1
|
Giglia G, Rosatti F, Giannone AG, Gambino G, Zizzo MG, Florena AM, Sardo P, Toia F. Vascularized versus Free Nerve Grafts: An Experimental Study on Rats. J Pers Med 2023; 13:1682. [PMID: 38138909 PMCID: PMC10744603 DOI: 10.3390/jpm13121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Vascularized nerve grafts (VNGs) have been proposed as a superior alternative to free nerve grafts (FNGs) for complex nerve defects. A greater regenerative potential has been suggested by clinical and experimental studies, but conclusive evidence is still lacking. METHODS In this experimental study, 10 adult male Wistar rats received a non-vascularized orthotopic sciatic nerve graft on their right side, and a vascularized orthotopic sciatic nerve graft nerve on their left side. Functional outcome following nerve regeneration was evaluated through electrodiagnostic studies, target muscles weight and histomorphology, and data of VNGs and FNGs were compared. RESULTS The results of this study showed a significant difference in the motor unit number of Gastrocnemius Medialis (GM) estimated by MUNE in the VNG side compared to the FNG side. No other significant differences in axonal regeneration and muscle reinnervation were evident at either electrodiagnostic, histomorphology studies or muscle weight. CONCLUSIONS This experimental model showed slight differences in nerve regeneration between VNGs and FNGs, but cannot support a high clinical advantage for VNGs. The results of this study show that VNGs are not strongly superior to FNGs in the rat model, even in avascular beds. Clinical advantages of VNGs are likely to be limited to extensive and thick nerve defects and can only be assessed on experimental model with bigger animals. Also, we showed that the MUNE technique provided a reliable and reproducible evaluation of functional outcomes in the rat sciatic nerve and defined a reproducible protocol for functional evaluation of muscle reinnervation.
Collapse
Affiliation(s)
- Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (G.G.); (G.G.); (P.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fernando Rosatti
- Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy;
| | - Antonino Giulio Giannone
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.G.G.); (A.M.F.)
| | - Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (G.G.); (G.G.); (P.S.)
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90127 Palermo, Italy;
- ATeN (Advanced Technologies Network) Center, University of Palermo, Viale delle Scienze, 90127 Palermo, Italy
| | - Ada Maria Florena
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.G.G.); (A.M.F.)
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (G.G.); (G.G.); (P.S.)
| | - Francesca Toia
- Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
2
|
Bernard M, McOnie R, Tomlinson JE, Blum E, Prest TA, Sledziona M, Willand M, Gordon T, Borschel GH, Soletti L, Brown BN, Cheetham J. Peripheral Nerve Matrix Hydrogel Promotes Recovery after Nerve Transection and Repair. Plast Reconstr Surg 2023; 152:458e-467e. [PMID: 36946873 PMCID: PMC10461719 DOI: 10.1097/prs.0000000000010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 09/08/2022] [Indexed: 03/23/2023]
Abstract
BACKGROUND Nerve transection is the most common form of peripheral nerve injury. Treatment of peripheral nerve injury has primarily focused on stabilization and mechanical cues to guide extension of the regenerating growth cone across the site of transection. The authors investigated the effects of a peripheral nerve matrix (PNM) hydrogel on recovery after nerve transection. METHODS The authors used rodent models to determine the effect of PNM on axon extension, electrophysiologic nerve conduction, force generation, and neuromuscular junction formation after nerve transection and repair. The authors complemented this work with in vivo and in vitro fluorescence-activated cell sorting and immunohistochemistry approaches to determine the effects of PNM on critical cell populations early after repair. RESULTS Extension of axons from the proximal stump and overall green fluorescent protein-positive axon volume within the regenerative bridge were increased in the presence of PNM compared with an empty conduit ( P < 0.005) 21 days after repair. PNM increased electrophysiologic conduction (compound muscle action potential amplitude) across the repair site ( P < 0.05) and neuromuscular junction formation ( P = 0.04) 56 days after repair. PNM produced a shift in macrophage phenotype in vitro and in vivo ( P < 0.05) and promoted regeneration in a murine model used to characterize the early immune response to PNM ( P < 0.05). CONCLUSION PNM, delivered by subepineural injection, promoted recovery after nerve transection with immediate repair, supporting a beneficial macrophage response, axon extension, and downstream remodeling using a range of clinically relevant outcome measures. CLINICAL RELEVANCE STATEMENT This article describes an approach for subepineural injection at the site of nerve coaptation to modulate the response to injury and improve outcomes.
Collapse
Affiliation(s)
- Megan Bernard
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
| | - Rebecca McOnie
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
| | - Joy E. Tomlinson
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
| | - Ethan Blum
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
| | | | - Mike Sledziona
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
| | | | - Tessa Gordon
- The Hospital for Sick Children, University of Toronto
| | | | | | | | - Jonathan Cheetham
- From the Department of Clinical Sciences, Cornell University College of Veterinary Medicine
- Renerva, LLC
| |
Collapse
|
3
|
Golshadi M, Claffey EF, Grenier JK, Miller A, Willand M, Edwards MG, Moore TP, Sledziona M, Gordon T, Borschel GH, Cheetham J. Delay modulates the immune response to nerve repair. NPJ Regen Med 2023; 8:12. [PMID: 36849720 PMCID: PMC9970988 DOI: 10.1038/s41536-023-00285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Effective regeneration after peripheral nerve injury requires macrophage recruitment. We investigated the activation of remodeling pathways within the macrophage population when repair is delayed and identified alteration of key upstream regulators of the inflammatory response. We then targeted one of these regulators, using exogenous IL10 to manipulate the response to injury at the repair site. We demonstrate that this approach alters macrophage polarization, promotes macrophage recruitment, axon extension, neuromuscular junction formation, and increases the number of regenerating motor units reaching their target. We also demonstrate that this approach can rescue the effects of delayed nerve graft.
