1
|
Chen W, Zheng C. A nanofibrous polycaprolactone/collagen neural guidance channel filled with sciatic allogeneic schwann cells and platelet-rich plasma for sciatic nerve repair. J Biomater Appl 2024:8853282241297446. [PMID: 39498821 DOI: 10.1177/08853282241297446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Sciatic nerve damage, a common condition affecting approximately 2.8% of the US population, can lead to significant disability due to impaired nerve signal transmission, resulting in loss of sensation and motor function in the lower extremities. In this study, a neural guidance channel was developed by rolling a nanofibrous scaffold produced via electrospinning. The scaffold's microstructure, biocompatibility, biodegradation rate, porosity, mechanical properties, and hemocompatibility were evaluated. Platelet-rich plasma (PRP) activated with 30,000 allogeneic Schwann cells (SCs) was injected into the lumen of the channels following implantation into a rat model of sciatic nerve injury. Recovery of motor function, sensory function, and muscle re-innervation was assessed using the sciatic function index (SFI), hot plate latency time, and gastrocnemius muscle wet weight loss. Results showed mean hot plate latency times of Autograft: 7.03, PCL/collagen scaffolds loaded with PRP and SCs (PCLCOLPRPSCs): 8.34, polymer-only scaffolds (PCLCOL): 10.66, and untreated animals (Negative Control): 12.00. The mean SFI values at week eight were Autograft: -49.30, PCLCOLPRPSCs: -64.29, PCLCOL: -75.62, and Negative Control: -77.14. The PCLCOLPRPSCs group showed a more negative SFI compared to the Autograft group but performed better than both the PCLCOL and Negative Control groups. These findings suggest that the developed strategy enhanced sensory and functional recovery compared to the negative control and polymer-only scaffold groups.
Collapse
Affiliation(s)
- Wenfeng Chen
- Department of Orthopedics, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Chenxiao Zheng
- Department of Orthopedics, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
吴 俊, 孔 祥, 吕 强. [Research progress of silk-based biomaterials for peripheral nerve regeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1149-1156. [PMID: 39300893 PMCID: PMC11440169 DOI: 10.7507/1002-1892.202402071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/05/2024] [Indexed: 09/22/2024]
Abstract
Objective To describe the research progress of silk-based biomaterials in peripheral nerve repair and provide useful ideals to accelerate the regeneration of large-size peripheral nerve injury. Methods The relative documents about silk-based biomaterials used in peripheral nerve regeneration were reviewed and the different strategies that could accelerate peripheral nerve regeneration through building bioactive microenvironment with silk fibroin were discussed. Results Many silk fibroin tissue engineered nerve conduits have been developed to provide multiple biomimetic microstructures, and different microstructures have different mechanisms of promoting nerve repair. Biomimetic porous structures favor the nutrient exchange at wound sites and inhibit the invasion of scar tissue. The aligned structures can induce the directional growth of nerve tissue, while the multiple channels promote the axon elongation. When the fillers are introduced to the conduits, better growth, migration, and differentiation of nerve cells can be achieved. Besides biomimetic structures, different nerve growth factors and bioactive drugs can be loaded on silk carriers and released slowly at nerve wounds, providing suitable biochemical cues. Both the biomimetic structures and the loaded bioactive ingredients optimize the niches of peripheral nerves, resulting in quicker and better nerve repair. With silk biomaterials as a platform, fusing multiple ways to achieve the multidimensional regulation of nerve microenvironments is becoming a critical strategy in repairing large-size peripheral nerve injury. Conclusion Silk-based biomaterials are useful platforms to achieve the design of biomimetic hierarchical microstructures and the co-loading of various bioactive ingredients. Silk fibroin nerve conduits provide suitable microenvironment to accelerate functional recovery of peripheral nerves. Different optimizing strategies are available for silk fibroin biomaterials to favor the nerve regeneration, which would satisfy the needs of various nerve tissue repair. Bioactive silk conduits have promising future in large-size peripheral nerve regeneration.
Collapse
Affiliation(s)
- 俊峰 吴
- 浙江理工大学材料科学与工程学院智能生物材料研究所(杭州 310018)Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou Zhejiang, 310018, P. R. China
| | - 祥东 孔
- 浙江理工大学材料科学与工程学院智能生物材料研究所(杭州 310018)Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou Zhejiang, 310018, P. R. China
| | - 强 吕
- 浙江理工大学材料科学与工程学院智能生物材料研究所(杭州 310018)Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou Zhejiang, 310018, P. R. China
| |
Collapse
|
3
|
Yu L, Bennett CJ, Lin CH, Yan S, Yang J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng 2024; 21:041001. [PMID: 38996412 DOI: 10.1088/1741-2552/ad628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.
Collapse
Affiliation(s)
- Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Carly Jane Bennett
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
| |
Collapse
|
4
|
Ma Y, Zhang R, Mao X, Li X, Li T, Liang F, He J, Wen L, Wang W, Li X, Zhang Y, Yu H, Lu B, Yu T, Ao Q. Preparation of PLCL/ECM nerve conduits by electrostatic spinning technique and evaluation in vitroand in vivo. J Neural Eng 2024; 21:026028. [PMID: 38572924 DOI: 10.1088/1741-2552/ad3851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Objective. Artificial nerve scaffolds composed of polymers have attracted great attention as an alternative for autologous nerve grafts recently. Due to their poor bioactivity, satisfactory nerve repair could not be achieved. To solve this problem, we introduced extracellular matrix (ECM) to optimize the materials.Approach.In this study, the ECM extracted from porcine nerves was mixed with Poly(L-Lactide-co-ϵ-caprolactone) (PLCL), and the innovative PLCL/ECM nerve repair conduits were prepared by electrostatic spinning technology. The novel conduits were characterized by scanning electron microscopy (SEM), tensile properties, and suture retention strength test for micromorphology and mechanical strength. The biosafety and biocompatibility of PLCL/ECM nerve conduits were evaluated by cytotoxicity assay with Mouse fibroblast cells and cell adhesion assay with RSC 96 cells, and the effects of PLCL/ECM nerve conduits on the gene expression in Schwann cells was analyzed by real-time polymerase chain reaction (RT-PCR). Moreover, a 10 mm rat (Male Wistar rat) sciatic defect was bridged with a PLCL/ECM nerve conduit, and nerve regeneration was evaluated by walking track, mid-shank circumference, electrophysiology, and histomorphology analyses.Main results.The results showed that PLCL/ECM conduits have similar microstructure and mechanical strength compared with PLCL conduits. The cytotoxicity assay demonstrates better biosafety and biocompatibility of PLCL/ECM nerve conduits. And the cell adhesion assay further verifies that the addition of ECM is more beneficial to cell adhesion and proliferation. RT-PCR showed that the PLCL/ECM nerve conduit was more favorable to the gene expression of functional proteins of Schwann cells. Thein vivoresults indicated that PLCL/ECM nerve conduits possess excellent biocompatibility and exhibit a superior capacity to promote peripheral nerve repair.Significance.The addition of ECM significantly improved the biocompatibility and bioactivity of PLCL, while the PLCL/ECM nerve conduit gained the appropriate mechanical strength from PLCL, which has great potential for clinical repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Yizhan Ma
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China
| | - Runze Zhang
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Xiaoyan Mao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- China (Nanchang) Intellectual Property Protection Center, Nanchang, People's Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China
| | - Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Fang Liang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jing He
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Lili Wen
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Weizuo Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Xiao Li
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Yanhui Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Honghao Yu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Binhan Lu
- School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan, People's Republic of China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People's Republic of China
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Muratori L, Crosio A, Ronchi G, Molinaro D, Tos P, Lovati AB, Raimondo S. Exploring an innovative decellularization protocol for porcine nerve grafts: a translational approach to peripheral nerve repair. Front Neuroanat 2024; 18:1380520. [PMID: 38567289 PMCID: PMC10985228 DOI: 10.3389/fnana.2024.1380520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Peripheral nerves are frequently affected by lesions caused by traumatic or iatrogenic damages, resulting in loss of motor and sensory function, crucial in orthopedic outcomes and with a significant impact on patients' quality of life. Many strategies have been proposed over years to repair nerve injuries with substance loss, to achieve musculoskeletal reinnervation and functional recovery. Allograft have been tested as an alternative to the gold standard, the autograft technique, but nerves from donors frequently cause immunogenic response. For this reason, several studies are focusing to find the best way to decellularize nerves preserving either the extracellular matrix, either the basal lamina, as the key elements used by Schwann cells and axons during the regenerative process. Methods This study focuses on a novel decellularization protocol for porcine nerves, aimed at reducing immunogenicity while preserving essential elements like the extracellular matrix and basal lamina, vital for nerve regeneration. To investigate the efficacy of the decellularization protocol to remove immunogenic cellular components of the nerve tissue and to preserve the basal lamina and extracellular matrix, morphological analysis was performed through Masson's Trichrome staining, immunofluorescence, high resolution light microscopy and transmission electron microscopy. Decellularized porcine nerve graft were then employed in vivo to repair a rat median nerve lesion. Morphological analysis was also used to study the ability of the porcine decellularized graft to support the nerve regeneration. Results and Discussion The decellularization method was effective in preparing porcine superficial peroneal nerves for grafting as evidenced by the removal of immunogenic components and preservation of the ECM. Morphological analysis demonstrated that four weeks after injury, regenerating fibers colonized the graft suggesting a promising use to repair severe nerve lesions. The idea of using a porcine nerve graft arises from a translational perspective. This approach offers a promising direction in the orthopedic field for nerve repair, especially in severe cases where conventional methods are limited.
