1
|
Richardson RS, Kryszak LA, Vendruscolo JCM, Koob GF, Vendruscolo LF, Leggio L. GHSR blockade, but not reduction of peripherally circulating ghrelin via β 1-adrenergic receptor antagonism, decreases binge-like alcohol drinking in mice. Mol Psychiatry 2025; 30:1047-1056. [PMID: 39232198 DOI: 10.1038/s41380-024-02713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Alcohol use disorder (AUD) and binge drinking are highly prevalent public health issues. The stomach-derived peptide ghrelin, and its receptor, the growth hormone secretagogue receptor (GHSR), both of which are expressed in the brain and periphery, are implicated in alcohol-related outcomes. We previously found that systemic and central administration of GHSR antagonists reduced binge-like alcohol drinking, whereas a ghrelin vaccine did not. Thus, we hypothesized that central GHSR drives binge-like alcohol drinking independently of peripheral ghrelin. To investigate this hypothesis, we antagonized β1-adrenergic receptors (β1ARs), which are required for peripheral ghrelin release, and combined them with GHSR blockers. We found that both systemic β1AR antagonism with atenolol (peripherally restricted) and metoprolol (brain permeable) robustly decreased plasma ghrelin levels. Also, ICV administration of atenolol had no effect on peripheral endogenous ghrelin levels. However, only metoprolol, but not atenolol, decreased binge-like alcohol drinking. The β1AR antagonism also did not prevent the effects of the GHSR blockers JMV2959 and PF-5190457 in decreasing binge-like alcohol drinking. These results suggest that the GHSR rather than peripheral endogenous ghrelin is involved in binge-like alcohol drinking. Thus, GHSRs and β1ARs represent possible targets for therapeutic intervention for AUD, including the potential combination of drugs that target these two systems.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lindsay A Kryszak
- National Institute on Drug Abuse Intramural Research Program Translational Analytical Core, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA.
- National Institute on Drug Abuse Intramural Research Program Translational Analytical Core, National Institutes of Health, Baltimore, MD, USA.
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
2
|
Perelló M. Critical Insights Into LEAP2 Biology and Physiological Functions: Potential Roles Beyond Ghrelin Antagonism. Endocrinology 2025; 166:bqaf011. [PMID: 39823403 DOI: 10.1210/endocr/bqaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) has recently emerged as a novel hormone that reduces food intake and glycemia by acting through the growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor. This discovery has led to a fundamental reconceptualization of GHSR's functional dynamics, now understood to be under a dual and opposing regulation. LEAP2 exhibits several distinctive features. LEAP2 is released by hepatocytes and enterocytes, 2 cell types that lack classical regulatory secretory mechanisms and may respond differently to nutrient signals. LEAP2 is also found in higher concentrations in plasma than ghrelin, even under energy deficit conditions, and modulates GHSR by inhibiting both ghrelin-dependent and ghrelin-independent activities. Given these characteristics, LEAP2 appears to play a major role in regulating GHSR activity in vivo, extending beyond simple ghrelin antagonism and being crucial for the long-term regulation of energy balance. A deeper understanding of how LEAP2 functions may clarify the functional implications of GHSR in different physiological contexts and unlock new therapeutic strategies for treating obesity, diabetes, and other metabolic disorders.
Collapse
Affiliation(s)
- Mario Perelló
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE) (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Buenos Aires 1900, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Zhang M, Yang L, Jia J, Xu F, Gao S, Han F, Deng M, Wang J, Li V, Yu M, Sun Y, Yuan H, Zhou Y, Li N. Increased GHS-R1a expression in the hippocampus impairs memory encoding and contributes to AD-associated memory deficits. Commun Biol 2024; 7:1334. [PMID: 39415032 PMCID: PMC11484987 DOI: 10.1038/s42003-024-06914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024] Open
Abstract
Growth hormone secretagogue receptor 1a (GHS-R1a), also known as the ghrelin receptor, is an important nutrient sensor and metabolic regulator in both humans and rodents. Increased GHS-R1a expression is observed in the hippocampus of both Alzheimer's disease (AD) patients and AD model mice. However, the causal relationship between GHS-R1a elevation in the hippocampus and AD memory deficits remains uncertain. Here, we find that increasing GHS-R1a expression in dCA1 pyramidal neurons impairs hippocampus-dependent memory formation, which is abolished by local administration of the endogenous antagonist LEAP2. GHS-R1a elevation in dCA1 pyramidal neurons suppresses excitability and blocks memory allocation in these neurons. Chemogenetic activation of those high GHS-R1a neurons during training rescues GHS-R1a overexpression-induced memory impairment. Moreover, we demonstrate that increasing GHS-R1a expression in dCA1 pyramidal neurons hampers these neurons' ability to encode spatial memory and reduces engram size in the dCA1 region. Finally, we show that GHS-R1a deletion mitigates spatial memory deficits in APP/PS1 mice with increased GHS-R1a expression in the hippocampus. Our findings reveal a negative, causal relationship between hippocampal GHS-R1a expression and memory encoding, and suggest that blocking the abnormal increase in GHS-R1a activity/expression may be a promising approach to improve memory and treat cognitive decline in AD.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274000, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jiajia Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fenghua Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shanshan Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fubing Han
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Mingru Deng
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China
| | - Jiwei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Vincent Li
- Beverly Hills High School, Beverly Hills, CA, 90212, USA
| | - Ming Yu
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China.
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Nan Li
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China.
| |
Collapse
|
4
|
Gomez IM, Uriarte M, Fernandez G, Barrile F, Castrogiovanni D, Cantel S, Fehrentz JA, De Francesco PN, Perello M. Hypothalamic tanycytes internalize ghrelin from the cerebrospinal fluid: Molecular mechanisms and functional implications. Mol Metab 2024; 90:102046. [PMID: 39401613 PMCID: PMC11532763 DOI: 10.1016/j.molmet.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE The peptide hormone ghrelin exerts potent effects in the brain, where its receptor is highly expressed. Here, we investigated the role of hypothalamic tanycytes in transporting ghrelin across the blood-cerebrospinal fluid (CSF) interface. METHODS We investigated the internalization and transport of fluorescent ghrelin (Fr-ghrelin) in primary cultures of rat hypothalamic tanycytes, mouse hypothalamic explants, and mice. We also tested the impact of inhibiting clathrin-mediated endocytosis of ghrelin in the brain ventricular system on the orexigenic and locomotor effects of the hormone. RESULTS In vitro, we found that Fr-ghrelin is selectively and rapidly internalized at the soma of tanycytes, via a GHSR-independent and clathrin-dependent mechanism, and then transported to the endfoot. In hypothalamic explants, we also found that Fr-ghrelin is internalized at the apical pole of tanycytes. In mice, Fr-ghrelin present in the CSF was rapidly internalized by hypothalamic β-type tanycytes in a clathrin-dependent manner, and pharmacological inhibition of clathrin-mediated endocytosis in the brain ventricular system prolonged the ghrelin-induced locomotor effects. CONCLUSIONS We propose that tanycyte-mediated transport of ghrelin is functionally relevant, as it may contribute to reduce the concentration of this peptide hormone in the CSF and consequently shortens the duration of its central effects.
Collapse
Affiliation(s)
- Ivana M Gomez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Maia Uriarte
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Daniel Castrogiovanni
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron-UMR5247, Pôle Chimie Balard Recherche, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron-UMR5247, Pôle Chimie Balard Recherche, Montpellier, France
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina.
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
5
|
Xiao X, Tang T, Bi M, Liu J, Liu M, Jiao Q, Chen X, Yan C, Du X, Jiang H. GHSR deficiency exacerbates Parkinson's disease pathology by impairing autophagy. Redox Biol 2024; 76:103322. [PMID: 39180981 PMCID: PMC11388265 DOI: 10.1016/j.redox.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
In Parkinson's disease (PD), exogenous ghrelin protects dopaminergic neurons through its receptor, growth hormone secretagogue receptor (GHSR). However, in contrast to the strikingly low levels of ghrelin, GHSR is highly expressed in the substantia nigra (SN). What role does GHSR play in dopaminergic neurons is unknown. In this study, using GHSR knockout mice (Ghsr-/- mice) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model, we found that GHSR deletion aggravated dopaminergic neurons degeneration, and the expression and activity of GHSR were significantly reduced in PD. Furthermore, we explored the potential mechanism that GHSR deficiency aggregated PD-related neurodegeneration. We showed that DEPTOR, a subunit of mTORC1, was overexpressed in Ghsr-/- mice, positively regulating autophagy and enhancing autophagy initiation. The expression of lysosomal markers was abnormal, implying lysosomal dysfunction. As a result, the damaged mitochondria could not be effectively eliminated, which ultimately exacerbated the injury of nigral dopaminergic neurons. In particular, we demonstrated that DEPTOR could be transcriptionally regulated by KLF4. Specific knockdown of KLF4 in dopaminergic neurons effectively alleviated neurodegeneration in Ghsr-/- mice. In summary, our results suggested that endogenous GHSR deletion-compromised autophagy by impairing lysosomal function, is a key contributor to PD, which provided ideas for therapeutic approaches involving the manipulation of GHSR.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Tingting Tang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jing Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mengru Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
6
|
Liu J, Li N, Wei C, Han F, Deng M, Ma J, Zou X, Zhou Y, Yang R, Yuan H. GHS-R1a deficiency protects against lipopolysaccharide-induced spatial memory impairment in mice. Biochem Biophys Res Commun 2024; 727:150270. [PMID: 38917617 DOI: 10.1016/j.bbrc.2024.150270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Neuroinflammation has been implicated in cognitive deficits of neurological and neurodegenerative diseases. There is abundant evidence that the application of ghrelin, an orexigenic hormone regulating appetite and energy balance, abrogates neuroinflammation and rescues associated memory impairment. However, the underlying mechanism is uncertain. In this study, we find that both intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) administration of lipopolysaccharide (LPS) impairs spatial memory in mice. LPS treatment causes neuroinflammation and microglial activation in the hippocampus. Ghsr1a deletion suppresses LPS-induced microglial activation and neuroinflammation, and rescued LPS-induced memory impairment. Our findings thus suggest that GHS-R1a signaling may promote microglial immunoactivation and contribute to LPS-induced neuroinflammation. GHS-R1a may be a new therapeutic target for cognitive dysfunction associated with inflammatory conditions.
Collapse
Affiliation(s)
- Junru Liu
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao, Shandong 266042, China; Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Na Li
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China; Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, 266555, China
| | - Chuang Wei
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fubing Han
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China; Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Mingru Deng
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jialin Ma
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xueying Zou
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yu Zhou
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China; Affiliated Qingdao Third People's Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, 266021, China.
| | - Rong Yang
- Affiliated Qingdao Third People's Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, 266021, China.