Collapse
Affiliation(s)
- Masoud Golshadi
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Elaine F Claffey
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Jennifer K Grenier
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Andrew Miller
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Michael Willand
- Epineuron Technologies Inc, 5100 Orbitor Dr., Mississauga, ON, L4W 5R8, Canada
| | | | - Tim P Moore
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Michael Sledziona
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Tessa Gordon
- Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1×8, Canada
| | | | - Jonathan Cheetham
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Ronchi G, Fregnan F, Muratori L, Gambarotta G, Raimondo S. Morphological Methods to Evaluate Peripheral Nerve Fiber Regeneration: A Comprehensive Review. Int J Mol Sci 2023; 24:1818. [PMID: 36768142 PMCID: PMC9915436 DOI: 10.3390/ijms24031818] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Regeneration of damaged peripheral nerves remains one of the main challenges of neurosurgery and regenerative medicine, a nerve functionality is rarely restored, especially after severe injuries. Researchers are constantly looking for innovative strategies for tackling this problem, with the development of advanced tissue-engineered nerve conduits and new pharmacological and physical interventions, with the aim of improving patients' life quality. Different evaluation methods can be used to study the effectiveness of a new treatment, including functional tests, morphological assessment of regenerated nerve fibers and biomolecular analyses of key factors necessary for good regeneration. The number and diversity of protocols and methods, as well as the availability of innovative technologies which are used to assess nerve regeneration after experimental interventions, often makes it difficult to compare results obtained in different labs. The purpose of the current review is to describe the main morphological approaches used to evaluate the degree of nerve fiber regeneration in terms of their usefulness and limitations.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, 10043 Torino, TO, Italy
| |
Collapse
|
5
|
Comprehensive dynamic and kinematic analysis of the rodent hindlimb during over ground walking. Sci Rep 2022; 12:19725. [PMID: 36385108 PMCID: PMC9668918 DOI: 10.1038/s41598-022-20288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
The rat hindlimb is a frequently utilized pre-clinical model system to evaluate injuries and pathologies impacting the hindlimbs. These studies have demonstrated the translational potential of this model but have typically focused on the force generating capacity of target muscles as the primary evaluative outcome. Historically, human studies investigating extremity injuries and pathologies have utilized biomechanical analysis to better understand the impact of injury and extent of recovery. In this study, we expand that full biomechanical workup to a rat model in order to characterize the spatiotemporal parameters, ground reaction forces, 3-D joint kinematics, 3-D joint kinetics, and energetics of gait in healthy rats. We report data on each of these metrics that meets or exceeds the standards set by the current literature and are the first to report on all these metrics in a single set of animals. The methodology and findings presented in this study have significant implications for the development and clinical application of the improved regenerative therapeutics and rehabilitative therapies required for durable and complete functional recovery from extremity traumas, as well as other musculoskeletal pathologies.
Collapse
|
6
|
Pérez LA, Leyton L, Valdivia A. Thy-1 (CD90), Integrins and Syndecan 4 are Key Regulators of Skin Wound Healing. Front Cell Dev Biol 2022; 10:810474. [PMID: 35186924 PMCID: PMC8851320 DOI: 10.3389/fcell.2022.810474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.
Collapse
Affiliation(s)
- Leonardo A. Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| | - Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| |
Collapse
|
7
|
Yeoh S, Warner WS, Eli I, Mahan MA. Rapid-stretch injury to peripheral nerves: comparison of injury models. J Neurosurg 2021; 135:893-903. [PMID: 33157535 DOI: 10.3171/2020.5.jns193448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Traditional animal models of nerve injury use controlled crush or transection injuries to investigate nerve regeneration; however, a more common and challenging clinical problem involves closed traction nerve injuries. The authors have produced a precise traction injury model and sought to examine how the pathophysiology of stretch injuries compares with that of crush and transection injuries. METHODS Ninety-five late-adolescent (8-week-old) male mice underwent 1 of 7 injury grades or a sham injury (n > 10 per group): elastic stretch, inelastic stretch, stretch rupture, crush, primary coaptation, secondary coaptation, and critical gap. Animals underwent serial neurological assessment with sciatic function index, tapered beam, and von Frey monofilament testing for 48 days after injury, followed by trichrome and immunofluorescent nerve histology and muscle weight evaluation. RESULTS The in-continuity injuries, crush and elastic stretch, demonstrated different recovery profiles, with more severe functional deficits after crush injury than after elastic stretch immediately following injury (p < 0.05). However, animals with either injury type returned to baseline performance in all neurological assessments, accompanied by minimal change in nerve histology. Inelastic stretch, a partial discontinuity injury, produced more severe neurological deficits, incomplete return of function, 47% ± 9.1% (mean ± SD) reduction of axon counts (p < 0.001), and partial neuroma formation within the nerve. Discontinuity injuries, including immediate and delayed nerve repair, stretch rupture, and critical gap, manifested severe, long-term neurological deficits and profound axonal loss, coupled with intraneural scar formation. Although repaired nerves demonstrated axon regeneration across the gap, rupture and critical gap injuries demonstrated negligible axon crossing, despite rupture injuries having healed into continuity. CONCLUSIONS Stretch-injured nerves present unique pathology and functional deficits compared with traditional nerve injury models. Because of the profound neuroma formation, stretch injuries represent an opportunity to study the pathophysiology associated with clinical injury mechanisms. Further validation for comparison with human injuries will require evaluation in a large-animal model.
