1
|
Guo J, Zhao S, Chu X, Wang C, Meng J, Wei S, Wang J, Guo Y, Kong W, Sun W, Zhang T, Dang R, Yang M, Chen J, Jiang P. Angiotensin-converting enzyme 2 modulation of pyroptosis pathway in traumatic brain injury: A potential therapeutic target. Clin Transl Med 2025; 15:e70167. [PMID: 39737729 DOI: 10.1002/ctm2.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Affiliation(s)
- Jinxiu Guo
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Shiyuan Zhao
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Xue Chu
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, P.R. China
| | - Junjun Meng
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Shanshan Wei
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, P.R. China
| | - Jianhua Wang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Yujin Guo
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Weihua Kong
- Institute of Central Nervous Vascular Injury and Repair, Jining Academy of Medical Sciences, Jining, P.R. China
| | - Wenxue Sun
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Tao Zhang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Mengqi Yang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining, P.R. China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| |
Collapse
|
2
|
Kursancew ACS, Faller CJ, Bortoluzzi DP, Niero LB, Brandão B, Danielski LG, Petronilho F, Generoso JS. Neuroinflammatory Response in the Traumatic Brain Injury: An Update. Neurochem Res 2024; 50:64. [PMID: 39718667 DOI: 10.1007/s11064-024-04316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
The central nervous system (CNS) comprises membranes and barriers that are vital to brain homeostasis. Membranes form a robust shield around neural structures, ensuring protection and structural integrity. At the same time, barriers selectively regulate the exchange of substances between blood and brain tissue, which is essential for maintaining homeostasis. Another highlight is the glymphatic system, which cleans metabolites and waste from the brain. Traumatic brain injury (TBI) represents a significant cause of disability and mortality worldwide, resulting from the application of direct mechanical force to the head that results in a primary injury. Therefore, this review aims to elucidate the mechanisms associated with the secondary injury cascade, in which there is intense activation of glial cells, dysfunction of the glymphatic system, glutamatergic neurotoxicity, additional molecular and biochemical changes that lead to a neuroinflammatory process, and oxidative stress and in which way they can be associated with cognitive damage that is capable of lasting for an extended period.
Collapse
Affiliation(s)
- Amanda C S Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Daniel Paulo Bortoluzzi
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana Budny Niero
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Beatriz Brandão
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Lucineia Gainski Danielski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
3
|
Zeng QQ, Wang J, Yue RC, Wang FS, Xu Y, Su YP, Zhang QL, Zheng YW, Zhang GF, Li B, Yu CX, Jin GL. Gelsevirine ameliorates sepsis-associated encephalopathy by inhibiting the STING signalling-mediated pyroptosis pathway in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156071. [PMID: 39326131 DOI: 10.1016/j.phymed.2024.156071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is among the most prevalent and deadly complications associated with sepsis, but satisfactory treatments and therapeutic agents are lacking. Gelsevirine, an active ingredient derived from Gelsemium elegans Benth., has shown promising effects in animal models of anxiety, ischaemic stroke and osteoarthritis. However, its protective effect against SAE and its mechanism of action are still unknown. PURPOSE To elucidate the efficacy of gelsevirine against SAE and the mechanism of its protective effect through the STING signalling-mediated pyroptosis pathway. METHODS We constructed a mouse model of caecum ligation and puncture (CLP)-induced sepsis and explored the protective effects of gelsevirine in mice with SAE by assessing survival rates and behavioural alterations. To further explore its mechanism of action, we investigated the modulatory effects of gelsevirine on the levels of inflammatory factors, microglial activation and pyroptosis by Western blotting, immunohistochemistry staining and PCR. STING knockout mice were used to verify the protective effect of gelsevirine against SAE through the STING pathway. RESULTS Gelsevirine increased the survival rate of mice with SAE. The Morris water maze and open field tests revealed that gelsevirine significantly alleviated cognitive dysfunction and increased exploratory behaviour in mice with SAE. Gelsevirine inhibited the activation of microglia and decreased inflammatory factor levels in the hippocampus of mice with SAE. In mice with SAE and in vitro BV2 microglia, gelsevirine reduced levels of inflammatory factors and inhibited STING protein phosphorylation and microglial pyroptosis. However, after STING knockout, the inhibitory effect of gelsevirine on microglial pyroptosis was significantly weakened, and gelsevirine-mediated protective effects were abolished. CONCLUSIONS Gelsevirine increased the survival rate, ameliorated cognitive impairment, inhibited glial cell activation and reduced inflammation in the hippocampi of mice with SAE; the mechanism may be related to the inhibition of STING signalling pathway-mediated pyroptosis in microglia.
Collapse
Affiliation(s)
- Qing-Quan Zeng
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jing Wang
- Laboratory Animal Center, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Rong-Cai Yue
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China
| | - Fa-Sheng Wang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Ying Xu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yan-Ping Su
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China
| | - Qiao-Ling Zhang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - You-Wei Zheng
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Gui-Fei Zhang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Bo Li
- Amway (Shanghai) Science and Technology Development Co., Ltd, Shanghai, PR China; Amway (China) Botanical R&D Center, Wuxi 214145, PR China.
| | - Chang-Xi Yu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China.
| | - Gui-Lin Jin
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China.
| |
Collapse
|
4
|
Bu X, Guo H, Gao W, Zhang L, Hou J, Li B, Xia Z, Wang W. Neuroprotection of celastrol against postoperative cognitive dysfunction through dampening cGAS-STING signaling. Exp Neurol 2024; 382:114987. [PMID: 39369806 DOI: 10.1016/j.expneurol.2024.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Neuroinflammation is a central player in postoperative cognitive dysfunction (POCD), an intractable and highly confounding neurological complication with finite therapeutic options. Celastrol, a quinone methide triterpenoid, is a bioactive ingredient extracted from Tripterygium wilfordii with talented anti-inflammatory capacity. However, it is unclear whether celastrol can prevent anesthesia/surgery-evoked cognitive deficits in an inflammation-specific manner. The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) was used to determine whether celastrol possesses neuroprotection dependent on the STING pathway in vivo and in vitro. Isoflurane and laparotomy triggered cGAS-STING activation, caspase-3/GSDME-dependent pyroptosis, and enhanced Iba-1 immunoreactivity. Celastrol improved cognitive performance and decreased the levels of cGAS, 2'3'-cGAMP, STING, NF-κB phosphorylation, Iba-1, TNF-α, IL-6, and IFN-β. Downregulation of cleaved caspase-3 and N-GSDME was observed in the hippocampus of POCD mice and HT22 cells after celastrol administration, accompanied by limited secretion of pyroptosis-pertinent pro-inflammatory cytokines IL-1β and IL-18. DMXAA neutralized the favorable influences of celastrol on cognitive function, as confirmed by the activation of the STING/caspase-3/GSDME axis. These findings implicate celastrol as a therapeutic agent for POCD through anti-inflammation and anti-pyroptosis.