Collapse
Affiliation(s)
- Luisa Muratori
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| | - Alessandro Crosio
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
- UOC Traumatology-Reconstructive Microsurgery, Department of Orthopedics and Traumatology, CTO Hospital, Turin, Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| | - Debora Molinaro
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| | - Pierluigi Tos
- Reconstructive Microsurgery and Hand Surgery Unit, ASST Pini-CTO, Milan, Italy
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| |
Collapse
|
6
|
Andreis FR, Metcalfe B, Janjua TAM, Fazan VPS, Jensen W, Meijs S, Nielsen TGNDS. Morphology and morphometry of the ulnar nerve in the forelimb of pigs. Anat Histol Embryol 2024; 53:e12972. [PMID: 37715494 DOI: 10.1111/ahe.12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The knowledge of the morphology and morphometry of peripheral nerves is essential for developing neural interfaces and understanding nerve regeneration in basic and applied research. Currently, the most adopted animal model is the rat, even though recent studies have suggested that the neuroanatomy of large animal models is more comparable to humans. The present knowledge of the morphological structure of large animal models is limited; therefore, the present study aims to describe the morphological characteristics of the Ulnar Nerve (UN) in pigs. UN cross-sections were taken from seven Danish landrace pigs at three distinct locations: distal UN, proximal UN and at the dorsal cutaneous branch of the UN (DCBUN). The nerve diameter, fascicle diameter and number, number of fibres and fibre size were quantified. The UN diameter was larger in the proximal section compared to the distal segment and the DCBUN. The proximal branch also had a more significant number of fascicles (median: 15) than the distal (median: 10) and the DCBUN (median: 11) segments. Additionally, the mean fascicle diameter was smaller at the DCBUN (mean: 165 μm) than at the distal (mean: 197 μm) and proximal (mean: 199 μm) segments of the UN. Detailed knowledge of the microscopical structure of the UN in pigs is critical for further studies investigating neural interface designs and computational models of the peripheral nervous system.
Collapse
Affiliation(s)
- Felipe Rettore Andreis
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Benjamin Metcalfe
- Bath Institute for the Augmented Human, University of Bath, Bath, UK
| | - Taha Al Muhammadee Janjua
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Valéria Paula Sassoli Fazan
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Winnie Jensen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Suzan Meijs
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
7
|
Sergi PN. Some Mechanical Constraints to the Biomimicry with Peripheral Nerves. Biomimetics (Basel) 2023; 8:544. [PMID: 37999185 PMCID: PMC10669299 DOI: 10.3390/biomimetics8070544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
Novel high technology devices built to restore impaired peripheral nerves should be biomimetic in both their structure and in the biomolecular environment created around regenerating axons. Nevertheless, the structural biomimicry with peripheral nerves should follow some basic constraints due to their complex mechanical behaviour. However, it is not currently clear how these constraints could be defined. As a consequence, in this work, an explicit, deterministic, and physical-based framework was proposed to describe some mechanical constraints needed to mimic the peripheral nerve behaviour in extension. More specifically, a novel framework was proposed to investigate whether the similarity of the stress/strain curve was enough to replicate the natural nerve behaviour. An original series of computational optimizing procedures was then introduced to further investigate the role of the tangent modulus and of the rate of change of the tangent modulus with strain in better defining the structural biomimicry with peripheral nerves.
Collapse
Affiliation(s)
- Pier Nicola Sergi
- Translational Neural Engineering Area, The Biorobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| |
Collapse
|
8
|
Singh A, Orozco V, Balasubramanian S. In vivo biomechanical responses of neonatal brachial plexus when subjected to stretch. PLoS One 2023; 18:e0290718. [PMID: 37647327 PMCID: PMC10468090 DOI: 10.1371/journal.pone.0290718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Neonatal brachial plexus palsy (NBPP) results from over-stretching of the neonatal brachial plexus during complicated birthing scenarios. The lack of information on the biomechanical response of the neonatal brachial plexus complex when subjected to stretch limits our understanding of the NBPP injury mechanism. This study aims to fill that critical gap by using a neonatal piglet animal model and providing the in vivo biomechanical properties of the neonatal brachial plexus complex when subjected to stretch. Forty-seven brachial plexus levels (identified by the four brachial plexus terminal nerve branches namely musculocutaneous, median, ulnar, and radial), obtained from 16 neonatal Yorkshire piglets (3-5 days old), were subjected to stretch-induced failure. The average maximum load and corresponding strain were reported to be 16.6 ± 1.3 N and 36.1 ± 1.6%, respectively. Maximum loads reported at the musculocutaneous level were significantly lower than the median and radial levels. No differences in strains at failure were reported at all four tested levels. Proximal or distal failure locations were reported in 83% of the tests with 17% mid-length ruptures that were primarily reported at the bifurcation of the median and ulnar brachial plexus levels. Histological studies reported an overall loss of wavy pattern of the nerve fibers, an increase in nerve spacing, fiber disruptions, and blood vessel ruptures in the stretched tissue. This in vivo piglet animal study offers insight into the NBPP mechanism by reporting biomechanical, injury location, and structural damage responses in neonatal brachial plexus when subjected to stretch.
Collapse
Affiliation(s)
- Anita Singh
- Bioengineering Department, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Virginia Orozco
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Wei S, Hu Q, Ma J, Dai X, Sun Y, Han G, Meng H, Xu W, Zhang L, Ma X, Peng J, Wang Y. Acellular nerve xenografts based on supercritical extraction technology for repairing long-distance sciatic nerve defects in rats. Bioact Mater 2022; 18:300-320. [PMID: 35387172 PMCID: PMC8961471 DOI: 10.1016/j.bioactmat.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Compared to conventional artificial nerve guide conduits (NGCs) prepared using natural polymers or synthetic polymers, acellular nerve grafts (ACNGs) derived from natural nerves with eliminated immune components have natural bionic advantages in composition and structure that polymer materials do not have. To further optimize the repair effect of ACNGs, in this study, we used a composite technology based on supercritical carbon dioxide (scCO2) extraction to process the peripheral nerve of a large mammal, the Yorkshire pig, and obtained an innovative Acellular nerve xenografts (ANXs, namely, CD + scCO2 NG). After scCO2 extraction, the fat and DNA content in CD + scCO2 NG has been removed to the greatest extent, which can better supported cell adhesion and proliferation, inducing an extremely weak inflammatory response. Interestingly, the protein in the CD + scCO2 NG was primarily involved in signaling pathways related to axon guidance. Moreover, compared with the pure chemical decellularized nerve graft (CD NG), the DRG axons grew naturally on the CD + scCO2 NG membrane and extended long distances. In vivo studies further revealed that the regenerated nerve axons had basically crossed the CD + scCO2 NG 3 weeks after surgery. 12 weeks after surgery, CD + scCO2 NG was similar to autologous nerves in improving the quality of nerve regeneration, target muscle morphology and motor function recovery and was significantly better than hollow NGCs and CD NG. Therefore, we believe that the fully decellularized and fat-free porcine ACNGs may be the most promising “bridge” for repairing human nerve defects at this stage and for some time to come. The native adipose tissue inside acellular nerve xenografts hinders regenerated nerve fibers. Environmentally friendly scCO2 extraction has natural advantages in reducing fat content. Natural three-dimensional nerve basement membrane tube structure guides regenerating axons.