Collapse
|
8
|
Cicero L, Licciardi M, Cirincione R, Puleio R, Giammona G, Giglia G, Sardo P, Edoardo Vigni G, Cioffi A, Sanfilippo A, Cassata G. Polybutylene succinate artificial scaffold for peripheral nerve regeneration. J Biomed Mater Res B Appl Biomater 2021; 110:125-134. [PMID: 34180135 PMCID: PMC9290626 DOI: 10.1002/jbm.b.34896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
Regeneration and recovery of nerve tissues are a great challenge for medicine, and positively affect the quality of life of patients. The development of tissue engineering offers a new approach to the problem with the creation of multifunctional artificial scaffolds that act on various levels in the damaged tissue, providing physical and biochemical support for the growth of nerve cells. In this study, the effects of the use of a tubular scaffold made of polybutylene succinate (PBS), surgically positioned at the level of a sciatic nerve injured in rat, between the proximal stump and the distal one, was investigated. Scaffolds characterization was carried out by scanning electron microscopy and X‐ray microcomputed tomography and magnetic resonance imaging, in vivo. The demonstration of the nerve regeneration was based on the evaluation of electroneurography, measuring the weight of gastrocnemius and tibialis anterior muscles, histological examination of regenerated nerves and observing the recovery of the locomotor activity of animals. The PBS tubular scaffold minimized iatrogenic trauma on the nerve, acting as a directional guide for the regenerating fibers by conveying them toward the distal stump. In this context, neurotrophic and neurotropic factors may accumulate and perform their functions, while invasion by macrophages and scar tissue is hampered.
Collapse
Affiliation(s)
- Luca Cicero
- Centro Mediterraneo Ricerca e Training (Ce.Me.Ri.T)Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”PalermoItaly
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università degli Studi di PalermoPalermoItaly
| | - Roberta Cirincione
- Centro Mediterraneo Ricerca e Training (Ce.Me.Ri.T)Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”PalermoItaly
| | - Roberto Puleio
- Centro Mediterraneo Ricerca e Training (Ce.Me.Ri.T)Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”PalermoItaly
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF)Università degli Studi di PalermoPalermoItaly
| | - Giuseppe Giglia
- Dipartimento di BiomedicinaNeuroscienze e Diagnostica Avanzata (BiND) Università degli Studi di PalermoPalermoItaly
| | - Pierangelo Sardo
- Dipartimento di BiomedicinaNeuroscienze e Diagnostica Avanzata (BiND) Università degli Studi di PalermoPalermoItaly
| | - Giulio Edoardo Vigni
- Dipartimento di Discipline Chirurgiche, Oncologiche e StomatologicheUniversità degli Studi di PalermoPalermoItaly
| | - Alessio Cioffi
- Dipartimento di Discipline Chirurgiche, Oncologiche e StomatologicheUniversità degli Studi di PalermoPalermoItaly
| | - Antonino Sanfilippo
- Dipartimento di Discipline Chirurgiche, Oncologiche e StomatologicheUniversità degli Studi di PalermoPalermoItaly
| | - Giovanni Cassata
- Centro Mediterraneo Ricerca e Training (Ce.Me.Ri.T)Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”PalermoItaly
| |
Collapse
|
9
|
Byun SH, Ahn KM. Functional and electron-microscopic changes after differential traction injury in the sciatic nerve of a rat. Maxillofac Plast Reconstr Surg 2021; 43:12. [PMID: 33934285 PMCID: PMC8088430 DOI: 10.1186/s40902-021-00297-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 11/18/2022] Open
Abstract
Background During maxillofacial trauma or oral cancer surgery, peripheral nerve might be damaged by traction injury. The purpose of this study was to evaluate functional and histomorphometric changes after traction nerve injury in the sciatic nerve of a rat model. Methods A total of 24 Sprague-Dawley rats were equally divided into three groups: unstretched (sham/control, group A), stretched with 0.7N (group B) and 1.5N (group C). Traction injury was performed for 10 min in B and C groups. Functional recovery of the sciatic nerve was evaluated by walking track analysis, toe spread test, and pinprick test 2 weeks after injury. The weight of gastrocnemius muscles of both sides was measured to evaluate weight ratio (ipsilateral/contralateral). Total number of axons, axon fiber size, myelin thickness, G-ratio, axon number/mm2, diameter of fiber, changes of longitudinal width, and formation of the edema and hematoma were evaluated by transmission electron microscopy. Results The sciatic function indexes were −11.48±4.0, −15.11±14.84, and −49.12±35.42 for groups A, B, and C, respectively. Pinprick test showed 3.0, 2.86±0.38, and 1.38±0.52 for A, B, and group C. Muscle weight ratios were 0.98±0.13 for group A, 0.70±0.10 for group B, and 0.54±0.05 for group C. There were significant differences in toe spread test, pinprick test, and muscle weight ratio between control group and experimental group (p<0.001). In the experimental group, fiber number, fiber size, G-ratio, fiber number/mm2, myelin thickness, diameter of fiber, and longitudinal width were decreased with statistical significance. Conclusion The present study demonstrated that the nerve traction injury in the rat sciatic nerve damaged the motor and sensory function and axonal integrity. The amount of functional nerve damage was proportional to the amount of traction power and dependent on the initial tensile strengths (0.7N and 1.5N).