Collapse
Affiliation(s)
- Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Hui Guo
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, Hubei Province 430070, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Bixi Li
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, Hubei Province 430070, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
5
|
Xie SR, Liu YJ, Chen FQ, Pan Z. Berberine safeguards sepsis-triggered acute gastric damage and inhibits pyroptosis in gastric epithelial cells via suppressing the ubiquitination and degradation of Nrf2. Kaohsiung J Med Sci 2024; 40:1006-1019. [PMID: 39484787 DOI: 10.1002/kjm2.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
Berberine (BBR), a widely recognized traditional Chinese medicine, has attracted considerable attention for its promising anti-inflammatory effects. The activation of nuclear factor erythroid 2-related factor 2 (Nrf2) effectively safeguards against organ damage stemming from sepsis-induced oxidative stress and inflammatory responses. This study examined the potential of BBR in alleviating sepsis-induced acute gastric injury, with a particular focus on elucidating whether its mechanism of action involves the activation of the Nrf2 signaling pathway. Following intraperitoneal injection of BBR, mice were subjected to the cecal ligation and puncture (CLP) method to induce sepsis. In vitro experiments involved pre-treating the normal gastric epithelial cells (GES-1) with BBR, followed by treatment with lipopolysaccharide (LPS). Functional assays were then performed to assess cell proliferation and apoptosis. To validate the role of Nrf2 in pyroptosis and inflammation, siRNA targeting Nrf2 (si-Nrf2) was transfected into LPS-treated GES-1 cells. Additionally, mice were administered the Nrf2 inhibitor ML385 to confirm the protective effects of BBR in vivo. BBR displayed a dose-dependent effect in mitigating gastric tissue damage, suppressing the release of inflammatory cytokines, and reducing the expression of NLRP3, ASC, and GSDMD-N. In vitro, BBR fostered GES-1 cell proliferation, hindered apoptosis, and suppressed the levels of TNF-α, IL-18, IL-1β, NLRP3, ASC, and GSDMD-N. Further analysis revealed that knocking down Nrf2 reversed BBR's inhibitory effect on pyroptosis in LPS-treated GES-1 cells. Through binding to Keap1, BBR efficiently prevented the ubiquitination and degradation of Nrf2, ultimately promoting its nuclear translocation. In vivo experiments confirmed that ML385 reversed the protective effect of BBR on pyroptosis and inflammation. Our research reveals that BBR interacts with Keap1 to activate the Keap1/Nrf2 signaling pathway in gastric epithelial cells, thereby suppressing pyroptosis and inflammation in sepsis-induced acute gastric injury.
Collapse
Affiliation(s)
- Shu-Rui Xie
- Infectious Diseases Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan-Jun Liu
- Emergency Department, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Fen-Qiao Chen
- Emergency Department, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Zhao Pan
- Internal Medicine-Neurology, Hebei Yiling Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Shi W, Zhou Q, Lu L, Zhang Y, Zhang H, Pu Y, Yin L. Copper induced cytosolic escape of mitochondrial DNA and activation of cGAS-STING-NLRP3 pathway-dependent pyroptosis in C8-D1A cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117085. [PMID: 39321529 DOI: 10.1016/j.ecoenv.2024.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Copper, a vital mineral nutrient, possesses redox qualities that make it both beneficial and toxic to organisms. Excessive environmental copper exposure can result in neurological damage and cognitive decline in humans. Astrocytes, the predominant glial cells in the brain, are particularly vulnerable to pollutants, but the mechanism of copper-induced damage to astrocytes remains elusive. The aim of this study was to determine the role of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway in initiating NLRP3 inflammasome-induced astrocyte pyroptosis and chronic inflammation under conditions of copper overload. Our findings indicated that copper exposure elevated mitochondrial ROS (mtROS) levels, resulting in mitochondrial damage in astrocytes. This damage caused the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activated the cGAS-STING pathway. This activation resulted in interactions between STING and NLRP3 proteins, facilitating the assembly of the NLRP3 inflammasome and inducing pyroptosis. Furthermore, depletion of mtROS mitigated copper-induced mitochondrial damage in astrocytes and reduced mtDNA leakage. Pharmacological inhibition of STING or STING transfection further reversed copper-induced pyroptosis and the inflammatory response. In conclusion, this study demonstrated that the leakage of mtDNA into the cytoplasm and the subsequent activation of the cGAS-STING-NLRP3 pathway may be potential mechanisms underlying copper-induced pyroptosis in astrocytes. These findings provided new insights into the toxicity of copper.
Collapse
Affiliation(s)
- Wei Shi
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Qian Zhou
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Lu Lu
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Ying Zhang
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hu Zhang
- School of Public Health, Yangzhou University, Yangzhou 225000, China.
| | - Yuepu Pu
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Lihong Yin
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
7
|
Kumari D, Kaur S, Dandekar MP. Intricate Role of the Cyclic Guanosine Monophosphate Adenosine Monophosphate Synthase-Stimulator of Interferon Genes (cGAS-STING) Pathway in Traumatic Brain Injury-Generated Neuroinflammation and Neuronal Death. ACS Pharmacol Transl Sci 2024; 7:2936-2950. [PMID: 39416963 PMCID: PMC11475349 DOI: 10.1021/acsptsci.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
The secondary insult in the aftermath of traumatic brain injury (TBI) causes detrimental and self-perpetuating alteration in cells, resulting in aberrant function and the death of neuronal cells. The secondary insult is mainly driven by activation of the neuroinflammatory pathway. Among several classical pathways, the cGAS-STING pathway, a primary neuroinflammatory route, encompasses the cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptor. Recently, the cGAS-STING research domain has gained exponential attention. The aberrant stimulation of cGAS-STING machinery and corresponding neuroinflammation have also been reported after TBI. In addition to the critical contribution to neuroinflammation, the cGAS-STING signaling also provokes neuronal cell death through various cell death mechanisms. This review highlights the structural and molecular mechanisms of the cGAS-STING machinery associated with TBI. We also focus on the intricate relationship and framework between cGAS-STING signaling and cell death mechanisms (autophagy, apoptosis, pyroptosis, ferroptosis, and necroptosis) in the aftermath of TBI. We suggest that the targeting of cGAS-STING signaling may open new therapeutic strategies to combat neuroinflammation and neurodegeneration in TBI.
Collapse
Affiliation(s)
- Deepali Kumari
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Simranjit Kaur
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Manoj P. Dandekar
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| |
Collapse
|
8
|
Tastan B, Heneka MT. The impact of neuroinflammation on neuronal integrity. Immunol Rev 2024; 327:8-32. [PMID: 39470038 DOI: 10.1111/imr.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.
