1
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
2
|
Bandiwadekar A, Jose J, Gopan G, Augustin V, Ashtekar H, Khot KB. Transdermal delivery of resveratrol loaded solid lipid nanoparticle as a microneedle patch: a novel approach for the treatment of Parkinson's disease. Drug Deliv Transl Res 2024:10.1007/s13346-024-01656-0. [PMID: 38949746 DOI: 10.1007/s13346-024-01656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Parkinson's disease (PD), affecting millions of people worldwide and expected to impact 10 million by 2030, manifests a spectrum of motor and non-motor symptoms linked to the decline of dopaminergic neurons. Current therapies manage PD symptoms but lack efficacy in slowing disease progression, emphasizing the urgency for more effective treatments. Resveratrol (RSV), recognized for its neuroprotective and antioxidative properties, encounters challenges in clinical use for PD due to limited bioavailability. Researchers have investigated lipid-based nanoformulations, specifically solid lipid nanoparticles (SLNs), to enhance RSV stability. Oral drug delivery via SLNs faces obstacles, prompting exploration into transdermal delivery using SLNs integrated with microneedles (MNs) for improved patient compliance. In this study, an RSV-loaded SLNs (RSV -SLNs) incorporated into the MN patch was developed for transdermal RSV delivery to improve its stability and patient compliance. Characterization studies demonstrated favorable physical properties of SLNs with a sustained drug release profile of 78.36 ± 0.74%. The developed MNs exhibited mechanical robustness and skin penetration capabilities. Ex vivo permeation studies displayed substantial drug permeation of 68.39 ± 1.4% through the skin. In an in vivo pharmacokinetic study, the RSV-SLNs delivered through MNs exhibited a significant increase in Cmax, Tmax, and AUC0 - t values, alongside a reduced elimination rate in blood plasma in contrast to the administration of pure RSV via MNs. Moreover, an in vivo study showcased enhanced behavioral functioning and increased brain antioxidant levels in the treated animals. In-vivo skin irritation study revealed no signs of irritation till 24 h which permits long-term MNs application. Histopathological analysis showed notable changes in the brain regions of the rat, specifically the striatum and substantia nigra, after the completion of the treatment. Based on these findings, the development of an RSV-SLN loaded MNs (RSVSNLMP) patch presents a novel approach, with the potential to enhance the drug's efficiency, patient compliance, and therapeutic outcomes for PD, offering a promising avenue for advanced PD therapy.
Collapse
Affiliation(s)
- Akshay Bandiwadekar
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Jobin Jose
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India.
| | - Gopika Gopan
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Varsha Augustin
- NGSM Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Department of NITTE University Center for Animal Research & Experimentation (NUCARE), Mangalore, 575018, India
| | - Harsha Ashtekar
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Kartik Bhairu Khot
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| |
Collapse
|
3
|
Hegde AR, Kunder MU, Narayanaswamy M, Murugesan S, Furtado SC, Veerabhadraiah BB, Srinivasan B. Advancements in sunscreen formulations: integrating polyphenolic nanocarriers and nanotechnology for enhanced UV protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38061-38082. [PMID: 38806984 DOI: 10.1007/s11356-024-33712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Sunscreens are essential in protecting the skin from harmful effects of ultraviolet radiation (UVR). These formulations, designed to absorb, block, or scatter UVR, offer vital protection against skin aging, sunburns, and the development of skin cancers like melanomas. However, some sunscreens, especially those containing organic/chemical compounds, can cause allergic reactions. To address this, researchers are extensively investigating formulations that incorporate plant extracts rich in polyphenols, such as flavonoids and carotenoids, which can be considered safer alternatives. Products derived from plants are commonly used in cosmetics to counteract skin aging due to their antioxidant activity that combat harmful free radicals. This review focuses on evaluating the advancements in chemical and natural sunscreens, exploring the integration of polyphenolic nanocarriers within sunscreen formulas, their interaction with UVR, and utilizing nanotechnology to enhance their effectiveness. An attempt has been made to highlight the concerns related to toxicity associated with their use and notable advancements in the regulatory aspects governing their utilization.
Collapse
Affiliation(s)
- Aswathi Raju Hegde
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India.
| | - Manisha Uday Kunder
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Megha Narayanaswamy
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Shruthi Murugesan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Sharon Caroline Furtado
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Basavaraj Basappa Veerabhadraiah
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Bharath Srinivasan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| |
Collapse
|
4
|
Godase SS, Kulkarni NS, Dhole SN. A Comprehensive Review on Novel Lipid-Based Nano Drug Delivery. Adv Pharm Bull 2024; 14:34-47. [PMID: 38585464 PMCID: PMC10997939 DOI: 10.34172/apb.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 02/21/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Novel drug delivery system opens the doors towards nano/micro formulation strategies to overcome the challenges associated with the poorly soluble and permeable drugs. Lipid based nanoparticles are widely accepted that includes liposomes, niosomes and micelles which are FDA approved. Such lipid based drug delivery allows delivery for natural phytoconstituents, biopharmaceutical classification system (BCS) class II and class IV drugs are effectively delivered to improve its solubility, permeability and bioavailability. The article provides the recent advances and application of lipid based dosage form for improvement of therapeutic efficacy.