Collapse
Affiliation(s)
- Soo-Hwan Byun
- Department of Oral & Maxillofacial Surgery, Department of Dentistry, Hallym University Sacred Heart Hospital, Anyang-si, Republic of Korea
| | - Kang-Min Ahn
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Ulsan, Asan Medical Center, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
10
|
Burrell JC, Browne KD, Dutton JL, Laimo FA, Das S, Brown DP, Roberts S, Petrov D, Ali Z, Ledebur HC, Rosen JM, Kaplan HM, Wolf JA, Smith DH, Chen HI, Cullen DK. A Porcine Model of Peripheral Nerve Injury Enabling Ultra-Long Regenerative Distances: Surgical Approach, Recovery Kinetics, and Clinical Relevance. Neurosurgery 2021; 87:833-846. [PMID: 32392341 DOI: 10.1093/neuros/nyaa106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Millions of Americans experience residual deficits from traumatic peripheral nerve injury (PNI). Despite advancements in surgical technique, repair typically results in poor functional outcomes due to prolonged periods of denervation resulting from long regenerative distances coupled with slow rates of axonal regeneration. Novel surgical solutions require valid preclinical models that adequately replicate the key challenges of clinical PNI. OBJECTIVE To develop a preclinical model of PNI in swine that addresses 2 challenging, clinically relevant PNI scenarios: long segmental defects (≥5 cm) and ultra-long regenerative distances (20-27 cm). Thus, we aim to demonstrate that a porcine model of major PNI is suitable as a potential framework to evaluate novel regenerative strategies prior to clinical deployment. METHODS A 5-cm-long common peroneal nerve or deep peroneal nerve injury was repaired using a saphenous nerve or sural nerve autograft, respectively. Histological and electrophysiological assessments were performed at 9 to 12 mo post repair to evaluate nerve regeneration and functional recovery. Relevant anatomy, surgical approach, and functional/histological outcomes were characterized for both repair techniques. RESULTS Axons regenerated across the repair zone and were identified in the distal stump. Electrophysiological recordings confirmed these findings and suggested regenerating axons reinnervated target muscles. CONCLUSION The models presented herein provide opportunities to investigate peripheral nerve regeneration using different nerves tailored for specific mechanisms of interest, such as nerve modality (motor, sensory, and mixed fiber composition), injury length (short/long gap), and total regenerative distance (proximal/distal injury).
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin D Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - John L Dutton
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Franco A Laimo
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Daniel P Brown
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Sanford Roberts
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Dmitriy Petrov
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Zarina Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Joseph M Rosen
- Division of Plastic Surgery, Dartmouth-Hitchcock Medical Center, Dartmouth College, Lebanon, New Hampshire
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers University, New Brunswick, New Jersey
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Axonova Medical, Philadelphia, Pennsylvania
| | - H Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania.,Axonova Medical, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Ali SA, Hanks JE, Stebbins AW, Cohen ST, Hunter DA, Snyder-Warwick AK, Mackinnon SE, Kupfer RA, Hogikyan ND, Feldman EL, Brenner MJ. Comparison of Myelin-Associated Glycoprotein With Vincristine for Facial Nerve Inhibition After Bilateral Axotomy in a Transgenic Thy1-Gfp Rat Model. JAMA FACIAL PLAST SU 2019; 21:426-433. [PMID: 31219545 PMCID: PMC6587147 DOI: 10.1001/jamafacial.2019.0398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
IMPORTANCE Aberrant synkinetic movement after facial nerve injury can lead to prominent facial asymmetry and resultant psychological distress. The current practices of neuroinhibition to promote greater facial symmetry are often temporary in nature and require repeated procedures. OBJECTIVE To determine whether myelin-associated glycoprotein (MAG), a specific neuroinhibitor, can prevent neuroregeneration with efficacy comparable with that of vincristine, a well-established neurotoxin. DESIGN, SETTING, AND PARTICIPANTS Rats transgenic for Thy-1 cell surface antigen-green fluorescent protein (Thy1-Gfp) were randomized into 3 groups. Each rat received bilateral crush axotomy injuries to the buccal and marginal mandibular branches of the facial nerves. The animals received intraneural injection of saline, MAG, or vincristine. MAIN OUTCOMES AND MEASURES The animals were imaged via fluorescent microscopy at weeks 1, 3, 4, and 5 after surgery. Quantitative fluorescent data were generated as mean intensities of nerve segments proximal and distal to the axotomy site. Electrophysiological analysis, via measurement of compound muscle action potentials, was performed at weeks 0, 3, 4, and 5 after surgery. RESULTS A total of 12 rats were included in the study. Administration of MAG significantly reduced fluorescent intensity of the distal nerve in comparison with the control group at week 3 (mean [SD], MAG group: 94 [11] intensity units vs control group: 130 [11] intensity units; P < .001), week 4 (MAG group: 81 [19] intensity units vs control group: 103 [9] intensity units; P = .004), and week 5 (MAG group: 76 [10] intensity units vs control group: 94 [10] intensity units; P < .001). In addition, rats treated with MAG had greater fluorescent intensity than those treated with vincristine at week 3 (mean [SD], MAG group: 94 [11] intensity units vs vincristine group: 76 [6] intensity units; P = .03), although there was no significant difference for weeks 4 and 5. At week 5, both MAG and vincristine demonstrated lower distal nerve to proximal nerve intensity ratios than the control group (control group, 0.94; vs MAG group, 0.82; P = .01; vs vincristine group; 0.77; P < .001). There was no significant difference in amplitude between the experimental groups at week 5 of electrophysiological testing. CONCLUSIONS AND RELEVANCE Lower facial asymmetry and synkinesis are common persistent concerns to patients after facial nerve injury. Using the Thy1-Gfp rat, this study demonstrates effective inhibition of neuroregeneration via intraneural application of MAG in a crush axotomy model, comparable with results with vincristine. By potentially avoiding systemic toxic effects of vincristine, MAG demonstrates potential as an inhibitor of neural regeneration for patients with synkinesis. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- S. Ahmed Ali
- Department of Otolaryngology–Head & Neck Surgery, Michigan Medicine, Ann Arbor
| | - John E. Hanks
- Department of Otolaryngology–Head & Neck Surgery, Michigan Medicine, Ann Arbor
| | - Aaron W. Stebbins
- Department of Otolaryngology–Head & Neck Surgery, Michigan Medicine, Ann Arbor
- Department of Neurology, Michigan Medicine, Ann Arbor
| | - Samantha T. Cohen
- Department of Otolaryngology–Head & Neck Surgery, Michigan Medicine, Ann Arbor
| | - Daniel A. Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Alison K. Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Robbi A. Kupfer
- Department of Otolaryngology–Head & Neck Surgery, Michigan Medicine, Ann Arbor
| | - Norman D. Hogikyan