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao, Shandong 266042, China; Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China.
| |
Collapse
|
7
|
Zhang Z, Su D, Lai M, Song Y, Li H, Yang M, Zhu G, Liu H, Ai Z. New antidepressant mechanism of Yueju Pill: Increasing ghrelin level by inhibiting gastric mTOR/S6K signaling pathway and sensitizing hippocampal GHS-R. Heliyon 2024; 10:e37038. [PMID: 39296021 PMCID: PMC11407933 DOI: 10.1016/j.heliyon.2024.e37038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background and aim Yueju Pill (YJ) not only has good antidepressant effect but also can effectively treat digestive system diseases. However,it remains unclear whether the mechanism of antidepressant action of YJ is related to the peripheral digestive system. The purpose of this study was to elucidate the antidepressant mechanism of YJ on ghrelin level based on gastric mTOR/S6K signal pathway and sensitized hippocampal Ghrelin/GHS-R system in CUMS mice. Experimental procedure The depression model was induced by chronic unpredictable mild stress (CUMS) and social isolation. The antidepressant effect of YJ was observed by behavioral experiment and hemodynamic experiments. Ghrelin levels in in hippocampus and blood were measured by Elisa kit, and the mRNA of ghrelin in mice stomach was measured by Real-time Quantitative PCR (RT-qPCR). The activation level of gastric mTOR/S6K signal pathway was detected by Western Blot (WB). Rapamycin (Rapa) and L-Leucine (L-Leu) were used to verify the effects of YJ on the synthesis and release of ghrelin. The activity of GHS-R in hippocampus was observed by immunofluorescence. Hippocampal neuronal damage was evaluated by HE staining and Nissl staining. The level of central neurotransmitter was measured by liquid chromatograph mass spectrometer (LC-MS). Results and conclusion YJ ameliorates CUMS-induced depressive-like behavior by inhibiting the gastric mTOR/S6K signaling pathway and increasing GHR expression in the mouse stomach. However, these effects of YJ could be resisted by L-Leu (a mTOR receptor agonist). Further studies have shown that YJ can sensitize the Ghrelin/GHS-R system in the hippocampus, with significant neuroprotective effects, and is also involved in regulating the levels of key neurotransmitters (5-hydroxytryptamine, Dopamine and γ-aminobutyric acid) in depressive-like states.
Collapse
Affiliation(s)
- Zhentao Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Meixizi Lai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Huizhen Li
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Ming Yang
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Hong Liu
- Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| |
Collapse
|
8
|
Andreoli MF, Gentreau M, Rukh G, Perello M, Schiöth HB. Genetic variants of LEAP2 are associated with anthropometric traits and circulating insulin-like growth factor-1 concentration: A UK Biobank study. Diabetes Obes Metab 2024; 26:3565-3575. [PMID: 38888057 DOI: 10.1111/dom.15695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
AIM To test the hypothesis that liver-expressed antimicrobial peptide 2 (LEAP2) genetic variants might influence the susceptibility to human obesity. METHODS Using data from the UK Biobank, we identified independent LEAP2 gene single nucleotide polymorphisms (SNPs) and examined their associations with obesity traits and serum insulin-like growth factor-1 (IGF-1) concentration. These associations were evaluated for both individual SNPs and after combining them into a genetic risk score (GRSLEAP2) using linear and logistic regression models. Sex-stratified analyses were also conducted. RESULTS Five SNPs showed positive associations with obesity-related traits. rs57880964 was associated with body mass index (BMI) and waist-to-hip ratio adjusted for BMI (WHRadjBMI), in the total population and among women. Four independent SNPs were positively associated with higher serum IGF-1 concentrations in both men and women. GRSLEAP2 was associated with BMI and WHRadjBMI only in women and with serum IGF-1 concentration in both sexes. CONCLUSIONS These findings reveal sex-specific associations between key LEAP2 gene variants and several obesity traits, while also indicating a strong independent association of LEAP2 variants with serum IGF-1 concentration.
Collapse
Affiliation(s)
- María F Andreoli
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP). HIAEP Sor María Ludovica de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Mélissa Gentreau
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mario Perello
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, La Plata, Argentina
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Ma Y, Yan Q, Wang P, Guo W, Yu L. Therapeutic potential of ghrelin/GOAT/GHSR system in gastrointestinal disorders. Front Nutr 2024; 11:1422431. [PMID: 39246401 PMCID: PMC11380557 DOI: 10.3389/fnut.2024.1422431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Ghrelin, a peptide primarily secreted in the stomach, acts via the growth hormone secretagogue receptor (GHSR). It regulates several physiological processes, such as feeding behavior, energy homeostasis, glucose and lipid metabolism, cardiovascular function, bone formation, stress response, and learning. GHSR exhibits significant expression within the central nervous system. However, numerous murine studies indicate that ghrelin is limited in its ability to enter the brain from the bloodstream and is primarily confined to specific regions, such as arcuate nucleus (ARC) and median eminence (ME). Nevertheless, the central ghrelin system plays an essential role in regulating feeding behavior. Furthermore, the role of vagal afferent fibers in regulating the functions of ghrelin remains a major topic of discussion among researchers. In recent times, numerous studies have elucidated the substantial therapeutic potential of ghrelin in most gastrointestinal (GI) diseases. This has led to the development of numerous pharmaceutical agents that target the ghrelin system, some of which are currently under examination in clinical trials. Furthermore, ghrelin is speculated to serve as a promising biomarker for GI tumors, which indicates its potential use in tumor grade and stage evaluation. This review presents a summary of recent findings in research conducted on both animals and humans, highlighting the therapeutic properties of ghrelin system in GI disorders.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qihui Yan
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
10
|
Chang L, He Y, Tian T, Li B. Nucleus accumbens ghrelin signaling controls anxiety-like behavioral response to acute stress. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:18. [PMID: 38965529 PMCID: PMC11225390 DOI: 10.1186/s12993-024-00244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Anxiety disorders are one of the most common mental disorders. Ghrelin is a critical orexigenic brain-gut peptide that regulates food intake and metabolism. Recently, the ghrelin system has attracted more attention for its crucial roles in psychiatric disorders, including depression and anxiety. However, the underlying neural mechanisms involved have not been fully investigated. METHODS In the present study, the effect and underlying mechanism of ghrelin signaling in the nucleus accumbens (NAc) core on anxiety-like behaviors were examined in normal and acute stress rats, by using immunofluorescence, qRT-PCR, neuropharmacology, molecular manipulation and behavioral tests. RESULTS We reported that injection of ghrelin into the NAc core caused significant anxiolytic effects. Ghrelin receptor growth hormone secretagogue receptor (GHSR) is highly localized and expressed in the NAc core neurons. Antagonism of GHSR blocked the ghrelin-induced anxiolytic effects. Moreover, molecular knockdown of GHSR induced anxiogenic effects. Furthermore, injection of ghrelin or overexpression of GHSR in the NAc core reduced acute restraint stress-induced anxiogenic effects. CONCLUSIONS This study demonstrates that ghrelin and its receptor GHSR in the NAc core are actively involved in modulating anxiety induced by acute stress, and raises an opportunity to treat anxiety disorders by targeting ghrelin signaling system.
Collapse
Affiliation(s)
- Leilei Chang
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yecheng He
- Department of Preclinical Medicine, Suzhou Vocational Health College, Suzhou, 215009, China
| | - Tian Tian
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
11
|
Cornejo MP, Fernandez G, Cabral A, Barrile F, Heredia F, García Romero G, Zubimendi Sampieri JP, Quelas JI, Cantel S, Fehrentz JA, Alonso A, Pla R, Ferran JL, Andreoli MF, De Francesco PN, Perelló M. GHSR in a Subset of GABA Neurons Controls Food Deprivation-Induced Hyperphagia in Male Mice. Endocrinology 2024; 165:bqae061. [PMID: 38815068 DOI: 10.1210/endocr/bqae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The growth hormone secretagogue receptor (GHSR), primarily known as the receptor for the hunger hormone ghrelin, potently controls food intake, yet the specific Ghsr-expressing cells mediating the orexigenic effects of this receptor remain incompletely characterized. Since Ghsr is expressed in gamma-aminobutyric acid (GABA)-producing neurons, we sought to investigate whether the selective expression of Ghsr in a subset of GABA neurons is sufficient to mediate GHSR's effects on feeding. First, we crossed mice that express a tamoxifen-dependent Cre recombinase in the subset of GABA neurons that express glutamic acid decarboxylase 2 (Gad2) enzyme (Gad2-CreER mice) with reporter mice, and found that ghrelin mainly targets a subset of Gad2-expressing neurons located in the hypothalamic arcuate nucleus (ARH) and that is predominantly segregated from Agouti-related protein (AgRP)-expressing neurons. Analysis of various single-cell RNA-sequencing datasets further corroborated that the primary subset of cells coexpressing Gad2 and Ghsr in the mouse brain are non-AgRP ARH neurons. Next, we crossed Gad2-CreER mice with reactivable GHSR-deficient mice to generate mice expressing Ghsr only in Gad2-expressing neurons (Gad2-GHSR mice). We found that ghrelin treatment induced the expression of the marker of transcriptional activation c-Fos in the ARH of Gad2-GHSR mice, yet failed to induce food intake. In contrast, food deprivation-induced refeeding was higher in Gad2-GHSR mice than in GHSR-deficient mice and similar to wild-type mice, suggesting that ghrelin-independent roles of GHSR in a subset of GABA neurons is sufficient for eliciting full compensatory hyperphagia in mice.
Collapse
Affiliation(s)
- María Paula Cornejo
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Gimena Fernandez
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Agustina Cabral
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Franco Barrile
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Florencia Heredia
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Guadalupe García Romero
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | | | | | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia 30100, Spain
- Institute of Biomedical Research of Murcia-IMIB, Virgen de la Arrixaca University Hospital, Murcia 30100, Spain
| | - Ramon Pla
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia 30100, Spain
- Institute of Biomedical Research of Murcia-IMIB, Virgen de la Arrixaca University Hospital, Murcia 30100, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia 30100, Spain
- Institute of Biomedical Research of Murcia-IMIB, Virgen de la Arrixaca University Hospital, Murcia 30100, Spain
| | - María Florencia Andreoli
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP Sor María Ludovica de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala 751 24, Sweden
| | - Pablo Nicolas De Francesco
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
| | - Mario Perelló
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata 1900, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
12
|
Pietrzak M, Yngve A, Hamilton JP, Asratian A, Gauffin E, Löfberg A, Gustavson S, Persson E, Capusan AJ, Leggio L, Perini I, Tinghög G, Heilig M, Boehme R. Ghrelin decreases sensitivity to negative feedback and increases prediction-error related caudate activity in humans, a randomized controlled trial. Neuropsychopharmacology 2024; 49:1042-1049. [PMID: 38409282 PMCID: PMC11039644 DOI: 10.1038/s41386-024-01821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/28/2024]
Abstract
The stomach-derived hormone ghrelin plays not only a role in feeding, starvation, and survival, but it has been suggested to also be involved in the stress response, in neuropsychiatric conditions, and in alcohol and drug use disorders. Mechanisms related to reward processing might mediate ghrelin's broader effects on complex behaviors, as indicated by animal studies and mostly correlative human studies. Here, using a within-subject double-blind placebo-controlled design with intravenous ghrelin infusion in healthy volunteers (n = 30), we tested whether ghrelin alters sensitivity to reward and punishment in a reward learning task. Parameters were derived from a computational model of participants' task behavior. The reversal learning task with monetary rewards was performed during functional brain imaging to investigate ghrelin effects on brain signals related to reward prediction errors. Compared to placebo, ghrelin decreased punishment sensitivity (t = -2.448, p = 0.021), while reward sensitivity was unaltered (t = 0.8, p = 0.43). We furthermore found increased prediction-error related activity in the dorsal striatum during ghrelin administration (region of interest analysis: t-values ≥ 4.21, p-values ≤ 0.044). Our results support a role for ghrelin in reward processing that extends beyond food-related rewards. Reduced sensitivity to negative outcomes and increased processing of prediction errors may be beneficial for food foraging when hungry but could also relate to increased risk taking and impulsivity in the broader context of addictive behaviors.