Collapse
|
10
|
Faust AE, Soletti L, Cwalina NA, Miller AD, Wood MD, Mahan MA, Cheetham J, Brown BN. Development of an acellular nerve cap xenograft for neuroma prevention. J Biomed Mater Res A 2022; 110:1738-1748. [DOI: 10.1002/jbm.a.37437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Andrew D. Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology College of Veterinary Medicine, Cornell University Ithaca New York USA
| | - Matthew D. Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery Washington University, St. Louis School of Medicine St. Louis Missouri USA
| | - Mark A. Mahan
- Department of Neurosurgery, Clinical Neurosciences Center University of Utah Salt Lake City Utah USA
| | - Jonathan Cheetham
- Renerva, LLC Pittsburgh Pennsylvania USA
- Department of Clinical Sciences, Cornell College of Veterinary Medicine Cornell University Ithaca New York USA
- McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Bryan N. Brown
- Renerva, LLC Pittsburgh Pennsylvania USA
- McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh Pennsylvania USA
- Department of Bioengineering, Swanson School of Engineering University of Pittsburgh Pittsburgh Pennsylvania USA
| |
Collapse
|
11
|
Grimm PD, Wheatley BM, Tomasino A, Leonhardt C, Hunter DA, Wood MD, Moore AM, Davis TA, Tintle SM. Controlling axonal regeneration with acellular nerve allograft limits neuroma formation in peripheral nerve transection: An experimental study in a swine model. Microsurgery 2022; 42:603-610. [PMID: 35925036 DOI: 10.1002/micr.30943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Symptomatic neuromata are a common indication for revision surgery following amputation. Previously described treatments, including traction neurectomy, nerve transposition, targeted muscle re-innervation, and nerve capping, have provided inconsistent results or are technically challenging. Prior research using acellular nerve allografts (ANA) has shown controlled termination of axonal regrowth in long grafts. The purpose of this study was to determine the ability of a long ANA to prevent neuroma formation following transection of a peripheral nerve in a swine model. MATERIALS AND METHODS Twenty-two adult female Yucatan miniature swine (Sus scrofa; 4-6 months, 15-25 kg) were assigned to control (ulnar nerve transection only, n = 10), treatment (ulnar transection and coaptation of 50 mm ANA, n = 10), or donor (n = 2) groups. Nerves harvested from donor group animals were treated to create the ANA. After 20 weeks, the transected nerves including any neuroma or graft were harvested. Both qualitative (nerve architecture, axonal sprouting) and quantitative histologic analyses (myelinated axon number, cross sectional area of nerve tissue) were performed. RESULTS Qualitative histologic analysis of control specimens revealed robust axon growth into dense scar tissue. In contrast, the treatment group revealed dwindling axons in the terminal tissue, consistent with attenuated neuroma formation. Quantitative analysis revealed a significantly decreased number of myelinated axons in the treatment group (1232 ± 540) compared to the control group (44,380 ± 7204) (p < .0001). Cross sectional area of nerve tissue was significantly smaller in treatment group (2.83 ± 1.53 mm2 ) compared to the control group (9.14 ± 1.19 mm2 ) (p = .0012). CONCLUSIONS Aberrant axonal growth is controlled to termination with coaptation of a 50 mm ANA in a swine model of nerve injury. These early results suggest further investigation of this technique to prevent and/or treat neuroma formation.
Collapse
Affiliation(s)
- Patrick D Grimm
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA.,Orthopaedics, Uniformed Services University of the Health Sciences-Walter Reed Department of Surgery, Bethesda, Maryland, USA
| | - Benjamin M Wheatley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA.,Orthopaedics, Uniformed Services University of the Health Sciences-Walter Reed Department of Surgery, Bethesda, Maryland, USA
| | - Allison Tomasino
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Crystal Leonhardt
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Daniel A Hunter
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Amy M Moore
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Thomas A Davis
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Scott M Tintle
- Orthopaedics, Uniformed Services University of the Health Sciences-Walter Reed Department of Surgery, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Koppaka S, Hess-Dunning A, Tyler DJ. Biomechanical characterization of isolated epineurial and perineurial membranes of rabbit sciatic nerve. J Biomech 2022; 136:111058. [PMID: 35349870 DOI: 10.1016/j.jbiomech.2022.111058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 01/31/2023]
Abstract
Design of interface devices for effective, long-term integration into neural tissue is dependent on the biomechanical properties of the nerve membranes. Within the peripheral nerve, the two relevant connective tissue layers for interfacing are the epineurium and perineurium. Previous work has reported the forces needed to penetrate the whole nerve, but the mechanical differences between epineurium and perineurium were not reported. Design of intraneural electrodes that place electrodes within the nerve requires knowledge of the mechanics of individual tissues. This study quantified the Young's moduli and ultimate strains of the perineurium and the epineurium separately. We also measured the forces necessary to penetrate each tissue in isolation. We used a custom-built microtensile testing device to measure the Young's modulus values. The measured Young's moduli of the epineurium and the perineurium was 0.4 ± 0.1 MPa and 3.0 ± 0.3 MPa, respectively. We also measured the force required for blunt and sharp stainless steel, 100 µm diameter probes to be inserted into isolated epineurial tissue and perineurial tissue at 2 mm/s. These data provide additional guidelines for selection of materials for long-term implants that best match the tissue properties. The results will guide neural interface design such that electrodes can be placed through either the epineurium alone or both the epineurium and perineurium.
Collapse
Affiliation(s)
- Smruta Koppaka
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Rehabilitation R&D, Cleveland, OH, USA; Advanced Platform Technology (APT) Center, Cleveland, OH, USA.
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Rehabilitation R&D, Cleveland, OH, USA; Advanced Platform Technology (APT) Center, Cleveland, OH, USA
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Rehabilitation R&D, Cleveland, OH, USA; Advanced Platform Technology (APT) Center, Cleveland, OH, USA.
| |
Collapse
|
13
|
Yim AKY, Wang PL, Bermingham JR, Hackett A, Strickland A, Miller TM, Ly C, Mitra RD, Milbrandt J. Disentangling glial diversity in peripheral nerves at single-nuclei resolution. Nat Neurosci 2022; 25:238-251. [PMID: 35115729 PMCID: PMC9060899 DOI: 10.1038/s41593-021-01005-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
The peripheral nerve contains diverse cell types that support its proper function and maintenance. In this study, we analyzed multiple peripheral nerves using single-nuclei RNA sequencing, which allowed us to circumvent difficulties encountered in analyzing cells with complex morphologies via conventional single-cell methods. The resultant mouse peripheral nerve cell atlas highlights a diversity of cell types, including multiple subtypes of Schwann cells (SCs), immune cells and stromal cells. We identified a distinct myelinating SC subtype that expresses Cldn14, Adamtsl1 and Pmp2 and preferentially ensheathes motor axons. The number of these motor-associated Pmp2+ SCs is reduced in both an amyotrophic lateral sclerosis (ALS) SOD1G93A mouse model and human ALS nerve samples. Our findings reveal the diversity of SCs and other cell types in peripheral nerve and serve as a reference for future studies of nerve biology and disease.
Collapse
Affiliation(s)
- Aldrin K Y Yim
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter L Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - John R Bermingham
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amber Hackett
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cindy Ly
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Majmudar T, Balasubramanian S, Magee R, Gonik B, Singh A. In-vitro stress relaxation response of neonatal peripheral nerves. J Biomech 2021; 128:110702. [PMID: 34479117 DOI: 10.1016/j.jbiomech.2021.110702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022]
Abstract
Characterizing the viscoelastic behavior of neonatal peripheral nerves is critical in understanding stretch-related peripheral nerve injuries (PNIs) in neonates. This study investigated the in-vitro viscoelastic stress relaxation response of neonatal piglet brachial plexus (BP) and tibial nerves at two different strain levels (10% and 20%) and stress relaxation testing durations (90- and 300-seconds). BP and tibial nerves from 20 neonatal piglets were harvested and pre-stretched to either 10% or 20% strain at a dynamic rate of 100 mm/min to simulate conditions, such as shoulder dystocia, that may lead to stretch-related PNIs in neonates. At constant strain, the reduction in stress was recorded for 90- or 300-seconds. The biomechanical data were then fit to a viscoelastic model to acquire the short- and long-term stress relaxation time-constants. Though no significant differences in the degree of stress relaxation were found between the two tested strain levels after 90 seconds in both nerve types, reduction in stress was moderately greater (p = 0.056) at 10% strain than at 20% for BP after 300 seconds. The reduction in stress was significantly higher in nerves subjected to a 300 second testing duration than 90 second for both strain levels and nerve types. When comparing BP and tibial nerve stress relaxation response, BP nerve relaxed significantly more than tibial at both strain levels after 90 seconds, but no significant differences were observed after 300 seconds. Our results confirm that neonatal peripheral nerve tissue is highly viscoelastic. These novel biomechanical data can be incorporated into finite element and computational models studying neonatal PNIs.
