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jens Wiltfang
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany ,grid.7311.40000000123236065Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Björn H. Schott
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Katharina Buerger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany ,grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Daniel Janowitz
- grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Martin Dichgans
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany ,grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Robert Perneczky
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany ,grid.411095.80000 0004 0477 2585Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany ,grid.7445.20000 0001 2113 8111Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK ,grid.11835.3e0000 0004 1936 9262Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Boris-Stephan Rauchmann
- grid.411095.80000 0004 0477 2585Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Teipel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Gehlsheimer Str. 20, 18147 Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Ingo Kilimann
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Gehlsheimer Str. 20, 18147 Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Doreen Görß
- grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Christoph Laske
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H. Munk
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Emrah Düzel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Renat Yakupow
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Laura Dobisch
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Coraline D. Metzger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Wenzel Glanz
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Michael Ewers
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Peter Dechent
- grid.7450.60000 0001 2364 4210MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University, Goettingen, Germany
| | - John Dylan Haynes
- grid.6363.00000 0001 2218 4662Bernstein Center for Computational Neurosciences, Charité – Universitätsmedizin, Berlin, Germany
| | - Klaus Scheffler
- grid.10392.390000 0001 2190 1447Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Nina Roy
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ayda Rostamzadeh
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Annika Spottke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alfredo Ramirez
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.452408.fExcellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany ,grid.6190.e0000 0000 8580 3777Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany ,Department of Psychiatry & Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX USA
| | - David Mengel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany
| | - Matthis Synofzik
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany ,grid.10392.390000 0001 2190 1447Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany
| | - Mathias Jucker
- grid.10392.390000 0001 2190 1447Hertie Institute for Clinical Brain Research, Department Cellular Neurology, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Eicke Latz
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XInstitute of Innate Immunity, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Frank Jessen
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.452408.fExcellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany ,grid.6190.e0000 0000 8580 3777Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Michael Wagner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael T. Heneka
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany ,grid.15090.3d0000 0000 8786 803XDepartment of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany ,grid.16008.3f0000 0001 2295 9843Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, 4362 Esch-sur- Alzette, Luxembourg
| | | |
Collapse
|
8
|
Lin H, Zhang J, Dai Y, Liu H, He X, Chen L, Tao J, Li C, Liu W. Neurogranin as an important regulator in swimming training to improve the spatial memory dysfunction of mice with chronic cerebral hypoperfusion. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:116-129. [PMID: 35066217 PMCID: PMC9923430 DOI: 10.1016/j.jshs.2022.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/18/2021] [Accepted: 12/30/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Vascular cognitive impairment caused by chronic cerebral hypoperfusion (CCH) has become a hot issue worldwide. Aerobic exercise positively contributes to the preservation or restoration of cognitive abilities; however, the specific mechanism has remained inconclusive. And recent studies found that neurogranin (Ng) is a potential biomarker for cognitive impairment. This study aims to investigate the underlying role of Ng in swimming training to improve cognitive impairment. METHODS To test this hypothesis, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system was utilized to construct a strain of Ng conditional knockout (Ng cKO) mice, and bilateral common carotid artery stenosis (BCAS) surgery was performed to prepare the model. In Experiment 1, 2-month-old male and female transgenic mice were divided into a control group (wild-type littermate, n = 9) and a Ng cKO group (n = 9). Then, 2-month-old male and female C57BL/6 mice were divided into a sham group (C57BL/6, n = 12) and a BCAS group (n = 12). In Experiment 2, 2-month-old male and female mice were divided into a sham group (wild-type littermate, n = 12), BCAS group (n = 12), swim group (n = 12), BCAS + Ng cKO group (n = 12), and swim + Ng cKO group (n = 12). Then, 7 days after BCAS, mice were given swimming training for 5 weeks (1 week for adaptation and 4 weeks for training, 5 days a week, 60 min a day). After intervention, laser speckle was used to detect cerebral blood perfusion in the mice, and the T maze and Morris water maze were adopted to test their spatial memory. Furthermore, electrophysiology and Western blotting were conducted to record long-term potential and observe the expressions of Ca2+ pathway-related proteins, respectively. Immunohistochemistry was applied to analyze the expression of relevant markers in neuronal damage, inflammation, and white matter injury. RESULTS The figures showed that spatial memory impairment was detected in Ng cKO mice, and a sharp decline of cerebral blood flow and an impairment of progressive spatial memory were observed in BCAS mice. Regular swimming training improved the spatial memory impairment of BCAS mice. This was achieved by preventing long-term potential damage and reversing the decline of Ca2+ signal transduction pathway-related proteins. At the same time, the results suggested that swimming also led to improvements in neuronal death, inflammation, and white matter injury induced by CCH. Further study adopted the use of Ng cKO transgenic mice, and the results indicated that the positive effects of swimming training on cognitive impairments, synaptic plasticity, and related pathological changes caused by CCH could be abolished by the knockout of Ng. CONCLUSION Swimming training can mediate the expression of Ng to enhance hippocampal synaptic plasticity and improve related pathological changes induced by CCH, thereby ameliorating the spatial memory impairment of vascular cognitive impairment.
