1
|
Anfossi S, Darbaniyan F, Quinlan J, Calin S, Shimizu M, Chen M, Rausseo P, Winters M, Bogatenkova E, Do KA, Martinez I, Li Z, Antal L, Olariu TR, Wistuba I, Calin GA. MicroRNAs are enriched at COVID-19 genomic risk regions, and their blood levels correlate with the COVID-19 prognosis of cancer patients infected by SARS-CoV-2. Mol Cancer 2024; 23:235. [PMID: 39434078 PMCID: PMC11492698 DOI: 10.1186/s12943-024-02094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/18/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Cancer patients are more susceptible to an aggressive course of COVID-19. Developing biomarkers identifying cancer patients at high risk of COVID-19-related death could help determine who needs early clinical intervention. The miRNAs hosted in the genomic regions associated with the risk of aggressive COVID-19 could represent potential biomarkers for clinical outcomes. PATIENTS AND METHODS Plasma samples were collected at The University of Texas MD Anderson Cancer Center from cancer patients (N = 128) affected by COVID-19. Serum samples were collected from vaccinated healthy individuals (n = 23) at the Municipal Clinical Emergency Teaching Hospital in Timisoara, Romania. An in silico positional cloning approach was used to identify the presence of miRNAs at COVID-19 risk-associated genomic regions: CORSAIRs (COvid-19 RiSk AssocIated genomic Regions). The miRNA levels were measured by RT-qPCR. RESULTS We found that miRNAs were enriched in CORSAIR. Low plasma levels of hsa-miR-150-5p and hsa-miR-93-5p were associated with higher COVID-19-related death. The levels of hsa-miR-92b-3p were associated with SARS-CoV-2 test positivity. Peripheral blood mononuclear cells (PBMC) increased secretion of hsa-miR-150-5p, hsa-miR-93-5p, and hsa-miR-92b-3p after in vitro TLR7/8- and T cell receptor (TCR)-mediated activation. Increased levels of these three miRNAs were measured in the serum samples of healthy individuals between one and nine months after the second dose of the Pfizer-BioNTech COVID-19 vaccine. SARS-CoV-2 infection of human airway epithelial cells influenced the miRNA levels inside their secreted extracellular vesicles. CONCLUSIONS MiRNAs are enriched at CORSAIR. Plasma miRNA levels can represent a potential blood biomarker for predicting COVID-19-related death in cancer patients.
Collapse
Affiliation(s)
- Simone Anfossi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | - Faezeh Darbaniyan
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Joseph Quinlan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Steliana Calin
- Department of Hemopathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Paola Rausseo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Michael Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Cancer Institute, Morgantown, USA
| | - Elena Bogatenkova
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Cancer Institute, Morgantown, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Loredana Antal
- Clinical Laboratory, Municipal Clinical Emergency Hospital, Timisoara, Romania
| | - Tudor Rares Olariu
- Clinical Laboratory, Municipal Clinical Emergency Hospital, Timisoara, Romania
- Department of Infectious Diseases, Center for Diagnosis and Study of Parasitic Diseases, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA.
- The Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
2
|
Jiang Y, Neal J, Sompol P, Yener G, Arakaki X, Norris CM, Farina FR, Ibanez A, Lopez S, Al‐Ezzi A, Kavcic V, Güntekin B, Babiloni C, Hajós M. Parallel electrophysiological abnormalities due to COVID-19 infection and to Alzheimer's disease and related dementia. Alzheimers Dement 2024; 20:7296-7319. [PMID: 39206795 PMCID: PMC11485397 DOI: 10.1002/alz.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024]
Abstract
Many coronavirus disease 2019 (COVID-19) positive individuals exhibit abnormal electroencephalographic (EEG) activity reflecting "brain fog" and mild cognitive impairments even months after the acute phase of infection. Resting-state EEG abnormalities include EEG slowing (reduced alpha rhythm; increased slow waves) and epileptiform activity. An expert panel conducted a systematic review to present compelling evidence that cognitive deficits due to COVID-19 and to Alzheimer's disease and related dementia (ADRD) are driven by overlapping pathologies and neurophysiological abnormalities. EEG abnormalities seen in COVID-19 patients resemble those observed in early stages of neurodegenerative diseases, particularly ADRD. It is proposed that similar EEG abnormalities in Long COVID and ADRD are due to parallel neuroinflammation, astrocyte reactivity, hypoxia, and neurovascular injury. These neurophysiological abnormalities underpinning cognitive decline in COVID-19 can be detected by routine EEG exams. Future research will explore the value of EEG monitoring of COVID-19 patients for predicting long-term outcomes and monitoring efficacy of therapeutic interventions. HIGHLIGHTS: Abnormal intrinsic electrophysiological brain activity, such as slowing of EEG, reduced alpha wave, and epileptiform are characteristic findings in COVID-19 patients. EEG abnormalities have the potential as neural biomarkers to identify neurological complications at the early stage of the disease, to assist clinical assessment, and to assess cognitive decline risk in Long COVID patients. Similar slowing of intrinsic brain activity to that of COVID-19 patients is typically seen in patients with mild cognitive impairments, ADRD. Evidence presented supports the idea that cognitive deficits in Long COVID and ADRD are driven by overlapping neurophysiological abnormalities resulting, at least in part, from neuroinflammatory mechanisms and astrocyte reactivity. Identifying common biological mechanisms in Long COVID-19 and ADRD can highlight critical pathologies underlying brain disorders and cognitive decline. It elucidates research questions regarding cognitive EEG and mild cognitive impairment in Long COVID that have not yet been adequately investigated.
Collapse
Affiliation(s)
- Yang Jiang
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Jennifer Neal
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Görsev Yener
- Faculty of MedicineDept of Neurologyİzmir University of EconomicsİzmirTurkey
- IBG: International Biomedicine and Genome CenterİzmirTurkey
| | - Xianghong Arakaki
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Agustin Ibanez
- BrainLat: Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiagoChile
- Cognitive Neuroscience CenterUniversidad de San AndrésVictoriaBuenos AiresArgentina
- GBHI: Global Brain Health InstituteTrinity College DublinThe University of DublinDublin 2Ireland
| | - Susanna Lopez
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
| | - Abdulhakim Al‐Ezzi
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Voyko Kavcic
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Mihály Hajós
- Cognito TherapeuticsCambridgeMassachusettsUSA
- Department of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
3
|
Shrestha A, Chen R, Kunasekaran M, Honeyman D, Notaras A, Sutton B, Quigley A, MacIntyre CR. The risk of cognitive decline and dementia in older adults diagnosed with COVID-19: A systematic review and meta-analysis. Ageing Res Rev 2024; 101:102448. [PMID: 39127446 DOI: 10.1016/j.arr.2024.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Cognitive impairment can be caused by infections with various pathogens, including SARS-CoV-2. Research has yet to determine the true incidence and course of cognitive impairment in older adults following COVID-19. Furthermore, research has theorised that COVID-19 is associated with dementia progression and diagnosis but this association has yet to be fully described. METHODS A systematic review was registered in Prospero and conducted on the databases PubMed, Embase, Ovid, CENTRAL and Cochrane Library. Studies reporting cognitive impairment and dementia outcomes in post-acute and post-COVID-19 patients aged ≥65 years, and which included control data, were included in this review. RESULTS 15,124 articles were identified by the search strategy. After eliminating duplicate titles and completing title, abstracts and full-text review, 18 studies were included comprising of 412,957 patients with COVID-19 (46.63 % male) and 411,929 patients without COVID-19 (46.59 % male). The overall mean Montreal Cognitive Assessment (MoCA) score in COVID-19 patients was 23.34 out of 30 (95 % CI [22.24, 24.43]). indicating cognitive impairment. The overall proportion of patients identified as having new onset cognitive impairment was 65 % (95 % CI [44,81]). Subgroup analyses indicated that time since infection significantly improves overall MoCA score and reduces proportion of patients with cognitive impairment. CONCLUSION This study indicates that cognitive impairment may be an important sequela of COVID-19. Further research with adequate sample sizes is warranted regarding COVID-19's association with new-onset dementia and dementia progression, and the effect of repeat infections. There is a need for development of diagnostic and management protocols for COVID-19 patients with cognitive impairment.