Collapse
Affiliation(s)
- Michal Pietrzak
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Adam Yngve
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - J Paul Hamilton
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
- Department of Medical and Biological Psychology, University of Bergen, Bergen, 5007, Norway
| | - Anna Asratian
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Emelie Gauffin
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Andreas Löfberg
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Sarah Gustavson
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Emil Persson
- Division of Economics, Department of Management and Engineering, Linköping University, Linköping, 58183, Sweden
| | - Andrea J Capusan
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Gustav Tinghög
- Division of Economics, Department of Management and Engineering, Linköping University, Linköping, 58183, Sweden
- National Center for Health Care Priority Setting, Department of Health Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, 58183, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden
| | - Rebecca Boehme
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 58183, Sweden.
- Center for Medical Imaging and Visualization, Linköping University, Linköping, 58183, Sweden.
| |
Collapse
|
13
|
Chang L, Niu F, Li B. Ghrelin/GHSR signaling in the lateral septum ameliorates chronic stress-induced depressive-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110953. [PMID: 38278286 DOI: 10.1016/j.pnpbp.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ghrelin is a gastrointestinal hormone on feeding and metabolism regulation, and acts through its receptor-growth hormone secretagogue receptor (GHSR), which is widely distributed throughout the central nervous system. Recent studies have suggested that ghrelin plays an important role in the regulation of depression, but the underlying mechanisms remain uncertain. Lateral septum (LS) is a critical brain region in modulating depression. Therefore, we investigated the role of ghrelin/GHSR signaling in the LS on the depressive-like behaviors of mice under conditions of chronic stress by using behavioral tests, neuropharmacology, and molecular biology techniques. We found that infusion of ghrelin into the LS produced antidepressant-like responses in mice. Activation of LS GABAergic neurons was involved in the antidepressant effect of ghrelin. Importantly, GHSR was highly expressed and distributed in the LS neurons. Blockade of GHSR in the LS reversed the ghrelin-induced antidepressant-like effects. Molecular knockdown of GHSR in the LS induced depressive-like symptoms in mice. Furthermore, administration of ghrelin into the LS alleviated depressive-like behaviors induced by chronic social defeat stress (CSDS). Consistent with the neuropharmacological results, overexpression of GHSR in the LS reversed CSDS-induced depressive-like behaviors. Our findings clarify a key role for ghrelin/GHSR signaling in the regulation of chronic stress-induced depressive-like behaviors, which could provide new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Leilei Chang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fengnan Niu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Andreoli MF, Fittipaldi AS, Castrogiovanni D, De Francesco PN, Valdivia S, Heredia F, Ribet-Travers C, Mendez I, Fasano MV, Schioth HB, Doi SA, Habib AM, Perello M. Pre-prandial plasma liver-expressed antimicrobial peptide 2 (LEAP2) concentration in humans is inversely associated with hunger sensation in a ghrelin independent manner. Eur J Nutr 2024; 63:751-762. [PMID: 38157050 DOI: 10.1007/s00394-023-03304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE The liver-expressed antimicrobial peptide 2 (LEAP2) is a newly recognized peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) blunting the effects of ghrelin and displaying ghrelin-independent actions. Since the implications of LEAP2 are beginning to be elucidated, we investigated if plasma LEAP2 concentration varies with feeding status or sex and whether it is associated with glucose metabolism and appetite sensations. METHODS We performed a single test meal study, in which plasma concentrations of LEAP2, ghrelin, insulin and glucose as well as visual analogue scales for hunger, desire to eat, prospective food consumption, fullness were assessed before and 60 min after breakfast in 44 participants (n = 21 females) with normal weight (NW) or overweight/obesity (OW/OB). RESULTS Pre-prandial plasma LEAP2 concentration was ~ 1.6-fold higher whereas ghrelin was ~ 2.0-fold lower in individuals with OW/OB (p < 0.001) independently of sex. After adjusting for body mass index (BMI) and sex, pre-prandial plasma LEAP2 concentration displayed a direct relationship with BMI (β: 0.09; 95%CI: 0.05, 0.13; p < 0.001), fat mass (β: 0.05; 95%CI: 0.01, 0.09; p = 0.010) and glycemia (β: 0.24; 95%CI: 0.05, 0.43; p = 0.021), whereas plasma ghrelin concentration displayed an inverse relationship with BMI and fat mass but not with glycemia. Postprandial plasma LEAP2 concentration increased ~ 58% in females with OW/OB (p = 0.045) but not in females with NW or in males. Pre-prandial plasma LEAP2 concentration displayed an inverse relationship with hunger score (β: - 11.16; 95% CI: - 18.52, - 3.79; p = 0.004), in a BMI-, sex- and ghrelin-independent manner. CONCLUSIONS LEAP2 emerges as a key hormone implicated in the regulation of metabolism and appetite in humans. TRIAL REGISTRATION The study was retrospectively registered in clinicaltrials.gov (April 2023). CLINICALTRIALS gov Identifier: NCT05815641.
Collapse
Affiliation(s)
- María F Andreoli
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP Sor María Ludovica de la Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Calle 63 # 1069, La Plata, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| | - Antonela S Fittipaldi
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina
| | - Daniel Castrogiovanni
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina
| | - Spring Valdivia
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina
| | - Florencia Heredia
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina
| | | | - Ignacio Mendez
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP Sor María Ludovica de la Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Calle 63 # 1069, La Plata, Buenos Aires, Argentina
| | - María V Fasano
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), HIAEP Sor María Ludovica de la Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Calle 63 # 1069, La Plata, Buenos Aires, Argentina
- Centro de Matemática la Plata, Facultad de Ciencias Exactas, UNLP/CIC-PBA, La Plata, Argentina
| | - Helgi B Schioth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Suhail A Doi
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE). Universidad Nacional la Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y CIC-PBA, Calle 526 S/N Entre 10 y 11, La Plata, Buenos Aires, Argentina.
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
15
|
Maric I, López-Ferreras L, Bhat Y, Asker M, Börchers S, Bellfy L, Byun S, Kwapis JL, Skibicka KP. From the stomach to locus coeruleus: new neural substrate for ghrelin's effects on ingestive, motivated and anxiety-like behaviors. Front Pharmacol 2023; 14:1286805. [PMID: 38026980 PMCID: PMC10679437 DOI: 10.3389/fphar.2023.1286805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Ghrelin, a stomach-derived orexigenic hormone, has a well-established role in energy homeostasis, food reward, and emotionality. Noradrenergic neurons of the locus coeruleus (LC) are known to play an important role in arousal, emotion, cognition, but recently have also been implicated in control of feeding behavior. Ghrelin receptors (the growth hormone secretagogue receptor, GHSR) may be found in the LC, but the behavioral effects of ghrelin signaling in this area are still unexplored. Here, we first determined whether GHSR are present in the rat LC, and demonstrate that GHSR are expressed on noradrenergic neurons in both sexes. We next investigated whether ghrelin controls ingestive and motivated behaviors as well as anxiety-like behavior by acting in the LC. To pursue this idea, we examined the effects of LC GHSR stimulation and blockade on food intake, operant responding for a palatable food reward and, anxiety-like behavior in the open field (OF) and acoustic startle response (ASR) tests in male and female rats. Our results demonstrate that intra-LC ghrelin administration increases chow intake and motivated behavior for sucrose in both sexes. Additionally, females, but not males, exhibited a potent anxiolytic response in the ASR. In order to determine whether activation of GHSR in the LC was necessary for feeding and anxiety behavior control, we utilized liver-expressed antimicrobial peptide 2 (LEAP2), a newly identified endogenous GHSR antagonist. LEAP2 delivered specifically into the LC was sufficient to reduce fasting-induced chow hyperphagia in both sexes, but food reward only in females. Moreover, blockade of GHSR in the LC increased anxiety-like behavior measured in the ASR test in both sexes. Taken together, these results indicate that ghrelin acts in the LC to alter ingestive, motivated and anxiety-like behaviors, with a degree of sex divergence.
Collapse
Affiliation(s)
- Ivana Maric
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Lorena López-Ferreras
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Yashaswini Bhat
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Lauren Bellfy
- Department of Biology, Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| | - Suyeun Byun
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Janine L. Kwapis
- Department of Biology, Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| | - Karolina P. Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| |
Collapse
|
16
|
Barrile F, Cassano D, Fernandez G, De Francesco PN, Reynaldo M, Cantel S, Fehrentz JA, Donato J, Schiöth HB, Zigman JM, Perello M. Ghrelin's orexigenic action in the lateral hypothalamic area involves indirect recruitment of orexin neurons and arcuate nucleus activation. Psychoneuroendocrinology 2023; 156:106333. [PMID: 37454647 PMCID: PMC10530520 DOI: 10.1016/j.psyneuen.2023.106333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Ghrelin is a potent orexigenic hormone, and the lateral hypothalamic area (LHA) has been suggested as a putative target mediating ghrelin's effects on food intake. Here, we aimed to investigate the presence of neurons expressing ghrelin receptor (a.k.a. growth hormone secretagogue receptor, GHSR) in the mouse LHA (LHAGHSR neurons), its physiological implications and the neuronal circuit recruited by local ghrelin action. METHODS We investigated the distribution of LHAGHSR neurons using different histologic strategies, including the use of a reporter mice expressing enhanced green fluorescent protein under the control of the GHSR promoter. Also, we investigated the physiological implications of local injections of ghrelin within the LHA, and the extent to which the orexigenic effect of intra-LHA-injected ghrelin involves the arcuate nucleus (ARH) and orexin neurons of the LHA (LHAorexin neurons) RESULTS: We found that: 1) LHAGHSR neurons are homogeneously distributed throughout the entire LHA; 2) intra-LHA injections of ghrelin transiently increase food intake and locomotor activity; 3) ghrelin's orexigenic effect in the LHA involves the indirect recruitment of LHAorexin neurons and the activation of ARH neurons; and 4) LHAGHSR neurons are not targeted by plasma ghrelin. CONCLUSIONS We provide a compelling neuroanatomical and functional characterization of LHAGHSR neurons in male mice that indicates that LHAGHSR cells are part of a hypothalamic neuronal circuit that potently induces food intake.
Collapse
Affiliation(s)
- Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Mirta Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - José Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
17
|
Fernandez G, De Francesco PN, Cornejo MP, Cabral A, Aguggia JP, Duque VJ, Sayar N, Cantel S, Burgos JI, Fehrentz JA, Rorato R, Atasoy D, Mecawi AS, Perello M. Ghrelin Action in the PVH of Male Mice: Accessibility, Neuronal Targets, and CRH Neurons Activation. Endocrinology 2023; 164:bqad154. [PMID: 37823477 PMCID: PMC11491828 DOI: 10.1210/endocr/bqad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
The hormone ghrelin displays several well-characterized functions, including some with pharmaceutical interest. The receptor for ghrelin, the growth hormone secretagogue receptor (GHSR), is expressed in the hypothalamic paraventricular nucleus (PVH), a critical hub for the integration of metabolic, neuroendocrine, autonomic, and behavioral functions. Here, we performed a neuroanatomical and functional characterization of the neuronal types mediating ghrelin actions in the PVH of male mice. We found that fluorescent ghrelin mainly labels PVH neurons immunoreactive for nitric oxide synthase 1 (NOS1), which catalyze the production of nitric oxide [NO]). Centrally injected ghrelin increases c-Fos in NOS1 PVH neurons and NOS1 phosphorylation in the PVH. We also found that a high dose of systemically injected ghrelin increases the ghrelin level in the cerebrospinal fluid and in the periventricular PVH, and induces c-Fos in NOS1 PVH neurons. Such a high dose of systemically injected ghrelin activates a subset of NOS1 PVH neurons, which do not express oxytocin, via an arcuate nucleus-independent mechanism. Finally, we found that pharmacological inhibition of NO production fully abrogates ghrelin-induced increase of calcium concentration in corticotropin-releasing hormone neurons of the PVH whereas it partially impairs ghrelin-induced increase of plasma glucocorticoid levels. Thus, plasma ghrelin can directly target a subset of NO-producing neurons of the PVH that is involved in ghrelin-induced activation of the hypothalamic-pituitary-adrenal neuroendocrine axis.