Collapse
Affiliation(s)
| | - Nilesh Shrikant Kulkarni
- Department of Pharmaceutics, PES Modern college of Pharmacy (for ladies) Moshi, Pune. Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India
| | | |
Collapse
|
5
|
Valeria C, Salvatore P, Luca V, Maria G, Ludovica M, Cristina S, Lucia M, Angela C, Valeria S. Innovative snail-mucus-extract (SME)-coated nanoparticles exhibit anti-inflammatory and anti-proliferative effects for potential skin cancer prevention and treatment. RSC Adv 2024; 14:7655-7663. [PMID: 38440280 PMCID: PMC10911411 DOI: 10.1039/d4ra00291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Nowadays, several studies have highlighted the ability of snail mucus in maintaining healthy skin conditions due to its emollient, regenerative and protective properties. In particular, mucus derived from H. aspersa muller has been reported to have beneficial effects such as antioxidant, antimicrobial activity and wound repair capacity. To enhance antioxidant activity of snail mucus, it was extracted in a hydroalcoholic solution and consequently freeze-dried. The obtained snail mucus extract (SME) was indeed endowed with higher antioxidant activity observed in cell-free models, however it was not possible to test its effects in cellular models as it creates a thick film on the cell surface. Therefore, in order to enhance beneficial effects of snail mucus and extend its potential use, SME was used to develop snail mucus extract-coated gold nanoparticles (AuNPs-SME) which exhibited anti-inflammatory properties on non-tumorigenic cells. LPS-induced inflammation in human NCTC keratinocytes was used as model to investigate the in vitro cytoprotective effects of nanoparticles. Co-treatment with LPS and AuNPs-SME significantly reduced pro-inflammatory cytokine transcription. Moreover, we demonstrated that AuNPs-SME not only can be used for anti-inflammatory treatments, but also as a sunscreen and antioxidant for potential cosmetic applications. Furthermore, AuNPs-SME's ability to selectively inhibit the growth of two human melanoma cell lines without affecting immortalized human keratinocyte viability in the same conditions was assessed. Thus, we demonstrated that snail mucus is suitable for creating innovative formulations and it can be considered a valid candidate for cosmeceutical applications to enrich the snail mucus based anti-age and sunscreen products already present on the market. Moreover, innovative formulations containing snail mucus can be potentially used for the treatment of specific skin neoplasms.
Collapse
Affiliation(s)
- Consoli Valeria
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania 95125 Catania Italy
| | - Petralia Salvatore
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
- CNR-Institute of Biomolecular Chemistry Via Paolo Gaifami 18 95126 Catania Italy
| | - Vanella Luca
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania 95125 Catania Italy
| | - Gulisano Maria
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
| | - Maugeri Ludovica
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
| | - Satriano Cristina
- NanoHybrid Biointerfaces Laboratory (NHBIL), Department of Chemical Sciences, University of Catania Viale Andrea Doria, 6 95125 Catania Italy
| | - Montenegro Lucia
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania 95125 Catania Italy
| | - Castellano Angela
- Mediterranean Nutraceutical Extracts (Medinutrex) Via Vincenzo Giuffrida 202 95128 Catania Italy
| | - Sorrenti Valeria
- Department of Drug and Health Sciences, University of Catania Via Santa Sofia 64 95125 Catania Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania 95125 Catania Italy
| |
Collapse
|
6
|
Sunena, Tomar D, Jawla S. Clinical Applications of Sunscreens and Formulation Advancements. Curr Drug Res Rev 2024; 16:198-208. [PMID: 37464824 DOI: 10.2174/2589977515666230718124841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/05/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023]
Abstract
Sunscreens cover the big market ratio in terms of cosmetic applications, but the therapeutic necessity of sunscreen still needs to be uncovered in the clinical context. Clinically, sunscreens are being employed more often nowadays as a result of the rising consequences of skin malignancies and the photodamaging effects of UV radiation. Sunscreens are essential to prevent aging by shielding the skin from the harmful effects of ultraviolet (UV) radiation. Over the recent decades, there has been a significant evolution in the usage of sunscreens as photo protectants. The demand for sunscreen formulations will inevitably rise as more people become aware of the protection that sunscreens provide against tanning, photoaging, non-melanoma skin cancers, premalignant skin lesions, and skin melanomas. The novel contemporary formulation techniques are also beneficial in enhancing the product's aesthetic look and quality. Recently, regulatory agencies have also started paying attention to the regulation of the clinical application, efficacy, and safety parameters related to sunscreen. This review underlines the pathophysiological response of UV exposure with the therapeutic applications of sunscreen in various dermatological conditions and the recent formulation advancements in the development of sunscreen.