Collapse
Affiliation(s)
- Tanmay Majmudar
- Drexel University School of Biomedical Engineering, Science, and Health Systems, 3141 Chestnut Street Bossone 718, Philadelphia, PA 19104, United States; Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, United States
| | - Sriram Balasubramanian
- Drexel University School of Biomedical Engineering, Science, and Health Systems, 3141 Chestnut Street Bossone 718, Philadelphia, PA 19104, United States
| | - Rachel Magee
- Drexel University School of Biomedical Engineering, Science, and Health Systems, 3141 Chestnut Street Bossone 718, Philadelphia, PA 19104, United States
| | - Bernard Gonik
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine/Detroit Medical Center, Detroit, MI 48201, United States
| | - Anita Singh
- Department of Biomedical Engineering, Widener University School of Engineering, One University Place, Chester, PA 19013, United States.
| |
Collapse
|
15
|
Singh A, Magee R, Balasubramanian S. An In Vitro Study to Investigate Biomechanical Responses of Peripheral Nerves in Hypoxic Neonatal Piglets. J Biomech Eng 2021; 143:114501. [PMID: 34041534 PMCID: PMC8299807 DOI: 10.1115/1.4051283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/19/2021] [Indexed: 11/08/2022]
Abstract
Despite occurrence of neonatal hypoxia and peripheral nerve injuries in complicated birthing scenarios, the effect of hypoxia on the biomechanical responses of neonatal peripheral nerves is not studied. In this study, neonatal brachial plexus (BP) and tibial nerves, obtained from eight normal and eight hypoxic 3-5-day-old piglets, were tested in uniaxial tension until failure at a rate of 0.01 mm/s or 10 mm/s. Failure load, stress, and modulus of elasticity were reported to be significantly lower in hypoxic neonatal BP and tibial nerves than respective normal tissue at both 0.01 and 10 mm/s rates. Failure strain was significantly lower in the hypoxic neonatal BP nerves only at 10 mm/s rate when compared to normal BP nerve. This is the first available data that indicate weaker mechanical behavior of hypoxic neonatal peripheral nerves as compared to normal tissue and offer an understanding of the biomechanical responses of peripheral nerves of hypoxic neonatal piglets.
Collapse
Affiliation(s)
- Anita Singh
- Biomedical Engineering, School of Engineering, Widener University, Chester, PA 19013
| | - Rachel Magee
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
16
|
Orozco V, Magee R, Balasubramanian S, Singh A. A Systematic Review of the Tensile Biomechanical Properties of the Neonatal Brachial Plexus. J Biomech Eng 2021; 143:110802. [PMID: 34091659 PMCID: PMC8299814 DOI: 10.1115/1.4051399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Brachial plexus (BP) birth injury has a reported incidence of 1 to 4 per 1000 live births. During complicated deliveries, neonatal, maternal, and other birth-related factors can cause over-stretching or avulsion of the neonatal brachial plexus leading to injury. Understanding biomechanical responses of the neonate brachial plexus when subjected to stretch can offer insight into the injury outcomes while guiding the development of preventative maneuvers that can help reduce the occurrence of neonatal brachial plexus injuries. This review article aims to offer a comprehensive overview of existing literature reporting biomechanical responses of the brachial plexus, in both adults and neonates, when subjected to stretch. Despite the discrepancies in the reported biomechanical properties of the brachial plexus, available studies confirm the loading rate and loading direction dependency of the brachial plexus tissue. Future studies, possibly in vivo, that utilize clinically relevant neonatal large animal models can provide translational failure values of the biomechanical parameters for the neonatal brachial plexus when subjected to stretch.
Collapse
Affiliation(s)
- Virginia Orozco
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3140 Market St., BOSSONE 718, Philadelphia, PA 19104
| | - Rachel Magee
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3140 Market St., BOSSONE 718, Philadelphia, PA 19104
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3140 Market St., BOSSONE 718, Philadelphia, PA 19104
| | - Anita Singh
- Department of Biomedical Engineering, Widener University, One University Place, Chester, PA 19013
| |
Collapse
|
17
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
18
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
19
|
The effect of injurious compression on the elastic, hyper-elastic and visco-elastic properties of porcine peripheral nerves. J Mech Behav Biomed Mater 2021; 121:104624. [PMID: 34139483 DOI: 10.1016/j.jmbbm.2021.104624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/06/2020] [Accepted: 05/31/2021] [Indexed: 11/20/2022]
Abstract
The aim of this study was to characterise the viscoelastic and hyper-elastic properties of the ulnar nerve before and after compression has been induced, in order to aid the understanding of how the mechanical properties of nerves are altered during nerve compression, a contributing factor to cubital tunnel syndrome. Ulnar nerves were dissected from porcine legs and tensile tested to 10% strain. The Young's modulus and Yeoh hyper-elastic model were used to evaluate the materials elastic and hyper-elastic properties respectively. Dynamic mechanical analysis (DMA) was used to evaluate the viscoelastic properties over a range of frequencies between 0.5 Hz and 38 Hz. The nerves were then compressed to 40% for 60 s and the same tests were carried out after compression. The nerves were stiffer after compression, the mean Young's modulus before was 0.181 MPa and increased to 0.601 MPa after compression. The mean shear modulus calculated from the Yeoh hyper-elastic model was also higher after compression increasing from 5 kPa to 7 kPa. After compression, these properties had significantly increased (p < 0.05). The DMA results showed that the nerves exhibit frequency dependent viscoelastic behaviour across all tested frequencies. The median values of storage modulus before compression ranged between 0.605 and 0.757 MPa across the frequencies and after compression between 1.161 MPa and 1.381 MPa. There was a larger range of median values for loss modulus, before compression, median values ranged between 0.073 MPa and 0.216 MPa and after compression from 0.165 MPa to 0.410 MPa. There was a significant increase in both storage and loss modulus after compression (p < 0.05). The mechanical properties of the nerve change following compression, however the response to decompression in vivo requires further evaluation to determine whether the observed changes persist, which may have implications for clinical recovery after surgical decompression in entrapment neuropathy.
Collapse
|
20
|
Holland JDR, Webster G, Rooney P, Wilshaw SP, Jennings LM, Berry HE. Effects of Chemical and Radiation Sterilisation on the Biological and Biomechanical Properties of Decellularised Porcine Peripheral Nerves. Front Bioeng Biotechnol 2021; 9:660453. [PMID: 34150728 PMCID: PMC8209421 DOI: 10.3389/fbioe.2021.660453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
There is a clinical need for novel graft materials for the repair of peripheral nerve defects. A decellularisation process has been developed for porcine peripheral nerves, yielding a material with potentially significant advantages over other devices currently being used clinically (such as autografts and nerve guidance conduits). Grafts derived from xenogeneic tissues should undergo sterilisation prior to clinical use. It has been reported that sterilisation methods may adversely affect the properties of decellularised tissues, and therefore potentially negatively impact on the ability to promote tissue regeneration. In this study, decellularised nerves were produced and sterilised by treatment with 0.1% (v/v) PAA, gamma radiation (25-28 kGy) or E Beam (33-37 kGy). The effect of sterilisation on the decellularised nerves was determined by cytotoxicity testing, histological staining, hydroxyproline assays, uniaxial tensile testing, antibody labelling for collagen type IV, laminin and fibronectin in the basal lamina, and differential scanning calorimetry. This study concluded that decellularised nerves retained biocompatibility following sterilisation. However, sterilisation affected the mechanical properties (PAA, gamma radiation), endoneurial structure and basement membrane composition (PAA) of decellularised nerves. No such alterations were observed following E Beam treatment, suggesting that this method may be preferable for the sterilisation of decellularised porcine peripheral nerves.
Collapse
Affiliation(s)
- James D. R. Holland
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| | - Georgina Webster
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| | - Paul Rooney
- National Health Service Blood and Transplant (NHSBT) Tissue and Eye Services, Liverpool, United Kingdom
| | - Stacy-Paul Wilshaw
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Louise M. Jennings
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| | - Helen E. Berry
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
Bahremandi Tolou N, Salimijazi H, Kharaziha M, Faggio G, Chierchia R, Lisi N. A three-dimensional nerve guide conduit based on graphene foam/polycaprolactone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112110. [PMID: 34082932 DOI: 10.1016/j.msec.2021.112110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/17/2023]
Abstract
In this study, a novel nerve guide conduit was developed, based on a three-dimensional (3D) graphene conductive core grown, by chemical vapor deposition (CVD) coupled with a polycaprolactone (PCL) polymer coating. Firstly, the monolithic 3D-graphene foam (3D-GF) was synthesized on Ni foam templates via inductive heating CVD, subsequently, Ni/Graphene samples were dipped successively in PCL and cyclododecane (CDD) solutions prior to the removal of Ni from the 3D-GF/PCL scaffold in FeCl3. Our results showed that the electrical conductivity of the polymer composites reached to 25 S.m-1 after incorporation of 3D-GF. Moreover, the mechanical properties of 3D-GF/PCL composite scaffold were enhanced with respect to the same geometry of PCL scaffolds. The wettability, surface porosity, and morphology did not show any significant changes, while the PC12 cell proliferation and extension were increased for the developed 3D-GF/PCL nanocomposite. It can be concluded that 3D-GF/PCL nanocomposites could be good candidates to utilize as a versatile system for the engineering of peripheral nerve tissue.