Collapse
Affiliation(s)
- Bora Tastan
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Bu X, Gong P, Zhang L, Song W, Hou J, Li Q, Wang W, Xia Z. Pharmacological inhibition of cGAS ameliorates postoperative cognitive dysfunction by suppressing caspase-3/GSDME-dependent pyroptosis. Neurochem Int 2024; 178:105788. [PMID: 38843953 DOI: 10.1016/j.neuint.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Neuroinflammation is a major driver of postoperative cognitive dysfunction (POCD). The cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) signaling is a prominent alarming device for aberrant double-stranded DNA (dsDNA) that has emerged as a key mediator of neuroinflammation in cognitive-related diseases. However, the role of the cGAS-STING pathway in the pathogenesis of POCD remains unclear. A POCD model was developed in male C57BL/6J mice by laparotomy under isoflurane (Iso) anesthesia. The cGAS inhibitor RU.521 and caspase-3 agonist Raptinal were delivered by intraperitoneal administration. BV2 cells were exposed to Iso and lipopolysaccharide (LPS) in the absence or presence of RU.521, and then cocultured with HT22 cells in the absence or presence of Raptinal. Cognitive function was assessed using the Morris water maze test and novel object recognition test. Immunofluorescence assays were used to observe the colocalization of dsDNA and cGAS. The downstream proteins and pro-inflammatory cytokines were detected using the Western blot and enzyme-linked immunosorbent assay (ELISA). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to assess the degree of cell death in the hippocampus following anesthesia/surgery treatment. Isoflurane/laparotomy and Iso + LPS significantly augmented the levels of cGAS in the hippocampus and BV2 cells, accompanied by mislocalized dsDNA accumulation in the cytoplasm. RU.521 alleviated cognitive impairment, diminished the levels of 2'3'-cGAMP, cGAS, STING, phosphorylated NF-κB p65 and NF-κB-pertinent pro-inflammatory cytokines (TNFα and IL-6), and repressed pyroptosis-associated elements containing cleaved caspase-3, N-GSDME, IL-1β and IL-18. These phenotypes could be rescued by Raptinal in vivo and in vitro. These findings suggest that pharmacological inhibition of cGAS mitigates neuroinflammatory burden of POCD by dampening caspase-3/GSDME-dependent pyroptosis, providing a potential therapeutic strategy for POCD.
Collapse
Affiliation(s)
- Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ping Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Anesthesiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wenqin Song
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
10
|
Fryer AL, Abdullah A, Mobilio F, Jobling A, Moore Z, de Veer M, Zheng G, Wong BX, Taylor JM, Crack PJ. Pharmacological inhibition of STING reduces neuroinflammation-mediated damage post-traumatic brain injury. Br J Pharmacol 2024; 181:3118-3135. [PMID: 38710660 DOI: 10.1111/bph.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) remains a major public health concern worldwide with unmet effective treatment. Stimulator of interferon genes (STING) and its downstream type-I interferon (IFN) signalling are now appreciated to be involved in TBI pathogenesis. Compelling evidence have shown that STING and type-I IFNs are key in mediating the detrimental neuroinflammatory response after TBI. Therefore, pharmacological inhibition of STING presents a viable therapeutic opportunity in combating the detrimental neuroinflammatory response after TBI. EXPERIMENTAL APPROACH This study investigated the neuroprotective effects of the small-molecule STING inhibitor n-(4-iodophenyl)-5-nitrofuran-2-carboxamide (C-176) in the controlled cortical impact mouse model of TBI in 10- to 12-week-old male mice. Thirty minutes post-controlled cortical impact surgery, a single 750-nmol dose of C-176 or saline (vehicle) was administered intravenously. Analysis was conducted 2 h and 24 h post-TBI. KEY RESULTS Mice administered C-176 had significantly smaller cortical lesion area when compared to vehicle-treated mice 24 h post-TBI. Quantitative temporal gait analysis conducted using DigiGait™ showed C-176 administration attenuated TBI-induced impairments in gait symmetry, stride frequency and forelimb stance width. C-176-treated mice displayed a significant reduction in striatal gene expression of pro-inflammatory cytokines Tnf-α, Il-1β and Cxcl10 compared to their vehicle-treated counterparts 2 h post-TBI. CONCLUSION AND IMPLICATIONS This study demonstrates the neuroprotective activity of C-176 in ameliorating acute neuroinflammation and preventing white matter neurodegeneration post-TBI. This study highlights the therapeutic potential of small-molecule inhibitors targeting STING for the treatment of trauma-induced inflammation and neuroprotective potential.
Collapse
Affiliation(s)
- Amelia L Fryer
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Amar Abdullah
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Frank Mobilio
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Andrew Jobling
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Zachery Moore
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Bruce X Wong
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Juliet M Taylor
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Peter J Crack
- Neuropharmacology Laboratory, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| |
Collapse
|
11
|
Li LG, Hu J, Han N, Chen NN, Yu TT, Ren T, Xu HZ, Peng XC, Li XY, Ma TQ, Chen H, Zhang L, Chen X, Wang MF, Li TF. Dihydroartemisinin-driven TOM70 inhibition leads to mitochondrial destabilization to induce pyroptosis against lung cancer. Phytother Res 2024; 38:3856-3876. [PMID: 38761036 DOI: 10.1002/ptr.8242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.
Collapse
Affiliation(s)
- Liu-Gen Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jun Hu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ning Han
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nan-Nan Chen
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ting-Ting Yu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pathology, Renmin Hospital of Shiyan, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tao Ren
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xing-Chun Peng
- Department of Pathology, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou, China
| | - Xian-Yu Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tian-Qi Ma
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hao Chen
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Zhang
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mei-Fang Wang
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
12
|
Ednacot EMQ, Nabhani A, Dinh DM, Morehouse BR. Pharmacological potential of cyclic nucleotide signaling in immunity. Pharmacol Ther 2024; 258:108653. [PMID: 38679204 DOI: 10.1016/j.pharmthera.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.
Collapse
Affiliation(s)
- Eirene Marie Q Ednacot
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - David M Dinh
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
13
|
Li W, Shen N, Kong L, Huang H, Wang X, Zhang Y, Wang G, Xu P, Hu W. STING mediates microglial pyroptosis via interaction with NLRP3 in cerebral ischaemic stroke. Stroke Vasc Neurol 2024; 9:153-164. [PMID: 37402504 PMCID: PMC11103158 DOI: 10.1136/svn-2023-002320] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Ischaemia-evoked neuroinflammation is a critical pathogenic event following ischaemic stroke. Gasdermin D (GSDMD)-associated pyroptosis represents a type of inflammation-associated programmed cell death, which can exacerbate neuroinflammatory responses and brain damage. Stimulator of interferon genes (STING) was recently described as a vital innate immune adaptor protein associated with neuroinflammation. Nevertheless, the regulatory effects of STING on microglial pyroptosis post-stroke have not been well elaborated. METHODS STING-knockout and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAO). STING small interfering RNA (siRNA) was transfected into BV2 cells before oxygen-glucose deprivation/reoxygenation (OGD/R). STING-overexpressing adeno-associated virus (AAV) and NOD-like receptor family pyrin domain containing 3 (NLRP3) siRNA were administered by stereotaxic injection. 2,3,5-Triphenyl tetrazolium chloride (TTC) staining, TdT-mediated dUTP nick end labeling (TUNEL) staining, Fluoro-Jade C (FJC) staining, neurobehavioural tests, immunohistochemistry, cytokine antibody array assay, transmission electron microscopy, immunoblot, Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) were carried out. Co-immunoprecipitation assays were used to investigate the interplay between STING and NLRP3. RESULTS STING expression was increased after MCAO and mainly detected on microglia. STING deletion alleviated brain infarction, neuronal damage and neurobehavioural impairment in mice subjected to MCAO. STING knockout suppressed microglial activation and the secretion of inflammatory chemokines, accompanied by mitigation of microglial pyroptosis. Specific upregulation of microglial STING by AAV-F4/80-STING aggravated brain injury and microglial pyroptosis. Mechanistically, co-immunoprecipitation showed that STING bound to NLRP3 in microglia. Supplementation of NLRP3 siRNA reversed AAV-F4/80-STING-induced deterioration of microglial pyroptosis. CONCLUSIONS The current findings indicate that STING modulates NLRP3-mediated microglial pyroptosis following MCAO. STING may serve as a therapeutic target in neuroinflammation induced by cerebral ischaemic/reperfusion (I/R) injury.