Collapse
Affiliation(s)
- A Shrestha
- Infections West, Hollywood Private Hospital, Suite 37, Monash Avenue, Western Australia, Australia
| | - R Chen
- The Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, Australia
| | - M Kunasekaran
- The Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, Australia.
| | - D Honeyman
- The Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, Australia
| | - A Notaras
- The Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, Australia
| | - B Sutton
- The Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, Australia
| | - A Quigley
- The Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, Australia
| | - C Raina MacIntyre
- The Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, Australia; Watts College of Public Service and Community Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
4
|
Navolokin N, Adushkina V, Zlatogorskaya D, Telnova V, Evsiukova A, Vodovozova E, Eroshova A, Dosadina E, Diduk S, Semyachkina-Glushkovskaya O. Promising Strategies to Reduce the SARS-CoV-2 Amyloid Deposition in the Brain and Prevent COVID-19-Exacerbated Dementia and Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:788. [PMID: 38931455 PMCID: PMC11206883 DOI: 10.3390/ph17060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic, caused by infection with the SARS-CoV-2 virus, is associated with cognitive impairment and Alzheimer's disease (AD) progression. Once it enters the brain, the SARS-CoV-2 virus stimulates accumulation of amyloids in the brain that are highly toxic to neural cells. These amyloids may trigger neurological symptoms in COVID-19. The meningeal lymphatic vessels (MLVs) play an important role in removal of toxins and mediate viral drainage from the brain. MLVs are considered a promising target to prevent COVID-19-exacerbated dementia. However, there are limited methods for augmentation of MLV function. This review highlights new discoveries in the field of COVID-19-mediated amyloid accumulation in the brain associated with the neurological symptoms and the development of promising strategies to stimulate clearance of amyloids from the brain through lymphatic and other pathways. These strategies are based on innovative methods of treating brain dysfunction induced by COVID-19 infection, including the use of photobiomodulation, plasmalogens, and medicinal herbs, which offer hope for addressing the challenges posed by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Nikita Navolokin
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Arina Evsiukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Anna Eroshova
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Elina Dosadina
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Sergey Diduk
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
- Research Institute of Carcinogenesis of the N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe Shosse 24, 115522 Moscow, Russia
| | | |
Collapse
|
5
|
Grote K, Schaefer AC, Soufi M, Ruppert V, Linne U, Mukund Bhagwat A, Szymanski W, Graumann J, Gercke Y, Aldudak S, Hilfiker-Kleiner D, Schieffer E, Schieffer B. Targeting the High-Density Lipoprotein Proteome for the Treatment of Post-Acute Sequelae of SARS-CoV-2. Int J Mol Sci 2024; 25:4522. [PMID: 38674105 PMCID: PMC11049911 DOI: 10.3390/ijms25084522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Here, we target the high-density lipoprotein (HDL) proteome in a case series of 16 patients with post-COVID-19 symptoms treated with HMG-Co-A reductase inhibitors (statin) plus angiotensin II type 1 receptor blockers (ARBs) for 6 weeks. Patients suffering from persistent symptoms (post-acute sequelae) after serologically confirmed SARS-CoV-2 infection (post-COVID-19 syndrome, PCS, n = 8) or following SARS-CoV-2 vaccination (PVS, n = 8) were included. Asymptomatic subjects with corresponding serological findings served as healthy controls (n = 8/8). HDL was isolated using dextran sulfate precipitation and the HDL proteome of all study participants was analyzed quantitatively by mass spectrometry. Clinical symptoms were assessed using questionnaires before and after therapy. The inflammatory potential of the patients' HDL proteome was addressed in human endothelial cells. The HDL proteome of patients with PCS and PVS showed no significant differences; however, compared to controls, the HDL from PVS/PCS patients displayed significant alterations involving hemoglobin, cytoskeletal proteins (MYL6, TLN1, PARVB, TPM4, FLNA), and amyloid precursor protein. Gene Ontology Biological Process (GOBP) enrichment analysis identified hemostasis, peptidase, and lipoprotein regulation pathways to be involved. Treatment of PVS/PCS patients with statins plus ARBs improved the patients' clinical symptoms. After therapy, three proteins were significantly increased (FAM3C, AT6AP2, ADAM10; FDR < 0.05) in the HDL proteome from patients with PVS/PCS. Exposure of human endothelial cells with the HDL proteome from treated PVS/PCS patients revealed reduced inflammatory cytokine and adhesion molecule expression. Thus, HDL proteome analysis from PVS/PCS patients enables a deeper insight into the underlying disease mechanisms, pointing to significant involvement in metabolic and signaling disturbances. Treatment with statins plus ARBs improved clinical symptoms and reduced the inflammatory potential of the HDL proteome. These observations may guide future therapeutic strategies for PVS/PCS patients.
Collapse
Affiliation(s)
- Karsten Grote
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Ann-Christin Schaefer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Muhidien Soufi
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Volker Ruppert
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany;
| | - Aditya Mukund Bhagwat
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Witold Szymanski
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Johannes Graumann
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Philipps University Marburg, 35043 Marburg, Germany (W.S.)
| | - Yana Gercke
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Sümeya Aldudak
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Denise Hilfiker-Kleiner
- Institute Cardiovascular Complications in Pregnancy and Oncologic Therapies, Philipps University Marburg, 35043 Marburg, Germany;
| | - Elisabeth Schieffer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| | - Bernhard Schieffer
- Department of Cardiology, Angiology, and Intensive Care, Philipps University Marburg, 35043 Marburg, Germany; (K.G.); (A.-C.S.); (M.S.); (V.R.); (S.A.); (E.S.)