Collapse
Affiliation(s)
- Neda Bahremandi Tolou
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran; ENEA Casaccia, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.
| | - Hamidreza Salimijazi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Giuliana Faggio
- Department of Information Engineering, Infrastructure and Sustainable Energy (DIIES), Mediterranea University of Reggio Calabria, Reggio Calabria, Italy.
| | - Rosa Chierchia
- ENEA Casaccia, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.
| | - Nicola Lisi
- ENEA Casaccia, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.
| |
Collapse
|
22
|
Abstract
Peripheral nerve interfaces (PNIs) record and/or modulate neural activity of nerves, which are responsible for conducting sensory-motor information to and from the central nervous system, and for regulating the activity of inner organs. PNIs are used both in neuroscience research and in therapeutical applications such as precise closed-loop control of neuroprosthetic limbs, treatment of neuropathic pain and restoration of vital functions (e.g. breathing and bladder management). Implantable interfaces represent an attractive solution to directly access peripheral nerves and provide enhanced selectivity both in recording and in stimulation, compared to their non-invasive counterparts. Nevertheless, the long-term functionality of implantable PNIs is limited by tissue damage, which occurs at the implant-tissue interface, and is thus highly dependent on material properties, biocompatibility and implant design. Current research focuses on the development of mechanically compliant PNIs, which adapt to the anatomy and dynamic movements of nerves in the body thereby limiting foreign body response. In this paper, we review recent progress in the development of flexible and implantable PNIs, highlighting promising solutions related to materials selection and their associated fabrication methods, and integrated functions. We report on the variety of available interface designs (intraneural, extraneural and regenerative) and different modulation techniques (electrical, optical, chemical) emphasizing the main challenges associated with integrating such systems on compliant substrates.
Collapse
Affiliation(s)
- Valentina Paggi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland. Equally contributing authors
| | | | | | | |
Collapse
|
23
|
Burrell JC, Browne KD, Dutton JL, Laimo FA, Das S, Brown DP, Roberts S, Petrov D, Ali Z, Ledebur HC, Rosen JM, Kaplan HM, Wolf JA, Smith DH, Chen HI, Cullen DK. A Porcine Model of Peripheral Nerve Injury Enabling Ultra-Long Regenerative Distances: Surgical Approach, Recovery Kinetics, and Clinical Relevance. Neurosurgery 2021; 87:833-846. [PMID: 32392341 DOI: 10.1093/neuros/nyaa106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Millions of Americans experience residual deficits from traumatic peripheral nerve injury (PNI). Despite advancements in surgical technique, repair typically results in poor functional outcomes due to prolonged periods of denervation resulting from long regenerative distances coupled with slow rates of axonal regeneration. Novel surgical solutions require valid preclinical models that adequately replicate the key challenges of clinical PNI. OBJECTIVE To develop a preclinical model of PNI in swine that addresses 2 challenging, clinically relevant PNI scenarios: long segmental defects (≥5 cm) and ultra-long regenerative distances (20-27 cm). Thus, we aim to demonstrate that a porcine model of major PNI is suitable as a potential framework to evaluate novel regenerative strategies prior to clinical deployment. METHODS A 5-cm-long common peroneal nerve or deep peroneal nerve injury was repaired using a saphenous nerve or sural nerve autograft, respectively. Histological and electrophysiological assessments were performed at 9 to 12 mo post repair to evaluate nerve regeneration and functional recovery. Relevant anatomy, surgical approach, and functional/histological outcomes were characterized for both repair techniques. RESULTS Axons regenerated across the repair zone and were identified in the distal stump. Electrophysiological recordings confirmed these findings and suggested regenerating axons reinnervated target muscles. CONCLUSION The models presented herein provide opportunities to investigate peripheral nerve regeneration using different nerves tailored for specific mechanisms of interest, such as nerve modality (motor, sensory, and mixed fiber composition), injury length (short/long gap), and total regenerative distance (proximal/distal injury).
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin D Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - John L Dutton
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Franco A Laimo
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Daniel P Brown
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Sanford Roberts
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Dmitriy Petrov
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Zarina Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Joseph M Rosen
- Division of Plastic Surgery, Dartmouth-Hitchcock Medical Center, Dartmouth College, Lebanon, New Hampshire
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers University, New Brunswick, New Jersey
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Axonova Medical, Philadelphia, Pennsylvania
| | - H Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania.,Axonova Medical, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Gao YB, Liu ZG, Lin GD, Guo Y, Chen L, Huang BT, Yin YB, Yang C, Sun LY, Rong YB, Chen S. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial. Neural Regen Res 2021; 16:1652-1659. [PMID: 33433497 PMCID: PMC8323693 DOI: 10.4103/1673-5374.303040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A new nerve matrix membrane derived from decellularized porcine nerves has been shown to retain the major extracellular matrix components, and to be effective in preventing adhesion between the nerve anastomosis sites and the surrounding tissues in a rat sciatic nerve transection model, thereby enhancing regeneration of the nerve. The effectiveness of the membrane may be attributed to its various bioactive components. In this prospective, randomized, single-blind, parallel-controlled multicenter clinical trial, we compared the safety and efficacy of the new nerve matrix membrane with a previously approved bovine tendon-derived type I collagen nerve wrapping. A total of 120 patients with peripheral nerve injury were recruited from Beijing Jishuitan Hospital, The First Bethune Hospital of Jilin University, and Yantai Yuhuangding Hospital, China. The patients were randomly assigned to undergo end-to-end and tension-free neurorrhaphy with nerve matrix membrane (n = 60, 52 male, 8 female, mean age 41.34 years, experimental group) or tendon-derived collagen nerve wrapping (n = 60, 42 male, 18 female, mean age 40.17 years, control group). Patients were followed-up at 14 ± 5, 30 ± 7, 90 ± 10 and 180 ± 20 days after the operation. Safety evaluation included analyses of local and systemic reactions, related laboratory tests, and adverse reactions. Efficacy evaluation included a static 2-point discrimination test, a moving 2-point discrimination test, and a Semmes–Weinstein monofilament examination. Sensory nerve function was evaluated with the British Medical Research Council Scale and Semmes–Weinstein monofilament examination. The ratio (percentage) of patients with excellent to good results in sensory nerve recovery 180 ± 20 days after the treatment was used as the primary effectiveness index. The percentages of patients with excellent to good results in the experimental and control groups were 98.00% and 94.44%, respectively, with no significant difference between the two groups. There were no significant differences in the results of routine blood tests, liver and renal function tests, coagulation function tests, or immunoglobulin tests at 14 and 180 days postoperatively between the two groups. These findings suggest that the novel nerve matrix membrane is similar in efficacy to the commercially-available bovine-derived collagen membrane in the repair of peripheral nerve injury, and it may therefore serve as an alternative in the clinical setting. The clinical trial was approved by the Institutional Ethics Committee of Beijing Jishuitan Hospital, China (approval No. 20160902) on October 8, 2016, the Institutional Ethics Committee of the First Bethune Hospital of Jilin University, China (approval No. 160518-088) on December 14, 2016, and the Institutional Ethics Committee of Yantai Yuhuangding Hospital, China (approval No. 2016-10-01) on December 9, 2016. The clinical trial was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR2000033324) on May 28, 2020.
