1
|
Cheng H, Zhang X, Li Y, Cao D, Luo C, Zhang Q, Zhang S, Jiao Y. Age-related testosterone decline: mechanisms and intervention strategies. Reprod Biol Endocrinol 2024; 22:144. [PMID: 39543598 PMCID: PMC11562514 DOI: 10.1186/s12958-024-01316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Contemporary societies exhibit delayed reproductive age and increased life expectancy. While the male reproductive system demonstrates relatively delayed aging compared to that of females, increasing age substantially impacts its function. A characteristic manifestation is age-induced testosterone decline. Testosterone, a crucial male sex hormone, plays pivotal roles in spermatogenesis and sexual function, and contributes significantly to metabolism, psychology, and cardiovascular health. Aging exerts profound effects on the hypothalamic-pituitary-gonadal axis and Leydig cells, precipitating testosterone reduction, which adversely affects male health. Exogenous testosterone supplementation can partially ameliorate age-related testosterone deficiency; however, its long-term safety remains contentious. Preserving endogenous testosterone production capacity during the aging process warrants further investigation as a potential intervention strategy.
Collapse
Affiliation(s)
- Haoyang Cheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyan Zhang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Yongheng Li
- Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Dezhong Cao
- First People's Hospital of Dongcheng District, Beijing, China
| | - Chenglong Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sizheng Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongzheng Jiao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Lee TH, Nicolas JC, Quarta C. Molecular and functional mapping of the neuroendocrine hypothalamus: a new era begins. J Endocrinol Invest 2024; 47:2627-2648. [PMID: 38878127 DOI: 10.1007/s40618-024-02411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Recent advances in neuroscience tools for single-cell molecular profiling of brain neurons have revealed an enormous spectrum of neuronal subpopulations within the neuroendocrine hypothalamus, highlighting the remarkable molecular and cellular heterogeneity of this brain area. RATIONALE Neuronal diversity in the hypothalamus reflects the high functional plasticity of this brain area, where multiple neuronal populations flexibly integrate a variety of physiological outputs, including energy balance, stress and fertility, through crosstalk mechanisms with peripheral hormones. Intrinsic functional heterogeneity is also observed within classically 'defined' subpopulations of neuroendocrine neurons, including subtypes with distinct neurochemical signatures, spatial organisation and responsiveness to hormonal cues. AIM The aim of this review is to critically evaluate past and current research on the functional diversity of hypothalamic neuroendocrine neurons and their plasticity. It focuses on how this neuronal plasticity in this brain area relates to metabolic control, feeding regulation and interactions with stress and fertility-related neural circuits. CONCLUSION Our analysis provides an original framework for improving our understanding of the hypothalamic regulation of hormone function and the development of neuroendocrine diseases.
Collapse
Affiliation(s)
- T H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - J-C Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - C Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
3
|
Cromack SC, Walter JR. Consumer wearables and personal devices for tracking the fertile window. Am J Obstet Gynecol 2024; 231:516-523. [PMID: 38768799 DOI: 10.1016/j.ajog.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
The market for technology that tracks ovulation to promote conception is rapidly expanding in the United States, targeting the growing audience of technologically proficient, reproductive-age female consumers. In this narrative review, 23 different, nonprescription wearables and devices designed to help women track their fertile window were identified as currently, commercially available in the United States. The majority of these utilize measurements of basal body temperature or combinations of various urinary hormones. This clinical opinion characterizes the scant available research validating the accuracy of these technologies. It further examines research oversight, discusses the utility of these wearables and devices to consumers, and considers these technologies through an equity lens. The discussion concludes with a call for innovation, describing promising new technologies that not only harness unique physiologic parameters to predict ovulation, but also focus on cost-effectiveness with the hope of increasing access to these currently costly devices and wearables.