Collapse
Affiliation(s)
- Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - María P Cornejo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Julieta P Aguggia
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Victor J Duque
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, CEP: 04023-062, Brazil
| | - Nilufer Sayar
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Iowa Neuroscience Institute and Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA 52242, USA
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, Montpellier cedex 5 34293, France
| | - Juan I Burgos
- Centro de Investigaciones Cardiovasculares “Dr. Horacio Eugenio Cingolani” (CONICET and National University of La Plata), La Plata 1900, Buenos Aires, Argentina
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, Montpellier cedex 5 34293, France
| | - Rodrigo Rorato
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, CEP: 04023-062, Brazil
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Iowa Neuroscience Institute and Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA 52242, USA
| | - André S Mecawi
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, CEP: 04023-062, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala 751 05, Sweden
| |
Collapse
|
18
|
How gut hormones shape reward: A systematic review of the role of ghrelin and GLP-1 in human fMRI. Physiol Behav 2023; 263:114111. [PMID: 36740132 DOI: 10.1016/j.physbeh.2023.114111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The gastrointestinal hormones ghrelin and glucagon-like peptide-1 (GLP-1) have opposite secretion patterns, as well as opposite effects on metabolism and food intake. Beyond their role in energy homeostasis, gastrointestinal hormones have also been suggested to modulate the reward system. However, the potential of ghrelin and GLP-1 to modulate reward responses in humans has not been systematically reviewed before. To evaluate the convergence of published results, we first conduct a multi-level kernel density meta-analysis of studies reporting a positive association of ghrelin (Ncomb = 353, 18 contrasts) and a negative association of GLP-1 (Ncomb = 258, 12 contrasts) and reward responses measured using task functional magnetic resonance imaging (fMRI). Second, we complement the meta-analysis using a systematic literature review, focusing on distinct reward phases and applications in clinical populations that may account for variability across studies. In line with preclinical research, we find that ghrelin increases reward responses across studies in key nodes of the motivational circuit, such as the nucleus accumbens, pallidum, putamen, substantia nigra, ventral tegmental area, and the dorsal mid insula. In contrast, for GLP-1, we did not find sufficient convergence in support of reduced reward responses. Instead, our systematic review identifies potential differences of GLP-1 on anticipatory versus consummatory reward responses. Based on a systematic synthesis of available findings, we conclude that there is considerable support for the neuromodulatory potential of gut-based circulating peptides on reward responses. To unlock their potential for clinical applications, it may be useful for future studies to move beyond anticipated rewards to cover other reward facets.
Collapse
|
19
|
Li N, Li N, Yang L, Gu H, Ji J, Zhou H, Zhu Q, Yu M, Sun Y, Zhou Y. GHSR1a deficiency suppresses inhibitory drive on dCA1 pyramidal neurons and contributes to memory reinforcement. Cereb Cortex 2023; 33:2612-2625. [PMID: 35797708 DOI: 10.1093/cercor/bhac230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/12/2022] Open
Abstract
Growth hormone secretagogue receptor 1a (GHSR1a)-the receptor for orexigenic hormone ghrelin-is a G protein-coupled receptor that is widely distributed in the brain, including the hippocampus. Studies have demonstrated that genetic deletion of GHSR1a affects memory, suggesting the importance of ghrelin/GHSR1a signaling in cognitive control. However, current reports are controversial, and the mechanism underlying GHSR1a modulation of memory is uncertain. Here, we first report that global GHSR1a knockout enhances hippocampus-dependent memory, facilitates initial LTP in dorsal hippocampal Schaffer Collateral-CA1 synapses, and downregulates Akt activity in the hippocampus. Moreover, we show that the intrinsic excitability of GAD67+ interneurons-rather than neighboring pyramidal neurons in the dCA1-is suppressed by GHSR1a deletion, an effect that is antagonized by acute application of the Akt activator SC79. In addition, the inhibitory postsynaptic currents (IPSCs) on dCA1 pyramidal neurons are selectively reduced in mice with a GHSR1a deficiency. Finally, we demonstrate that selectively increasing the excitability of parvalbumin-expressing interneurons by hM3Dq-DREADDs increases IPSCs on dCA1 pyramidal neurons and normalizes memory in Ghsr1a KO mice. Our findings thus reveal a novel mechanism underlying memory enhancement of GHSR1a deficiency and herein support an adverse effect of GHSR1a signaling in hippocampus-dependent memory processes.
Collapse
Affiliation(s)
- Na Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Medicine, Qingdao Binhai University, 425 West Jialing River Rd, Qingdao, Shandong, 266555, China
| | - Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Rd, Qingdao, Shandong, 266000, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Huating Gu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Junjie Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Hao Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Qianqian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
| | - Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Rd, Qingdao, Shandong, 266000, China
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, 750 Agronomy Rd, College Station, TX, 77843, United States
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, 308 Ningxia Rd, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Rd, Qingdao, Shandong, 266000, China
- Department of Physiology, Institute of Brain Sciences and Related Disorders, Qingdao University, 308 Ningxia Rd., Qingdao, Shandong, 266071, China
- Department of rehabilitation medicine, Affiliated Hospital of Qingdao University, 16 Jiangsu Rd., Qingdao, Shandong, 266000, China
| |
Collapse
|
20
|
Hirono M, Nakata M. Ghrelin signaling in the cerebellar cortex enhances GABAergic transmission onto Purkinje cells. Sci Rep 2023; 13:2150. [PMID: 36750743 PMCID: PMC9905081 DOI: 10.1038/s41598-023-29226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Ghrelin, an orexigenic peptide ligand for growth hormone secretagogue receptor 1a (GHS-R1a), occurs not only in the stomach but also in the brain, and modulates neuronal activity and synaptic efficacy. Previous studies showed that GHS-R1a exists in the cerebellum, and ghrelin facilitates spontaneous firing of Purkinje cells (PCs). However, the effects of ghrelin on cerebellar GABAergic transmission have yet to be elucidated. We found that ghrelin enhanced GABAergic transmission between molecular layer interneurons (MLIs) and PCs using electrophysiological recordings in mouse cerebellar slices. This finding was consistent with the possibility that blocking synaptic transmission enhanced the ghrelin-induced facilitation of PC firing. Ghrelin profoundly increased the frequency of spontaneous inhibitory postsynaptic currents (IPSCs) in PCs without affecting miniature or stimulation-evoked IPSCs, whereas it significantly facilitated spontaneous firing of MLIs. This facilitation of MLI spiking disappeared during treatments with blockers of GHS-R1a, type 1 transient receptor potential canonical (TRPC1) channels and KCNQ channels. These results suggest that both activating TRPC1 channels and inhibiting KCNQ channels occur downstream the ghrelin-GHS-R1a signaling pathway probably in somatodendritic sites of MLIs. Thus, ghrelin can control PC firing directly and indirectly via its modulation of GABAergic transmission, thereby impacting activity in cerebellar circuitry.
Collapse
Affiliation(s)
- Moritoshi Hirono
- Department of Physiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan.
| | - Masanori Nakata
- Department of Physiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| |
Collapse
|
21
|
Engel JA, Pålsson E, Vallöf D, Jerlhag E. Ghrelin activates the mesolimbic dopamine system via nitric oxide associated mechanisms in the ventral tegmental area. Nitric Oxide 2023; 131:1-7. [PMID: 36513266 DOI: 10.1016/j.niox.2022.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Besides enhanced feeding, the orexigenic peptide ghrelin activates the mesolimbic dopamine system to cause reward as measured by locomotor stimulation, dopamine release in nucleus accumbens shell (NAcS), and conditioned place preference. Although the ventral tegmental area (VTA) appears to be a central brain region for this ghrelin-reward, the underlying mechanisms within this area are unknown. The findings that the gaseous neurotransmitter nitric oxide (NO) modulate the ghrelin enhanced feeding, led us to hypothesize that ghrelin increases NO levels in the VTA, and thereby stimulates reward-related behaviors. We initially demonstrated that inhibition of NO synthesis blocked the ghrelin-induced activation of the mesolimbic dopamine system. We then established that antagonism of downstream signaling of NO in the VTA, namely sGC, prevents the ability of ghrelin to stimulate the mesolimbic dopamine system. The association of ghrelin to NO was further strengthened by in vivo electrochemical recordings showing that ghrelin enhances the NO release in the VTA. Besides a GABAB -receptor agonist, known to reduce NO and cGMP, blocks the stimulatory properties of ghrelin. The present series of experiments reveal that ablated NO signaling, through pharmacologically inhibiting the production of NO and/or cGMP, prevents the ability of ghrelin to induced reward-related behaviors.
Collapse
Affiliation(s)
- Jörgen A Engel
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Pålsson
- Institute of Neuroscience and Physiology, Department of Neurochemistry and Psychiatry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Vallöf
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
Gross JD, Zhou Y, Barak LS, Caron MG. Ghrelin receptor signaling in health and disease: a biased view. Trends Endocrinol Metab 2023; 34:106-118. [PMID: 36567228 PMCID: PMC9852078 DOI: 10.1016/j.tem.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
As allosteric complexes, G-protein-coupled receptors (GPCRs) respond to extracellular stimuli and pleiotropically couple to intracellular transducers to elicit signaling pathway-dependent effects in a process known as biased signaling or functional selectivity. One such GPCR, the ghrelin receptor (GHSR1a), has a crucial role in restoring and maintaining metabolic homeostasis during disrupted energy balance. Thus, pharmacological modulation of GHSR1a bias could offer a promising strategy to treat several metabolism-based disorders. Here, we summarize current evidence supporting GHSR1a functional selectivity in vivo and highlight recent structural data. We propose that precise determinations of GHSR1a molecular pharmacology and pathway-specific physiological effects will enable discovery of GHSR1a drugs with tailored signaling profiles, thereby providing safer and more effective treatments for metabolic diseases.
Collapse
Affiliation(s)
- Joshua D Gross
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Yang Zhou
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Lawrence S Barak
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
23
|
Hu G, Zhang M, Wang Y, Yu M, Zhou Y. Potential of Heterogeneous Compounds as Antidepressants: A Narrative Review. Int J Mol Sci 2022; 23:ijms232213776. [PMID: 36430254 PMCID: PMC9692659 DOI: 10.3390/ijms232213776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Depression is a globally widespread disorder caused by a complicated interplay of social, psychological, and biological factors. Approximately 280 million people are suffering from depression worldwide. Traditional frontline antidepressants targeting monoamine neurotransmitters show unsatisfactory effects. The development and application of novel antidepressants for dissimilar targets are on the agenda. This review characterizes the antidepressant effects of multiple endogenous compounds and/or their targets to provide new insight into the working mechanism of antidepressants. We also discuss perspectives and challenges for the generation of novel antidepressants.