Collapse
Affiliation(s)
- Sunena
- Geeta Institute of Pharmacy, Geeta University, Panipat, 132145, India
| | - Deepali Tomar
- Geeta Institute of Pharmacy, Geeta University, Panipat, 132145, India
| | - Sunil Jawla
- Geeta Institute of Pharmacy, Geeta University, Panipat, 132145, India
| |
Collapse
|
7
|
Aguilera J, Gracia-Cazaña T, Gilaberte Y. New developments in sunscreens. Photochem Photobiol Sci 2023; 22:2473-2482. [PMID: 37543534 DOI: 10.1007/s43630-023-00453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/28/2023] [Indexed: 08/07/2023]
Abstract
Topical sunscreen application is one of the most important photoprotection tool to prevent sun damaging effects in human skin at the short and long term. Although its efficacy and cosmeticity have significantly improved in recent years, a better understanding of the biological and clinical effects of longer wavelength radiation, such as long ultraviolet A (UVA I) and blue light, has driven scientists and companies to search for effective and safe filters and substances to protect against these newly identified forms of radiation. New technologies have sought to imbue sunscreen with novel properties, such as the reduction of calorific radiation. Cutaneous penetration by sunscreens can also be reduced using hydrogels or nanocrystals that envelop the filters, or by binding filters to nanocarriers such as alginate microparticles, cyclodextrins, and methacrylate polymers. Finally, researchers have looked to nature as a source of healthier products, such as plant products (e.g., mycosporines, scytonemin, and various flavonoids) and even fungal and bacterial melanin, which could potentially be used as substitutes or enhancers of current filters.
Collapse
Affiliation(s)
- José Aguilera
- Photobiological Dermatology Laboratory, Medical Research Center, Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragossa, Spain.
- University of Zaragoza, University of Medicine, Zaragoza, Spain.
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragossa, Spain
- University of Zaragoza, University of Medicine, Zaragoza, Spain
| |
Collapse
|
8
|
Abd-Alaziz DM, Mansour M, Nasr M, Sammour OA. Spanethosomes as a novel topical carrier for silymarin in contrast to conventional spanlastics: Formulation development, in vitro and ex vivo evaluation for potential treatment of leishmaniasis. J Drug Deliv Sci Technol 2023; 88:104887. [DOI: 10.1016/j.jddst.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Chang J, Yu B, Saltzman WM, Girardi M. Nanoparticles as a Therapeutic Delivery System for Skin Cancer Prevention and Treatment. JID INNOVATIONS 2023; 3:100197. [PMID: 37205301 PMCID: PMC10186617 DOI: 10.1016/j.xjidi.2023.100197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
The use of nanoparticles (NPs) as a therapeutic delivery system has expanded markedly over the past decade, particularly regarding applications targeting the skin. The delivery of NP-based therapeutics to the skin requires special consideration owing to its role as both a physical and immunologic barrier, and specific technologies must not only take into consideration the target but also the pathway of delivery. The unique challenge this poses has been met with the development of a wide panel of NP-based technologies meant to precisely address these considerations. In this review article, we describe the application of NP-based technologies for drug delivery targeting the skin, summarize the types of NPs, and discuss the current landscape of NPs for skin cancer prevention and skin cancer treatment as well as future directions within these applications.
Collapse
Affiliation(s)
- Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Beverly Yu
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - W. Mark Saltzman
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Taniyadukkam V, Jose J, Maliyakkal N, Beeran AA, Almoyad MAA, Aleya L, Bandiwadekar A. Development and evaluation of sunscreen cream containing solid lipid nanoparticles of Spinacia oleraceae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51782-51791. [PMID: 36820973 DOI: 10.1007/s11356-023-25947-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/10/2023] [Indexed: 05/10/2023]
Abstract
More research is needed to understand the benefits of environmentally safe and human-friendly herbal-based sunscreen agents against ultraviolet (UV) radiation. Because of the toxicity of synthetic chemicals in photoprotective agents, researchers were increasingly focusing on herbal photoprotective formulations. The photoprotective agent's skin retention can be considerably improved by forming solid lipid nanoparticles (SLN). The study's objective is to evaluate the photoprotective potential of sunscreen cream containing spinach (Spinacia oleracea)-loaded SLN. A solvent emulsification technique was used to develop the spinach-loaded SLN. The various characterization techniques of the developed SLN were performed. Out of all the formulations, the optimized one was fitted into cream and estimated for its photoprotective action. The images obtained from scanning electron microscopy (SEM) revealed the morphological characteristics of the prepared SLN. The sunscreen cream's viscosity, spreadability, extrudability, and release rate were within acceptable limits. The formulation's in vitro and in vivo sun protection factor (SPF) was reported to be 15.9 and 14.75, respectively. The results indicated that the prepared formulation possesses good photoprotective action. The accelerated stability tests were carried out with no noticeable changes in the parameters. Our work demonstrated the possibility of using spinach-loaded SLN as a photoprotective agent in cosmetic formulations.