Collapse
Affiliation(s)
- Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jiayong Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yaling Dai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Huanhuan Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaojun He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lewen Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jing Tao
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chaohui Li
- General surgery, Anxi General Hospital of Traditional Chinese Medicine, Quanzhou 362400, China
| | - Weilin Liu
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
9
|
Dhiman K, Villemagne VL, Fowler C, Bourgeat P, Li QX, Collins S, Rowe CC, Masters CL, Ames D, Blennow K, Zetterberg H, Martins RN, Gupta V. Cerebrospinal fluid levels of fatty acid-binding protein 3 are associated with likelihood of amyloidopathy in cognitively healthy individuals. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12377. [PMID: 36479019 PMCID: PMC9719998 DOI: 10.1002/dad2.12377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022]
Abstract
Introduction Fatty acid-binding protein 3 (FABP3) is a biomarker of neuronal membrane disruption, associated with lipid dyshomeostasis-a notable Alzheimer's disease (AD) pathophysiological change. We assessed the association of cerebrospinal fluid (CSF) FABP3 levels with brain amyloidosis and the likelihood/risk of developing amyloidopathy in cognitively healthy individuals. Methods FABP3 levels were measured in CSF samples of cognitively healthy participants, > 60 years of age (n = 142), from the Australian Imaging, Biomarkers & Lifestyle Flagship Study of Ageing (AIBL). Results FABP3 levels were positively associated with baseline brain amyloid beta (Aβ) load as measured by standardized uptake value ratio (SUVR, standardized β = 0.22, P = .009) and predicted the change in brain Aβ load (standardized β = 0.32, P = .004). Higher levels of CSF FABP3 (above median) were associated with a likelihood of amyloidopathy (odds ratio [OR] 2.28, 95% confidence interval [CI] 1.12 to 4.65, P = .023). Discussion These results support inclusion of CSF FABP3 as a biomarker in risk-prediction models of AD.