| |
Collapse
|
6
|
Rippee-Brooks MD, Wu W, Dong J, Pappolla M, Fang X, Bao X. Viral Infections, Are They a Trigger and Risk Factor of Alzheimer's Disease? Pathogens 2024; 13:240. [PMID: 38535583 PMCID: PMC10974111 DOI: 10.3390/pathogens13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's Disease (AD), a progressive and debilitating condition, is reported to be the most common type of dementia, with at least 55 million people believed to be currently affected. Many causation hypotheses of AD exist, yet the intriguing link between viral infection and its possible contribution to the known etiology of AD has become an attractive focal point of research for the field and a challenging study task. In this review, we will explore the historical perspective and milestones that led the field to investigate the viral connection to AD. Specifically, several viruses such as Herpes Simplex Virus 1 (HSV-1), Zika virus (ZIKV), and severe cute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with several others mentioned, include the various viruses presently considered within the field. We delve into the strong evidence implicating these viruses in the development of AD such as the lytic replication and axonal transport of HSV-1, the various mechanisms of ZIKV neurotropism through the human protein Musashi-1 (MSI1), and the spread of SARS-CoV-2 through the transfer of the virus through the BBB endothelial cells to glial cells and then to neurons via transsynaptic transfer. We will also explore beyond these mere associations by carefully analyzing the potential mechanisms by which these viruses may contribute to AD pathology. This includes but is not limited to direct neuronal infections, the dysregulation of immune responses, and the impact on protein processing (Aβ42 and hyperphosphorylated tau). Controversies and challenges of the virus-AD relationship emerge as we tease out these potential mechanisms. Looking forward, we emphasize future directions, such as distinct questions and proposed experimentations to explore, that the field should take to tackle the remaining unanswered questions and the glaring research gaps that persist. Overall, this review aims to provide a comprehensive survey of the past, present, and future of the potential link between viral infections and their association with AD development while encouraging further discussion.
Collapse
Affiliation(s)
- Meagan D. Rippee-Brooks
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jianli Dong
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Miguel Pappolla
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiang Fang
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiaoyong Bao
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
7
|
Whitson HE, Banks WA, Diaz MM, Frost B, Kellis M, Lathe R, Schmader KE, Spudich SS, Tanzi R, Garden G. New approaches for understanding the potential role of microbes in Alzheimer's disease. Brain Behav Immun Health 2024; 36:100743. [PMID: 38435720 PMCID: PMC10906156 DOI: 10.1016/j.bbih.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) involves a complex pathological process that evolves over years, and its etiology is understood as a classic example of gene-environment interaction. The notion that exposure to microbial organisms may play some role in AD pathology has been proposed and debated for decades. New evidence from model organisms and -omic studies, as well as epidemiological data from the recent COVID-19 pandemic and widespread use of vaccines, offers new insights into the "germ hypothesis" of AD. To review new evidence and identify key research questions, the Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium and workshop: "New Approaches for Understanding the Potential Role of Microbes in Alzheimer's disease." Discussion centered around the antimicrobial protection hypothesis of amyloid accumulation, and other mechanisms by which microbes could influence AD pathology including immune cell activation, changes in blood-brain barrier, or direct neurotoxicity. This summary of proceedings reviews the content presented in the symposium and provides a summary of major topics and key questions discussed in the workshop.
Collapse
Affiliation(s)
- Heather E. Whitson
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Busse Bldg Rm 3502, Durham, NC, 27710, USA
- Durham VA Medical Center, Geriatric Research Education and Clinical Center, 508 Fulton Street, Durham, NC, 27705, USA
| | - William A. Banks
- Veterans Affairs Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
| | - Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill, 170 Manning Dr, CB 7025, Chapel Hill, NC, 27599, USA
| | - Bess Frost
- Barshop Institute for Longevity & Aging Studies, 4939 Charles Katz Rm 1041, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St., Cambridge, MA, 02139, USA
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh BioQuarter, Little France, Edinburgh, EH16 4SB, UK
| | - Kenneth E. Schmader
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Busse Bldg Rm 3502, Durham, NC, 27710, USA
- Durham VA Medical Center, Geriatric Research Education and Clinical Center, 508 Fulton Street, Durham, NC, 27705, USA
| | - Serena S. Spudich
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300, New Haven, CT, 06510, USA
| | - Rudolph Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, 114 16th Street, Charlestown, MA, 02129, USA
| | - Gwenn Garden
- University of North Carolina - Dept of Neurology, 170 Manning Drive, Campus Box 7025, Chapel Hill, NC, 27599-7025, USA
| |
Collapse
|
8
|
Coppola F, Pavlíček T, Král P. Coupling of SARS-CoV-2 to Aβ Amyloid Fibrils. ACS OMEGA 2024; 9:9295-9299. [PMID: 38434865 PMCID: PMC10905702 DOI: 10.1021/acsomega.3c08481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The COVID-19 infection has been more problematic for individuals with certain health predispositions. Coronaviruses could also interfere with neural diseases if the viruses succeed in entering the brain. Therefore, it might be of principal interest to examine a possible coupling of coronaviruses and amyloid fibrils. Here, molecular dynamics simulations were used to investigate direct coupling of SARS-CoV-2 and Aβ fibrils, which play a central role in neural diseases. The simulations revealed several stable binding configurations and their dynamics of Aβ42 fibrils attached to spike proteins of the Omicron and Alpha variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Francesco Coppola
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Tomáš Pavlíček
- Institute
of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Petr Král
- Departments
of Chemistry, Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
9
|
Morozova OV, Manuvera VA, Barinov NA, Subcheva EN, Laktyushkin VS, Ivanov DA, Lazarev VN, Klinov DV. Self-assembling amyloid-like nanostructures from SARS-CoV-2 S1, S2, RBD and N recombinant proteins. Arch Biochem Biophys 2024; 752:109843. [PMID: 38072298 DOI: 10.1016/j.abb.2023.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023]
Abstract
Self-assembling nanoparticles (saNP) and nanofibers were found in the recombinant coronavirus SARS-CoV-2 S1, S2, RBD and N proteins purified by affinity chromatography using Ni Sepharose. Scanning electron (SEM), atomic force (AFM) microscopy on mica or graphite surface and in liquid as well as dynamic light scattering (DLS) revealed nanostructures of various sizes. AFM in liquid cell without drying on the surface showed mean height of S1 saNP 80.03 nm, polydispersity index (PDI) 0.006; for S2 saNP mean height 93.32 nm, PDI = 0.008; for N saNP mean height 16.71 nm, PDI = 0.99; for RBD saNP mean height 16.25 nm, PDI = 0.55. Ratios between the height and radius of each saNP in the range 0.1-0.5 suggested solid protein NP but not vesicles with internal empty spaces. The solid but not empty structures of the protein saNP were also confirmed by STEM after treatment of saNP with the standard contrasting agent uranyl acetate. The saNP remained stable after multiple freeze-thaw cycles in water and hyperosmotic solutions for 2 years at -20 °C. Receptor-mediated penetration of the SARS-CoV-2 S1 and RBD saNP in the African green mokey kidney Vero cells with the specific receptors for β-coronavirus reproduction was more efficient compared to unspecific endocytosis into MDCK cells without the specific receptors. Amyloid-like structures were revealed in the SARS-CoV-2 S1, S2, RBD and N saNP by means of their interaction with Thioflavin T and Congo Red dyes. Taken together, spontaneous formation of the amyloid-like self-assembling nanostructures due to the internal affinity of the SARS-CoV-2 virion proteins might induce proteinopathy in patients, including conformational neurodegenerative diseases, change stability of vaccines and diagnostic systems.