Collapse
Affiliation(s)
- Wenyu Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nan Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lingqi Kong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongmei Huang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyue Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Pengfei Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
14
|
Jia X, Ju J, Li Z, Peng X, Wang J, Gao F. Inhibition of spinal BRD4 alleviates pyroptosis and M1 microglia polarization via STING-IRF3 pathway in morphine-tolerant rats. Eur J Pharmacol 2024; 969:176428. [PMID: 38432572 DOI: 10.1016/j.ejphar.2024.176428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Morphine tolerance has been a challenging medical issue. Neuroinflammation is considered as a critical mechanism for the development of morphine tolerance. Bromodomain-containing protein 4 (BRD4), a key regulator in cell damage and inflammation, participates in the development of chronic pain. However, whether BRD4 is involved in morphine tolerance and the underlying mechanisms remain unknown. METHODS The morphine-tolerant rat model was established by intrathecal administration of morphine twice daily for 7 days. Behavior test was assessed by a tail-flick latency test. The roles of BRD4, pyroptosis, microglia polarization and related signaling pathways in morphine tolerance were elucidated by Western blot, real-time quantitative polymerase chain reaction, and immunofluorescence. RESULTS Repeated morphine administration upregulated BRD4 level, induced pyroptosis, and promoted microglia M1-polarization in spinal cord, accompanied by the release of proinflammatory cytokines, such as TNF-α and IL-1β. JQ-1, a BRD4 antagonist, alleviated the development of morphine tolerance, diminished pyroptosis and induced the switch of microglia from M1 to M2 phenotype. Mechanistically, stimulator of interferon gene (STING)- interferon regulatory factor 3 (IRF3) pathway was activated and the protective effect of JQ-1 against morphine tolerance was at least partially mediated by inhibition of STING-IRF3 pathway. CONCLUSION This study demonstrated for the first time that spinal BRD4 contributes to pyroptosis and switch of microglia polarization via STING-IRF3 signaling pathway during the development of morphine tolerance, which extend the understanding of the neuroinflammation mechanism of morphine tolerance and provide an alternative strategy for the precaution against of this medical condition.
Collapse
Affiliation(s)
- Xiaoqian Jia
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Ju
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoling Peng
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jihong Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Lin X, Li X, Li C, Wang H, Zou L, Pan J, Zhang X, He L, Rong X, Peng Y. Activation of STING signaling aggravates chronic alcohol exposure-induced cognitive impairment by increasing neuroinflammation and mitochondrial apoptosis. CNS Neurosci Ther 2024; 30:e14689. [PMID: 38516831 PMCID: PMC10958405 DOI: 10.1111/cns.14689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/18/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
AIMS Chronic alcohol exposure leads to persistent neurological disorders, which are mainly attributed to neuroinflammation and apoptosis. Stimulator of IFN genes (STING) is essential in the cytosolic DNA sensing pathway and is involved in inflammation and cellular death processes. This study was to examine the expression pattern and biological functions of STING signaling in alcohol use disorder (AUD). METHODS Cell-free DNA was extracted from human and mouse plasma. C57BL/6J mice were given alcohol by gavage for 28 days, and behavior tests were used to determine their mood and cognition. Cultured cells were treated with ethanol for 24 hours. The STING agonist DMXAA, STING inhibitor C-176, and STING-siRNA were used to intervene the STING. qPCR, western blot, and immunofluorescence staining were used to assess STING signaling, inflammation, and apoptosis. RESULTS Circulating cell-free mitochondrial DNA (mtDNA) was increased in individuals with AUD and mice chronically exposed to alcohol. Upregulation of STING signaling under alcohol exposure led to inflammatory responses in BV2 cells and mitochondrial apoptosis in PC12 cells. DMXAA exacerbated alcohol-induced cognitive impairment and increased the activation of microglia, neuroinflammation, and apoptosis in the medial prefrontal cortex (mPFC), while C-176 exerted neuroprotection. CONCLUSION Activation of STING signaling played an essential role in alcohol-induced inflammation and mitochondrial apoptosis in the mPFC. This study identifies STING as a promising therapeutic target for AUD.