Collapse
Affiliation(s)
- Gonghui Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ming Yu
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Correspondence:
| |
Collapse
|
24
|
Yu M, Zhu QQ, Niu ML, Li N, Ren BQ, Yu TB, Zhou ZS, Guo JD, Zhou Y. Ghrelin infusion into the basolateral amygdala suppresses CTA memory formation in rats via the PI3K/Akt/mTOR and PLC/PKC signaling pathways. Acta Pharmacol Sin 2022; 43:2242-2252. [PMID: 35169271 PMCID: PMC9433413 DOI: 10.1038/s41401-022-00859-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Ghrelin is a circulating orexigenic hormone that promotes feeding behavior and regulates metabolism in humans and rodents. We previously reported that local infusion of ghrelin into the basolateral amygdala (BLA) blocked memory acquisition for conditioned taste aversion (CTA) by activating growth hormone secretagogue receptor 1a. In this study, we further explored the underlying mechanism and signaling pathways mediating ghrelin modulation of CTA memory in rats. Pharmacological agents targeting distinct signaling pathways were infused into the BLA during conditioning. We showed that preadministration of the PI3K inhibitor LY294002 abolished the repressive effect of ghrelin on CTA memory. Moreover, LY294002 pretreatment prevented ghrelin from inhibiting Arc and zif268 mRNA expression in the BLA triggered by CTA memory retrieval. Preadministration of rapamycin eliminated the repressive effect of ghrelin, while Gsk3 inhibitors failed to mimic ghrelin's effect. In addition, PLC and PKC inhibitors microinfused in the BLA blocked ghrelin's repression of CTA acquisition. These results demonstrate that ghrelin signaling in the BLA shapes CTA memory via the PI3K/Akt/mTOR and PLC/PKC pathways. We conducted in vivo multichannel recordings from mouse BLA neurons and found that microinjection of ghrelin (20 µM) suppressed intrinsic excitability. By means of whole-cell recordings from rat brain slices, we showed that bath application of ghrelin (200 nM) had no effect on basal synaptic transmission or synaptic plasticity of BLA pyramidal neurons. Together, this study reveals the mechanism underlying ghrelin-induced interference with CTA memory acquisition in rats, i.e., suppression of intrinsic excitability of BLA principal neurons via the PI3K/Akt/mTOR and PLC/PKC pathways.
Collapse
Affiliation(s)
- Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Qian-Qian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Ming-Lu Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Bai-Qing Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Teng-Bo Yu
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhi-Shang Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Ji-Dong Guo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China.
- Department of rehabilitation medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
25
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
26
|
Prins K, Huisman M, McLuskey A, Mies R, Karels B, Delhanty PJD, Visser JA. Ghrelin deficiency sex-dependently affects food intake, locomotor activity, and adipose and hepatic gene expression in a binge-eating mouse model. Am J Physiol Endocrinol Metab 2022; 322:E494-E507. [PMID: 35403437 DOI: 10.1152/ajpendo.00432.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Binge-eating disorder is the most prevalent eating disorder diagnosed, affecting three times more women than men. Ghrelin stimulates appetite and reward signaling, and loss of its receptor reduces binge-eating behavior in male mice. Here, we examined the influence of ghrelin itself on binge-eating behavior in both male and female mice. Five-wk-old wild-type (WT) and ghrelin-deficient (Ghrl-/-) mice were housed individually in indirect calorimetry cages for 9 wks. Binge-like eating was induced by giving mice ad libitum chow, but time-restricted access to a Western-style diet (WD; 2 h access, 3 days/wk) in the light phase (BE); control groups received ad libitum chow (CO), or ad libitum access to both diets (CW). All groups of BE mice showed binge-eating behavior, eating up to 60% of their 24-h intake during the WD access period. Subsequent dark phase chow intake was decreased in Ghrl-/- mice and remained decreased in Ghrl-/- females on nonbinge days. Also, nonbinge day locomotor activity was lower in Ghrl-/- than in WT BE females. Upon euthanasia, Ghrl-/- BE mice weighed less and had a lower lean body mass percentage than WT BE mice. In BE and CW groups, ghrelin and sex altered the expression of genes involved in lipid processing, thermogenesis, and aging in white adipose tissue and livers. We conclude that, although ghrelin deficiency does not hamper the development of binge-like eating, it sex-dependently alters food intake timing, locomotor activity, and metabolism. These results add to the growing body of evidence that ghrelin signaling is sexually dimorphic.NEW & NOTEWORTHY Ghrelin, a peptide hormone secreted from the gut, is involved in hunger and reward signaling, which are altered in binge-eating disorder. Although sex differences have been described in both binge-eating and ghrelin signaling, this interaction has not been fully elucidated. Here, we show that ghrelin deficiency affects the behavior and metabolism of mice in a binge-like eating paradigm, and that the sex of the mice impacts the magnitude and direction of these effects.
Collapse
Affiliation(s)
- Karina Prins
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martin Huisman
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Anke McLuskey
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rosinda Mies
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bas Karels
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Patric J D Delhanty
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Ginieis R, Abeywickrema S, Oey I, Peng M. Testing Links of Food-Related Olfactory Perception to Peripheral Ghrelin and Leptin Concentrations. Front Nutr 2022; 9:888608. [PMID: 35634372 PMCID: PMC9130723 DOI: 10.3389/fnut.2022.888608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
The peptide hormones ghrelin and leptin play major roles in the regulation of appetite and food intake. However, the precise effects of these hormones on sensory processing remain a subject of debate, particularly with food related stimuli and its small body of evidence. Here, we test for relationships between ghrelin and leptin levels against olfactory performance with multiple food-related odours. Specifically, a total of 94 Caucasian males were tested for their supra-threshold sensitivity (i.e., d′), intensity, and valence perception to three odour compounds (i.e., vanilla, potato, and dairy odours). These sensory data were then analysed against peripheral ghrelin and leptin levels, both assessed in plasma samples. Participants’ body adiposity measures were also obtained. Results lent strong support to one of our original hypotheses, with ghrelin levels being positively correlated to the supra-threshold sensitivity of the dairy odour, (r = 0.241, p = 0.020), and intensity ratings to most of the food odours tested [dairy (r = 0.216, p = 0.037) and vanilla (r = 0.241, p = 0.020)]. By contrast, peripheral leptin levels were not significantly linked to any of the olfactory measures (p > 0.05). These relationships remained similar after controlling for variabilities of adiposity measures. The present study brings novel insights by identifying positive links between supra-threshold olfactory perception and ghrelin. This new knowledge is highly relevant for future research linking olfactory shifts to hormonal dysregulation and obesity.
Collapse
Affiliation(s)
- Rachel Ginieis
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Sashie Abeywickrema
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Indrawati Oey
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Mei Peng
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
- *Correspondence: Mei Peng,
| |
Collapse
|
28
|
Aguggia JP, Cornejo MP, Fernandez G, De Francesco PN, Mani BK, Cassano D, Cabral A, Valdivia S, García Romero G, Reynaldo M, Fehrentz JA, Zigman JM, Perello M. Growth hormone secretagogue receptor signaling in the supramammillary nucleus targets nitric oxide-producing neurons and controls recognition memory in mice. Psychoneuroendocrinology 2022; 139:105716. [PMID: 35290931 DOI: 10.1016/j.psyneuen.2022.105716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Abstract
Ghrelin is a stomach-derived hormone that acts via the growth hormone secretagogue receptor (GHSR). Recent evidence suggests that some of ghrelin's actions may be mediated via the supramammillary nucleus (SuM). Not only does ghrelin bind to cells within the mouse SuM, but ghrelin also activates SuM cells and intra-SuM ghrelin administration induces feeding in rats. In the current study, we aimed to further characterize ghrelin action in the SuM. We first investigated a mouse model expressing enhanced green fluorescent protein (eGFP) under the promoter of GHSR (GHSR-eGFP mice). We found that the SuM of GHSR-eGFP mice contains a significant amount of eGFP cells, some of which express neuronal nitric oxide synthase. Centrally-, but not systemically-, injected ghrelin reached the SuM, where it induced c-Fos expression. Furthermore, a 5-day 40% calorie restriction protocol, but not a 2-day fast, increased c-Fos expression in non-eGFP+ cells of the SuM of GHSR-eGFP mice, whereas c-Fos induction by calorie restriction was not observed in GHSR-deficient mice. Exposure of satiated mice to a binge-like eating protocol also increased c-Fos expression in non-eGFP+ cells of the SuM of GHSR-eGFP mice in a GHSR-dependent manner. Finally, intra-SuM-injected ghrelin did not acutely affect food intake, locomotor activity, behavioral arousal or spatial memory but increased recognition memory. Thus, we provide a compelling neuroanatomical characterization of GHSR SuM neurons and its behavioral implications in mice.
Collapse
Affiliation(s)
- Julieta P Aguggia
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Spring Valdivia
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Guadalupe García Romero
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Mirta Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires, Argentina; Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
29
|
Péraldi-Roux S, Bayle M, M'Kadmi C, Damian M, Vaillé J, Fernandez G, Paula Cornejo M, Marie J, Banères JL, Ben Haj Salah K, Fehrentz JA, Cantel S, Perello M, Denoyelle S, Oiry C, Neasta J. Design and Characterization of a Triazole-Based Growth Hormone Secretagogue Receptor Modulator Inhibiting the Glucoregulatory and Feeding Actions of Ghrelin. Biochem Pharmacol 2022; 202:115114. [DOI: 10.1016/j.bcp.2022.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
|
30
|
Han F, Xu F, Zhu Q, Sun P, Zhou Y, Yu M. Virus-mediated GHS-R1a expression in the basolateral amygdala blocks extinction of conditioned taste aversion memory in rats. Biochem Biophys Res Commun 2022; 602:57-62. [PMID: 35255434 DOI: 10.1016/j.bbrc.2022.02.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/26/2022] [Indexed: 11/28/2022]
Abstract
Ghrelin is an orexigenic gastric hormone that promotes feeding behaviors and regulating energy homeostasis in both humans and rodents. Our previous studies have shown that ghrelin, when locally infused into the basolateral amygdala (BLA), blocks both acquisition and extinction of conditioned taste aversion (CTA) memory in rats. In this study, we further investigated the effect of virus-mediated overexpression of ghrelin receptor growth hormone secretagogue receptor 1a (GHS-R1a) in BLA pyramidal neurons on CTA memory processes. We found that upregulation of GHS-R1a expression in BLA pyramidal neurons repressed CTA extinction while it had no effect on CTA acquisition. In addition, we reported that local infusion of the endogenous GHS-R1a antagonist, liver-expressed antimicrobial peptide 2 (LEAP2), in the BLA abolished the inhibitory effect of increased GHS-R1a on CTA memory extinction. Those findings provide new supportive evidence that ghrelin/GHS-R1a signaling in the BLA circuit shapes emotional memory processes.
Collapse
Affiliation(s)
- Fubing Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shangdong, 266000, China
| | - Fenghua Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qianqian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Peng Sun
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shangdong, 266000, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China; Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shangdong, 266000, China.
| | - Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
31
|
GHS-R1a activity suppresses synaptic function of primary cultured hippocampal neurons. Biochem Biophys Res Commun 2022; 602:91-97. [DOI: 10.1016/j.bbrc.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
|
32
|
Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022; 79:169. [PMID: 35239020 PMCID: PMC11072372 DOI: 10.1007/s00018-022-04193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jing Dong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
33
|
Perelló M, Cornejo MP, De Francesco PN, Fernandez G, Gautron L, Valdivia LS. The controversial role of the vagus nerve in mediating ghrelin´s actions: gut feelings and beyond. IBRO Neurosci Rep 2022; 12:228-239. [PMID: 35746965 PMCID: PMC9210457 DOI: 10.1016/j.ibneur.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022] Open
Abstract
Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.