Collapse
Affiliation(s)
- Olga V Morozova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation; Ivanovsky Institute of Virology of the National Research Center of Epidemiology and Microbiology of N.F. Gamaleya of the Russian Ministry of Health, 16 Gamaleya Street, 123098, Moscow, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700, Dolgoprudny, Moscow Region, Russian Federation; Sirius University of Science and Technology, Olimpiyskiy ave. b.1, township Sirius, Krasnodar region, 354340, Russian Federation.
| | - Valentin A Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700, Dolgoprudny, Moscow Region, Russian Federation
| | - Nikolay A Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700, Dolgoprudny, Moscow Region, Russian Federation; Sirius University of Science and Technology, Olimpiyskiy ave. b.1, township Sirius, Krasnodar region, 354340, Russian Federation
| | - Elena N Subcheva
- Sirius University of Science and Technology, Olimpiyskiy ave. b.1, township Sirius, Krasnodar region, 354340, Russian Federation
| | - Victor S Laktyushkin
- Sirius University of Science and Technology, Olimpiyskiy ave. b.1, township Sirius, Krasnodar region, 354340, Russian Federation
| | - Dimitri A Ivanov
- Sirius University of Science and Technology, Olimpiyskiy ave. b.1, township Sirius, Krasnodar region, 354340, Russian Federation; Lomonosov Moscow State University, Leninskie Gory 1 bld. 2, 119991 Moscow, Russian Federation; Institut de Sciences des Matériaux de Mulhouse - IS2M, CNRS UMR7361, 15 Jean Starcky, Mulhouse, 68057, France
| | - Vassili N Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700, Dolgoprudny, Moscow Region, Russian Federation
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Street, 119435, Moscow, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700, Dolgoprudny, Moscow Region, Russian Federation; Sirius University of Science and Technology, Olimpiyskiy ave. b.1, township Sirius, Krasnodar region, 354340, Russian Federation
| |
Collapse
|
10
|
Domingues KZA, Cobre AF, Lazo REL, Amaral LS, Ferreira LM, Tonin FS, Pontarolo R. Systematic review and evidence gap mapping of biomarkers associated with neurological manifestations in patients with COVID-19. J Neurol 2024; 271:1-23. [PMID: 38015300 DOI: 10.1007/s00415-023-12090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE This study aimed to synthesize the existing evidence on biomarkers related to coronavirus disease 2019 (COVID-19) patients who presented neurological events. METHODS A systematic review of observational studies (any design) following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and the Cochrane Collaboration recommendations was performed (PROSPERO: CRD42021266995). Searches were conducted in PubMed and Scopus (updated April 2023). The methodological quality of nonrandomized studies was assessed using the Newcastle‒Ottawa Scale (NOS). An evidence gap map was built considering the reported biomarkers and NOS results. RESULTS Nine specific markers of glial activation and neuronal injury were mapped from 35 studies published between 2020 and 2023. A total of 2,237 adult patients were evaluated in the included studies, especially during the acute phase of COVID-19. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) biomarkers were the most frequently assessed (n = 27 studies, 77%, and n = 14 studies, 40%, respectively). Although these biomarkers were found to be correlated with disease severity and worse outcomes in the acute phase in several studies (p < 0.05), they were not necessarily associated with neurological events. Overall, 12 studies (34%) were judged as having low methodological quality, 9 (26%) had moderate quality, and 9 (26%) had high quality. CONCLUSIONS Different neurological biomarkers in neurosymptomatic COVID-19 patients were identified in observational studies. Although the evidence is still scarce and conflicting for some biomarkers, well-designed longitudinal studies should further explore the pathophysiological role of NfL, GFAP, and tau protein and their potential use for COVID-19 diagnosis and management.
Collapse
Affiliation(s)
- K Z A Domingues
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - A F Cobre
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - R E L Lazo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - L S Amaral
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - L M Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - F S Tonin
- H&TRC- Health & Technology Research Center, ESTeSL, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal
| | - R Pontarolo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil.
| |
Collapse
|
11
|
Zhang S, Zhang L, Ma L, Wu H, Liu L, He X, Gao M, Li R. Neuropsychological, plasma marker, and functional connectivity changes in Alzheimer's disease patients infected with COVID-19. Front Aging Neurosci 2023; 15:1302281. [PMID: 38187359 PMCID: PMC10766841 DOI: 10.3389/fnagi.2023.1302281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Patients with COVID-19 may experience various neurological conditions, including cognitive impairment, encephalitis, and stroke. This is particularly significant in individuals who already have Alzheimer's disease (AD), as the cognitive impairments can be more pronounced in these cases. However, the extent and underlying mechanisms of cognitive impairments in COVID-19-infected AD patients have yet to be fully investigated through clinical and neurophysiological approaches. Methods This study included a total of 77 AD patients. Cognitive functions were assessed using neuropsychiatric scales for all participants, and plasma biomarkers of amyloid protein and tau protein were measured in a subset of 25 participants. To investigate the changes in functional brain connectivity induced by COVID-19 infection, a cross-sectional neuroimaging design was conducted involving a subset of 37 AD patients, including a control group of 18 AD participants without COVID-19 infection and a COVID-19 group consisting of 19 AD participants. Results For the 77 AD patients between the stages of pre and post COVID-19 infection, there were significant differences in cognitive function and psychobehavioral symptoms on the Montreal Scale (MoCA), the neuropsychiatric inventory (NPI), the clinician's global impression of change (CIBIC-Plus), and the activity of daily living scale (ADL). The COVID-19 infection significantly decreased the plasma biomarker level of Aβ42 and increased the plasma p-tau181 level in AD patients. The COVID-19-infected AD patients show decreased local coherence (LCOR) in the anterior middle temporal gyrus and decreased global correlation (GCOR) in the precuneus and the medial prefrontal cortex. Conclusion The findings suggest clinical, cognitive, and neural alterations following COVID-19 infection in AD patients and emphasize the need for close monitoring of symptoms in AD patients who have had COVID-19 and further exploration of the underlying mechanisms.
Collapse
Affiliation(s)
- Shouzi Zhang
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Li Zhang
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Li Ma
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Haiyan Wu
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Lixin Liu
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Xuelin He
- Department of Psychiatry, Beijing Geriatric Hospital, Beijing, China
| | - Maolong Gao
- Department of Science and Technology, Beijing Geriatric Hospital, Beijing, China
| | - Rui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
13
|
Devlin L, Gombolay GY. Cerebrospinal fluid cytokines in COVID-19: a review and meta-analysis. J Neurol 2023; 270:5155-5161. [PMID: 37581633 PMCID: PMC10591843 DOI: 10.1007/s00415-023-11928-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
INTRODUCTION Neurological involvement can occur in patients with SARS-CoV-2 infections, resulting in coronavirus disease 2019 (COVID-19). Cytokine alterations are associated with neurological symptoms in COVID-19. We performed a review of cytokines in the cerebrospinal fluid (CSF) of patients with COVID-19. METHODS Two reviewers independently searched PubMed for all relevant articles published prior to November 11, 2022. Active SARS-CoV-2 infection and CSF cytokine analyses were required for inclusion. RESULTS Three-hundred forty-six patients with COVID-19 and 356 controls from 28 studies were included. SARS-CoV-2 PCR was positive in the CSF of 0.9% (3/337) of patients with COVID-19. Thirty-seven different cytokines were elevated in the CSF of patients with COVID-19 when compared to controls and the standards set forth by individual assays used in each study. Of the 37 cytokines, IL-6 and IL-8 were most commonly elevated. CSF IL-6 is elevated in 60%, and CSF IL-8 is elevated in 51% of patients with COVID-19. CONCLUSION Levels of several inflammatory cytokines are elevated in the CSF of patients with COVID-19, and SARS-CoV-2 PCR is often not isolated in the CSF of patients with COVID-19. Many patients with COVID-19 have neurological symptoms and given the cytokine elevations in the absence of detectable viral RNA in cerebrospinal fluid; further study of the CSF cytokine profiles and pathogenesis of neurological symptoms in COVID-19 is needed.