Collapse
Affiliation(s)
- Kunal Dhiman
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation School of Medicine Deakin University Geelong Victoria Australia
- Western Health Partnership School of Nursing and Midwifery (Centre for Quality and Patient Safety Research in the Institute of Health Transformation) Faculty of Health Deakin University Melbourne Victoria Australia
- School of Medical and Health Sciences Edith Cowan University Joondalup Western Australia Australia
| | - Victor L Villemagne
- Department of Psychiatry University of Pittsburgh Pittsburgh Pennsylvania USA
- Department of Molecular Imaging & Therapy and Centre for PET Austin Health Heidelberg Victoria Australia
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Pierrick Bourgeat
- Australian e-Health Research Centre CSIRO Health and Biosecurity Brisbane Queensland Australia
| | - Qiao-Xin Li
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Steven Collins
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy and Centre for PET Austin Health Heidelberg Victoria Australia
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - David Ames
- National Ageing Research Institute Parkville Victoria Australia
- Academic Unit for Psychiatry of Old age St. George's Hospital The University of Melbourne Melbourne Victoria Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology the Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Gothenburg Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology the Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Gothenburg Sweden
- Department of Neurodegenerative Disease UCL Queen Square Institute of Neurology London UK
- UK Dementia Research Institute at UCL London UK
- Hong Kong Center for Neurodegenerative Diseases Hong Kong China
| | - Ralph N Martins
- School of Medical and Health Sciences Edith Cowan University Joondalup Western Australia Australia
- Australian Alzheimer's Research Foundation Ralph and Patricia Sarich Neuroscience Research Institute Nedlands Western Australia Australia
- Department of Biomedical Sciences Macquarie University Sydney New South Wales Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Perth Western Australia Australia
- KaRa Institute of Neurological Diseases Sydney New South Wales Australia
- Co-operative Research Centre for Mental Health Carlton Victoria Australia
| | - Veer Gupta
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation School of Medicine Deakin University Geelong Victoria Australia
- School of Medical and Health Sciences Edith Cowan University Joondalup Western Australia Australia
| |
Collapse
|
10
|
Scarfò G, Piccarducci R, Daniele S, Franzoni F, Martini C. Exploring the Role of Lipid-Binding Proteins and Oxidative Stress in Neurodegenerative Disorders: A Focus on the Neuroprotective Effects of Nutraceutical Supplementation and Physical Exercise. Antioxidants (Basel) 2022; 11:2116. [PMID: 36358488 PMCID: PMC9686611 DOI: 10.3390/antiox11112116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
The human brain is primarily composed of lipids, and their homeostasis is crucial to carry on normal neuronal functions. In order to provide an adequate amount of lipid transport in and out of the central nervous system, organisms need a set of proteins able to bind them. Therefore, alterations in the structure or function of lipid-binding proteins negatively affect brain homeostasis, as well as increase inflammation and oxidative stress with the consequent risk of neurodegeneration. In this regard, lifestyle changes seem to be protective against neurodegenerative processes. Nutraceutical supplementation with antioxidant molecules has proven to be useful in proving cognitive functions. Additionally, regular physical activity seems to protect neuronal vitality and increases antioxidant defenses. The aim of the present review was to investigate mechanisms that link lipid-binding protein dysfunction and oxidative stress to cognitive decline, also underlining the neuroprotective effects of diet and exercise.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
11
|
Luo Z, Wang Y, Pang S, Gao S, Liu N, Gao X, Zhang L, Qi X, Yang Y, Zhang L. Synthesis and Bioactivity Evaluation of a Novel 1,2,4-Oxadiazole Derivative in vitro and in 3×Tg Mice. Drug Des Devel Ther 2022; 16:3285-3296. [PMID: 36187086 PMCID: PMC9521684 DOI: 10.2147/dddt.s372750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Aim Alzheimer’s disease (AD) is the most common neurodegenerative disease whose patients suffered from cognitive impairments. In our study, a novel 1,2,4-Oxadiazole derivative wyc-7-20 was synthesized, which showed low cytotoxicity and potent neuroprotective effect at the cellular level. Improved cognitive impairments, β-amyloid (Aβ) clearance, and tau pathological phenotypes were detected in transgenic animal models after wyc-7-20 treatment. Reversed expressions in AD-related genes were also detected. The results demonstrated wyc-7-20 was potent in AD therapy. Purpose The pathological complexity of AD increased difficulties in medical research. To explore a new potential medical treatment for AD, a novel 1,2,4-Oxadiazole derivative (wyc-7-20) was designed, synthesized to explore the application in this study. Materials and Methods Human neuroblastoma (SH-SY5Y) cells and human hepatocellular carcinoma (HepG2) cells were used to detect median lethal dose (LD50). H2O2 and Aβ1–42 oligomers (AβOs) were respectively, added into SH-SY5Y cells to detect anti-ROS (reactive oxygen species) and anti-AβOs effects of wyc-7-20. 3×Tg mice were administered with wyc-7-20, and then Y maze test and Morris water maze (MWM) test were applied to detect cognitive improvements. Brain tissue samples were subsequently collected and analyzed using different techniques. Results wyc-7-20 showed low cytotoxicity and potent neuroprotective effect at the cellular level. Improved cognitive impairments, Aβ clearance, and tau pathological phenotypes were detected in transgenic animal models after wyc-7-20 treatment. Reversed expressions in AD-related genes were also detected. Conclusion wyc-7-20 was potent in AD therapy.