Collapse
|
34
|
Li N, Xiao K, Mi X, Li N, Guo L, Wang X, Sun Y, Li GD, Zhou Y. Ghrelin signaling in dCA1 suppresses neuronal excitability and impairs memory acquisition via PI3K/Akt/GSK-3β cascades. Neuropharmacology 2022; 203:108871. [PMID: 34742928 DOI: 10.1016/j.neuropharm.2021.108871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Ghrelin is a circulating peptide hormone that promotes feeding and regulates metabolism in humans and rodents. The action of ghrelin is mediated by the growth hormone secretagogue receptor type 1a (GHSR-1a) that is widely distributed in the brain, including the hippocampus. Studies have demonstrated the critical role of hippocampal ghrelin/GHS-R1a signaling in synaptic physiology and memory. However, those findings are controversial, and the mechanism underlying ghrelin modulation of learning and memory is uncertain. Here, we report that micro-infusion of ghrelin in the CA1 region of the dorsal hippocampus during training specifically impairs memory acquisition. The activation of GHS-R1a and the subsequent PI3K/Akt/GSK3β signaling cascades are involved in this process. Moreover, we report that bath application of ghrelin suppresses the intrinsic excitability of dCA1 pyramidal neurons through activating GHS-R1a, and PI3K inhibitor LY294002 blocks ghrelin's effect. However, LY294002 fails to rescue ghrelin-induced LTP impairment. Our findings support an adverse effect of ghrelin-dependent activation of GHS-R1a on memory acquisition, and suggest that PI3K/Akt/GSK3β signaling-dependent repression of neuronal intrinsic excitability is an important novel mechanism underlying memory inhibition of ghrelin in the hippocampus.
Collapse
Affiliation(s)
- Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Kewei Xiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xue Mi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Na Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Li Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiaorong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, United States
| | - Guo-Dong Li
- Department of Surgery, Valley Presbyterian Hospital, Van Nuys, CA, 91405, United States
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China; Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shangdong, 266000, China.
| |
Collapse
|
35
|
Sustkova-Fiserova M, Charalambous C, Khryakova A, Certilina A, Lapka M, Šlamberová R. The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions. Int J Mol Sci 2022; 23:761. [PMID: 35054944 PMCID: PMC8776007 DOI: 10.3390/ijms23020761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Drug addiction causes constant serious health, social, and economic burden within the human society. The current drug dependence pharmacotherapies, particularly relapse prevention, remain limited, unsatisfactory, unreliable for opioids and tobacco, and even symptomatic for stimulants and cannabinoids, thus, new more effective treatment strategies are researched. The antagonism of the growth hormone secretagogue receptor type A (GHS-R1A) has been recently proposed as a novel alcohol addiction treatment strategy, and it has been intensively studied in experimental models of other addictive drugs, such as nicotine, stimulants, opioids and cannabinoids. The role of ghrelin signaling in these drugs effects has also been investigated. The present review aims to provide a comprehensive overview of preclinical and clinical studies focused on ghrelin's/GHS-R1A possible involvement in these nonalcohol addictive drugs reinforcing effects and addiction. Although the investigation is still in its early stage, majority of the existing reviewed experimental results from rodents with the addition of few human studies, that searched correlations between the genetic variations of the ghrelin signaling or the ghrelin blood content with the addictive drugs effects, have indicated the importance of the ghrelin's/GHS-R1As involvement in the nonalcohol abused drugs pro-addictive effects. Further research is necessary to elucidate the exact involved mechanisms and to verify the future potential utilization and safety of the GHS-R1A antagonism use for these drug addiction therapies, particularly for reducing the risk of relapse.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Anna Khryakova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Alina Certilina
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic;
| |
Collapse
|
36
|
Uriarte M, De Francesco PN, Fernández G, Castrogiovanni D, D'Arcangelo M, Imbernon M, Cantel S, Denoyelle S, Fehrentz JA, Praetorius J, Prevot V, Perello M. Circulating ghrelin crosses the blood-cerebrospinal fluid barrier via growth hormone secretagogue receptor dependent and independent mechanisms. Mol Cell Endocrinol 2021; 538:111449. [PMID: 34478806 DOI: 10.1016/j.mce.2021.111449] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023]
Abstract
Ghrelin is a peptide hormone mainly secreted from gastrointestinal tract that acts via the growth hormone secretagogue receptor (GHSR), which is highly expressed in the brain. Strikingly, the accessibility of ghrelin to the brain seems to be limited and restricted to few brain areas. Previous studies in mice have shown that ghrelin can access the brain via the blood-cerebrospinal fluid (CSF) barrier, an interface constituted by the choroid plexus and the hypothalamic tanycytes. Here, we performed a variety of in vivo and in vitro studies to test the hypothesis that the transport of ghrelin across the blood-CSF barrier occurs in a GHSR-dependent manner. In vivo, we found that the uptake of systemically administered fluorescent ghrelin in the choroid plexus epithelial (CPE) cells and in hypothalamic tanycytes depends on the presence of GHSR. Also, we detected lower levels of CSF ghrelin after a systemic ghrelin injection in GHSR-deficient mice, as compared to WT mice. In vitro, the internalization of fluorescent ghrelin was reduced in explants of choroid plexus from GHSR-deficient mice, and unaffected in primary cultures of hypothalamic tanycytes derived from GHSR-deficient mice. Finally, we found that the GHSR mRNA is detected in a pool of CPE cells, but is nearly undetectable in hypothalamic tanycytes with current approaches. Thus, our results suggest that circulating ghrelin crosses the blood-CSF barrier mainly by a mechanism that involves the GHSR, and also possibly via a GHSR-independent mechanism.
Collapse
Affiliation(s)
- Maia Uriarte
- Laboratory of Neurophysiology, [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Gimena Fernández
- Laboratory of Neurophysiology, [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Daniel Castrogiovanni
- Cell Culture Facility of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Micaela D'Arcangelo
- Laboratory of Neurophysiology, [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Mónica Imbernon
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR, S1172, Lille, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, UMR, 5247, CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Severine Denoyelle
- Institut des Biomolécules Max Mousseron, UMR, 5247, CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, UMR, 5247, CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | | | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR, S1172, Lille, France
| | - Mario Perello
- Laboratory of Neurophysiology, [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina.
| |
Collapse
|
37
|
Price ML, Ley CD, Gorvin CM. The emerging role of heterodimerisation and interacting proteins in ghrelin receptor function. J Endocrinol 2021; 252:R23-R39. [PMID: 34663757 PMCID: PMC8630777 DOI: 10.1530/joe-21-0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022]
Abstract
Ghrelin is a peptide hormone secreted primarily by the stomach that acts upon the growth hormone secretagogue receptor (GHSR1), a G protein-coupled receptor whose functions include growth hormone secretion, appetite regulation, energy expenditure, regulation of adiposity, and insulin release. Following the discovery that GHSR1a stimulates food intake, receptor antagonists were developed as potential therapies to regulate appetite. However, despite reductions in signalling, the desired effects on appetite were absent. Studies in the past 15 years have demonstrated GHSR1a can interact with other transmembrane proteins, either by direct binding (i.e. heteromerisation) or via signalling cross-talk. These interactions have various effects on GHSR1a signalling including preferential coupling to one pathway (i.e. biased signalling), coupling to a unique G protein (G protein switching), suppression of GHSR1a signalling, and enhancement of signalling by both receptors. While many of these interactions have been shown in cells overexpressing the proteins of interest and remain to be verified in tissues, substantial evidence exists showing that GHSR1a and the dopamine receptor D1 (DRD1) form heteromers, which promote synaptic plasticity and formation of hippocampal memory. Additionally, a reduction in GHSR1a-DRD1 complexes in favour of establishment of GHSR1a-Aβ complexes correlates with Alzheimer's disease, indicating that GHSR1a heteromers may have pathological functions. Herein, we summarise the evidence published to date describing interactions between GHSR1a and transmembrane proteins, discuss the experimental strengths and limitations of these studies, describe the physiological evidence for each interaction, and address their potential as novel drug targets for appetite regulation, Alzheimer's disease, insulin secretion, and inflammation.
Collapse
Affiliation(s)
- Maria L Price
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Cameron D Ley
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
- Correspondence should be addressed to C M Gorvin:
| |
Collapse
|
38
|
Li N, Li N, Xu F, Yu M, Qiao Z, Zhou Y. Selectively increasing GHS-R1a expression in dCA1 excitatory/inhibitory neurons have opposite effects on memory encoding. Mol Brain 2021; 14:157. [PMID: 34641940 PMCID: PMC8513281 DOI: 10.1186/s13041-021-00866-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Aim Growth hormone secretagogue receptor 1a (GHS-R1a) is widely distributed in brain including the hippocampus. Studies have demonstrated the critical role of hippocampal ghrelin/GHS-R1a signaling in synaptic physiology, memory and cognitive dysfunction associated with Alzheimer’s disease (AD). However, current reports are inconsistent, and the mechanism underlying memory modulation of GHS-R1a signaling is uncertain. In this study, we aim to investigate the direct impact of selective increase of GHS-R1a expression in dCA1 excitatory/inhibitory neurons on learning and memory. Methods Endogenous GHS-R1a distribution in dCA1 excitatory/inhibitory neurons was assessed by fluorescence in situ hybridization. Cre-dependent GHS-R1a overexpression in excitatory or inhibitory neurons was done by stereotaxic injection of aav-hSyn-DIO-hGhsr1a-2A-eGFP virus in dCA1 region of vGlut1-Cre or Dlx5/6-Cre mice respectively. Virus-mediated GHS-R1a upregulation in dCA1 neurons was confirmed by quantitative RT-PCR. Different behavioral paradigms were used to evaluate long-term memory performance. Results GHS-R1a is distributed both in dCA1 excitatory pyramidal neurons (αCaMKII+) and in inhibitory interneurons (GAD67+). Selective increase of GHS-R1a expression in dCA1 pyramidal neurons impaired spatial memory and object-place recognition memory. In contrast, selective increase of GHS-R1a expression in dCA1 interneurons enhanced long-term memory performance. Our findings reveal, for the first time, a neuronal type-specific role that hippocampal GHS-R1a signaling plays in regulating memory. Therefore, manipulating GHS-R1a expression/activity in different subpopulation of neurons may help to clarify current contradictory findings and to elucidate mechanism of memory control by ghrelin/GHS-R1a signaling, under both physiological and pathological conditions such as AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13041-021-00866-8.