Collapse
Affiliation(s)
- Vijisha Taniyadukkam
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangalore, 575018, Karnataka, India.
| | - Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushait, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushait, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, CNRS-6249, Bourgogne Franche-Comte University, Besancon, France
| | - Akshay Bandiwadekar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangalore, 575018, Karnataka, India
| |
Collapse
|
11
|
Fonseca M, Rehman M, Soares R, Fonte P. The Impact of Flavonoid-Loaded Nanoparticles in the UV Protection and Safety Profile of Topical Sunscreens. Biomolecules 2023; 13:biom13030493. [PMID: 36979428 PMCID: PMC10046639 DOI: 10.3390/biom13030493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Excessive UV radiation exposure is harmful to skin cells since sunburn is accompanied by oxidative burst, leading to a rapid increase in skin cancer. However, the insufficient UV photoprotection of approved sunscreens and the negative impact of their compositions on ecosystems and human health makes the utility of sunscreen a questionable recommendation. Therefore, discovering UV filters with significant antioxidant activity and improved topical performance and photostability is an urgent need. Recently, the use of nanosized natural molecules incorporated in sunscreens has been a scientific hot topic, as it has been suggested that they provide a synergistic effect with synthetic UV filters, improving overall SPF and antioxidant activity, higher retention on the epidermis, and less toxicity. The aim of this review was to verify the usefulness of sunscreens incorporating flavonoid-loaded nanoparticles. A literature review was performed, where original and review articles published in the last 6 years were analyzed. Formulations containing nanosized flavonoids with improved UVA photoprotection and safer toxicological profiles, associated or not with synthetic filters, are promising sunscreens and more clinical investigation must be performed to validate these findings.
Collapse
Affiliation(s)
- Magda Fonseca
- EPI Unit, Department of Epidemiological Research, Institute of Public Health of University of Porto (ISPUP), Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMAR), Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
12
|
Aanisah N, Sulistiawati S, Djabir YY, Asri RM, Sumarheni S, Chabib L, Hamzah H, Permana AD. Development of Solid Lipid Nanoparticle-Loaded Polymeric Hydrogels Containing Antioxidant and Photoprotective Bioactive Compounds of Safflower ( Carthamus tinctorius L.) for Improved Skin Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1838-1851. [PMID: 36701815 DOI: 10.1021/acs.langmuir.2c02754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Safflower (Carthamus tinctorius L.) is a potent natural antioxidant because of active compounds such as quercetin (QU) and luteolin (LU). These components prevent damage to the skin caused by free radicals from UV rays. However, due to the poor solubility and transdermal permeation, the effectiveness of the compounds in showing their activity was limited. In this study, we develop solid lipid nanoparticle (SLN)-based hydrogel formulations to enhance the solubility and penetration of two bioactive compounds found in safflower petals extract (SPE). The hot emulsification-ultrasonication method was used to produce SLNs, and to obtain high antioxidant activity, 100% v/v ethanol was used in the extraction procedure. The results showed that this approach could encapsulate >80% of both QU and LU. Moreover, Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) spectra indicated that most of the QU and LU were trapped in a lipid matrix and dispersed homogeneously at the molecular level, increasing the solubility. Additionally, SLN-hydrogel composites are able to release two lipophilic bioactive compounds for 24 h, which also demonstrated increased skin retention and penetrability of the QU and LU up to 19-fold. In vitro blood biocompatibility showed that no hemolytic toxicity was observed below 500 μg/mL. Accordingly, the formulation was considered safe for use. Sun protective factor (SPF) test shows a value above 15, showing an excellent promising application as the photoprotective agent to prevent symptoms associated with photoinduced skin aging.
Collapse
Affiliation(s)
- Nuur Aanisah
- Department of Pharmacy, Faculty of Science, Tadulako University, Palu94118, Indonesia
| | | | | | | | | | - Lutfi Chabib
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta55584, Indonesia
| | - Hasyrul Hamzah
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda75124, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar90245, Indonesia
| |
Collapse
|
13
|
Nemyatykh OD, Terninko II, Sabitov AS, Lyashko AI, Sakipova ZB. EVALUATION OF PLANT-BASED UV FILTERS POTENTIAL IN MODERN CONCEPT VIEW OF SKIN PHOTOPROTECTION. PHARMACY & PHARMACOLOGY 2022. [DOI: 10.19163/2307-9266-2022-10-4-308-319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A therapeutic plants potential is based on the pharmacological effects due to their phytochemical profile. Today, scientific interest in botanicals is increasing as a result of recent research that looks at the prospect of using these raw materials for the cosmetic industry as a means to protect the skin from the harmful effects of UV rays.The aim of the study was to evaluate a potential of plant-based UV-filters in modern concept view of skin photoprotection.Materials and methods. A systematic literature search was carried out using the electronic information arrays PubMed, Scopus, Google Scholar, eLibrary. The search depth was 10 years (the period from 2010 to 2021). The search was carried out by the following keywords: antioxidants, cosmetics, photoprotection, chemical composition, pharmacological action.Results. In the paper, modern principles of skin photoprotection based on the use of chemical or physical UV-filters are considered and scientifically substantiated A trend for the use of plant-based materials and their components in the formulation of photoprotectors was notified. That is associated with a wide activity spectrum, the absence of a xenobiotic effect, and a high bioavailability of organic plant compounds.Conclusion. The data analysis from scientific publications demonstrated a potential photoprotective activity of plant-based biologically active substances due to antioxidant, anti-inflammatory and anti-radical effects. The results of the study are a theoretical basis for a further comprehensive experimental study of plant objects in order to obtain a pool of evidence in the field of photoprotection in in vivo experiments.