Collapse
Affiliation(s)
- Zhuohui Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
| | - Yongcheng Wang
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Material Medical, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, People’s Republic of China
| | - Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
| | - Ning Liu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
| | - Xiang Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
| | - Li Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Xiaolong Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Material Medical, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, People’s Republic of China
- Correspondence: Yajun Yang, Institute of Material Medical, Peking Union Medical College, Chinese Academy of Medical Sciences, Nanwei Road, Xicheng District, Beijing, 100050, People’s Republic of China, Email
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
- Lianfeng Zhang, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People’s Republic of China, Tel +86 10-87778442, Fax +86 10-67776394, Email
| |
Collapse
|
12
|
Kumari A, Rahaman A, Zeng XA, Farooq MA, Huang Y, Yao R, Ali M, Ishrat R, Ali R. Temporal Cortex Microarray Analysis Revealed Impaired Ribosomal Biogenesis and Hyperactivity of the Glutamatergic System: An Early Signature of Asymptomatic Alzheimer's Disease. Front Neurosci 2022; 16:966877. [PMID: 35958988 PMCID: PMC9359077 DOI: 10.3389/fnins.2022.966877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenic aging is regarded as asymptomatic AD when there is no cognitive deficit except for neuropathology consistent with Alzheimer's disease. These individuals are highly susceptible to developing AD. Braak and Braak's theory specific to tau pathology illustrates that the brain's temporal cortex region is an initiation site for early AD progression. So, the hub gene analysis of this region may reveal early altered biological cascades that may be helpful to alleviate AD in an early stage. Meanwhile, cognitive processing also drags its attention because cognitive impairment is the ultimate result of AD. Therefore, this study aimed to explore changes in gene expression of aged control, asymptomatic AD (AsymAD), and symptomatic AD (symAD) in the temporal cortex region. We used microarray data sets to identify differentially expressed genes (DEGs) with the help of the R programming interface. Further, we constructed the protein-protein interaction (PPI) network by performing the STRING plugin in Cytoscape and determined the hub genes via the CytoHubba plugin. Furthermore, we conducted Gene Ontology (GO) enrichment analysis via Bioconductor's cluster profile package. Resultant, the AsymAD transcriptome revealed the early-stage changes of glutamatergic hyperexcitability. Whereas the connectivity of major hub genes in this network indicates a shift from initially reduced rRNA biosynthesis in the AsymAD group to impaired protein synthesis in the symAD group. Both share the phenomenon of breaking tight junctions and others. In conclusion, this study offers new understandings of the early biological vicissitudes that occur in the brain before the manifestation of symAD and gives new promising therapeutic targets for early AD intervention.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- Abdul Rahaman
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- *Correspondence: Xin-An Zeng
| | - Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Yanyan Huang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
| | - Runyu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Murtaza Ali
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Romana Ishrat
| | - Rafat Ali