Collapse
Affiliation(s)
- Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Na Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Fenghua Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Zichen Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, Shandong, China. .,Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, 266071, Shandong, China. .,Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, Shangdong, China.
| |
Collapse
|
39
|
Mustafá ER, Cordisco González S, Damian M, Cantel S, Denoyelle S, Wagner R, Schiöth HB, Fehrentz JA, Banères JL, Perelló M, Raingo J. LEAP2 Impairs the Capability of the Growth Hormone Secretagogue Receptor to Regulate the Dopamine 2 Receptor Signaling. Front Pharmacol 2021; 12:712437. [PMID: 34447311 PMCID: PMC8383165 DOI: 10.3389/fphar.2021.712437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
The growth hormone secretagogue receptor (GHSR) signals in response to ghrelin, but also acts via ligand-independent mechanisms that include either constitutive activation or interaction with other G protein-coupled receptors, such as the dopamine 2 receptor (D2R). A key target of GHSR in neurons is voltage-gated calcium channels type 2.2 (CaV2.2). Recently, the liver-expressed antimicrobial peptide 2 (LEAP2) was recognized as a novel GHSR ligand, but the mechanism of action of LEAP2 on GHSR is not well understood. Here, we investigated the role of LEAP2 on the canonical and non-canonical modes of action of GHSR on CaV2.2 function. Using a heterologous expression system and patch-clamp recordings, we found that LEAP2 impairs the reduction of CaV2.2 currents induced by ghrelin-evoked and constitutive GHSR activities, acting as a GHSR antagonist and inverse agonist, respectively. We also found that LEAP2 prevents GHSR from modulating the effects of D2R signaling on CaV2.2 currents, and that the GHSR-binding N-terminal region LEAP2 underlies these effects. Using purified labeled receptors assembled into lipid nanodiscs and Forster Resonance Energy Transfer (FRET) assessments, we found that the N-terminal region of LEAP2 stabilizes an inactive conformation of GHSR that is dissociated from Gq protein and, consequently, reverses the effect of GHSR on D2R-dependent Gi activation. Thus, our results provide critical molecular insights into the mechanism mediating LEAP2 modulation of GHSR.
Collapse
Affiliation(s)
- Emilio R Mustafá
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Santiago Cordisco González
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Severine Denoyelle
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Renaud Wagner
- Plateforme IMPReSs, CNRS UMR7242, Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg, Strasbourg, France
| | - Helgi B Schiöth
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biothechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Mario Perelló
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| |
Collapse
|
40
|
Shankar K, Metzger NP, Singh O, Mani BK, Osborne-Lawrence S, Varshney S, Gupta D, Ogden SB, Takemi S, Richard CP, Nandy K, Liu C, Zigman JM. LEAP2 deletion in mice enhances ghrelin's actions as an orexigen and growth hormone secretagogue. Mol Metab 2021; 53:101327. [PMID: 34428557 PMCID: PMC8452786 DOI: 10.1016/j.molmet.2021.101327] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023] Open
Abstract
Objective The hormone liver-expressed antimicrobial peptide-2 (LEAP2) is a recently identified antagonist and an inverse agonist of the growth hormone secretagogue receptor (GHSR). GHSR's other well-known endogenous ligand, acyl-ghrelin, increases food intake, body weight, and GH secretion and is lowered in obesity but elevated upon fasting. In contrast, LEAP2 reduces acyl-ghrelin-induced food intake and GH secretion and is found elevated in obesity but lowered upon fasting. Thus, the plasma LEAP2/acyl-ghrelin molar ratio could be a key determinant modulating GHSR signaling in response to changes in body mass and feeding status. In particular, LEAP2 may serve to dampen acyl-ghrelin action in the setting of obesity, which is associated with ghrelin resistance. Here, we sought to determine the metabolic effects of genetic LEAP2 deletion. Methods We generated the first known LEAP2-KO mouse line. Food intake, GH secretion, and cellular activation (c-fos induction) in different brain regions following s.c. acyl-ghrelin administration in LEAP2-KO mice and wild-type littermates were determined. LEAP2-KO mice and wild-type littermates were submitted to a battery of tests (such as measurements of body weight, food intake, and body composition; indirect calorimetry, determination of locomotor activity, and meal patterning while housed in metabolic cages) over the course of 16 weeks of high-fat diet and/or standard chow feeding. Fat accumulation was assessed in hematoxylin & eosin-stained and oil red O-stained liver sections from these mice. Results LEAP2-KO mice were more sensitive to s.c. ghrelin. In particular, acyl-ghrelin acutely stimulated food intake at a dose of 0.5 mg/kg BW in standard chow-fed LEAP2-KO mice while a 2× higher dose was required by wild-type littermates. Also, acyl-ghrelin stimulated food intake at a dose of 1 mg/kg BW in high-fat diet-fed LEAP2-KO mice while not even a 10× higher dose was effective in wild-type littermates. Acyl-ghrelin induced a 90.9% higher plasma GH level and 77.2–119.7% higher numbers of c-fos-immunoreactive cells in the arcuate nucleus and olfactory bulb, respectively, in LEAP2-KO mice than in wild-type littermates. LEAP2 deletion raised body weight (by 15.0%), food intake (by 18.4%), lean mass (by 6.1%), hepatic fat (by 42.1%), and body length (by 1.7%) in females on long-term high-fat diet as compared to wild-type littermates. After only 4 weeks on the high-fat diet, female LEAP2-KO mice exhibited lower O2 consumption (by 13%), heat production (by 9.5%), and locomotor activity (by 49%) than by wild-type littermates during the first part of the dark period. These genotype-dependent differences were not observed in high-fat diet-exposed males or female and male mice exposed for long term to standard chow diet. Conclusions LEAP2 deletion sensitizes lean and obese mice to the acute effects of administered acyl-ghrelin on food intake and GH secretion. LEAP2 deletion increases body weight in females chronically fed a high-fat diet as a result of lowered energy expenditure, reduced locomotor activity, and increased food intake. Furthermore, in female mice, LEAP2 deletion increases body length and exaggerates the hepatic fat accumulation normally associated with chronic high-fat diet feeding. A novel line of LEAP2-knockout mice was generated. LEAP2 deletion sensitizes mice to the GH secretory effects of administered ghrelin. LEAP2 deletion reduces ghrelin resistance in diet-induced obese mice. HFD-fed female LEAP2-KO mice eat more and gain more body weight and hepatic fat. HFD-fed female LEAP2-KO mice exhibit lowered energy expenditure and activity.
Collapse
Affiliation(s)
- Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sean B Ogden
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shota Takemi
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Corine P Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Karabi Nandy
- Division of Biostatistics, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chen Liu
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Wasinski F, Barrile F, Pedroso JAB, Quaresma PGF, dos Santos WO, List EO, Kopchick JJ, Perelló M, Donato J. Ghrelin-induced Food Intake, but not GH Secretion, Requires the Expression of the GH Receptor in the Brain of Male Mice. Endocrinology 2021; 162:6273366. [PMID: 33972988 PMCID: PMC8197284 DOI: 10.1210/endocr/bqab097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/14/2022]
Abstract
Ghrelin stimulates both GH secretion and food intake. The orexigenic action of ghrelin is mainly mediated by neurons that coexpress agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). GH also stimulates food intake and, importantly, ARHAgRP/NPY neurons express GH receptor (GHR). Thus, ghrelin-induced GH secretion may contribute to the orexigenic effect of ghrelin. Here, we investigated the response to ghrelin in male mice carrying GHR ablation specifically in neurons (brain GHR knockout [KO] mice) or exclusively in ARHAgRP/NPY neurons (AgRP GHR KO mice). Although brain GHR KO mice showed normal ghrelin-induced increase in plasma GH levels, these mutants lacked the expected orexigenic response to ghrelin. Additionally, brain GHR KO mice displayed reduced hypothalamic levels of Npy and Ghsr mRNA and did not elicit ghrelin-induced c-Fos expression in the ARH. Furthermore, brain GHR KO mice exhibited a prominent reduction in AgRP fiber density in the ARH and paraventricular nucleus of the hypothalamus (PVH). In contrast, AgRP GHR KO mice showed no changes in the hypothalamic Npy and Ghsr mRNAs and conserved ghrelin-induced food intake and c-Fos expression in the ARH. AgRP GHR KO mice displayed a reduced AgRP fiber density (~16%) in the PVH, but this reduction was less than that observed in brain GHR KO mice (~61%). Our findings indicate that GHR signaling in the brain is required for the orexigenic effect of ghrelin, independently of GH action on ARHAgRP/NPY neurons.
Collapse
Affiliation(s)
- Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Franco Barrile
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA, 1900, Argentina
| | - João A B Pedroso
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Paula G F Quaresma
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Willian O dos Santos
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Mario Perelló
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA, 1900, Argentina
- Correspondence: Mario Perelló, PhD, Multidisciplinary Institute of Cell Biology, Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900. Argentina.
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
- Correspondence: Jose Donato Jr., PhD, Instituto de Ciencias Biomedicas. Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil;
| |
Collapse
|
42
|
Sakai K, Shiomi K, Mochizuki H, Islam MN, Nabekura H, Tanida R, Sakoda H, Nakazato M. Human liver-expressed antimicrobial peptide 2 elevation in the cerebrospinal fluid in bacterial meningitis. Brain Behav 2021; 11:e02111. [PMID: 33811478 PMCID: PMC8119843 DOI: 10.1002/brb3.2111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To study the presence of liver-expressed antimicrobial peptide 2 (LEAP2) in human cerebrospinal fluid (CSF) and to measure its concentrations in neurological disorders. MATERIALS & METHODS We identified the presence of LEAP2 in human CSF by chromatographic analysis and a LEAP2-specific enzyme immunoassay. We measured LEAP2 concentrations in the CSF of 35 patients with neurological disorders. RESULTS CSF LEAP2 concentrations in the bacterial meningitis group (mean ± SD, 9.32 ± 3.76 ng/ml) were significantly higher (p < .05) than those in the other four groups (psychosomatic disorder, 0.56 ± 0.15 ng/ml; peripheral autoimmune disease, 1.00 ± 0.60 ng/ml; multiple sclerosis, 0.62 ± 0.30 ng/ml; aseptic meningitis, 1.59 ± 0.69 ng/ml). CONCLUSIONS This is the first study to identify the presence of human LEAP2 in the CSF. Levels of LEAP2 were increased in the CSF of patients with bacterial meningitis. LEAP2 may have potential as a biomarker for bacterial meningitis.
Collapse
Affiliation(s)
- Katsuya Sakai
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazutaka Shiomi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hitoshi Mochizuki
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Md Nurul Islam
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroki Nabekura
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ryota Tanida
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
43
|
Contribution of growth hormone secretagogue receptor (GHSR) signaling in the ventral tegmental area (VTA) to the regulation of social motivation in male mice. Transl Psychiatry 2021; 11:230. [PMID: 33879778 PMCID: PMC8058340 DOI: 10.1038/s41398-021-01350-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023] Open
Abstract
Most psychiatric disorders are characterized by deficits in the ability to interact socially with others. Ghrelin, a hormone normally associated with the regulation of glucose utilization and appetite, is also implicated in the modulation of motivated behaviors including those associated with food and sex rewards. Here we hypothesized that deficits in ghrelin receptor (growth hormone secretagogue receptor; GHSR) signaling are also associated with deficits in social motivation in male mice. To test this hypothesis, we compared social motivation in male mice lacking GHSR or mice treated with the GHSR antagonist JMV2959 with that of WT or vehicle-treated mice. GHSR signaling in dopamine cells of the ventral tegmental area (VTA) has been implicated in the control of sexual behavior, thus we further hypothesized that GHSR signaling in the VTA is important for social motivation. Thus, we conducted studies where we delivered JMV2959 to block GHSR in the VTA of mice, and studies where we rescued the expression of GHSR in the VTA of GHSR knockout (KO) mice. Mice lacking GHSR or injected with JMV2959 peripherally for 3 consecutive days displayed lower social motivation as reflected by a longer latency to approach a novel conspecific and shorter interaction time compared to WT or vehicle-treated controls. Furthermore, intra-VTA infusion of JMV2959 resulted in longer latencies to approach a novel conspecific, whereas GHSR KO mice with partial rescue of the GHSR showed decreased latencies to begin a novel social interaction. Together, these data suggest that GHSR in the VTA facilitate social approach in male mice, and GHSR-signaling deficits within the VTA result in reduced motivation to interact socially.