Collapse
Affiliation(s)
- Lily Devlin
- Emory University School of Medicine, Atlanta, GA, USA
| | - Grace Y Gombolay
- Children's Healthcare of Atlanta, Division of Pediatric Neurology, Emory University, 1400 Tulle Road NE, 8th Floor, Atlanta, GA, USA.
| |
Collapse
|
14
|
Basak I, Harfoot R, Palmer JE, Kumar A, Quiñones-Mateu ME, Schweitzer L, Hughes SM. Neuroproteomic Analysis after SARS-CoV-2 Infection Reveals Overrepresented Neurodegeneration Pathways and Disrupted Metabolic Pathways. Biomolecules 2023; 13:1597. [PMID: 38002279 PMCID: PMC10669333 DOI: 10.3390/biom13111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Besides respiratory illness, SARS-CoV-2, the causative agent of COVID-19, leads to neurological symptoms. The molecular mechanisms leading to neuropathology after SARS-CoV-2 infection are sparsely explored. SARS-CoV-2 enters human cells via different receptors, including ACE-2, TMPRSS2, and TMEM106B. In this study, we used a human-induced pluripotent stem cell-derived neuronal model, which expresses ACE-2, TMPRSS2, TMEM106B, and other possible SARS-CoV-2 receptors, to evaluate its susceptibility to SARS-CoV-2 infection. The neurons were exposed to SARS-CoV-2, followed by RT-qPCR, immunocytochemistry, and proteomic analyses of the infected neurons. Our findings showed that SARS-CoV-2 infects neurons at a lower rate than other human cells; however, the virus could not replicate or produce infectious virions in this neuronal model. Despite the aborted SARS-CoV-2 replication, the infected neuronal nuclei showed irregular morphology compared to other human cells. Since cytokine storm is a significant effect of SARS-CoV-2 infection in COVID-19 patients, in addition to the direct neuronal infection, the neurons were treated with pre-conditioned media from SARS-CoV-2-infected lung cells, and the neuroproteomic changes were investigated. The limited SARS-CoV-2 infection in the neurons and the neurons treated with the pre-conditioned media showed changes in the neuroproteomic profile, particularly affecting mitochondrial proteins and apoptotic and metabolic pathways, which may lead to the development of neurological complications. The findings from our study uncover a possible mechanism behind SARS-CoV-2-mediated neuropathology that might contribute to the lingering effects of the virus on the human brain.
Collapse
Affiliation(s)
- Indranil Basak
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Jennifer E. Palmer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Abhishek Kumar
- Centre for Protein Research, University of Otago, Dunedin 9016, New Zealand
| | - Miguel E. Quiñones-Mateu
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Lucia Schweitzer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie M. Hughes
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
15
|
Huang Z, Haile K, Gedefaw L, Lau BWM, Jin L, Yip SP, Huang CL. Blood Biomarkers as Prognostic Indicators for Neurological Injury in COVID-19 Patients: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:15738. [PMID: 37958721 PMCID: PMC10649265 DOI: 10.3390/ijms242115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been linked to various neurological complications. This meta-analysis assessed the relationship between glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) levels in the blood and neurological injury in COVID-19 patients. A comprehensive search of various databases was conducted until 18 August 2023, to find studies reporting GFAP and NfL blood levels in COVID-19 patients with neurological complications. GFAP and NfL levels were estimated between COVID-19 patients and healthy controls, and meta-analyses were performed using RevMan 5.4 software for analysis. In the 21 collected studies, it was found that COVID-19 patients had significantly higher levels of pooled GFAP (SMD = 0.52; 95% CI: 0.31, 0.73; p ≤ 0.001) and NfL (SMD = 0.60; 95% CI: 0.37, 0.82; p ≤ 0.001) when compared to the healthy controls. The pooled GFAP (SMD = 0.86; 95% CI: 0.26, 1.45; p ≤ 0.01) and NfL (SMD = 0.87; 95% CI: 0.48, 1.26; p ≤ 0.001) were significantly higher in non-survivors. These findings indicate a significant association between COVID-19 severity and elevated levels of GFAP and NfL, suggesting that GFAP and NfL could serve as potential diagnostic and prognostic markers for the early detection and monitoring of COVID-19-related neurological injuries.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Kassahun Haile
- Department of Medical Laboratory Science, Wolkite University, Wolkite P.O. Box 07, Ethiopia;
| | - Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ling Jin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (Z.H.); (L.G.); (L.J.)
| |
Collapse
|
16
|
Thomas R, Connolly KJ, Brekk OR, Hinrich AJ, Hastings ML, Isacson O, Hallett PJ. Viral-like TLR3 induction of cytokine networks and α-synuclein are reduced by complement C3 blockade in mouse brain. Sci Rep 2023; 13:15164. [PMID: 37704739 PMCID: PMC10499893 DOI: 10.1038/s41598-023-41240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Inflammatory processes and mechanisms are of central importance in neurodegenerative diseases. In the brain, α-synucleinopathies such as Parkinson's disease (PD) and Lewy body dementia (LBD) show immune cytokine network activation and increased toll like receptor 3 (TLR3) levels for viral double-stranded RNA (dsRNA). Brain inflammatory reactions caused by TLR3 activation are also relevant to understand pathogenic cascades by viral SARS-CoV-2 infection causing post- COVID-19 brain-related syndromes. In the current study, following regional brain TLR3 activation induced by dsRNA in mice, an acute complement C3 response was seen at 2 days. A C3 splice-switching antisense oligonucleotide (ASO) that promotes the splicing of a non-productive C3 mRNA, prevented downstream cytokines, such as IL-6, and α-synuclein changes. This report is the first demonstration that α-synuclein increases occur downstream of complement C3 activation. Relevant to brain dysfunction, post-COVID-19 syndromes and pathological changes leading to PD and LBD, viral dsRNA TLR3 activation in the presence of C3 complement blockade further revealed significant interactions between complement systems, inflammatory cytokine networks and α-synuclein changes.
Collapse
Affiliation(s)
- Ria Thomas
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Kyle J Connolly
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Oeystein R Brekk
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Anthony J Hinrich
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
17
|
Brown RL, Benjamin L, Lunn MP, Bharucha T, Zandi MS, Hoskote C, McNamara P, Manji H. Pathophysiology, diagnosis, and management of neuroinflammation in covid-19. BMJ 2023; 382:e073923. [PMID: 37595965 DOI: 10.1136/bmj-2022-073923] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Although neurological complications of SARS-CoV-2 infection are relatively rare, their potential long term morbidity and mortality have a significant impact, given the large numbers of infected patients. Covid-19 is now in the differential diagnosis of a number of common neurological syndromes including encephalopathy, encephalitis, acute demyelinating encephalomyelitis, stroke, and Guillain-Barré syndrome. Physicians should be aware of the pathophysiology underlying these presentations to diagnose and treat patients rapidly and appropriately. Although good evidence has been found for neurovirulence, the neuroinvasive and neurotropic potential of SARS-CoV-2 is limited. The pathophysiology of most complications is immune mediated and vascular, or both. A significant proportion of patients have developed long covid, which can include neuropsychiatric presentations. The mechanisms of long covid remain unclear. The longer term consequences of infection with covid-19 on the brain, particularly in terms of neurodegeneration, will only become apparent with time and long term follow-up.