Collapse
Affiliation(s)
- O. D. Nemyatykh
- Saint-Petersburg State Chemical and Pharmaceutical University
| | - I. I. Terninko
- Saint-Petersburg State Chemical and Pharmaceutical University
| | | | - A. I. Lyashko
- Saint-Petersburg State Chemical and Pharmaceutical University
| | | |
Collapse
|
14
|
Khattak RZ, Nawaz A, Alnuwaiser MA, Latif MS, Rashid SA, Khan AA, Alamoudi SA. Formulation, In Vitro Characterization and Antibacterial Activity of Chitosan-Decorated Cream Containing Bacitracin for Topical Delivery. Antibiotics (Basel) 2022; 11:antibiotics11091151. [PMID: 36139931 PMCID: PMC9495230 DOI: 10.3390/antibiotics11091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Bacitracin is a broad spectrum antibiotic that is used against various microorganisms. Chitosan is a natural polymer that has been widely investigated as an antimicrobial agent for preventing and treating infections owing to its intrinsic antimicrobial properties, as well as its ability to effectively deliver extrinsic antimicrobial compounds to infected areas. Topical drug delivery offers important benefits for improving the therapeutic effect and reducing systemic side effects of administered compounds/drugs. The topical use of chitosan-decorated bacitracin-loaded cream improves the permeation of the drug across the skin and enhances the drug bioavailability by prolonging the residence time of the drug when applied topically, as well as producing synergistic effects and reducing the side effects of the drug. Topical chitosan-decorated cream can be a promising approach to administer the drug more efficiently and enhance the efficacy of treatment in wound healing and antibacterial activity. (2) Methods: This study was conducted to prepare, assess and investigate the synergistic antibacterial activity of a chitosan-coated bacitracin cream. The results were compared to the antibacterial activity of simple bacitracin-loaded cream. The prepared cream was evaluated for various in vitro characteristics such as rheology, pH, viscosity, drug content and antibacterial activity studies. (3) Result: The formulations were found to be stable regarding color, liquefaction and phase separation at all accelerated conditions. It was observed that with time, substantial variations in the pH of the preparations were found. The introduction of chitosan results in controlled release of the drug from the formulations. The antibacterial activity of the formulated creams was assessed with the disc diffusion method against Staphylococcus aureus(ATCC),Escherichiacoli (STCC),Pseudomonas aeruginosa(ATCC) and Bacillus cereus(ATCC). The strains, E. coli, S. aureus, P. aeruginosa and B. cereus were susceptible to 50 µg chitosan-decorated bacitracin cream, showing inhibition zones of 10 ± 0.6, 34 ± 1.5, 31 ± 0.76 and 21 ± 2.02 mm, respectively. The zones of inhibition for simple bacitracin-loaded cream were significantly smaller than chitosan-decorated cream, at 2 ± 0.2, 28 ± 0.92, 15 ± 0.5 and 11 ± 1.25 mm (ANOVA; p < 0.05), respectively. (4) Conclusion: It was observed that the zones of inhibition of simple bacitracin-loaded cream were significantly smaller than those of chitosan-decorated bacitracin-loaded cream. Chitosan synergistically improves the antimicrobial activity of bacitracin. Hence, the developed formulation was effective and should be considered as a suitable candidate for topical management of skin infections and wound healing.