- Department of Otolaryngology–Head & Neck Surgery, Michigan Medicine, Ann Arbor
| | | | - Michael J. Brenner
- Department of Otolaryngology–Head & Neck Surgery, Michigan Medicine, Ann Arbor
| |
Collapse
|
12
|
Ronchi G, Morano M, Fregnan F, Pugliese P, Crosio A, Tos P, Geuna S, Haastert-Talini K, Gambarotta G. The Median Nerve Injury Model in Pre-clinical Research - A Critical Review on Benefits and Limitations. Front Cell Neurosci 2019; 13:288. [PMID: 31316355 PMCID: PMC6609919 DOI: 10.3389/fncel.2019.00288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The successful introduction of innovative treatment strategies into clinical practise strongly depends on the availability of effective experimental models and their reliable pre-clinical assessment. Considering pre-clinical research for peripheral nerve repair and reconstruction, the far most used nerve regeneration model in the last decades is the sciatic nerve injury and repair model. More recently, the use of the median nerve injury and repair model has gained increasing attention due to some significant advantages it provides compared to sciatic nerve injury. Outstanding advantages are the availability of reliable behavioural tests for assessing posttraumatic voluntary motor recovery and a much lower impact on the animal wellbeing. In this article, the potential application of the median nerve injury and repair model in pre-clinical research is reviewed. In addition, we provide a synthetic overview of a variety of methods that can be applied in this model for nerve regeneration assessment. This article is aimed at helping researchers in adequately adopting this in vivo model for pre-clinical evaluation of peripheral nerve reconstruction as well as for interpreting the results in a translational perspective.
Collapse
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Pierfrancesco Pugliese
- Dipartimento di Chirurgia Generale e Specialistica, Azienda Ospedaliera Universitaria, Ancona, Italy
| | - Alessandro Crosio
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Pierluigi Tos
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Bergmeister KD, Aman M, Muceli S, Vujaklija I, Manzano-Szalai K, Unger E, Byrne RA, Scheinecker C, Riedl O, Salminger S, Frommlet F, Borschel GH, Farina D, Aszmann OC. Peripheral nerve transfers change target muscle structure and function. SCIENCE ADVANCES 2019; 5:eaau2956. [PMID: 30613770 PMCID: PMC6314825 DOI: 10.1126/sciadv.aau2956] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/26/2018] [Indexed: 05/05/2023]
Abstract
Selective nerve transfers surgically rewire motor neurons and are used in extremity reconstruction to restore muscle function or to facilitate intuitive prosthetic control. We investigated the neurophysiological effects of rewiring motor axons originating from spinal motor neuron pools into target muscles with lower innervation ratio in a rat model. Following reinnervation, the target muscle's force regenerated almost completely, with the motor unit population increasing to 116% in functional and 172% in histological assessments with subsequently smaller muscle units. Muscle fiber type populations transformed into the donor nerve's original muscles. We thus demonstrate that axons of alternative spinal origin can hyper-reinnervate target muscles without loss of muscle force regeneration, but with a donor-specific shift in muscle fiber type. These results explain the excellent clinical outcomes following nerve transfers in neuromuscular reconstruction. They indicate that reinnervated muscles can provide an accurate bioscreen to display neural information of lost body parts for high-fidelity prosthetic control.
Collapse
Affiliation(s)
- Konstantin D. Bergmeister
- CD Laboratory for the Restoration of Extremity Function, Department of Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Martin Aman
- CD Laboratory for the Restoration of Extremity Function, Department of Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Silvia Muceli
- Department of Bioengineering, Imperial College London, London, UK
- Clinic for Trauma Surgery, Orthopaedic Surgery and Plastic Surgery–Research Department of Neurorehabilitation Systems, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Vujaklija
- Department of Bioengineering, Imperial College London, London, UK
| | - Krisztina Manzano-Szalai
- CD Laboratory for the Restoration of Extremity Function, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ruth A. Byrne
- Division of Rheumatology, Clinic for Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Clemens Scheinecker
- Division of Rheumatology, Clinic for Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Otto Riedl
- CD Laboratory for the Restoration of Extremity Function, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Salminger
- CD Laboratory for the Restoration of Extremity Function, Department of Surgery, Medical University of Vienna, Vienna, Austria
- Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Frommlet
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Gregory H. Borschel
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| | - Oskar C. Aszmann
- CD Laboratory for the Restoration of Extremity Function, Department of Surgery, Medical University of Vienna, Vienna, Austria
- Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
- Corresponding author.
| |
Collapse
|
14
|
Dos Santos FP, Peruch T, Katami SJV, Martini APR, Crestani TA, Quintiliano K, Maurmann N, Sanches EF, Netto CA, Pranke P, de Souza Pagnussat A. Poly (lactide-co-glycolide) (PLGA) Scaffold Induces Short-term Nerve Regeneration and Functional Recovery Following Sciatic Nerve Transection in Rats. Neuroscience 2018; 396:94-107. [PMID: 30452974 DOI: 10.1016/j.neuroscience.2018.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023]
Abstract
Peripheral nerve injury is an important cause of incapability and has limited available treatment. Autologous donor nerve implant is the golden standard treatment, however, may cause secondary deficits. Stem cells show positive results in preclinical settings, preserving tissue and function. We tested the efficacy of stem cells derived from human exfoliated deciduous teeth seeded in poly (lactide-co-glycolide) scaffolds in sciatic nerve transection model. Seventy-two adult male Wistar rats had 7-mm nerve gap bridge using scaffolds with (or without) stem cells. Animals were randomly divided into: sham-operated; sham-operated without scaffold; sham-operated + scaffold + stem cells; sciatic transection + no treatment; sciatic transection + acellular scaffolds; sciatic transection + scaffold + stem cells. Sciatic Functional Index and Ladder Rung Walking tests were performed before (-1), 14 and 28 days after surgery. Morphometric nerve measurement and muscle weights were assessed. Scaffolds with stem cells improved function in Sciatic Functional Index. Acellular scaffold was effective, promoting functional recovery and nerve regeneration following nerve injury. Scaffolds provide better nerve regeneration and functional recovery after sciatic transection. Despite cell therapy promoting faster recovery after sciatic transection in the Sciatic Index Score, stem cells did not improve functional and morphological recovery after nerve injury. This is the first study testing the potential use of scaffolds combined with stem cells in the early stages after injury. Scaffolds with stem cells could accelerate nerve recovery and favor adjuvant therapies, evidencing the need for further studies to increase the knowledge about stem cells' mechanisms.