Collapse
|
44
|
Stoyanova I, Lutz D. Ghrelin-Mediated Regeneration and Plasticity After Nervous System Injury. Front Cell Dev Biol 2021; 9:595914. [PMID: 33869167 PMCID: PMC8046019 DOI: 10.3389/fcell.2021.595914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
The nervous system is highly vulnerable to different factors which may cause injury followed by an acute or chronic neurodegeneration. Injury involves a loss of extracellular matrix integrity, neuronal circuitry disintegration, and impairment of synaptic activity and plasticity. Application of pleiotropic molecules initiating extracellular matrix reorganization and stimulating neuronal plasticity could prevent propagation of the degeneration into the tissue surrounding the injury. To find an omnipotent therapeutic molecule, however, seems to be a fairly ambitious task, given the complex demands of the regenerating nervous system that need to be fulfilled. Among the vast number of candidates examined so far, the neuropeptide and hormone ghrelin holds within a very promising therapeutic potential with its ability to cross the blood-brain barrier, to balance metabolic processes, and to stimulate neurorepair and neuroactivity. Compared with its well-established systemic effects in treatment of metabolism-related disorders, the therapeutic potential of ghrelin on neuroregeneration upon injury has received lesser appreciation though. Here, we discuss emerging concepts of ghrelin as an omnipotent player unleashing developmentally related molecular cues and morphogenic cascades, which could attenuate and/or counteract acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Irina Stoyanova
- Department of Anatomy and Cell Biology, Medical University Varna, Varna, Bulgaria
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
45
|
Biased signaling: A viable strategy to drug ghrelin receptors for the treatment of obesity. Cell Signal 2021; 83:109976. [PMID: 33713808 DOI: 10.1016/j.cellsig.2021.109976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Obesity is a global burden and a chronic ailment with damaging overall health effects. Ghrelin, an octanoylated 28 amino acid peptide hormone, is secreted from the oxyntic mucosa of the stomach. Ghrelin acts on regions of the hypothalamus to regulate feeding behavior and glucose homeostasis through its G protein-coupled receptor. Recently, several central pathways modulating the metabolic actions of ghrelin have been reported. While these signaling pathways can be inhibited or activated by antagonists or agonists, they can also be discriminatingly activated in a "biased" response to impart different degrees of activation in distinct pathways downstream of the receptor. Here, we review recent ghrelin biased signaling findings as well as characteristics of ghrelin hormone and its receptors pertinent for biased signaling. We then evaluate the feasibility for ghrelin receptor biased signaling as a strategy for the development of effective pharmacotherapy in obesity treatment.
Collapse
|
46
|
Cornejo MP, Mustafá ER, Cassano D, Banères JL, Raingo J, Perello M. The ups and downs of growth hormone secretagogue receptor signaling. FEBS J 2021; 288:7213-7229. [PMID: 33460513 DOI: 10.1111/febs.15718] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
The growth hormone secretagogue receptor (GHSR) has emerged as one of the most fascinating molecules from the perspective of neuroendocrine control. GHSR is mainly expressed in the pituitary and the brain, and plays key roles regulating not only growth hormone secretion but also food intake, adiposity, body weight, glucose homeostasis and other complex functions. Quite atypically, GHSR signaling displays a basal constitutive activity that can be up- or downregulated by two digestive system-derived hormones: the octanoylated-peptide ghrelin and the liver-expressed antimicrobial peptide 2 (LEAP2), which was recently recognized as an endogenous GHSR ligand. The existence of two ligands with contrary actions indicates that GHSR activity can be tightly regulated and that the receptor displays the capability to integrate such opposing inputs in order to provide a balanced intracellular signal. This article provides a summary of the current understanding of the biology of ghrelin, LEAP2 and GHSR and discusses the reconceptualization of the cellular and physiological implications of the ligand-regulated GHSR signaling, based on the latest findings.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Faculté de Pharmacie, Montpellier cedex 5, France
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], Buenos Aires, Argentina
| |
Collapse
|
47
|
Xiao X, Bi M, Jiao Q, Chen X, Du X, Jiang H. A new understanding of GHSR1a--independent of ghrelin activation. Ageing Res Rev 2020; 64:101187. [PMID: 33007437 DOI: 10.1016/j.arr.2020.101187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone secretagogue receptor 1a (GHSR1a), a member of the G protein-coupled receptor (GPCR) family, is a functional receptor of ghrelin. The expression levels and activities of GHSR1a are affected by various factors. In past years, it has been found that the ghrelin-GHSR1a system can perform biological functions such as anti-inflammation, anti-apoptosis, and anti-oxidative stress. In addition to mediating the effect of ghrelin, GHSR1a also has abnormally high constitutive activity; that is, it can still transmit intracellular signals without activation of the ghrelin ligand. This constitutive activity affects brain functions, growth and development of the body; therefore, it has profound impacts on neurodegenerative diseases and some other age-related diseases. In addition, GHSR1a can also form homodimers or heterodimers with other GPCRs, affecting the release of neurotransmitters, appetite regulation, cell proliferation and insulin release. Therefore, further understanding of the constitutive activities and dimerization of GHSR1a will enable us to better clarify the characteristics of GHSR1a and provide more therapeutic targets for drug development. Here, we focus on the roles of GHSR1a in various biological functions and provide a comprehensive summary of the current research on GHSR1a to provide broader therapeutic prospects for age-related disease treatment.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
48
|
Sales da Silva E, Ferreira PM, Castro CH, Pacheco LF, Graziani D, Pontes CNR, Bessa ADSMD, Fernandes E, Naves LM, Ribeiro LCDS, Mendonça MM, Gomes RM, Pedrino GR, Ferreira RN, Xavier CH. Brain and kidney GHS-R1a underexpression is associated with changes in renal function and hemodynamics during neurogenic hypertension. Mol Cell Endocrinol 2020; 518:110984. [PMID: 32814069 DOI: 10.1016/j.mce.2020.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Ghrelin is a peptide hormone whose effects are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), mainly expressed in the brain but also in kidneys. The hypothesis herein raised is that GHS-R1a would be player in the renal contribution to the neurogenic hypertension pathophysiology. To investigate GHS-R1a role on renal function and hemodynamics, we used Wistar (WT) and spontaneously hypertensive rats (SHR). First, we assessed the effect of systemically injected vehicle, ghrelin, GHS-R1a antagonist PF04628935, ghrelin plus PF04628935 or GHS-R1a synthetic agonist MK-677 in WT and SHR rats housed in metabolic cages (24 h). Blood and urine samples were also analyzed. Then, we assessed the GHS-R1a contribution to the control of renal vasomotion and hemodynamics in WT and SHR. Finally, we assessed the GHS-R1a levels in brain areas, aorta, renal artery, renal cortex and medulla of WT and SHR rats using western blot. We found that ghrelin and MK-677 changed osmolarity parameters of SHR, in a GHS-R1a-dependent manner. GHS-R1a antagonism reduced the urinary Na+ and K+ and creatinine clearance in WT but not in SHR. Ghrelin reduced arterial pressure and increased renal artery conductance in SHR. GHS-R1a protein levels were decreased in the kidney and brain areas of SHR when compared to WT. Therefore, GHS-R1a role in the control of renal function and hemodynamics during neurogenic hypertension seem to be different, and this may be related to brain and kidney GHS-R1a downregulation.
Collapse
Affiliation(s)
- Elder Sales da Silva
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Patrícia Maria Ferreira
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carlos Henrique Castro
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Lilian Fernanda Pacheco
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Daniel Graziani
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carolina Nobre Ribeiro Pontes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Amanda de Sá Martins de Bessa
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Erika Fernandes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Lara Marques Naves
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Larissa Cristina Dos Santos Ribeiro
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Michelle Mendanha Mendonça
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Rodrigo Mello Gomes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Gustavo Rodrigues Pedrino
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Reginaldo Nassar Ferreira
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carlos Henrique Xavier
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
49
|
Cornejo MP, Mustafá ER, Barrile F, Cassano D, De Francesco PN, Raingo J, Perello M. THE INTRIGUING LIGAND-DEPENDENT AND LIGAND-INDEPENDENT ACTIONS OF THE GROWTH HORMONE SECRETAGOGUE RECEPTOR ON REWARD-RELATED BEHAVIORS. Neurosci Biobehav Rev 2020; 120:401-416. [PMID: 33157147 DOI: 10.1016/j.neubiorev.2020.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G-protein-coupled receptor (GPCR) highly expressed in the brain, and also in some peripheral tissues. GHSR activity is evoked by the stomach-derived peptide hormone ghrelin and abrogated by the intestine-derived liver-expressed antimicrobial peptide 2 (LEAP2). In vitro, GHSR displays ligand-independent actions, including a high constitutive activity and an allosteric modulation of other GPCRs. Beyond its neuroendocrine and metabolic effects, cumulative evidence shows that GHSR regulates the activity of the mesocorticolimbic pathway and modulates complex reward-related behaviors towards different stimuli. Here, we review current evidence indicating that ligand-dependent and ligand-independent actions of GHSR enhance reward-related behaviors towards appetitive stimuli and drugs of abuse. We discuss putative neuronal networks and molecular mechanisms that GHSR would engage to modulate such reward-related behaviors. Finally, we briefly discuss imaging studies showing that ghrelin would also regulate reward processing in humans. Overall, we conclude that GHSR is a key regulator of the mesocorticolimbic pathway that influences its activity and, consequently, modulates reward-related behaviors via ligand-dependent and ligand-independent actions.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
50
|
Fritz EM, Singewald N, De Bundel D. The Good, the Bad and the Unknown Aspects of Ghrelin in Stress Coping and Stress-Related Psychiatric Disorders. Front Synaptic Neurosci 2020; 12:594484. [PMID: 33192444 PMCID: PMC7652849 DOI: 10.3389/fnsyn.2020.594484] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Ghrelin is a peptide hormone released by specialized X/A cells in the stomach and activated by acylation. Following its secretion, it binds to ghrelin receptors in the periphery to regulate energy balance, but it also acts on the central nervous system where it induces a potent orexigenic effect. Several types of stressors have been shown to stimulate ghrelin release in rodents, including nutritional stressors like food deprivation, but also physical and psychological stressors such as foot shocks, social defeat, forced immobilization or chronic unpredictable mild stress. The mechanism through which these stressors drive ghrelin release from the stomach lining remains unknown and, to date, the resulting consequences of ghrelin release for stress coping remain poorly understood. Indeed, ghrelin has been proposed to act as a stress hormone that reduces fear, anxiety- and depression-like behaviors in rodents but some studies suggest that ghrelin may - in contrast - promote such behaviors. In this review, we aim to provide a comprehensive overview of the literature on the role of the ghrelin system in stress coping. We discuss whether ghrelin release is more than a byproduct of disrupted energy homeostasis following stress exposure. Furthermore, we explore the notion that ghrelin receptor signaling in the brain may have effects independent of circulating ghrelin and in what way this might influence stress coping in rodents. Finally, we examine how the ghrelin system could be utilized as a therapeutic avenue in stress-related psychiatric disorders (with a focus on anxiety- and trauma-related disorders), for example to develop novel biomarkers for a better diagnosis or new interventions to tackle relapse or treatment resistance in patients.
Collapse
Affiliation(s)
- Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Dimitri De Bundel
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|