Collapse
Affiliation(s)
- Xinrou Lin
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Nanhai Translational Innovation Center of Precision ImmunologySun Yat‐Sen Memorial HospitalFoshanChina
| | - Xiangpen Li
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Shenshan Medical Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityShanweiChina
| | - Chenguang Li
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Hongxuan Wang
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Lubin Zou
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Nanhai Translational Innovation Center of Precision ImmunologySun Yat‐Sen Memorial HospitalFoshanChina
| | - Jingrui Pan
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Shenshan Medical Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityShanweiChina
| | - Xiaoni Zhang
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Lei He
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoming Rong
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Ying Peng
- Department of Neurology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Nanhai Translational Innovation Center of Precision ImmunologySun Yat‐Sen Memorial HospitalFoshanChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
16
|
Yang K, Tang Z, Xing C, Yan N. STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 2024; 112:539-557. [PMID: 37944521 PMCID: PMC10922189 DOI: 10.1016/j.neuron.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Stimulator of interferon genes (STING) is an innate immune signaling protein critical to infections, autoimmunity, and cancer. STING signaling is also emerging as an exciting and integral part of many neurological diseases. Here, we discuss recent advances in STING signaling in the brain. We summarize how molecular threats activate STING signaling in the diseased brain and how STING signaling activities in glial and neuronal cells cause neuropathology. We also review human studies of STING neurobiology and consider therapeutic challenges in targeting STING to treat neurological diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
17
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
18
|
Zhang X, Huang X, Hang D, Jin J, Li S, Zhu Y, Liu H. Targeting pyroptosis with nanoparticles to alleviate neuroinflammatory for preventing secondary damage following traumatic brain injury. SCIENCE ADVANCES 2024; 10:eadj4260. [PMID: 38198543 PMCID: PMC10780956 DOI: 10.1126/sciadv.adj4260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Posttraumatic neuroinflammation is a key driver of secondary injury after traumatic brain injury (TBI). Pyroptosis, a proinflammatory form of programmed cell death, considerably activates strong neuroinflammation and amplifies the inflammatory response by releasing inflammatory contents. Therefore, treatments targeting pyroptosis may have beneficial effects on the treatment of secondary brain damage after TBI. Here, a cysteine-alanine-glutamine-lysine peptide-modified β-lactoglobulin (β-LG) nanoparticle was constructed to deliver disulfiram (DSF), C-β-LG/DSF, to inhibit pyroptosis and decrease neuroinflammation, thereby preventing TBI-induced secondary injury. In the post-TBI mice model, C-β-LG/DSF selectively targets the injured brain, increases DSF accumulation, and extends the time of the systemic circulation of DSF. C-β-LG/DSF can alleviate brain edema and inflammatory response, inhibit secondary brain injury, promote learning, and improve memory recovery in mice after trauma. Therefore, this study likely provided a potential approach for reducing the secondary spread of TBI.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Shenzhen 518055, China
- Institute of Nervous System Diseases, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai Xi Road, Xuzhou 221002, China
| | - Xuyang Huang
- Department of Intensive Care Medicine, The Second Hospital of Jiaxing, No.1518, Huancheng North Road, Jiaxing, Zhejiang 314099, China
| | - Diancheng Hang
- Institute of Nervous System Diseases, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
| | - Jiaqi Jin
- Institute of Nervous System Diseases, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
| | - Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
| | - Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai Xi Road, Xuzhou 221002, China
| | - Hongmei Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Shenzhen 518055, China
- Institute of Nervous System Diseases, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
| |
Collapse
|
19
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
20
|
Zhao K, Zhou X, Chen M, Gou L, Mei D, Gao C, Zhao S, Luo S, Wang X, Tan T, Zhang Y. Neuroprotective Effects of CXCR2 Antagonist SB332235 on Traumatic Brain Injury Through Suppressing NLRP3 Inflammasome. Neurochem Res 2024; 49:184-198. [PMID: 37702890 PMCID: PMC10776743 DOI: 10.1007/s11064-023-04021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
The inflammatory process mediated by nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain comprising 3 (NLRP3) inflammasome plays a predominant role in the neurological dysfunction following traumatic brain injury (TBI). SB332235, a highly selective antagonist of chemokine receptor 2 (CXCR2), has been demonstrated to exhibit anti-inflammatory properties and improve neurological outcomes in the central nervous system. We aimed to determine the neuroprotective effects of SB332235 in the acute phase after TBI in mice and to elucidate its underlying mechanisms. Male C57BL/6J animals were exposed to a controlled cortical impact, then received 4 doses of SB332235, with the first dose administered at 30 min after TBI, followed by additional doses at 6, 24, and 30 h. Neurological defects were assessed by the modified neurological severity score, while the motor function was evaluated using the beam balance and open field tests. Cognitive performance was evaluated using the novel object recognition test. Brain tissues were collected for pathological, Western blot, and immunohistochemical analyses. The results showed that SB332235 significantly ameliorated TBI-induced deficits, including motor and cognitive impairments. SB332235 administration suppressed expression of both CXCL1 and CXCR2 in TBI. Moreover, SB332235 substantially mitigated the augmented expression levels and activation of the NLRP3 inflammasome within the peri-contusional cortex induced by TBI. This was accompanied by the blocking of subsequent production of pro-inflammatory cytokines. Additionally, SB332235 hindered microglial activity induced by TBI. These findings confirmed the neuroprotective effects of SB332235 against TBI, and the involved mechanisms were in part due to the suppression of NLRP3 inflammasome activity. This study suggests that SB332235 may act as an anti-inflammatory agent to improve functional outcomes in brain injury when applied clinically.
Collapse
Affiliation(s)
- Ke Zhao
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Xinkui Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Mengyuan Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shuai Zhao
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Shuying Luo
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Xiaona Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| |
Collapse
|
21
|
Bai Y, Bai J, Lu P, Jing YM, Zheng WC, Wang LY, Wang JH, Wang F. Hirudin ameliorates myocardial ischemia-reperfusion injury in a rat model of hemorrhagic shock and resuscitation: roles of NLRP3-signaling pathway. Mol Cell Biochem 2024; 479:63-72. [PMID: 36988778 DOI: 10.1007/s11010-023-04717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Severe hemorrhage shock and resuscitation (HSR) has been reported to induce myocardial ischemia-reperfusion injury (MIRI), resulting in a poor prognosis. Hirudin, an effective thrombin inhibitor, can offer protection against MIRI. This study aimed to determine if hirudin administration ameliorates HSR-induced MIRI and the underlying mechanism. A rat model of HSR was established by bleeding rats to a mean arterial blood pressure of 30-35 mmHg for 45 min and then resuscitating them with all the shed blood through the left femoral vein. After HSR, 1 mg/kg of hirudin was administrated immediately. At 24 h after HSR, the cardiac injury was assessed using serum CK-MB, cTnT, hematoxylin-eosin (HE) staining, echocardiography, M1-polarized macrophages, and pyroptosis-associated factors, including cleaved caspase-1, Gasdermin D (GSDMD) N-terminal, IL-1β, and IL-18 were measured by immunofluorescence and western blot assays. Nigericin, a unique agonist, was utilized to evaluate the responsibilities of NLRP3 signaling. Under the HSR condition, rats exhibited a significant increase in myocardial injury score, an elevation of serum cTnT, CK-MB levels, an aggrandization of M1-polarized macrophages, an upregulation of pyroptosis-associated factors, including cleaved caspase-1, GSDMD N-terminal, IL-1β, and IL-18, but a significant decrease in left ventricular ejection fraction (EF%) and a reduction of left ventricular fractional shortening (FS%), while hirudin administration partially restored the changes. However, the NLRP3 agonist nigericin reversed the cardioprotective effects of hirudin. We determined the cardioprotective effects of hirudin against HSR-induced MIRI. The mechanism may involve the inhibition of NLRP3-induced pyroptosis.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jing Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Peng Lu
- Department of Cardiovascular Disease, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, China
| | - Yu-Mo Jing
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Lu-Ying Wang
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jian-Hua Wang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Feng Wang
- Department of Cardiovascular Disease, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| |
Collapse
|
22
|
Liu Y, Zhao Z, Guo J, Ma Y, Li J, Ji H, Chen Z, Zheng J. Anacardic acid improves neurological deficits in traumatic brain injury by anti-ferroptosis and anti-inflammation. Exp Neurol 2023; 370:114568. [PMID: 37820939 DOI: 10.1016/j.expneurol.2023.114568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an important cause of disability and death. TBI leads to multiple forms of nerve cell death including ferroptosis due to iron-dependent lipid peroxidation. Anacardic acid (AA) is a natural component extracted from cashew nut shells, which has been reported to have neuroprotective effects in traumatic brain injury. We investigated whether AA has an anti-ferroptosis effect in TBI. METHODS We used the Feeney free-fall impact method to construct a TBI model to investigate the effect of AA on ferroptosis caused by TBI, in which Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, served as a positive control group. We first identified the therapeutic effect of AA on TBI through modified neurological severity score (mNSS) and determined the appropriate concentration. Secondly, we investigated the effect of AA on the expression level of the key protein of ferroptosis by Western blotting and immunohistochemistry. Then the effect of AA on nerve tissue injury and nerve function improvement was verified. Finally, enzym-linked immunosorbent assay (ELISA) was used to verify that AA could reduce inflammation after TBI. RESULTS We found the intensely inhibitory effect of AA on ferroptosis, which is in parallel with the results obtained after Fer-1 treatment. In addition, AA and Fer-1 mitigated TBI-mediated tissue defects, destruction of the blood-brain barrier, and neurodegeneration. Novel object recognition (NOR), mNSS and water maze test showed that AA could significantly reduce the impairment of neural function and behavioral cognitive ability caused by TBI. Finally, we also demonstrated that AA has not only an anti-ferroptosis effect, but also an anti-inflammation effect. CONCLUSIONS AA can reduce the neurological impairment and behavioral cognitive impairment caused by TBI through the dual effect of anti-ferroptosis and anti-inflammation.