Collapse
Affiliation(s)
- Yong-Bin Gao
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Zhi-Gang Liu
- Department of Hand Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guo-Dong Lin
- Department of Hand and Foot Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Yang Guo
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Lei Chen
- Department of Hand Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bo-Tao Huang
- Department of Hand and Foot Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Yao-Bin Yin
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Chen Yang
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Li-Ying Sun
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Yan-Bo Rong
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Shanlin Chen
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
25
|
Zaminy A, Sayad-Fathi S, Kasmaie FM, Jahromi Z, Zendedel A. Decellularized peripheral nerve grafts by a modified protocol for repair of rat sciatic nerve injury. Neural Regen Res 2021; 16:1086-1092. [PMID: 33269754 PMCID: PMC8224104 DOI: 10.4103/1673-5374.300449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that acellular nerve xenografts do not require immunosuppression and use of acellular nerve xenografts for repair of peripheral nerve injury is safe and effective. However, there is currently no widely accepted standard chemical decellularization method. The purpose of this study is to investigate the efficiency of bovine-derived nerves decellularized by the modified Hudson’s protocol in the repair of rat sciatic nerve injury. In the modified Hudson’s protocol, Triton X-200 was replaced by Triton X-100, and DNase and RNase were used to prepare accelular nerve xenografts. The efficiency of bovine-derived nerves decellularized by the modified Hudson’s protocol was tested in vitro by hematoxylin & eosin, Alcian blue, Masson’s trichrome, and Luxol fast blue staining, immunohistochemistry, and biochemical assays. The decellularization approach excluded cells, myelin, and axons of nerve xenografts, without affecting the organization of nerve xenografts. The decellularized nerve xenograft was used to bridge a 7 mm-long sciatic nerve defect to evaluate its efficiency in the repair of peripheral nerve injury. At 8 weeks after transplantation, sciatic function index in rats subjected to transplantation of acellular nerve xenograft was similar to that in rats undergoing transplantation of nerve allograft. Morphological analysis revealed that there were a large amount of regenerated myelinated axons in acellular nerve xenograft; the number of Schwann cells in the acellular nerve xenograft was similar to that in the nerve allograft. These findings suggest that acellular nerve xenografts prepared by the modified Hudson’s protocol can be used for repair of peripheral nerve injury. This study was approved by the Research Ethics Committee, Research and Technology Chancellor of Guilan University of Medical Sciences, Iran (approval No. IR.GUMS.REC.1395.332) on February 11, 2017.
Collapse
Affiliation(s)
- Arash Zaminy
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Sayad-Fathi
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zohreh Jahromi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
26
|
Li T, Javed R, Ao Q. Xenogeneic Decellularized Extracellular Matrix-based Biomaterials For Peripheral Nerve Repair and Regeneration. Curr Neuropharmacol 2021; 19:2152-2163. [PMID: 33176651 PMCID: PMC9185777 DOI: 10.2174/1570159x18666201111103815] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injury could lead to either impairment or a complete loss of function for affected patients, and a variety of nerve repair materials have been developed for surgical approaches to repair it. Although autologous or autologous tissue-derived biomaterials remain preferred treatment for peripheral nerve injury, the lack of donor sources has led biomedical researchers to explore more other biomaterials. As a reliable alternative, xenogeneic decellularized extracellular matrix (dECM)-based biomaterials have been widely employed for surgical nerve repair. The dECM derived from animal donors is an attractive and unlimited source for xenotransplantation. Meanwhile, as an increasingly popular technique, decellularization could retain a variety of bioactive components in native ECM, such as polysaccharides, proteins, and growth factors. The resulting dECM-based biomaterials preserve a tissue's native microenvironment, promote Schwann cells proliferation and differentiation, and provide cues for nerve regeneration. Although the potential of dECM-based biomaterials as a therapeutic agent is rising, there are many limitations of this material restricting its use. Herein, this review discusses the decellularization techniques that have been applied to create dECM-based biomaterials, the main components of nerve ECM, and the recent progress in the utilization of xenogeneic dECM-based biomaterials through applications as a hydrogel, wrap, and guidance conduit in nerve tissue engineering. In the end, the existing bottlenecks of xenogeneic dECM-based biomaterials and developing technologies that could be eliminated to be helpful for utilization in the future have been elaborated.
Collapse
Affiliation(s)
- Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Qiang Ao
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
- Institute of Regulatory Science for Med-ical Devices, Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Pelot NA, Goldhagen GB, Cariello JE, Musselman ED, Clissold KA, Ezzell JA, Grill WM. Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Front Neurosci 2020; 14:601479. [PMID: 33250710 PMCID: PMC7672126 DOI: 10.3389/fnins.2020.601479] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
It is necessary to understand the morphology of the vagus nerve (VN) to design and deliver effective and selective vagus nerve stimulation (VNS) because nerve morphology influences fiber responses to electrical stimulation. Specifically, nerve diameter (and thus, electrode-fiber distance), fascicle diameter, fascicular organization, and perineurium thickness all significantly affect the responses of nerve fibers to electrical signals delivered through a cuff electrode. We quantified the morphology of cervical and subdiaphragmatic VNs in humans, pigs, and rats: effective nerve diameter, number of fascicles, effective fascicle diameters, proportions of endoneurial, perineurial, and epineurial tissues, and perineurium thickness. The human and pig VNs were comparable sizes (∼2 mm cervically; ∼1.6 mm subdiaphragmatically), while the rat nerves were ten times smaller. The pig nerves had ten times more fascicles-and the fascicles were smaller-than in human nerves (47 vs. 7 fascicles cervically; 38 vs. 5 fascicles subdiaphragmatically). Comparing the cervical to the subdiaphragmatic VNs, the nerves and fascicles were larger at the cervical level for all species and there were more fascicles for pigs. Human morphology generally exhibited greater variability across samples than pigs and rats. A prior study of human somatic nerves indicated that the ratio of perineurium thickness to fascicle diameter was approximately constant across fascicle diameters. However, our data found thicker human and pig VN perineurium than those prior data: the VNs had thicker perineurium for larger fascicles and thicker perineurium normalized by fascicle diameter for smaller fascicles. Understanding these differences in VN morphology between preclinical models and the clinical target, as well as the variability across individuals of a species, is essential for designing suitable cuff electrodes and stimulation parameters and for informing translation of preclinical results to clinical application to advance the therapeutic efficacy of VNS.
Collapse
Affiliation(s)
- Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Gabriel B. Goldhagen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jake E. Cariello
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Eric D. Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kara A. Clissold
- Histology Research Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. Ashley Ezzell
- Histology Research Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University, Durham, NC, United States
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
28
|
Maidawa SM, Ali MN, Imam J, Salami SO, Hassan AZ, Ojo SA. Morphology of the spinal nerves from the cervical segments of the spinal cord of the African giant rat (Cricetomys Gambianus). Anat Histol Embryol 2020; 50:300-306. [PMID: 33146431 DOI: 10.1111/ahe.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 11/27/2022]
Abstract
This study provides detailed description of the gross morphology and distribution of the nerves arising from the cervical segments of the spinal cord of the African Giant Rat (AGR). Two (2) AGRs were used for this study. The rats were euthanized using halothane. The skin and superficial fascia were removed, and dissection of the muscles in the cervical region and thoracic limbs was carried out. The vertebral canal was opened by means of a rongeur. Eight (8) pairs of spinal nerves (C1-C8) arose from the cervical segments of the spinal cord of the AGR by means of dorsal and ventral roots which merged lateral to the spinal cord to form spinal nerves. Each cervical spinal nerve divided into a dorsal and ventral ramus just before exiting the intervertebral foramen. The dorsal rami divided into medial and lateral branches distributed on the medial faces of the semispinalis and splenius muscles, respectively. The ventral rami of C1, C2 and a branch from C3 interconnected to form the cervical plexus from which branches were distributed to the M. cleidomstoideus, M. cleidooccipitalis, M. occipitoscapularis, M. omotransversarius and M. trapezius. The ventral rami of C5, C6, C7, C8 and T1 (first thoracic spinal nerve) interconnected to form the brachial plexus. The cervical spinal nerves gave rise to dorsal rami or primary branches that supplied the skin and muscles of the dorsal part of the neck and the ventral primary branches which interconnected to give rise to the cervical plexus and brachial plexuses of the AGR.
Collapse
Affiliation(s)
- Sunday Men Maidawa
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Magdalene Nkweshi Ali
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Jibrin Imam
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Suleiman Olawoye Salami
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Adamu Zoaka Hassan
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Samuel Adeniyi Ojo
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
29
|
Stewart CE, Kan CFK, Stewart BR, Sanicola HW, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020; 14:25. [PMID: 32944070 PMCID: PMC7487837 DOI: 10.1186/s13036-020-00245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.