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Pan R, Luo S, Huang Q, Li W, Cai T, Lai K, Shi X. The Associations of Cerebrospinal Fluid Ferritin with Neurodegeneration and Neuroinflammation Along the Alzheimer's Disease Continuum. J Alzheimers Dis 2022; 88:1115-1125. [PMID: 35754266 DOI: 10.3233/jad-220002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Increasing evidence has suggested that iron accumulation plays an important role in the onset and development of Alzheimer's disease (AD). However, the potential mechanism remains unclear. OBJECTIVE The present study investigated the associations of cerebrospinal fluid (CSF) ferritin, an indicator for brain iron load, with neurodegenerative and inflammatory changes in AD. METHODS The study involved 302 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). They were classified as normal controls (A-T-N-, n = 48), AD continuum (A+TN-, n = 46; A+TN+, n = 166), and suspected non-AD pathology (A-TN+, n = 42), according to the amyloid/tau/neurodegeneration (ATN) system. Group comparisons of CSF ferritin among groups were performed using one-way ANOVA. Linear regression models were used to test the relationships between CSF ferritin and cognitive assessments, and the associations between CSF ferritin and other biomarkers, respectively. RESULTS We found that CSF ferritin showed significant differences among the ATN groups, with higher concentration in more advanced categories (A+TN+). Furthermore, CSF ferritin level was independently related to cognitive performance (MMSE, ADAS-Cog13, and ADNI-mem). Linear regression analysis indicated positive relationships between CSF ferritin and phosphorylated tau and total tau, rather than Aβ42. Significant associations were revealed between CSF ferritin and inflammatory proteins, including TNF-α, TNFR1, TNFR2, ICAM1, VCAM1, TGF-β1, IL-9, and IP-10, respectively. CONCLUSION Our results provide new insight into iron dysfunction in AD pathology and highlight elevated brain iron as a possible mechanism of neurodegeneration and neuroinflammation along AD continuum.
Collapse
Affiliation(s)
- Rui Pan
- School of Nursing, Huizhou Health Sciences Polytechnic, Huizhou, Guangdong Province, P. R. China
| | - Shuyi Luo
- Department of Cardiothoracic Surgery, The Third People's Hospital of Huizhou, Huizhou, Guangdong Province, P. R. China
| | - Qing Huang
- School of Foreign Languages, Huizhou University, Huizhou, Guangdong Province, P. R. China
| | - Weiwei Li
- School of Clinical Medicine, Huizhou Health Sciences Polytechnic, Huizhou, Guangdong Province, P. R. China
| | - Tianshu Cai
- School of Medicine and Medical Laboratory Science, Huizhou Health Sciences Polytechnic, Huizhou, Guangdong Province, P. R. China
| | - Kelin Lai
- School of Clinical Medicine, Huizhou Health Sciences Polytechnic, Huizhou, Guangdong Province, P. R. China
| | - Xiaolei Shi
- School of Clinical Medicine, Huizhou Health Sciences Polytechnic, Huizhou, Guangdong Province, P. R. China.,School of Clinical Medicine, Huizhou Health Sciences Polytechnic, Huizhou, Guangdong Province, P. R. China
| | | |
Collapse
|
14
|
Lawrence AJ, Prado MA. Editorial: Exciting developments in neurochemistry research and publishing. J Neurochem 2022; 162:151-155. [PMID: 35524403 DOI: 10.1111/jnc.15595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
In this editorial, we are happy to connect with our community to explain the changes introduced to the Journal of Neurochemistry over the last year and provide some insights into new developments and exciting opportunities. We anticipate these developments, which are strongly guided to increase transparency and support early career researchers, will increase the value of the Journal of Neurochemistry for the authors and readers. Ultimately, we hope to improve the author experience with the Journal of Neurochemistry and continue to be the leading venue for fast dissemination of exciting new research focusing on how molecules, cells and circuits regulate the nervous system in health and disease.