Collapse
Affiliation(s)
- Rumana Zaib Khattak
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
- Correspondence:
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Latif
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Sheikh Abdur Rashid
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Asghar Ali Khan
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Soha A. Alamoudi
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| |
Collapse
|
15
|
Izza N, Watanabe N, Okamoto Y, Wibisono Y, Umakoshi H. Characterization of entrapment behavior of polyphenols in nanostructured lipid carriers and its effect on their antioxidative activity. J Biosci Bioeng 2022; 134:269-275. [PMID: 35810136 DOI: 10.1016/j.jbiosc.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Polyphenols are widely used as antioxidant agents to protect human health. Resveratrol, kaempferol, and quercetin have been reported to have potent antioxidant activity; however, these compounds have many problems related to their practical application, such as instability and insolubility. Thus, a nanostructured lipid carrier (NLC) was utilized as a drug delivery system (DDS) to overcome these limitations. This study investigated the particle stability, drug loading performance, and antioxidant activity of polyphenols-incorporated NLCs. The particle size and distribution were suitable for DDS applications, and all the samples demonstrated good stability after 2 months of storage. Based on Raman spectroscopy analysis, polyphenols were successfully encapsulated in NLCs. Quantitative high-performance liquid chromatography analysis indicated that NLCs could load resveratrol more than kaempferol and quercetin. In addition, NLCs have successfully improved all the antioxidant activity per unit concentration of polyphenol (specific antioxidant activity) compared to the free polyphenols. Quercetin-incorporated NLCs showed the highest specific antioxidant activity. This result is the opposite of entrapment efficiency and actual antioxidant activity, most likely influenced by the location of entrapped polyphenol molecules. As it was performed, NLCs are highly recommended to be applied as an antioxidant delivery system.
Collapse
Affiliation(s)
- Ni'matul Izza
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan; Bioprocess Engineering Study Program, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang 65145, East Java, Indonesia
| | - Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Yusuf Wibisono
- Bioprocess Engineering Study Program, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang 65145, East Java, Indonesia
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
16
|
He H, Xiong L, Jian L, Li L, Wu Y, Qiao S. Role of mitochondria on UV-induced skin damage and molecular mechanisms of active chemical compounds targeting mitochondria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112464. [PMID: 35597147 DOI: 10.1016/j.jphotobiol.2022.112464] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/07/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are the principal place of energy metabolism and ROS production, leading to mtDNA being especially sensitive to the impacts of oxidative stress. Our review aims to elucidate and update the mechanisms of mitochondria in UV-induced skin damage. The mitochondrial deteriorative response to UV manifests morphological and functional alterations, including mitochondrial fusion and fission, mitochondrial biogenesis, mitochondrial energy metabolism and mitophagy. Additionally, we conclude the effect and molecular mechanisms of active chemical components to protect skin from UV-induced damage via mitochondrial protection which have been described in the last five years, showing prospective prospects in cosmetics as new therapeutic targets.
Collapse
Affiliation(s)
- Hailun He
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China; Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| | - Linge Jian
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liangman Li
- Orthopedics Department, the First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China.
| | - Shuai Qiao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China.
| |
Collapse
|
17
|
Zhou X, Jin W, Sun H, Li C, Jia J. Perturbation of autophagy: An intrinsic toxicity mechanism of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153629. [PMID: 35131247 DOI: 10.1016/j.scitotenv.2022.153629] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have been widely used for various purposes due to their unique physicochemical properties. Such widespread applications greatly increase the possibility of human exposure to NPs in various ways. Once entering the human body, NPs may interfere with cellular homeostasis and thus affect the physiological system. As a result, it is necessary to evaluate the potential disturbance of NPs to multiple cell functions, including autophagy. Autophagy is an important cell function to maintain cellular homeostasis, and minimizing the disturbance caused by NP exposures to autophagy is critical to nanosafety. Herein, we summarized the recent research progress in nanotoxicity with particular focuses on the perturbation of NPs to cell autophagy. The basic processes of autophagy and complex relationships between autophagy and major human diseases were further discussed to emphasize the importance of keeping autophagy under control. Moreover, the most recent advances on perturbation of different types of NPs to autophagy were also reviewed. Last but not least, we also discussed major research challenges and potential coping strategies and proposed a safe-by-design strategy towards safer applications of NPs.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Weitao Jin
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Hainan Sun
- Shandong Vocational College of Light Industry, Zibo 255300, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Green Synthesis of Silymarin-Chitosan Nanoparticles as a New Nano Formulation with Enhanced Anti-Fibrotic Effects against Liver Fibrosis. Int J Mol Sci 2022; 23:ijms23105420. [PMID: 35628233 PMCID: PMC9141191 DOI: 10.3390/ijms23105420] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Silymarin (SIL) has long been utilized to treat a variety of liver illnesses, but due to its poor water solubility and low membrane permeability, it has a low oral bioavailability, limiting its therapeutic potential. Aim: Design and evaluate hepatic-targeted delivery of safe biocompatible formulated SIL-loaded chitosan nanoparticles (SCNPs) to enhance SIL’s anti-fibrotic effectiveness in rats with CCl4-induced liver fibrosis. Methods: The SCNPs and chitosan nanoparticles (CNPs) were prepared by ionotropic gelation technique and are characterized by physicochemical parameters such as particle size, morphology, zeta potential, and in vitro release studies. The therapeutic efficacy of successfully formulated SCNPs and CNPs were subjected to in vivo evaluation studies. Rats were daily administered SIL, SCNPs, and CNPs orally for 30 days. Results: The in vivo study revealed that the synthesized SCNPs demonstrated a significant antifibrotic therapeutic action against CCl4-induced hepatic injury in rats when compared to treated groups of SIL and CNPs. SCNP-treated rats had a healthy body weight, with normal values for liver weight and liver index, as well as significant improvements in liver functions, inflammatory indicators, antioxidant pathway activation, and lipid peroxidation reduction. The antifibrotic activities of SCNPs were mediated by suppressing the expression of the main fibrosis mediators TGFβR1, COL3A1, and TGFβR2 by boosting the hepatic expression of protective miRNAs; miR-22, miR-29c, and miR-219a, respectively. The anti-fibrotic effects of SCNPs were supported by histopathology and immunohistochemistry (IHC) study. Conclusions: According to the above results, SCNPs might be the best suitable carrier to target liver cells in the treatment of liver fibrosis.