Collapse
Affiliation(s)
- Yu Liu
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223022, China; Xuzhou Medical University, Xuzhou 221000, China
| | - Zongren Zhao
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223022, China
| | - Jianqiang Guo
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223022, China; Xuzhou Medical University, Xuzhou 221000, China
| | - Yuanhao Ma
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223022, China; Xuzhou Medical University, Xuzhou 221000, China
| | - Jing Li
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223022, China
| | - Huanhuan Ji
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223022, China
| | - Zhongjun Chen
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223022, China
| | - Jinyu Zheng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223022, China.
| |
Collapse
|
23
|
Wang B, Wang Y, Qiu J, Gao S, Yu S, Sun D, Lou H. The STING inhibitor C-176 attenuates MPTP-induced neuroinflammation and neurodegeneration in mouse parkinsonian models. Int Immunopharmacol 2023; 124:110827. [PMID: 37619411 DOI: 10.1016/j.intimp.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Recent emerging evidence reveals that cGAS-STING-mediated Type I interferon (IFN) signaling axis takes part in the microglial-associated neuroinflammation. However, the potential role of pharmacological inhibition of STING on neuroinflammation and dopaminergic neurodegeneration remains unknown. In the present study, we investigated whether pharmacological inhibition of STING attenuates neuroinflammation and neurodegeneration in experimental models of Parkinson's disease. We report that therapeutic inhibition of STING with C-176 significantly inhibited the activation of downstream signaling pathway, suppressed neuroinflammation, and ameliorated MPTP-induced dopaminergic neurotoxicity and motor deficit. Furthermore, pharmacological inhibition of STING with C-176 attenuated proinflammatory response in BV2 microglial cells exposed to LPS/MPP+. More importantly, C-176 also reduced NLRP3 inflammasome activation both in vitro and in vivo. The results of our study suggest that pharmacologic inhibition of STING protects against dopaminergic neurodegeneration and neuroinflammation that may act at least in part through suppressing NLRP3 inflammasome activation. STING signaling may hold great promise for the development of new treatment strategy for PD.
Collapse
Affiliation(s)
- Baozhu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanwei Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jingru Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shixuan Gao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Deqing Sun
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Haiyan Lou
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
24
|
Yang L, Lu P, Qi X, Yang Q, Liu L, Dou T, Guan Q, Yu C. Metformin inhibits inflammatory response and endoplasmic reticulum stress to improve hypothalamic aging in obese mice. iScience 2023; 26:108082. [PMID: 37860765 PMCID: PMC10582490 DOI: 10.1016/j.isci.2023.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/20/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
The hypothalamus, as a vital brain region for endocrine and metabolism regulation, undergoes functional disruption during obesity.The anti-aging effect of metformin has come into focus. However, whether it has the potential to ameliorate hypothalamic aging and dysfunction in the obese state remains unclear. In this study, obese mice were utilized to investigate the effects of metformin on the hypothalamus of obese mice. According to the results, metformin treatment resulted in improved insulin sensitivity, reduced blood glucose and lipid levels, as well as attenuation of hypothalamic aging, demonstrated by decreased SA-β-gal staining and downregulation of senescence markers. Additionally, metformin decreased the expression of endoplasmic reticulum stress-related proteins in neurons and reduced the inflammatory response triggered by microglia activation. Further mechanistic analysis revealed that metformin inhibited the expression and activation of STING and NLRP3 in microglia. These results reveal a possible mechanism by which metformin ameliorates hypothalamic aging.
Collapse
Affiliation(s)
- Leilei Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Peng Lu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiangyu Qi
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Qian Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Luna Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Tao Dou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Qingbo Guan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Chunxiao Yu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
25
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
26
|
Shi G, Liu L, Cao Y, Ma G, Zhu Y, Xu J, Zhang X, Li T, Mi L, Jia H, Zhang Y, Liu X, Zhou Y, Li S, Yang G, Liu X, Chen F, Wang B, Deng Q, Zhang S, Zhang J. Inhibition of neutrophil extracellular trap formation ameliorates neuroinflammation and neuronal apoptosis via STING-dependent IRE1α/ASK1/JNK signaling pathway in mice with traumatic brain injury. J Neuroinflammation 2023; 20:222. [PMID: 37777772 PMCID: PMC10543875 DOI: 10.1186/s12974-023-02903-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Neuroinflammation is one of the most important pathogeneses in secondary brain injury after traumatic brain injury (TBI). Neutrophil extracellular traps (NETs) forming neutrophils were found throughout the brain tissue of TBI patients and elevated plasma NET biomarkers correlated with worse outcomes. However, the biological function and underlying mechanisms of NETs in TBI-induced neural damage are not yet fully understood. Here, we used Cl-amidine, a selective inhibitor of NETs to investigate the role of NETs in neural damage after TBI. METHODS Controlled cortical impact model was performed to establish TBI. Cl-amidine, 2'3'-cGAMP (an activator of stimulating Interferon genes (STING)), C-176 (a selective STING inhibitor), and Kira6 [a selectively phosphorylated inositol-requiring enzyme-1 alpha [IRE1α] inhibitor] were administrated to explore the mechanism by which NETs promote neuroinflammation and neuronal apoptosis after TBI. Peptidyl arginine deiminase 4 (PAD4), an essential enzyme for neutrophil extracellular trap formation, is overexpressed with adenoviruses in the cortex of mice 1 day before TBI. The short-term neurobehavior tests, magnetic resonance imaging (MRI), laser speckle contrast imaging (LSCI), Evans blue extravasation assay, Fluoro-Jade C (FJC), TUNEL, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative-PCR were performed in this study. RESULTS Neutrophils form NETs presenting in the circulation and brain at 3 days after TBI. NETs inhibitor Cl-amidine treatment improved short-term neurological functions, reduced cerebral lesion volume, reduced brain edema, and restored cerebral blood flow (CBF) after TBI. In addition, Cl-amidine exerted neuroprotective effects by attenuating BBB disruption, inhibiting immune cell infiltration, and alleviating neuronal death after TBI. Moreover, Cl-amidine treatment inhibited microglia/macrophage pro-inflammatory polarization and promoted anti-inflammatory polarization at 3 days after TBI. Mechanistically, STING ligand 2'3'-cGAMP abolished the neuroprotection of Cl-amidine via IRE1α/ASK1/JNK signaling pathway after TBI. Importantly, overexpression of PAD4 promotes neuroinflammation and neuronal death via the IRE1α/ASK1/JNK signaling pathway after TBI. However, STING inhibitor C-176 or IRE1α inhibitor Kira6 effectively abolished the neurodestructive effects of PAD4 overexpression after TBI. CONCLUSION Altogether, we are the first to demonstrate that NETs inhibition with Cl-amidine ameliorated neuroinflammation, neuronal apoptosis, and neurological deficits via STING-dependent IRE1α/ASK1/JNK signaling pathway after TBI. Thus, Cl-amidine treatment may provide a promising therapeutic approach for the early management of TBI.