Collapse
Affiliation(s)
- Rachel L Brown
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Institute of Immunity and Transplantation, London, UK
| | - Laura Benjamin
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Laboratory of Molecular and Cell Biology, London, UK
| | - Michael P Lunn
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Tehmina Bharucha
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Department of Biochemistry, University of Oxford, UK
| | - Michael S Zandi
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Chandrashekar Hoskote
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Patricia McNamara
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hadi Manji
- University College London, Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
18
|
Milton NGN. SARS-CoV-2 amyloid, is COVID-19-exacerbated dementia an amyloid disorder in the making? FRONTIERS IN DEMENTIA 2023; 2:1233340. [PMID: 39081980 PMCID: PMC11285677 DOI: 10.3389/frdem.2023.1233340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2024]
|
19
|
Olivera E, Sáez A, Carniglia L, Caruso C, Lasaga M, Durand D. Alzheimer's disease risk after COVID-19: a view from the perspective of the infectious hypothesis of neurodegeneration. Neural Regen Res 2023; 18:1404-1410. [PMID: 36571334 PMCID: PMC10075115 DOI: 10.4103/1673-5374.360273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In light of the rising evidence of the association between viral and bacterial infections and neurodegeneration, we aimed at revisiting the infectious hypothesis of Alzheimer's disease and analyzing the possible implications of COVID-19 neurological sequelae in long-term neurodegeneration. We wondered how SARS-CoV-2 could be related to the amyloid-β cascade and how it could lead to the pathological hallmarks of the disease. We also predict a paradigm change in clinical medicine, which now has a great opportunity to conduct prospective surveillance of cognitive sequelae and progression to dementia in people who suffered severe infections together with other risk factors for Alzheimer's disease.
Collapse
Affiliation(s)
- Eugenia Olivera
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Albany Sáez
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
20
|
Lourenco MV. Preface: Special issue "Brain Proteostasis in Health and Disease". J Neurochem 2023; 166:3-6. [PMID: 37414435 DOI: 10.1111/jnc.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
This preface introduces the Journal of Neurochemistry Special Issue on Brain Proteostasis. Adequate control of protein homeostasis, or proteostasis, has been at the center stage of brain physiology, and its deregulation may contribute to brain diseases, including several neuropsychiatric and neurodegenerative conditions. Therefore, delineating the processes underlying protein synthesis, folding, stability, function, and degradation in brain cells is key to promoting brain function and identifying effective therapeutic options for neurological disorders. This special issue comprises four review articles and four original articles covering the roles of protein homeostasis in several mechanisms that are of relevance to sleep, depression, stroke, dementia, and COVID-19. Thus, these articles highlight different aspects of proteostasis regulation in the brain and present important evidence on this growing and exciting field.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Vasilevskaya A, Mushtaque A, Tsang MY, Alwazan B, Herridge M, Cheung AM, Tartaglia MC. Sex and age affect acute and persisting COVID-19 illness. Sci Rep 2023; 13:6029. [PMID: 37055492 PMCID: PMC10098246 DOI: 10.1038/s41598-023-33150-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
Long COVID is associated with neurological and neuropsychiatric manifestations. We conducted an observational study on 97 patients with prior SARS-CoV-2 infection and persisting cognitive complaints that presented to the University Health Network Memory Clinic between October 2020 and December 2021. We assessed the main effects of sex, age, and their interaction on COVID-19 symptoms and outcomes. We also examined the relative contribution of demographics and acute COVID-19 presentation (assessed retrospectively) on persistent neurological symptoms and cognition. Among our cohort, males had higher hospitalization rates than females during the acute COVID-19 illness (18/35 (51%) vs. 15/62 (24%); P = .009). Abnormal scores on cognitive assessments post-COVID were associated with older age (AOR = 0.84; 95% CI 0.74-0.93) and brain fog during initial illness (AOR = 8.80; 95% CI 1.76-65.13). Female sex (ARR = 1.42; 95% CI 1.09-1.87) and acute shortness of breath (ARR = 1.41; 95% CI 1.09-1.84) were associated with a higher risk of experiencing more persistent short-term memory symptoms. Female sex was the only predictor associated with persistent executive dysfunction (ARR = 1.39; 95% CI 1.12-1.76) and neurological symptoms (ARR = 1.66; 95% CI 1.19-2.36). Sex differences were evident in presentations and cognitive outcomes in patients with long COVID.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St. WW5-449, Toronto, ON, M5T 2S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Asma Mushtaque
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St. WW5-449, Toronto, ON, M5T 2S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michelle Y Tsang
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St. WW5-449, Toronto, ON, M5T 2S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Batoul Alwazan
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St. WW5-449, Toronto, ON, M5T 2S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Internal Medicine Board, Kuwait Institution for Medical Specialty (KIMS), Andalous, Kuwait
- Geriatric Medicine, McMaster University, Hamilton, ON, Canada
| | - Margaret Herridge
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Angela M Cheung
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St. WW5-449, Toronto, ON, M5T 2S8, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
22
|
Liu N, Jiang X, Li H. The viral hypothesis in Alzheimer's disease: SARS-CoV-2 on the cusp. Front Aging Neurosci 2023; 15:1129640. [PMID: 37009449 PMCID: PMC10050697 DOI: 10.3389/fnagi.2023.1129640] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Increasing evidence highlights that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has long-term effects on cognitive function, which may cause neurodegenerative diseases like Alzheimer's disease (AD) in the future. We performed an analysis of a possible link between SARS-CoV-2 infection and AD risk and proposed several hypotheses for its possible mechanism, including systemic inflammation, neuroinflammation, vascular endothelial injury, direct viral infection, and abnormal amyloid precursor protein metabolism. The purpose of this review is to highlight the impact of infection with SASR-CoV-2 on the future risk of AD, to provide recommendations on medical strategies during the pandemic, and to propose strategies to address the risk of AD induced by SASR-CoV-2. We call for the establishment of a follow-up system for survivors to help researchers better understand the occurrence, natural history, and optimal management of SARS-CoV-2-related AD and prepare for the future.