Collapse
Affiliation(s)
- Franciele Pereira Dos Santos
- Post-graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Thais Peruch
- Department of Physical Therapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | | | - Ana Paula Rodrigues Martini
- Post-graduation Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thayane Antoniolli Crestani
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduation Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Kerlin Quintiliano
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduation Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natasha Maurmann
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduation Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Farias Sanches
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-graduation Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Carlos Alexandre Netto
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduation Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Stem Cell Research Institute (SCRI), Porto Alegre, RS, Brazil
| | - Aline de Souza Pagnussat
- Post-graduation Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil; Department of Physical Therapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil; Post-graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| |
Collapse
|
15
|
Muceli S, Bergmeister KD, Hoffmann KP, Aman M, Vukajlija I, Aszmann OC, Farina D. Decoding motor neuron activity from epimysial thin-film electrode recordings following targeted muscle reinnervation. J Neural Eng 2018; 16:016010. [PMID: 30524045 DOI: 10.1088/1741-2552/aaed85] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Surface electromyography (EMG) is currently used as a control signal for active prostheses in amputees who underwent targeted muscle reinnervation (TMR) surgery. Recent research has shown that it is possible to access the spiking activity of spinal motor neurons from multi-channel surface EMG. In this study, we propose the use of multi-channel epimysial EMG electrodes as an interface for decoding motor neurons activity following TMR. APPROACH We tested multi-channel epimysial electrodes (48 detection sites) built with thin-film technology in an animal model of TMR. Eight animals were tested 12 weeks after reinnervation of the biceps brachii lateral head by the ulnar nerve. We identified the position of the innervation zone and the muscle fiber conduction velocity of motor units decoded from the multi-channel epimysial recordings. Moreover, we characterized the pick-up volume by the distribution of the motor unit action potential amplitude over the epimysium surface. MAIN RESULTS The electrodes provided high quality signals with average signal-to-noise ratio >30 dB across 95 identified motor units. The motor unit action potential amplitude decreased with increasing distance of the electrode from the muscle fibers (P [Formula: see text] 0.001). The decrease was more pronounced for bipolar compared to monopolar derivations. The average muscle fiber conduction velocity was 2.46 ± 0.83 m s-1. Most of the neuromuscular junctions were close to the region where the nerve was neurotized, as observed from the EMG recordings and imaging data. SIGNIFICANCE These results show that epimysial electrodes can be used for selective recordings of motor unit activities with a pick-up volume that included the entire muscle in the rat hindlimb. Epimysial electrodes can thus be used for detecting motor unit activity in muscles with specific fascicular territories associated to different functions following TMR surgery.
Collapse
Affiliation(s)
- Silvia Muceli
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
16
|
Willand MP, Catapano J. Serial estimation of motor unit numbers using an implantable system following nerve injury and repair in rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:323-326. [PMID: 28268342 DOI: 10.1109/embc.2016.7590705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Motor unit number estimation (MUNE) is an established technique to assess recovery following peripheral nerve injury. In rats, where the vast majority of peripheral nerve research is conducted, assessing motor units at various time points requires a terminal procedure due to the invasive nature of current techniques. Here, we present an implanted system that was used to serially assess MUNE after peripheral nerve injury and repair in rats. This system significantly increases the efficiency of peripheral nerve research by negating the need for terminal procedures, allowing for serial MUNE assessment over time in the same rat. Our system utilizes a commercial implantable stimulator, custom designed cuff electrode, and corresponding custom software with automatic M-wave classification to quickly assess functional reinnervation up to 8 weeks following nerve injury and repair. The concepts presented in this paper are applicable to any implanted device with a transcutaneous radio frequency or inductive link that can be used to trigger nerve stimulation. The methodology is also applicable to researchers without access to implantable devices.
Collapse
|
17
|
Comparative outcome measures in peripheral regeneration studies. Exp Neurol 2016; 287:348-357. [PMID: 27094121 DOI: 10.1016/j.expneurol.2016.04.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 12/25/2022]
Abstract
Traumatic peripheral nerve injuries are common and often result in partial or permanent paralysis, numbness of the affected limb, and debilitating neuropathic pain. Experimental animal models of nerve injury have utilized a diversity of outcome measures to examine functional recovery following injury. Four primary categories of outcome measures of regenerative success including retrograde labeling with counts of regenerating neurons, immunohistochemistry and histomorphometry, reinnervation of target muscles, and behavioral analysis of recovery will be reviewed. Validity of different outcome measures are discussed in context of hindlimb, forelimb, and facial nerve injury models. Severity of nerve injury will be highlighted, and comparisons between nerve crush injury and more severe transection and neuroma-in-continuity nerve injury paradigms will be evaluated. The case is made that specific outcome measures may be more sensitive to assessing functional recovery following nerve injury than others. This will be discussed in the context of the lack of association between certain outcome measures of nerve regeneration. Examples of inaccurate conclusions from specific outcome measures will also be considered. Overall, researchers must therefore take care to select appropriate outcome measures for animal nerve injury studies dependant on the specific experimental interventions and scientific questions addressed.