Collapse
Affiliation(s)
- Guihong Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Yiyao Cao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Guangshuo Ma
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
- Department of Neurosurgery, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Yanlin Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Jianye Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Xu Zhang
- School of Medicine, Nankai University, Tianjin, 300192, China
| | - Tuo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Liang Mi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Haoran Jia
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Yanfeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Xilei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Yuan Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Shenghui Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Guili Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Xiao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Fanglian Chen
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Baolong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
27
|
Feng Z, Liao X, Peng J, Quan J, Zhang H, Huang Z, Yi B. PCSK9 causes inflammation and cGAS/STING pathway activation in diabetic nephropathy. FASEB J 2023; 37:e23127. [PMID: 37561547 DOI: 10.1096/fj.202300342rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Our previous research revealed that an increase in PCSK9 is linked to aggravated inflammation in the kidneys of mice affected by a high-fat diet and streptozotocin (HFD/STZ) or in HGPA-induced HK-2 cells. Furthermore, the cGAS/STING pathway has been reported to be involved in diabetic nephropathy (DN). Therefore, in this study, we aimed to examine the correlation between the proinflammatory effect of PCSK9 and the cGAS/STING pathway in DN. We used PCSK9 mAbs to inhibit PCSK9 in vivo and PCSK9 siRNA in vitro and measured the inflammatory phenotype in HFD/STZ-treated mice or HGPA-induced HK-2 cells, and observed decreased blood urea nitrogen, creatinine, UACR, and kidney injury in response to the PCSK9 mAb in HFD/STZ-treated mice. Moreover, IL-1 β, MCP-1, and TNF-α levels were reduced by the PCSK9 mAb in vivo and PCSK9 siRNA in vitro. We observed increased mtDNA damage and activation of the cGAS-STING signaling pathway during DN, as well as the downstream targets p-TBK1, p-NF-κB p65, and IL-1β. In a further experiment with an HGPA-induced DN model in HK-2 cells, we revealed that mtDNA damage was increased, which led to the activation of the cGAS/STING system and its downstream targets. Notably, the cGAS-STING signaling pathway was inhibited by the PCSK9 mAb in vivo and PCSK9 siRNA in vitro. In addition, inhibition of STING with C-176 in HGPA-induced HK-2 cells markedly blocked inflammation. In conclusion, we report for the first time that PCSK9 triggers mitochondrial DNA damage and activates the cGAS-STING pathway in DN, which leads to a series of inflammation cascades. PCSK9-targeted intervention can effectively reduce DN inflammation and delay its progression. Moreover, the inhibition of STING significantly abrogated the inflammation triggered by HGPA in HK-2 cells.
Collapse
Affiliation(s)
- Zhicai Feng
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xiangyu Liao
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Juan Peng
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Jingjing Quan
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Zhijun Huang
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- Furong Laboratory, Changsha, China
- Center for Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| |
Collapse
|
28
|
Chen J, Zhu T, Yu D, Yan B, Zhang Y, Jin J, Yang Z, Zhang B, Hao X, Chen Z, Yan C, Yu J. Moderate Intensity of Treadmill Exercise Rescues TBI-Induced Ferroptosis, Neurodegeneration, and Cognitive Impairments via Suppressing STING Pathway. Mol Neurobiol 2023; 60:4872-4896. [PMID: 37193866 PMCID: PMC10415513 DOI: 10.1007/s12035-023-03379-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Traumatic brain injury (TBI) is a universal leading cause of long-term neurological disability and causes a huge burden to an ever-growing population. Moderate intensity of treadmill exercise has been recognized as an efficient intervention to combat TBI-induced motor and cognitive disorders, yet the underlying mechanism is still unclear. Ferroptosis is known to be highly implicated in TBI pathophysiology, and the anti-ferroptosis effects of treadmill exercise have been reported in other neurological diseases except for TBI. In addition to cytokine induction, recent evidence has demonstrated the involvement of the stimulator of interferon genes (STING) pathway in ferroptosis. Therefore, we examined the possibility that treadmill exercise might inhibit TBI-induced ferroptosis via STING pathway. In this study, we first found that a series of ferroptosis-related characteristics, including abnormal iron homeostasis, decreased glutathione peroxidase 4 (Gpx4), and increased lipid peroxidation, were detected at 44 days post TBI, substantiating the involvement of ferroptosis at the chronic stage following TBI. Furthermore, treadmill exercise potently decreased the aforementioned ferroptosis-related changes, suggesting the anti-ferroptosis role of treadmill exercise following TBI. In addition to alleviating neurodegeneration, treadmill exercise effectively reduced anxiety, enhanced spatial memory recovery, and improved social novelty post TBI. Interestingly, STING knockdown also obtained the similar anti-ferroptosis effects after TBI. More importantly, overexpression of STING largely reversed the ferroptosis inactivation caused by treadmill exercise following TBI. To conclude, moderate-intensity treadmill exercise rescues TBI-induced ferroptosis and cognitive deficits at least in part via STING pathway, broadening our understanding of neuroprotective effects induced by treadmill exercise against TBI.
Collapse
Affiliation(s)
- Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Tong Zhu
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Dongyu Yu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Bing Yan
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Yuxiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Jungong Jin
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Zhuojin Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Bao Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Xiuli Hao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
| | - Zhennan Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Chunxia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China.
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China.
| | - Jun Yu
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
29
|
Ye J, Hu X, Wang Z, Li R, Gan L, Zhang M, Wang T. The role of mtDAMPs in the trauma-induced systemic inflammatory response syndrome. Front Immunol 2023; 14:1164187. [PMID: 37533869 PMCID: PMC10391641 DOI: 10.3389/fimmu.2023.1164187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a non-specific exaggerated defense response caused by infectious or non-infectious stressors such as trauma, burn, surgery, ischemia and reperfusion, and malignancy, which can eventually lead to an uncontrolled inflammatory response. In addition to the early mortality due to the "first hits" after trauma, the trauma-induced SIRS and multiple organ dysfunction syndrome (MODS) are the main reasons for the poor prognosis of trauma patients as "second hits". Unlike infection-induced SIRS caused by pathogen-associated molecular patterns (PAMPs), trauma-induced SIRS is mainly mediated by damage-associated molecular patterns (DAMPs) including mitochondrial DAMPs (mtDAMPs). MtDAMPs released after trauma-induced mitochondrial injury, including mitochondrial DNA (mtDNA) and mitochondrial formyl peptides (mtFPs), can activate inflammatory response through multiple inflammatory signaling pathways. This review summarizes the role and mechanism of mtDAMPs in the occurrence and development of trauma-induced SIRS.