Collapse
Affiliation(s)
- Caleb E. Stewart
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Chin Fung Kelvin Kan
- Current Affiliation: Department of General Surgery, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Brody R. Stewart
- Current Affiliation: Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Henry W. Sanicola
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Olawale A. R. Sulaiman
- Ochsner Neural Injury & Regeneration Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121 USA
- Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, 70121 USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data 61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122 Australia
| |
Collapse
|
30
|
Li T, Sui Z, Matsuno A, Ten H, Oyama K, Ito A, Jiang H, Ren X, Javed R, Zhang L, Ao Q. Fabrication and Evaluation of a Xenogeneic Decellularized Nerve-Derived Material: Preclinical Studies of a New Strategy for Nerve Repair. Neurotherapeutics 2020; 17:356-370. [PMID: 31758411 PMCID: PMC7007487 DOI: 10.1007/s13311-019-00794-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The repair and regeneration of transected peripheral nerves is an important area of clinical research, and the adhesion of anastomosis sites to surrounding tissues is a vital factor affecting the quality of nerve recovery after nerve anastomosis. This study involves the generation of a novel nerve repair membrane derived from decellularized porcine nerves using a unique, innovative technique. The decellularized nerve matrix was verified to be effective in eliminating cellular components, and it still retained some neural extracellular matrix components and bioactive molecules (collagens, glycosaminoglycans, laminin, fibronectin, TGF-β, etc.), which were mainly determined by proteomic analysis, histochemistry, immunohistochemistry, and enzyme-linked immunosorbent assay. Cytotoxicity, intracutaneous reactivity, hemolysis, and cell affinity analyses were conducted to confirm the biosecurity of the nerve repair membrane. The in vivo functionality was assessed in a rat sciatic nerve transection model, and indices of functional nerve recovery, including the measurement of the claw-spread reflex, nerve anastomosis site adhesion, electrophysiological properties, and the number of regenerated nerve fibers, were evaluated. The results indicated that the nerve repair membrane could effectively prevent adhesion between the nerve anastomosis sites and the surrounding tissues and enhance nerve regeneration, which could be attributed to its various bioactive components. In conclusion, the novel nerve repair membrane derived from xenogeneic decellularized nerves described in this study shows great potential auxiliary clinical treatment for peripheral nerve injuries.
Collapse
Affiliation(s)
- Ting Li
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Zhigang Sui
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Akira Matsuno
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Hirotomo Ten
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
- Department of Judo Physical Therapy, Faculty of Health, Teikyo Heisei University, Tokyo, Japan
| | - Kenichi Oyama
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Akihiro Ito
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Hong Jiang
- Shandong Junxiu Biotechnology Company, Limited, Yantai, China
| | - Xiaomin Ren
- Shandong Junxiu Biotechnology Company, Limited, Yantai, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.
- Institute of Regulatory Science for Medical Devices, Engineering Research Center in Biomaterials, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Singh A, Magee R, Balasubramanian S. Methods for In Vivo Biomechanical Testing on Brachial Plexus in Neonatal Piglets. J Vis Exp 2019. [PMID: 31904013 DOI: 10.3791/59860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Neonatal brachial plexus palsy (NBPP) is a stretch injury that occurs during the birthing process in nerve complexes located in the neck and shoulder regions, collectively referred to as the brachial plexus (BP). Despite recent advances in obstetrical care, the problem of NBPP continues to be a global health burden with an incidence of 1.5 cases per 1,000 live births. More severe types of this injury can cause permanent paralysis of the arm from the shoulder down. Prevention and treatment of NBPP warrants an understanding of the biomechanical and physiological responses of newborn BP nerves when subjected to stretch. Current knowledge of the newborn BP is extrapolated from adult animal or cadaveric BP tissue instead of in vivo neonatal BP tissue. This study describes an in vivo mechanical testing device and procedure to conduct in vivo biomechanical testing in neonatal piglets. The device consists of a clamp, actuator, load cell, and camera system that apply and monitor in vivo strains and loads until failure. The camera system also allows monitoring of the failure location during rupture. Overall, the presented method allows for a detailed biomechanical characterization of neonatal BP when subjected to stretch.
Collapse
Affiliation(s)
- Anita Singh
- Department of Biomedical Engineering, Widener University;
| | - Rachel Magee
- Department of Biomedical Engineering, Widener University
| | | |
Collapse
|
32
|
Bascuñán AL, Biedrzycki A, Banks SA, Lewis DD, Kim SE. Large Animal Models for Anterior Cruciate Ligament Research. Front Vet Sci 2019; 6:292. [PMID: 31555675 PMCID: PMC6727067 DOI: 10.3389/fvets.2019.00292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Large animal (non-rodent mammal) models are commonly used in ACL research, but no species is currently considered the gold standard. Important considerations when selecting a large animal model include anatomical differences, the natural course of ACL pathology in that species, and biomechanical differences between humans and the chosen model. This article summarizes recent reports related to anatomy, pathology, and biomechanics of the ACL for large animal species (dog, goat, sheep, pig, and rabbit) commonly used in ACL research. Each species has unique features and benefits as well as potential drawbacks, which are highlighted in this review. This information may be useful in the selection process when designing future studies.
Collapse
Affiliation(s)
- Ana Luisa Bascuñán
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Adam Biedrzycki
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Scott A Banks
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Daniel D Lewis
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Stanley E Kim
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
33
|
Yin Y, Xiao G, Zhang K, Ying G, Xu H, De Melo BAG, Li S, Liu F, Yetisen AK, Jiang N. Tacrolimus- and Nerve Growth Factor-Treated Allografts for Neural Tissue Regeneration. ACS Chem Neurosci 2019; 10:1411-1419. [PMID: 30525428 DOI: 10.1021/acschemneuro.8b00452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment of injured peripheral nerves, especially long-distance nerve defects, remains a significant challenge in regenerative medicine due to complex biological conditions and a lack of biomaterials for effective nerve reconstruction. Without proper treatment, nerve injury leads to motor and sensory dysfunction. Here, we have developed an efficacious nerve allograft treated with a dual drug containing acrolimus and nerve growth factor to bridge the nerve gap and achieve rapid neural tissue recovery without immunological rejection. The recovery of the structure, activity, and function of rats treated with the dual drug-treated allograft was investigated by walking track analysis and electrophysiological measurement. The sciatic functional index was measured to be -3.0 after a 12-week treatment. The nerve conduction velocity, peak latency, and peak amplitude of the nerve action potentials demonstrate the functional recovery of the nerve. To study the synergistic effect of the dual drug on the growth of neurites, a neural cell hypoxia model was created. The dual drug exhibited a high efficiency in promoting the growth of nerve cells under the nerve injury-induced hypoxic condition. The dual drug could protect the cells against antioxidative damage from hypoxia by the expression of heat shock protein, hypoxia-inducible factor, β-tubulin, and vimentin.
Collapse
Affiliation(s)
- Yixia Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Gao Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Kaiming Zhang
- Department of Orthopedics, Second Hospital of Yueyang, Yueyang 414000, China
| | - Guoliang Ying
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Haixing Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Bruna A. G. De Melo
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shipu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Fang Liu
- Department of Orthopedics, Second Hospital of Yueyang, Yueyang 414000, China
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Nan Jiang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
34
|
Dixon AR, Jariwala SH, Bilis Z, Loverde JR, Pasquina PF, Alvarez LM. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials 2018; 186:44-63. [DOI: 10.1016/j.biomaterials.2018.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
|
35
|
Zhu W, Tringale KR, Woller SA, You S, Johnson S, Shen H, Schimelman J, Whitney M, Steinauer J, Xu W, Yaksh TL, Nguyen QT, Chen S. Rapid continuous 3D printing of customizable peripheral nerve guidance conduits. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:951-959. [PMID: 31156331 PMCID: PMC6538503 DOI: 10.1016/j.mattod.2018.04.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Engineered nerve guidance conduits (NGCs) have been demonstrated for repairing peripheral nerve injuries. However, there remains a need for an advanced biofabrication system to build NGCs with complex architectures, tunable material properties, and customizable geometrical control. Here, a rapid continuous 3D-printing platform was developed to print customizable NGCs with unprecedented resolution, speed, flexibility, and scalability. A variety of NGC designs varying in complexity and size were created including a life-size biomimetic branched human facial NGC. In vivo implantation of NGCs with microchannels into complete sciatic nerve transections of mouse models demonstrated the effective directional guidance of regenerating sciatic nerves via branching into the microchannels and extending toward the distal end of the injury site. Histological staining and immunostaining further confirmed the progressive directional nerve regeneration and branching behavior across the entire NGC length. Observational and functional tests, including the von Frey threshold test and thermal test, showed promising recovery of motor function and sensation in the ipsilateral limbs grafted with the 3D-printed NGCs.