Collapse
Affiliation(s)
- Sarah C Cromack
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Jessica R Walter
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
4
|
Masliukov PM. Functional properties of aged hypothalamic cells. VITAMINS AND HORMONES 2024; 127:207-243. [PMID: 39864942 DOI: 10.1016/bs.vh.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The hypothalamus, in addition to controlling the main body's vital functions, is also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular pathways, including Ca2+ signaling and neuronal excitability in the brain. Intrinsic electrophysiological properties of individual neurons and synaptic transmission between cells is disrupted in the central nervous system of old animals. However, changes in neuronal excitability and excitation/inhibition balance with aging are specific to the type of neurons, brain region, and species. Glia-neuron interactions play a significant role in the brain and undergo remodeling accompanied by advanced loss of function with aging. In the current review, I have summarized the current understanding of the changes in the brain and especially in the hypothalamus with aging.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia.
| |
Collapse
|
5
|
Szabó F, Köves K, Gál L. History of the Development of Knowledge about the Neuroendocrine Control of Ovulation-Recent Knowledge on the Molecular Background. Int J Mol Sci 2024; 25:6531. [PMID: 38928237 PMCID: PMC11203711 DOI: 10.3390/ijms25126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The physiology of reproduction has been of interest to researchers for centuries. The purpose of this work is to review the development of our knowledge on the neuroendocrine background of the regulation of ovulation. We first describe the development of the pituitary gland, the structure of the median eminence (ME), the connection between the hypothalamus and the pituitary gland, the ovarian and pituitary hormones involved in ovulation, and the pituitary cell composition. We recall the pioneer physiological and morphological investigations that drove development forward. The description of the supraoptic-paraventricular magnocellular and tuberoinfundibular parvocellular systems and recognizing the role of the hypophysiotropic area were major milestones in understanding the anatomical and physiological basis of reproduction. The discovery of releasing and inhibiting hormones, the significance of pulse and surge generators, the pulsatile secretion of the gonadotropin-releasing hormone (GnRH), and the subsequent pulsatility of luteinizing (LH) and follicle-stimulating hormones (FSH) in the human reproductive physiology were truly transformative. The roles of three critical neuropeptides, kisspeptin (KP), neurokinin B (NKB), and dynorphin (Dy), were also identified. This review also touches on the endocrine background of human infertility and assisted fertilization.
Collapse
Affiliation(s)
- Flóra Szabó
- Division of Gastroenterology and Nutrition, Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Levente Gál
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
6
|
Vastagh C, Farkas I, Csillag V, Watanabe M, Kalló I, Liposits Z. Cholinergic Control of GnRH Neuron Physiology and Luteinizing Hormone Secretion in Male Mice: Involvement of ACh/GABA Cotransmission. J Neurosci 2024; 44:e1780232024. [PMID: 38320853 PMCID: PMC10957212 DOI: 10.1523/jneurosci.1780-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 03/22/2024] Open
Abstract
Gonadotropin-releasing hormone (GnRH)-synthesizing neurons orchestrate reproduction centrally. Early studies have proposed the contribution of acetylcholine (ACh) to hypothalamic control of reproduction, although the causal mechanisms have not been clarified. Here, we report that in vivo pharmacogenetic activation of the cholinergic system increased the secretion of luteinizing hormone (LH) in orchidectomized mice. 3DISCO immunocytochemistry and electron microscopy revealed the innervation of GnRH neurons by cholinergic axons. Retrograde viral labeling initiated from GnRH-Cre neurons identified the medial septum and the diagonal band of Broca as exclusive sites of origin for cholinergic afferents of GnRH neurons. In acute brain slices, ACh and carbachol evoked a biphasic effect on the firing rate in GnRH neurons, first increasing and then diminishing it. In the presence of tetrodotoxin, carbachol induced an inward current, followed by a decline in the frequency of miniature postsynaptic currents (mPSCs), indicating a direct influence on GnRH cells. RT-PCR and whole-cell patch-clamp studies revealed that GnRH neurons expressed both nicotinic (α4β2, α3β4, and α7) and muscarinic (M1-M5) AChRs. The nicotinic AChRs contributed to the nicotine-elicited inward current and the rise in firing rate. Muscarine via M1 and M3 receptors increased, while via M2 and M4 reduced the frequency of both mPSCs and firing. Optogenetic activation of channelrhodopsin-2-tagged cholinergic axons modified GnRH neuronal activity and evoked cotransmission of ACh and GABA from a subpopulation of boutons. These findings confirm that the central cholinergic system regulates GnRH neurons and activates the pituitary-gonadal axis via ACh and ACh/GABA neurotransmissions in male mice.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest H-1083, Hungary