Collapse
Affiliation(s)
- Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Chaumont H, Kaczorowski F, San-Galli A, Michel PP, Tressières B, Roze E, Quadrio I, Lannuzel A. Cerebrospinal fluid biomarkers in SARS-CoV-2 patients with acute neurological syndromes. Rev Neurol (Paris) 2023; 179:208-217. [PMID: 36610823 PMCID: PMC9708608 DOI: 10.1016/j.neurol.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND PURPOSE Mechanisms underlying acute brain injury in SARS-CoV-2 patients remain poorly understood. A better characterization of such mechanisms remains essential to preventing long-term neurological sequelae. Our present aim was to study a panel of biomarkers of neuroinflammation and neurodegeneration in the cerebrospinal fluid (CSF) of NeuroCOVID patients. METHODS We retrospectively collected clinical and CSF biomarkers data from 24 NeuroCOVID adults seen at the University Hospital of Guadeloupe between March and June 2021. RESULTS Among 24 NeuroCOVID patients, 71% had encephalopathy and 29% meningoencephalitis. A number of these patients also experienced de novo movement disorder (33%) or stroke (21%). The CSF analysis revealed intrathecal immunoglobulin synthesis in 54% of NeuroCOVID patients (two with a type 2 pattern and 11 with a type 3) and elevated neopterin levels in 75% of them (median 9.1nM, IQR 5.6-22.1). CSF neurofilament light chain (NfL) was also increased compared to a control group of non-COVID-19 patients with psychiatric illnesses (2905ng/L, IQR 1428-7124 versus 1222ng/L, IQR 1049-1566). Total-tau was elevated in the CSF of 24% of patients, whereas protein 14-3-3, generally undetectable, reached intermediate levels in two patients. Finally, CSF Aß1-42 was reduced in 52.4% of patients (median 536ng/L, IQR 432-904) with no change in the Aß1-42/Aß1-40 ratio (0.082, IQR 0.060-0.096). CONCLUSIONS We showed an elevation of CSF biomarkers of neuroinflammation in NeuroCOVID patients and a rise of CSF NfL, evocative of neuronal damage. However, longitudinal studies are needed to determine whether NeuroCOVID could evolve into a chronic neurodegenerative condition.
Collapse
Affiliation(s)
- H Chaumont
- Service de neurologie, centre hospitalier universitaire de la Guadeloupe, Pointe-à-Pitre/Abymes, French West Indies, France; Faculté de médecine de l'université des Antilles, French West Indies, Pointe-à-Pitre, France; U 1127, CNRS, unité mixte de recherche (UMR) 7225, faculté de médecine de Sorbonne université, Institut national de la santé et de la recherche médicale, Institut du Cerveau, ICM, Paris, France.
| | - F Kaczorowski
- Laboratory of neurobiology and neurogenetics, department of biochemistry and molecular biology, Lyon university hospital, Bron, France; CNRS UMR 5292, Inserm U1028, BIORAN team, Lyon neuroscience research center, Lyon 1 university, Bron, France
| | - A San-Galli
- Service de neurologie, centre hospitalier universitaire de la Guadeloupe, Pointe-à-Pitre/Abymes, French West Indies, France
| | - P P Michel
- U 1127, CNRS, unité mixte de recherche (UMR) 7225, faculté de médecine de Sorbonne université, Institut national de la santé et de la recherche médicale, Institut du Cerveau, ICM, Paris, France
| | - B Tressières
- Inserm CIC 1424, centre d'investigation Clinique Antilles Guyane, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | - E Roze
- U 1127, CNRS, unité mixte de recherche (UMR) 7225, faculté de médecine de Sorbonne université, Institut national de la santé et de la recherche médicale, Institut du Cerveau, ICM, Paris, France; Département de neurologie, hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - I Quadrio
- Laboratory of neurobiology and neurogenetics, department of biochemistry and molecular biology, Lyon university hospital, Bron, France; CNRS UMR 5292, Inserm U1028, BIORAN team, Lyon neuroscience research center, Lyon 1 university, Bron, France
| | - A Lannuzel
- Service de neurologie, centre hospitalier universitaire de la Guadeloupe, Pointe-à-Pitre/Abymes, French West Indies, France; Faculté de médecine de l'université des Antilles, French West Indies, Pointe-à-Pitre, France; U 1127, CNRS, unité mixte de recherche (UMR) 7225, faculté de médecine de Sorbonne université, Institut national de la santé et de la recherche médicale, Institut du Cerveau, ICM, Paris, France; Inserm CIC 1424, centre d'investigation Clinique Antilles Guyane, CHU de la Guadeloupe, Pointe-à-Pitre, France
| |
Collapse
|
24
|
Li W, Sun L, Yue L, Xiao S. Alzheimer's disease and COVID-19: Interactions, intrinsic linkages, and the role of immunoinflammatory responses in this process. Front Immunol 2023; 14:1120495. [PMID: 36845144 PMCID: PMC9947230 DOI: 10.3389/fimmu.2023.1120495] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) and COVID-19 share many common risk factors, such as advanced age, complications, APOE genotype, etc. Epidemiological studies have also confirmed the internal relationship between the two diseases. For example, studies have found that AD patients are more likely to suffer from COVID-19, and after infection with COVID-19, AD also has a much higher risk of death than other chronic diseases, and what's more interesting is that the risk of developing AD in the future is significantly higher after infection with COVID-19. Therefore, this review gives a detailed introduction to the internal relationship between Alzheimer's disease and COVID-19 from the perspectives of epidemiology, susceptibility and mortality. At the same time, we focused on the important role of inflammation and immune responses in promoting the onset and death of AD from COVID-19.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Sun
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Association of admission serum levels of neurofilament light chain and in-hospital mortality in geriatric patients with COVID-19. J Neurol 2023; 270:37-43. [PMID: 36114298 PMCID: PMC9483416 DOI: 10.1007/s00415-022-11373-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023]
|
26
|
Gonçalves CA, Bobermin LD, Sesterheim P, Netto CA. SARS-CoV-2-Induced Amyloidgenesis: Not One, but Three Hypotheses for Cerebral COVID-19 Outcomes. Metabolites 2022; 12:1099. [PMID: 36422238 PMCID: PMC9692683 DOI: 10.3390/metabo12111099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 01/17/2024] Open
Abstract
The main neuropathological feature of Alzheimer's disease (AD) is extracellular amyloid deposition in senile plaques, resulting from an imbalance between the production and clearance of amyloid beta peptides. Amyloid deposition is also found around cerebral blood vessels, termed cerebral amyloid angiopathy (CAA), in 90% of AD cases. Although the relationship between these two amyloid disorders is obvious, this does not make CAA a characteristic of AD, as 40% of the non-demented population presents this derangement. AD is predominantly sporadic; therefore, many factors contribute to its genesis. Herein, the starting point for discussion is the COVID-19 pandemic that we are experiencing and how SARS-CoV-2 may be able to, both directly and indirectly, contribute to CAA, with consequences for the outcome and extent of the disease. We highlight the role of astrocytes and endothelial cells in the process of amyloidgenesis, as well as the role of other amyloidgenic proteins, such as fibrinogen and serum amyloid A protein, in addition to the neuronal amyloid precursor protein. We discuss three independent hypotheses that complement each other to explain the cerebrovascular amyloidgenesis that may underlie long-term COVID-19 and new cases of dementia.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| | - Patricia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Centro Estadual de Vigilância Sanitária do Rio Grande do Sul (CEVS-RS), Porto Alegre 90450-190, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| |
Collapse
|
27
|
Graham EL, Koralnik IJ, Liotta EM. Therapeutic Approaches to the Neurologic Manifestations of COVID-19. Neurotherapeutics 2022; 19:1435-1466. [PMID: 35861926 PMCID: PMC9302225 DOI: 10.1007/s13311-022-01267-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
As of May 2022, there have been more than 527 million infections with severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) and over 6.2 million deaths from Coronavirus Disease 2019 (COVID-19) worldwide. COVID-19 is a multisystem illness with important neurologic consequences that impact long-term morbidity and mortality. In the acutely ill, the neurologic manifestations of COVID-19 can include distressing but relatively benign symptoms such as headache, myalgias, and anosmia; however, entities such as encephalopathy, stroke, seizures, encephalitis, and Guillain-Barre Syndrome can cause neurologic injury and resulting disability that persists long after the acute pulmonary illness. Furthermore, as many as one-third of patients may experience persistent neurologic symptoms as part of a Post-Acute Sequelae of SARS-CoV-2 infection (Neuro-PASC) syndrome. This Neuro-PASC syndrome can affect patients who required hospitalization for COVID-19 or patients who did not require hospitalization and who may have had minor or no pulmonary symptoms. Given the large number of individuals affected and the ability of neurologic complications to impair quality of life and productivity, the neurologic manifestations of COVID-19 are likely to have major and long-lasting personal, public health, and economic consequences. While knowledge of disease mechanisms and therapies acquired prior to the pandemic can inform us on how to manage patients with the neurologic manifestations of COVID-19, there is a critical need for improved understanding of specific COVID-19 disease mechanisms and development of therapies that target the neurologic morbidities of COVID-19. This current perspective reviews evidence for proposed disease mechanisms as they inform the neurologic management of COVID-19 in adult patients while also identifying areas in need of further research.