Collapse
|
19
|
Formulation and Physicochemical Evaluation of Green Cosmeceutical Herbal Face Cream Containing Standardized Mangosteen Peel Extract. COSMETICS 2022. [DOI: 10.3390/cosmetics9030046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The widely reported adverse effects of synthetic ingredients encourage the development of green cosmeceuticals to achieve Sustainable Development Goal (SDG) 3. The waste product of mangosteen (mangosteen peel) was utilized in the formulation to reduce waste production corresponding to SDG 12, in addition to its anti-aging and pigmentation control effects. This study aimed to formulate and evaluate novel herbal face creams containing standardized mangosteen peel extract. The mangosteen creams were formulated using natural ingredients and were evaluated for their organoleptic characteristics, rheology, spreadability and pH. Furthermore, an accelerated stability study, freeze–thaw stability study and centrifugation test were conducted. In addition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays were conducted to assess its antioxidant effects, whereas tyrosinase inhibitory assay was conducted to determine its anti-tyrosinase activity. The formulated creams appeared light yellowish-brown and homogenous without phase separation. The creams displayed shear-thinning behavior and optimal pH which was ideal for topical application. The creams were stable after being subjected to various stability tests and were shown to have antioxidant and anti-tyrosinase activity. In conclusion, the development of mangosteen-based green cosmeceutical face cream is in line with SDG 3 and 12. It is expected to be used as a safe and effective alternative to synthetic products.
Collapse
|
20
|
Gupta V, Mohapatra S, Mishra H, Farooq U, Kumar K, Ansari MJ, Aldawsari MF, Alalaiwe AS, Mirza MA, Iqbal Z. Nanotechnology in Cosmetics and Cosmeceuticals-A Review of Latest Advancements. Gels 2022; 8:173. [PMID: 35323286 PMCID: PMC8951203 DOI: 10.3390/gels8030173] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology has the potential to generate advancements and innovations in formulations and delivery systems. This fast-developing technology has been widely exploited for diagnostic and therapeutic purposes. Today, cosmetic formulations incorporating nanotechnology are a relatively new yet very promising and highly researched area. The application of nanotechnology in cosmetics has been shown to overcome the drawbacks associated with traditional cosmetics and also to add more useful features to a formulation. Nanocosmetics and nanocosmeceuticals have been extensively explored for skin, hair, nails, lips, and teeth, and the inclusion of nanomaterials has been found to improve product efficacy and consumer satisfaction. This is leading to the replacement of many traditional cosmeceuticals with nanocosmeceuticals. However, nanotoxicological studies on nanocosmeceuticals have raised concerns in terms of health hazards due to their potential skin penetration, resulting in toxic effects. This review summarizes various nanotechnology-based approaches being utilized in the delivery of cosmetics as well as cosmeceutical products, along with relevant patents. It outlines their benefits, as well as potential health and environmental risks. Further, it highlights the regulatory status of cosmeceuticals and analyzes the different regulatory guidelines in India, Europe, and the USA and discusses the different guidelines and recommendations issued by various regulatory authorities. Finally, this article seeks to provide an overview of nanocosmetics and nanocosmeceuticals and their applications in cosmetic industries, which may help consumers and regulators to gain awareness about the benefits as well as the toxicity related to the continuous and long-term uses of these products, thus encouraging their judicious use.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University, 61300 Brno, Czech Republic;
| | - Uzma Farooq
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Keshav Kumar
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Ahmed S. Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia or (M.J.A.); (M.F.A.); (A.S.A.)