Collapse
Affiliation(s)
- Jingjing Ye
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Xiaodan Hu
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
- School of Basic Medicine, Peking University, Beijing, China
| | - Zhiwei Wang
- Orthopedics Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Li
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Lebin Gan
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Mengwei Zhang
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Tianbing Wang
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
30
|
Wang LY, Wang XP, Lv JM, Shan YD, Jia SY, Yu ZF, Miao HT, Xin Y, Zhang DX, Zhang LM. NLRP3-GABA signaling pathway contributes to the pathogenesis of impulsive-like behaviors and cognitive deficits in aged mice. J Neuroinflammation 2023; 20:162. [PMID: 37434240 DOI: 10.1186/s12974-023-02845-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND), such as delirium and cognitive impairment, are commonly encountered complications in aged patients. The inhibitory neurotransmitter γ-aminobutyric acid (GABA) is aberrantly synthesized from reactive astrocytes following inflammatory stimulation and is implicated in the pathophysiology of neurodegenerative diseases. Additionally, the activation of NOD-like receptor protein 3 (NLRP3) inflammasome is involved in PND. Herein, we aimed to investigate whether the NLRP3-GABA signaling pathway contributes to the pathogenesis of aging mice's PND. METHODS 24-month-old C57BL/6 and astrocyte-specific NLRP3 knockout male mice were used to establish a PND model via tibial fracture surgery. The monoamine oxidase-B (MAOB) inhibitor selegiline (1 mg/kg) was intraperitoneally administered once a day for 7 days after the surgery. PND, including impulsive-like behaviors and cognitive impairment, was evaluated by open field test, elevated plus maze, and fear conditioning. Thereafter, pathological changes of neurodegeneration were explored by western blot and immunofluorescence assays. RESULTS Selegiline administration significantly ameliorated TF-induced impulsive-like behaviors and reduced excessive GABA production in reactive hippocampal astrocytes. Moreover, astrocyte-specific NLRP3 knockout mice reversed TF-induced impulsive-like and cognitive impairment behaviors, decreased GABA levels in reactive astrocytes, ameliorated NLRP3-associated inflammatory responses during the early stage, and restored neuronal degeneration in the hippocampus. CONCLUSIONS Our findings suggest that anesthesia and surgical procedures trigger neuroinflammation and cognitive deficits, which may be due to NLRP3-GABA activation in the hippocampus of aged mice.
Collapse
Affiliation(s)
- Lu-Ying Wang
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jin-Meng Lv
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Yu-Dong Shan
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Shi-Yan Jia
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Zhi-Fang Yu
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Hui-Tao Miao
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| |
Collapse
|
31
|
Liu JZ, Zhang LM, Zhang DX, Song RX, Lv JM, Wang LY, Jia SY, Shan YD, Shao JJ, Zhang W. NLRP3 in the GABAergic neuron induces cognitive impairments in a mouse model of hemorrhage shock and resuscitation. J Psychiatr Res 2023; 159:213-223. [PMID: 36739849 DOI: 10.1016/j.jpsychires.2023.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/28/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Affiliation(s)
- Ji-Zhen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Jin-Meng Lv
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Lu-Ying Wang
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Yu-Dong Shan
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Jing-Jing Shao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
32
|
Cao Y, Shi M, Liu L, Zuo Y, Jia H, Min X, Liu X, Chen Z, Zhou Y, Li S, Yang G, Liu X, Deng Q, Chen F, Chen X, Zhang S, Zhang J. Inhibition of neutrophil extracellular trap formation attenuates NLRP1-dependent neuronal pyroptosis via STING/IRE1α pathway after traumatic brain injury in mice. Front Immunol 2023; 14:1125759. [PMID: 37143681 PMCID: PMC10152368 DOI: 10.3389/fimmu.2023.1125759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Increased neutrophil extracellular trap (NET) formation has been reported to be associated with cerebrovascular dysfunction and neurological deficits in traumatic brain injury (TBI). However, the biological function and underlying mechanisms of NETs in TBI-induced neuronal cell death are not yet fully understood. Methods First, brain tissue and peripheral blood samples of TBI patients were collected, and NETs infiltration in TBI patients was detected by immunofluorescence staining and Western blot. Then, a controlled cortical impact device was used to model brain trauma in mice, and Anti-Ly6G, DNase, and CL-amidine were given to reduce the formation of neutrophilic or NETs in TBI mice to evaluate neuronal death and neurological function. Finally, the pathway changes of neuronal pyroptosis induced by NETs after TBI were investigated by administration of peptidylarginine deiminase 4 (a key enzyme of NET formation) adenovirus and inositol-requiring enzyme-1 alpha (IRE1α) inhibitors in TBI mice. Results We detected that both peripheral circulating biomarkers of NETs and local NETs infiltration in the brain tissue were significantly increased and had positive correlations with worse intracranial pressure (ICP) and neurological dysfunction in TBI patients. Furthermore, the depletion of neutrophils effectively reduced the formation of NET in mice subjected to TBI. we found that degradation of NETs or inhibition of NET formation significantly inhibited nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 1 (NLRP1) inflammasome-mediated neuronal pyroptosis after TBI, whereas these inhibitory effects were abolished by cyclic GMP-AMP (cGAMP), an activator of stimulating Interferon genes (STING). Moreover, overexpression of PAD4 in the cortex by adenoviruses could aggravate NLRP1-mediated neuronal pyroptosis and neurological deficits after TBI, whereas these pro-pyroptotic effects were rescued in mice also receiving STING antagonists. Finally, IRE1α activation was significantly upregulated after TBI, and NET formation or STING activation was found to promote this process. Notably, IRE1α inhibitor administration significantly abrogated NETs-induced NLRP1 inflammasome-mediated neuronal pyroptosis in TBI mice. Discussion Our findings indicated that NETs could contribute to TBI-induced neurological deficits and neuronal death by promoting NLRP1-mediated neuronal pyroptosis. Suppression of the STING/ IRE1α signaling pathway can ameliorate NETs-induced neuronal pyroptotic death after TBI.
Collapse
Affiliation(s)
- Yiyao Cao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Yan Zuo
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoran Jia
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Xiaobin Min
- Baodi Clinical College, Tianjin Medical University, Tianjin, China
| | - Xilei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Yuan Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Shenghui Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Guili Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Xiao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Fanglian Chen
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
- *Correspondence: Jianning Zhang, ; Xin Chen, ; Shu Zhang,
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
- *Correspondence: Jianning Zhang, ; Xin Chen, ; Shu Zhang,
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
- *Correspondence: Jianning Zhang, ; Xin Chen, ; Shu Zhang,
| |
Collapse
|