Collapse
Affiliation(s)
- Edith L Graham
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave Suite 1150, Chicago, IL, 60611, USA
| | - Igor J Koralnik
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave Suite 1150, Chicago, IL, 60611, USA
| | - Eric M Liotta
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave Suite 1150, Chicago, IL, 60611, USA.
| |
Collapse
|
28
|
Zhang Q, Li J, Weng L. A bibliometric analysis of COVID-19 publications in neurology by using the visual mapping method. Front Public Health 2022; 10:937008. [PMID: 35958855 PMCID: PMC9362596 DOI: 10.3389/fpubh.2022.937008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023] Open
Abstract
Background The characteristic symptom of coronavirus disease 2019 (COVID-19) is respiratory distress, but neurological symptoms are the most frequent extra-pulmonary symptoms. This study aims to explore the current status and hot topics of neurology-related research on COVID-19 using bibliometric analysis. Methods Publications regarding neurology and COVID-19 were retrieved from the Web of Science Core Collection (WoSCC) on March 28 2022. The Advanced search was conducted using “TS = (‘COVID 19’ or ‘Novel Coronavirus 2019’ or ‘Coronavirus disease 2019’ or ‘2019-nCOV’ or ‘SARS-CoV-2’ or ‘coronavirus-2’) and TS = (‘neurology’or ‘neurological’ or ‘nervous system’ or ‘neurodegenerative disease’ or ‘brain’ or ‘cerebra’ or ‘nerve’)”. Microsoft Excel 2010 and VOSviewer were used to characterize the largest contributors, including the authors, journals, institutions, and countries. The hot topics and knowledge network were analyzed by CiteSpace and VOSviewer. Results A total of 5,329 publications between 2020 and 2022 were retrieved. The United States, Italy, and the United Kingdom were three key contributors to this field. Harvard Medical School, the Tehran University of Medical Sciences, and the UCL Queen Square Institute of Neurology were the major institutions with the largest publications. Josef Finsterer from the University of São Paulo (Austria) was the most prolific author. Tom Solomon from the University of Liverpool (UK) was the most cited author. Neurological Sciences and Frontiers in Neurology were the first two most productive journals, while Journal of Neurology held the first in terms of total citations and citations per publication. Cerebrovascular diseases, neurodegenerative diseases, encephalitis and encephalopathy, neuroimmune complications, neurological presentation in children, long COVID and mental health, and telemedicine were the central topics regarding the neurology-related research on COVID-19. Conclusion Neurology-related research on COVID-19 has attracted considerable attention worldwide. Research topics shifted from “morality, autopsy, and telemedicine” in 2020 to various COVID-19-related neurological symptoms in 2021, such as “stroke,” “Alzheimer's disease,” “Parkinson's disease,” “Guillain–Barre syndrome,” “multiple sclerosis,” “seizures in children,” and “long COVID.” “Applications of telemedicine in neurology during COVID-19 pandemic,” “COVID-19-related neurological complications and mechanism,” and “long COVID” require further study.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hydrocephalus Center, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ling Weng
| |
Collapse
|
29
|
Gene Networks of Hyperglycemia, Diabetic Complications, and Human Proteins Targeted by SARS-CoV-2: What Is the Molecular Basis for Comorbidity? Int J Mol Sci 2022; 23:ijms23137247. [PMID: 35806251 PMCID: PMC9266766 DOI: 10.3390/ijms23137247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
People with diabetes are more likely to have severe COVID-19 compared to the general population. Moreover, diabetes and COVID-19 demonstrate a certain parallelism in the mechanisms and organ damage. In this work, we applied bioinformatics analysis of associative molecular networks to identify key molecules and pathophysiological processes that determine SARS-CoV-2-induced disorders in patients with diabetes. Using text-mining-based approaches and ANDSystem as a bioinformatics tool, we reconstructed and matched networks related to hyperglycemia, diabetic complications, insulin resistance, and beta cell dysfunction with networks of SARS-CoV-2-targeted proteins. The latter included SARS-CoV-2 entry receptors (ACE2 and DPP4), SARS-CoV-2 entry associated proteases (TMPRSS2, CTSB, and CTSL), and 332 human intracellular proteins interacting with SARS-CoV-2. A number of genes/proteins targeted by SARS-CoV-2 (ACE2, BRD2, COMT, CTSB, CTSL, DNMT1, DPP4, ERP44, F2RL1, GDF15, GPX1, HDAC2, HMOX1, HYOU1, IDE, LOX, NUTF2, PCNT, PLAT, RAB10, RHOA, SCARB1, and SELENOS) were found in the networks of vascular diabetic complications and insulin resistance. According to the Gene Ontology enrichment analysis, the defined molecules are involved in the response to hypoxia, reactive oxygen species metabolism, immune and inflammatory response, regulation of angiogenesis, platelet degranulation, and other processes. The results expand the understanding of the molecular basis of diabetes and COVID-19 comorbidity.
Collapse
|
30
|
Sanchez-Pulido L, Ponting CP. OAF: a new member of the BRICHOS family. BIOINFORMATICS ADVANCES 2022; 2:vbac087. [PMID: 36699367 PMCID: PMC9714404 DOI: 10.1093/bioadv/vbac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Summary The 10 known BRICHOS domain-containing proteins in humans have been linked to an unusually long list of pathologies, including cancer, obesity and two amyloid-like diseases. BRICHOS domains themselves have been described as intramolecular chaperones that act to prevent amyloid-like aggregation of their proteins' mature polypeptides. Using structural comparison of coevolution-based AlphaFold models and sequence conservation, we identified the Out at First (OAF) protein as a new member of the BRICHOS family in humans. OAF is an experimentally uncharacterized protein that has been proposed as a candidate biomarker for clinical management of coronavirus disease 2019 infections. Our analysis revealed how structural comparison of AlphaFold models can discover remote homology relationships and lead to a better understanding of BRICHOS domain molecular mechanism. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|