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest H-1083, Hungary
| | - Veronika Csillag
- Laboratory of Endocrine Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest H-1083, Hungary
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest H-1083, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest H-1083, Hungary
| |
Collapse
|
7
|
Abbott DH, Hutcherson BA, Dumesic DA. Anti-Müllerian Hormone: A Molecular Key to Unlocking Polycystic Ovary Syndrome? Semin Reprod Med 2024; 42:41-48. [PMID: 38908381 DOI: 10.1055/s-0044-1787525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Anti-Müllerian hormone (AMH) is an important component within androgen receptor (AR)-regulated pathways governing the hyperandrogenic origin of polycystic ovary syndrome (PCOS). In women with PCOS, granulosa cell AMH overexpression in developing ovarian follicles contributes to elevated circulating AMH levels beginning at birth and continuing in adolescent daughters of PCOS women. A 6 to 7% incidence among PCOS women of gene variants coding for AMH or its receptor, AMHR2, suggests genetic contributions to AMH-related pathogenesis. Discrete gestational AMH administration to pregnant mice induces hypergonadotropic hyperandrogenic, PCOS-like female offspring with high circulating AMH levels that persist over three generations, suggesting epigenetic contributions to PCOS through developmental programming. Moreover, adult-onset, selective hyperactivation of hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH) induces hypergonadotropic hyperandrogenism and PCOS-like traits in female mice. Both gestational and adult AMH inductions of PCOS-like traits are prevented by GnRH antagonist coadministration, implicating luteinizing hormone-dependent ovarian theca cell testosterone (T) action, mediated through the AR in AMH-induced pathogenesis. Interestingly, gestational or peripubertal exogenous T or dihydrotestosterone induction of PCOS-like traits in female mice, rats, sheep, and monkeys fails to elicit ovarian AMH hypersecretion; thus, AMH excess per se may lead to a distinct pathogenic contribution to hyperandrogenic PCOS origins.
Collapse
Affiliation(s)
- David H Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
- Endocrinology and Reproductive Physiology Training Program, University of Wisconsin, Madison, Wisconsin
| | - Beverly A Hutcherson
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
- Endocrinology and Reproductive Physiology Training Program, University of Wisconsin, Madison, Wisconsin
- Dean's Office, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, California
| |
Collapse
|
8
|
Masliukov PM. Changes of Signaling Pathways in Hypothalamic Neurons with Aging. Curr Issues Mol Biol 2023; 45:8289-8308. [PMID: 37886966 PMCID: PMC10605528 DOI: 10.3390/cimb45100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The hypothalamus is an important regulator of autonomic and endocrine functions also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular signaling including insulin/insulin-like growth factor-1 (IGF-1)/growth hormone (GH), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR), mitogen activated protein kinase (MAPK), janus kinase (JAK)/signal transducer and activator of transcription (STAT), AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), and nitric oxide (NO). In the current review, I have summarized the current understanding of the changes in the above-mentioned pathways in aging with a focus on hypothalamic alterations.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department Normal Physiology, Yaroslavl State Medical University, ul. Revoliucionnaya 5, 150000 Yaroslavl, Russia
| |
Collapse
|
9
|
Ramos-Pittol JM, Fernandes-Freitas I, Milona A, Manchishi SM, Rainbow K, Lam BYH, Tadross JA, Beucher A, Colledge WH, Cebola I, Murphy KG, Miguel-Aliaga I, Yeo GSH, Dhillo WS, Owen BM. Dax1 modulates ERα-dependent hypothalamic estrogen sensing in female mice. Nat Commun 2023; 14:3076. [PMID: 37248237 PMCID: PMC10227040 DOI: 10.1038/s41467-023-38618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Coupling the release of pituitary hormones to the developmental stage of the oocyte is essential for female fertility. It requires estrogen to restrain kisspeptin (KISS1)-neuron pulsatility in the arcuate hypothalamic nucleus, while also exerting a surge-like effect on KISS1-neuron activity in the AVPV hypothalamic nucleus. However, a mechanistic basis for this region-specific effect has remained elusive. Our genomic analysis in female mice demonstrate that some processes, such as restraint of KISS1-neuron activity in the arcuate nucleus, may be explained by region-specific estrogen receptor alpha (ERα) DNA binding at gene regulatory regions. Furthermore, we find that the Kiss1-locus is uniquely regulated in these hypothalamic nuclei, and that the nuclear receptor co-repressor NR0B1 (DAX1) restrains its transcription specifically in the arcuate nucleus. These studies provide mechanistic insight into how ERα may control the KISS1-neuron, and Kiss1 gene expression, to couple gonadotropin release to the developmental stage of the oocyte.