Collapse
|
18
|
Placheta E, Wood MD, Lafontaine C, Frey M, Gordon T, Borschel GH. Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats. JAMA FACIAL PLAST SU 2015; 17:8-15. [PMID: 25317544 DOI: 10.1001/jamafacial.2014.617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Facial nerve injury leads to severe functional and aesthetic deficits. The transgenic Thy1-GFP rat is a new model for facial nerve injury and reconstruction research that will help improve clinical outcomes through translational facial nerve injury research. OBJECTIVE To determine whether serial in vivo imaging of nerve regeneration in the transgenic rat model is possible, facial nerve regeneration was imaged under the main paradigms of facial nerve injury and reconstruction. DESIGN, SETTING, AND PARTICIPANTS Fifteen male Thy1-GFP rats, which express green fluorescent protein (GFP) in their neural structures, were divided into 3 groups in the laboratory: crush-injury, direct repair, and cross-face nerve grafting (30-mm graft length). The distal nerve stump or nerve graft was predegenerated for 2 weeks. The facial nerve of the transgenic rats was serially imaged at the time of operation and after 2, 4, and 8 weeks of regeneration. The imaging was performed under a GFP-MDS-96/BN excitation stand (BLS Ltd). INTERVENTION OR EXPOSURE Facial nerve injury. MAIN OUTCOME AND MEASURE Optical fluorescence of regenerating facial nerve axons. RESULTS Serial in vivo imaging of the regeneration of GFP-positive axons in the Thy1-GFP rat model is possible. All animals survived the short imaging procedures well, and nerve regeneration was followed over clinically relevant distances. The predegeneration of the distal nerve stump or the cross-face nerve graft was, however, necessary to image the regeneration front at early time points. Crush injury was not suitable to sufficiently predegenerate the nerve (and to allow for degradation of the GFP through Wallerian degeneration). After direct repair, axons regenerated over the coaptation site in between 2 and 4 weeks. The GFP-positive nerve fibers reached the distal end of the 30-mm-long cross-face nervegrafts after 4 to 8 weeks of regeneration. CONCLUSIONS AND RELEVANCE The time course of facial nerve regeneration was studied by serial in vivo imaging in the transgenic rat model. Nerve regeneration was followed over clinically relevant distances in a small number of experimental animals, as they were subsequently imaged at multiple time points. The Thy1-GFP rat model will help improve clinical outcomes of facial reanimation surgery through improving the knowledge of facial nerve regeneration after surgical procedures. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Eva Placheta
- Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christine Lafontaine
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Manfred Frey
- Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Tessa Gordon
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory H Borschel
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada3Department of Surgery, University of Toronto, Toronto, Ontario, Canada4Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada5I
| |
Collapse
|
19
|
Nerve cross-bridging to enhance nerve regeneration in a rat model of delayed nerve repair. PLoS One 2015; 10:e0127397. [PMID: 26016986 PMCID: PMC4446033 DOI: 10.1371/journal.pone.0127397] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/14/2015] [Indexed: 01/21/2023] Open
Abstract
There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays.
Collapse
|
20
|
Enhancement of facial nerve motoneuron regeneration through cross-face nerve grafts by adding end-to-side sensory axons. Plast Reconstr Surg 2015; 135:460-471. [PMID: 25626793 DOI: 10.1097/prs.0000000000000893] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND In unilateral facial palsy, cross-face nerve grafts are used for emotional facial reanimation. Facial nerve regeneration through the grafts takes several months, and the functional results are sometimes inadequate. Chronic denervation of the cross-face nerve graft results in incomplete nerve regeneration. The authors hypothesize that donor axons from regional sensory nerves will enhance facial motoneuron regeneration, improve axon regeneration, and improve the amplitude of facial muscle movement. METHODS In the rat model, a 30-mm nerve graft (right common peroneal nerve) was used as a cross-face nerve graft. The graft was coapted to the proximal stump of the transected right buccal branch of the facial nerve and the distal stumps of the transected left buccal and marginal mandibular branches. In one group, sensory occipital nerves were coapted end-to-side to the cross-face nerve graft. Regeneration of green fluorescent protein-positive axons was imaged in vivo in transgenic Thy1-green fluorescent protein rats, in which all neurons express green fluorescence. After 16 weeks, retrograde labeling of regenerated neurons and histomorphometric analysis of myelinated axons was performed. Functional outcomes were assessed with video analysis of whisker motion. RESULTS "Pathway protection" with sensory axons significantly enhanced motoneuron regeneration, as assessed by retrograde labeling, in vivo fluorescence imaging, and histomorphometry, and significantly improved whisker motion during video analysis. CONCLUSION Sensory pathway protection of cross-face nerve grafts counteracts chronic denervation in nerve grafts and improves regeneration and functional outcomes.