Collapse
Affiliation(s)
- Andrew J Lawrence
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Marco A Prado
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
15
|
Ayerdem G, Bosma MJ, Vinke JSJ, Ziengs AL, Potgieser ARE, Gansevoort RT, Bakker SJL, De Borst MH, Eisenga MF. Association of Endogenous Erythropoietin Levels and Iron Status With Cognitive Functioning in the General Population. Front Aging Neurosci 2022; 14:862856. [PMID: 35462689 PMCID: PMC9024369 DOI: 10.3389/fnagi.2022.862856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEmerging data suggest that erythropoietin (EPO) promotes neural plasticity and that iron homeostasis is needed to maintain normal physiological brain function. Cognitive functioning could therefore be influenced by endogenous EPO levels and disturbances in iron status.ObjectiveTo determine whether endogenous EPO levels and disturbances in iron status are associated with alterations in cognitive functioning in the general population.Materials and MethodsCommunity-dwelling individuals from the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study, a general population-based cohort in Groningen, Netherlands, were surveyed between 2003 and 2006. Additionally, endogenous EPO levels and iron status, consisting of serum iron, transferrin, ferritin, and transferrin saturation were analyzed. Cognitive function was assessed by scores on the Ruff Figural Fluency Test (RFFT), as a reflection of executive function, and the Visual Association Test (VAT), as a reflection of associative memory.ResultsAmong 851 participants (57% males; mean age 60 ± 13 years), higher endogenous EPO levels were independently associated with an improved cognitive function, reflected by RFFT scores (ß = 0.09, P = 0.008). In multivariable backward linear regression analysis, EPO levels were among the most important modifiable determinants of RFFT scores (ß = 0.09, P = 0.002), but not of VAT scores. Of the iron status parameters, only serum ferritin levels were inversely associated with cognitive function, reflected by VAT scores, in multivariable logistic regression analysis (odds ratio, 0.77; 95% confidence interval 0.63–0.95; P = 0.02 for high performance on VAT, i.e., ≥11 points). No association between iron status parameters and RFFT scores was identified.ConclusionThe findings suggest that endogenous EPO levels and serum ferritin levels are associated with specific cognitive functioning tests in the general population. Higher EPO levels are associated with better RFFT scores, implying better executive function. Serum ferritin levels, but not other iron status parameters, were inversely associated with high performance on the VAT score, implying a reduced ability to create new memories and recall recent past. Further research is warranted to unravel underlying mechanisms and possible benefits of therapeutic interventions.
Collapse
Affiliation(s)
- Gizem Ayerdem
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matthijs J. Bosma
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joanna Sophia J. Vinke
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aaltje L. Ziengs
- Department of Neuropsychology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan R. E. Potgieser
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ron T. Gansevoort
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martin H. De Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Michele F. Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Michele F. Eisenga,
| |
Collapse
|
16
|
Clark AL, Haley AP, Duarte A, O’Bryant S. Fatty Acid-Binding Protein 3 Is a Marker of Neurodegeneration and White Matter Hyperintensity Burden in Mexican American Older Adults. J Alzheimers Dis 2022; 90:61-68. [PMID: 36093702 PMCID: PMC11234903 DOI: 10.3233/jad-220524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined ethnoracial differences in fatty acid binding protein (FABP)-a family of intracellular lipid carriers-and clarified FABP3 associations with gray and white matter. Relative to Mexican Americans (MAs), FABP3 was higher in Non-Hispanic Whites (NHWS, p < 0.001). Regressions revealed, independent of traditional AD markers, FABP3 was associated with neurodegeneration (B = -0.08, p = 0.003) and WMH burden (B = 0.18, p = 0.03) in MAs, but not in NHWs (ps > 0.18). Findings suggest FABP3 is related to neural health within MAs and highlight its potential as a prognostic marker of brain health in ethnoracially diverse older adults.