Collapse
Affiliation(s)
- Jose M Ramos-Pittol
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | | | - Alexandra Milona
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Stephen M Manchishi
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Kara Rainbow
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
| | - John A Tadross
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
- Department of Histopathology and East Midlands & East of England Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anthony Beucher
- Section of Genetics and Genomics, Imperial College London, London, United Kingdom
| | - William H Colledge
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Inês Cebola
- Section of Genetics and Genomics, Imperial College London, London, United Kingdom
| | - Kevin G Murphy
- Section of Investigative Medicine, Imperial College London, London, United Kingdom
| | - Irene Miguel-Aliaga
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Giles S H Yeo
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London, United Kingdom.
| | - Bryn M Owen
- Section of Investigative Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
10
|
Constantin S. Targeting KNDy neurons to control GnRH pulses. Curr Opin Pharmacol 2022; 67:102316. [PMID: 36347163 PMCID: PMC9772270 DOI: 10.1016/j.coph.2022.102316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the final output of the central nervous system that drives fertility. A characteristic of GnRH secretion is its pulsatility, which is driven by a pulse generator. Each GnRH pulse triggers a luteinizing hormone (LH) pulse. However, the puzzle has been to reconcile the synchronicity of GnRH neurons with the scattered hypothalamic distribution of their cell bodies. A leap toward understanding GnRH pulses was the discovery of kisspeptin neurons near the distal processes of GnRH neurons, which secrete kisspeptins, potent excitatory neuropeptides on GnRH neurons, and equipped with dual, but opposite, self-modulatory neuropeptides, neurokinin B and dynorphin. Over the last decade, this cell-to-cell communication has been dissected in animal models. Today the 50-year quest for the basic mechanism of GnRH pulse generation may be over, but questions about its physiological tuning remain. Here is an overview of recent basic research that frames translational research.
Collapse
Affiliation(s)
- Stephanie Constantin
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Mills EG, Dhillo WS. Invited review: Translating kisspeptin and neurokinin B biology into new therapies for reproductive health. J Neuroendocrinol 2022; 34:e13201. [PMID: 36262016 PMCID: PMC9788075 DOI: 10.1111/jne.13201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022]
Abstract
The reproductive neuropeptide kisspeptin has emerged as the master regulator of mammalian reproduction due to its key roles in the initiation of puberty and the control of fertility. Alongside the tachykinin neurokinin B and the endogenous opioid dynorphin, these peptides are central to the hormonal control of reproduction. Building on the expanding body of experimental animal models, interest has flourished with human studies revealing that kisspeptin administration stimulates physiological reproductive hormone secretion in both healthy men and women, as well as patients with common reproductive disorders. In addition, emerging therapeutic roles based on neurokinin B for the management of menopausal flushing, endometriosis and uterine fibroids are increasingly recognised. In this review, we focus on kisspeptin and neurokinin B and their potential application as novel clinical strategies for the management of reproductive disorders.
Collapse
Affiliation(s)
- Edouard G. Mills
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
- Department of EndocrinologyImperial College Healthcare NHS TrustLondonUK
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
- Department of EndocrinologyImperial College Healthcare NHS TrustLondonUK
| |
Collapse
|
12
|
Emanuel RHK, Roberts J, Docherty PD, Lunt H, Campbell RE, Möller K. A review of the hormones involved in the endocrine dysfunctions of polycystic ovary syndrome and their interactions. Front Endocrinol (Lausanne) 2022; 13:1017468. [PMID: 36457554 PMCID: PMC9705998 DOI: 10.3389/fendo.2022.1017468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) affects up to 20% of women but remains poorly understood. It is a heterogeneous condition with many potential comorbidities. This review offers an overview of the dysregulation of the reproductive and metabolic systems associated with PCOS. Review of the literature informed the development of a comprehensive summarizing 'wiring' diagram of PCOS-related features. This review provides a justification for each diagram aspect from the relevant academic literature, and explores the interactions between the hypothalamus, ovarian follicles, adipose tissue, reproductive hormones and other organ systems. The diagram will provide an efficient and useful tool for those researching and treating PCOS to understand the current state of knowledge on the complexity and variability of PCOS.
Collapse
Affiliation(s)
- Rebecca H. K. Emanuel
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Josh Roberts
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Paul D. Docherty
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
- *Correspondence: Paul D. Docherty,
| | - Helen Lunt
- Diabetes Services, Te Whatu Ora Waitaha Canterbury, Canterbury, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Rebecca E. Campbell
- School of Biomedical Sciences, Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Knut Möller
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|