Collapse
|
21
|
Yang N, Huang B, Tsinkalovsky O, Brekkå N, Zhu H, Leiss L, Enger PØ, Li X, Wang J. A novel GFP nude rat model to investigate tumor-stroma interactions. Cancer Cell Int 2015; 14:541. [PMID: 25663822 PMCID: PMC4319225 DOI: 10.1186/s12935-014-0146-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUD A key strategy for the study of the tumor microenvironment is to implant human tumor cells in an immunodeficient rodent strain ubiquitously expressing a fluorescent marker. Here, a novel nude rat expressing a green fluorescent protein (GFP) transgene was established and engrafted with primary human tumor tissue in order to separate tumor from stromal cell populations for subsequent molecular analysis. METHODS SD-TG (GFP) 2BalRrrc transgenic rats were crossed with HsdHan™: rnu/rnu Rowett nude rats to develop a GFP expressing immunocompromised rat. PCR and flow cytometry were used to follow the GFP genotype and phenotype in newborns. After three to four generations, animals were implanted with 4 T1 dsRed murine breast cancer cells or primary human glioblastoma (GBM) biopsies to generate xenografts for subsequent separation by fluorescence-activated cell sorting (FACS). RESULTS Fluorecence microscopy and reverse transcription-PCR demonstrated that GFP, under the control of the human ubiquitin C promoter, was stably maintained and expressed in diverse organs over several generations. Immunophenotyping of blood samples by flow cytometry confirmed that the immunodeficient features of the parental rat strain, HsdHan™: rnu/rnu, were retained in the GFP nude rat. Both the murine cell line and human GBM biopsies engrafted, and stromal cell populations were isolated from dissociated xenografts by FACS to > 95% purity. CONCLUSIONS A GFP transgene was stably introduced into a nude rat background in which human and murine cancer cells successfully engrafted. This animal strain provides a novel in vivo system for detailed cellular and molecular characterization of tumor-stroma interactions.
Collapse
Affiliation(s)
- Ning Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China ; Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway ; Brain Science Research Institute, Shandong University, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China ; Brain Science Research Institute, Shandong University, Jinan, China
| | - Oleg Tsinkalovsky
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Narve Brekkå
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Huaiyang Zhu
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Lina Leiss
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway ; Neuro Clinic, Haukeland University Hospital, Bergen, Norway
| | - Per Øyvind Enger
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway ; Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China ; Brain Science Research Institute, Shandong University, Jinan, China
| | - Jian Wang
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway ; Brain Science Research Institute, Shandong University, Jinan, China
| |
Collapse
|
22
|
Willand MP, Chiang CD, Zhang JJ, Kemp SWP, Borschel GH, Gordon T. Daily Electrical Muscle Stimulation Enhances Functional Recovery Following Nerve Transection and Repair in Rats. Neurorehabil Neural Repair 2014; 29:690-700. [DOI: 10.1177/1545968314562117] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background. Incomplete recovery following surgical reconstruction of damaged peripheral nerves is common. Electrical muscle stimulation (EMS) to improve functional outcomes has not been effective in previous studies. Objective. To evaluate the efficacy of a new, clinically translatable EMS paradigm over a 3-month period following nerve transection and immediate repair. Methods. Rats were divided into 6 groups based on treatment (EMS or no treatment) and duration (1, 2, or 3 months). A tibial nerve transection injury was immediately repaired with 2 epineurial sutures. The right gastrocnemius muscle in all rats was implanted with intramuscular electrodes. In the EMS group, the muscle was electrically stimulated with 600 contractions per day, 5 days a week. Terminal measurements were made after 1, 2, or 3 months. Rats in the 3-month group were assessed weekly using skilled and overground locomotion tests. Neuromuscular junction reinnervation patterns were also examined. Results. Muscles that received daily EMS had significantly greater numbers of reinnervated motor units with smaller average motor unit sizes. The majority of muscle endplates were reinnervated by a single axon arising from a nerve trunk with significantly fewer numbers of terminal sprouts in the EMS group, the numbers being small. Muscle mass and force were unchanged but EMS improved behavioral outcomes. Conclusions. Our results demonstrated that EMS using a moderate stimulation paradigm immediately following nerve transection and repair enhances electrophysiological and behavioral recovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Tessa Gordon
- The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Kemp SWP, Szynkaruk M, Stanoulis KN, Wood MD, Liu EH, Willand MP, Morlock L, Naidoo J, Williams NS, Ready JM, Mangano TJ, Beggs S, Salter MW, Gordon T, Pieper AA, Borschel GH. Pharmacologic rescue of motor and sensory function by the neuroprotective compound P7C3 following neonatal nerve injury. Neuroscience 2014; 284:202-216. [PMID: 25313000 DOI: 10.1016/j.neuroscience.2014.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022]
Abstract
Nerve injuries cause pain, paralysis and numbness that can lead to major disability, and newborns often sustain nerve injuries during delivery that result in lifelong impairment. Without a pharmacologic agent to enhance functional recovery from these injuries, clinicians rely solely on surgery and rehabilitation to treat patients. Unfortunately, patient outcomes remain poor despite application of the most advanced microsurgical and rehabilitative techniques. We hypothesized that the detrimental effects of traumatic neonatal nerve injury could be mitigated with pharmacologic neuroprotection, and tested whether the novel neuroprotective agent P7C3 would block peripheral neuron cell death and enhance functional recovery in a rat neonatal nerve injury model. Administration of P7C3 after sciatic nerve crush injury doubled motor and sensory neuron survival, and also promoted axon regeneration in a dose-dependent manner. Treatment with P7C3 also enhanced behavioral and muscle functional recovery, and reversed pathological mobilization of spinal microglia after injury. Our findings suggest that the P7C3 family of neuroprotective compounds may provide a basis for the development of a new neuroprotective drug to enhance recovery following peripheral nerve injury.
Collapse
Affiliation(s)
- S W P Kemp
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada; The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada.
| | - M Szynkaruk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - K N Stanoulis
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - M D Wood
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada; The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada
| | - E H Liu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - M P Willand
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada; The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada
| | - L Morlock
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - J Naidoo
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - N S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - J M Ready
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - T J Mangano
- Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - S Beggs
- The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada
| | - M W Salter
- The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada
| | - T Gordon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada; The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada
| | - A A Pieper
- Departments of Psychiatry, Neurology and Veterans Affairs, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - G H Borschel
- Department of Surgery, Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada; The Hospital for Sick Children Research Institute, Program in Neuroscience and Mental Health, Toronto, ON, Canada; University of Toronto, Department of Surgery and Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada.
| |
Collapse
|