Collapse
Affiliation(s)
- Alexandra L. Clark
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Andreanna P. Haley
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Audrey Duarte
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Sid O’Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | |
Collapse
|
17
|
Brosseron F, Maass A, Kleineidam L, Ravichandran KA, González PG, McManus RM, Ising C, Santarelli F, Kolbe CC, Häsler LM, Wolfsgruber S, Marquié M, Boada M, Orellana A, de Rojas I, Röske S, Peters O, Cosma NC, Cetindag A, Wang X, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Schott BH, Bürger K, Janowitz D, Dichgans M, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Göerß D, Laske C, Munk MH, Düzel E, Yakupov R, Dobisch L, Metzger CD, Glanz W, Ewers M, Dechent P, Haynes JD, Scheffler K, Roy N, Rostamzadeh A, Teunissen CE, Marchant NL, Spottke A, Jucker M, Latz E, Wagner M, Mengel D, Synofzik M, Jessen F, Ramirez A, Ruiz A, Heneka MT. Soluble TAM receptors sAXL and sTyro3 predict structural and functional protection in Alzheimer's disease. Neuron 2021; 110:1009-1022.e4. [PMID: 34995486 DOI: 10.1016/j.neuron.2021.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
There is an urgent need to improve the understanding of neuroinflammation in Alzheimer's disease (AD). We analyzed cerebrospinal fluid inflammatory biomarker correlations to brain structural volume and longitudinal cognitive outcomes in the DELCODE study and in a validation cohort of the F.ACE Alzheimer Center Barcelona. We investigated whether respective biomarker changes are evident before onset of cognitive impairment. YKL-40; sTREM2; sAXL; sTyro3; MIF; complement factors C1q, C4, and H; ferritin; and ApoE protein were elevated in pre-dementia subjects with pathological levels of tau or other neurodegeneration markers, demonstrating tight interactions between inflammation and accumulating neurodegeneration even before onset of symptoms. Intriguingly, higher levels of ApoE and soluble TAM receptors sAXL and sTyro3 were related to larger brain structure and stable cognitive outcome at follow-up. Our findings indicate a protective mechanism relevant for intervention strategies aiming to regulate neuroinflammation in subjects with no or subjective symptoms but underlying AD pathology profile.
Collapse
Affiliation(s)
- Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg 39120, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kishore Aravind Ravichandran
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Pablo García González
- Research Center and Memory Clinic, Fundacío ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christina Ising
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Francesco Santarelli
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Carl-Christian Kolbe
- University of Bonn Medical Center, Institute of Innate Immune, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Lisa M Häsler
- Hertie Institute for Clinical Brain Research, Department of Cellular Neurology, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, Tübingen 72076, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Marta Marquié
- Research Center and Memory Clinic, Fundacío ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundacío ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, Fundacío ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, Fundacío ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Röske
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin 10117, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicoleta-Carmen Cosma
- German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin 10117, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Arda Cetindag
- German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin 10117, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Xiao Wang
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin 10117, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany; Department of Psychiatry and Psychotherapy, Technical University Munich, 81675 Munich, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin 10117, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin 10117, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, Göttingen 37075, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany; Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, Göttingen 37075, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Katharina Bürger
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich 81377, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Martin Dichgans
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich 81377, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich 81377, Germany; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany; Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Boris-Stephan Rauchmann
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Gehlsheimer Str. 20, Rostock 18147, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Gehlsheimer Str. 20, Rostock 18147, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Doreen Göerß
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, Tübingen 72076, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, Tübingen 72076, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg 39120, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg 39120, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg 39120, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg 39120, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Magdeburg 39120, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich 81377, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Göttingen, Göttingen, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neurosciences, Charité - Universitätsmedizin, Berlin, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical centers, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, Department of Cellular Neurology, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, Tübingen 72076, Germany
| | - Eicke Latz
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; University of Bonn Medical Center, Institute of Innate Immune, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - David Mengel
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, Tübingen 72076, Germany; Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 27, Tübingen 72076, Germany; Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundacío ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn 53127, Germany; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, 4362 Esch-sur- Alzette, Luxembourg; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, 55 Lake Avenue, North Worcester, Massachusetts 01655, USA.
| | | |
Collapse
|
18
|
Jakaria M, Belaidi AA, Bush AI, Ayton S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem 2021; 159:804-825. [PMID: 34553778 DOI: 10.1111/jnc.15519] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, with complex pathophysiology that is not fully understood. While β-amyloid plaque and neurofibrillary tangles define the pathology of the disease, the mechanism of neurodegeneration is uncertain. Ferroptosis is an iron-mediated programmed cell death mechanism characterised by phospholipid peroxidation that has been observed in clinical AD samples. This review will outline the growing molecular and clinical evidence implicating ferroptosis in the pathogenesis of AD, with implications for disease-modifying therapies.
Collapse
Affiliation(s)
- Md Jakaria
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|