Collapse
Affiliation(s)
- Wei Zhu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Kathryn R. Tringale
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, United States
| | - Sarah A. Woller
- Department of Anesthesiology, University of California San Diego, La Jolla, CA 92093, United States
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Susie Johnson
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, United States
| | - Haixu Shen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Michael Whitney
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, United States
| | - Joanne Steinauer
- Department of Anesthesiology, University of California San Diego, La Jolla, CA 92093, United States
| | - Weizhe Xu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California San Diego, La Jolla, CA 92093, United States
| | - Quyen T. Nguyen
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, United States
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
36
|
Carvalho CR, Costa JB, da Silva Morais A, López-Cebral R, Silva-Correia J, Reis RL, Oliveira JM. Tunable Enzymatically Cross-Linked Silk Fibroin Tubular Conduits for Guided Tissue Regeneration. Adv Healthc Mater 2018; 7:e1800186. [PMID: 29999601 DOI: 10.1002/adhm.201800186] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/03/2018] [Indexed: 01/11/2023]
Abstract
Hollow tubular conduits (TCs) with tunable architecture and biological properties are in great need for modulating cell functions and drug delivery in guided tissue regeneration. Here, a new methodology to produce enzymatically cross-linked silk fibroin TCs is described, which takes advantage of the tyrosine groups present in silk structure that are known to allow the formation of a covalently cross-linked hydrogel. Three different processing methods are used as a final step to modulate the properties of the silk-based TCs. This approach allows to virtually adjust any characteristic of the final TCs. The final microstructure ranges from a nonporous to a highly porous network, allowing the TCs to be selectively porous to 4 kDa molecules, but not to human skin fibroblasts. Mechanical properties are dependent both on the processing method and thickness of the TCs. Bioactivity is observed after 30 days of immersion in simulated body fluid only for the TCs submitted to a drying processing method (50 °C). The in vivo study performed in mice demonstrates the good biocompatibility of the TCs. The enzymatically cross-linked silk fibroin TCs are versatile and have adjustable characteristics that can be exploited in a variety of biomedical applications, particularly in guidance of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho, Avepark; 4805-017 Barco Guimarães Portugal
| | - João B. Costa
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho, Avepark; 4805-017 Barco Guimarães Portugal
| | - Alain da Silva Morais
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
| | - Rita López-Cebral
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho, Avepark; 4805-017 Barco Guimarães Portugal
| | - Joana Silva-Correia
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho, Avepark; 4805-017 Barco Guimarães Portugal
| | - J. Miguel Oliveira
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho, Avepark; 4805-017 Barco Guimarães Portugal
| |
Collapse
|
37
|
Lin T, Liu S, Chen S, Qiu S, Rao Z, Liu J, Zhu S, Yan L, Mao H, Zhu Q, Quan D, Liu X. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater 2018; 73:326-338. [PMID: 29649641 DOI: 10.1016/j.actbio.2018.04.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022]
Abstract
Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. STATEMENT OF SIGNIFICANCE Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy of decellularized nerve allograft for nerve regeneration, with limited success. Xenogeneic decellularized tissue matrices or hydrogels have been widely used for surgical applications owing to their ease of harvesting and low immunogenicity. Moreover, decellularized tissue matrix hydrogels show good biocompatibility and are highly tunable. In this study, we prepared a porcine decellularized nerve matrix (pDNM-G) and evaluated its potential for promoting nerve regeneration. Our results demonstrate that pDNM-G can support Schwann cell proliferation and peripheral nerve regeneration by means of residual primary extracellular matrix components and nano-fibrous structure features.
Collapse
Affiliation(s)
- Tao Lin
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Sheng Liu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shihao Chen
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shuai Qiu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Zilong Rao
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Jianghui Liu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shuang Zhu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Liwei Yan
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Haiquan Mao
- Institute for NanoBioTechnology, and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, USA
| | - Qingtang Zhu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| | - Xiaolin Liu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| |
Collapse
|
38
|
Coble JL, Sheldon KE, Yue F, Salameh TJ, Harris LR, Deiling S, Ruggiero FM, Eshelman MA, Yochum GS, Koltun WA, Gerhard GS, Broach JR. Identification of a rare LAMB4 variant associated with familial diverticulitis through exome sequencing. Hum Mol Genet 2018; 26:3212-3220. [PMID: 28595269 DOI: 10.1093/hmg/ddx204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Diverticulitis is a chronic disease of the colon in which diverticuli, or outpouching through the colonic wall, become inflamed. Although recent observations suggest that genetic factors may play a significant role in diverticulitis, few genes have yet been implicated in disease pathogenesis and familial cases are uncommon. Here, we report results of whole exome sequencing performed on members from a single multi-generational family with early onset diverticulitis in order to identify a genetic component of the disease. We identified a rare single nucleotide variant in the laminin β 4 gene (LAMB4) that segregated with disease in a dominant pattern and causes a damaging missense substitution (D435N). Targeted sequencing of LAMB4 in 148 non-familial and unrelated sporadic diverticulitis patients identified two additional rare variants in the gene. Immunohistochemistry indicated that LAMB4 localizes to the myenteric plexus of colonic tissue and patients harboring LAMB4 variants exhibited reduced LAMB4 protein levels relative to controls. Laminins are constituents of the extracellular matrix and play a major role in regulating the development and function of the enteric nervous system. Reduced LAMB4 levels may therefore alter innervation and morphology of the enteric nervous system, which may contribute to colonic dysmotility associated with diverticulitis.
Collapse
Affiliation(s)
- Joel L Coble
- Department of Biochemistry and Molecular Biology
| | | | - Feng Yue
- Department of Biochemistry and Molecular Biology
| | | | | | - Sue Deiling
- Department of Surgery, Division of Colon and Rectal Surgery
| | - Francesca M Ruggiero
- Division of Anatomical Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | - Gregory S Yochum
- Department of Biochemistry and Molecular Biology.,Department of Surgery, Division of Colon and Rectal Surgery
| | | | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Temple University College of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
39
|
Carvalho CR, López-Cebral R, Silva-Correia J, Silva JM, Mano JF, Silva TH, Freier T, Reis RL, Oliveira JM. Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1122-1134. [DOI: 10.1016/j.msec.2016.11.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/13/2016] [Accepted: 11/24/2016] [Indexed: 12/24/2022]
|
40
|
Zilic L, Wilshaw SP, Haycock JW. Decellularisation and histological characterisation of porcine peripheral nerves. Biotechnol Bioeng 2016; 113:2041-53. [PMID: 26926914 PMCID: PMC5103209 DOI: 10.1002/bit.25964] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/27/2016] [Accepted: 02/21/2016] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injuries affect a large proportion of the global population, often causing significant morbidity and loss of function. Current treatment strategies include the use of implantable nerve guide conduits (NGC's) to direct regenerating axons between the proximal and distal ends of the nerve gap. However, NGC's are limited in their effectiveness at promoting regeneration Current NGCs are not suitable as substrates for supporting either neuronal or Schwann cell growth, as they lack an architecture similar to that of the native extracellular matrix (ECM) of the nerve. The aim of this study was to create an acellular porcine peripheral nerve using a novel decellularisation protocol, in order to eliminate the immunogenic cellular components of the tissue, while preserving the three‐dimensional histoarchitecture and ECM components. Porcine peripheral nerve (sciatic branches were decellularised using a low concentration (0.1%; w/v) sodium dodecyl sulphate in conjunction with hypotonic buffers and protease inhibitors, and then sterilised using 0.1% (v/v) peracetic acid. Quantitative and qualitative analysis revealed a ≥95% (w/w) reduction in DNA content as well as preservation of the nerve fascicles and connective tissue. Acellular nerves were shown to have retained key ECM components such as collagen, laminin and fibronectin. Slow strain rate to failure testing demonstrated the biomechanical properties of acellular nerves to be comparable to fresh controls. In conclusion, we report the production of a biocompatible, biomechanically functional acellular scaffold, which may have use in peripheral nerve repair. Biotechnol. Bioeng. 2016;113: 2041–2053. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leyla Zilic
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, LS2 9JT United Kingdom.,Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, LS2 9JT United Kingdom.,Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, S3 7HQ United Kingdom
| | - Stacy-Paul Wilshaw
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, LS2 9JT United Kingdom. .,Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, LS2 9JT United Kingdom.
| | - John W Haycock
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, S3 7HQ United Kingdom.
| |
Collapse
|
41
|
Sauter AR, Romundstad L. Animal models can help us prevent nerve injuries in regional anaesthesia for patients. Acta Anaesthesiol Scand 2016; 60:284-8. [PMID: 26806955 DOI: 10.1111/aas.12680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. R. Sauter
- Department of Research and Developement; Division of Emergencies and Critical Care; Oslo University Hospital; Oslo Norway
- Department of Anesthesiology and Pain Medicine; lnselspital; Bern University Hospital; University of Bern; Bern Switzerland
| | - L. Romundstad
- Division of Emergencies and Critical Care; Department of Anaesthesiology; Oslo University Hospital; Rikshospitalet; Oslo Norway
| |
Collapse
|