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, Delhi, India; (V.G.); (S.M.); (U.F.); (K.K.)
| |
Collapse
|
21
|
Assali M, Zaid AN. Features, applications, and sustainability of lipid nanoparticles in cosmeceuticals. Saudi Pharm J 2022; 30:53-65. [PMID: 35241963 PMCID: PMC8864531 DOI: 10.1016/j.jsps.2021.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Cosmeceuticals are a branch of cosmetic products that forms a bridge between cosmetic and drug products. It is a fast-growing branch of the cosmetic industry, especially after the introduction of novel formulation and manufacturing techniques such as lipid nanoparticles (LNPs). These LNPs-based cosmeceutical products offer several advantages such as enhanced bioavailability of cosmeceutical active ingredients (CAIs), improved aesthetic appeal, and stability of the final products. However, the use of these LNPs may raise some concerns about possible side effects of these LNPs and potential hazards to the customer's health. Accordingly, an update that focuses on the use of this important branch of nanoparticles is necessary since most review papers are dealing with all types of nanocarriers in the same review with little focus on LNPs. Therefore, in the current review, a detailed analysis of the advantages and disadvantages of LNPs in this field was highlighted, to emphasize the LNPs-based cosmeceuticals on the market, as well as the potential risk posed by LNPs on exposure and recently introduced regulatory guidelines to address them. In addition, if these products can be a candidate as products that meet the sustainable development goals raised by the UN are discussed.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Abdel-Naser Zaid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
22
|
Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics 2021; 13:pharmaceutics13091408. [PMID: 34575484 PMCID: PMC8470546 DOI: 10.3390/pharmaceutics13091408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Nanosystems exhibit various innovative physico-chemical properties as well as a range of cosmetic functions, including increased skin retention for loaded compounds. The worldwide nano-market has therefore been consistently extensive in recent decades. This review summarizes the most important properties of nanosystems that are employed in cosmetics, including composition, functions and interactions with skin, with particular attention being paid to marketed products. Moreover, the worldwide regulatory landscape of nanomaterials used as cosmetic ingredients is considered, and the main safety concerns are indicated. In general, advanced physico-chemical characterization is preliminarily needed to assess the safety of nanomaterials for human health and the environment. However, there is currently a shortfall in global legislation as a universally accepted and unambiguous definition of a nanomaterial is still lacking. Therefore, each country follows its own regulations. Anyhow, the main safety concerns arise from the European context, which is the most restrictive. Accordingly, the poor dermal permeation of nanomaterials generally limits their potential toxic effects, which should be mainly ascribed to unwanted or accidental exposure routes.
Collapse
|
23
|
Bhatia E, Kumari D, Sharma S, Ahamad N, Banerjee R. Nanoparticle platforms for dermal antiaging technologies: Insights in cellular and molecular mechanisms. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1746. [PMID: 34423571 DOI: 10.1002/wnan.1746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Aging is a continuous process defined by a progressive functional decline in physiological parameters. Skin, being one of the most vulnerable organs, shows early signs of aging which are predominantly affected by intrinsic factors like hormone, gender, mood, enzymes, and genetic predisposition, and extrinsic factors like exposure to radiation, air pollution, and heat. Visible morphological and anatomical changes associated with skin aging occur due to underlying physiological aberrations governed by numerous complex interactions at cellular and subcellular levels. Nanoparticles are perceived as a powerful tool in the cosmeceutical industry both for augmenting the efficacy of existing agents and as a novel standalone therapy. Both organic and inorganic nanoparticles have been extensively investigated in antiaging applications. The use of nanoparticles helps to enhance the activity of antiaging molecules by selectively targeting cellular and molecular pathways. On the other hand, the nanoparticle platforms also gained increasing popularity as the skin protectant against extrinsic factors such as UV radiation and pollutants. This review comprehensively discusses skin aging and its mechanism by highlighting the impact on cellular, subcellular, and epigenetic elements. Importantly, the review elaborates on the examples of organic and inorganic nanoparticle-based formulations developed for antiaging application and provides mechanistic insights on how they modulate the mechanisms of skin aging. The clinical progress of nanoparticle antiaging technologies and factors that impact clinical translation are also explored. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Eshant Bhatia
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Durga Kumari
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shivam Sharma
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
24
|
Design, Preparation, and Characterization of Effective Dermal and Transdermal Lipid Nanoparticles: A Review. COSMETICS 2021. [DOI: 10.3390/cosmetics8020039] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Limited permeability through the stratum corneum (SC) is a major obstacle for numerous skin care products. One promising approach is to use lipid nanoparticles as they not only facilitate penetration across skin but also avoid the drawbacks of conventional skin formulations. This review focuses on solid lipid nanoparticles (SLNs), nanostructured lipid nanocarriers (NLCs), and nanoemulsions (NEs) developed for topical and transdermal delivery of active compounds. A special emphasis in this review is placed on composition, preparation, modifications, structure and characterization, mechanism of penetration, and recent application of these nanoparticles. The presented data demonstrate the potential of these nanoparticles for dermal and transdermal delivery.
Collapse
|
25
|
Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomed Pharmacother 2020; 134:111161. [PMID: 33360043 DOI: 10.1016/j.biopha.2020.111161] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
Artificial sunscreens are already gaining traction in order to protect the skin from sunburns, photoaging and photocarcinogenesis. However, the efficacy and safety of most artificial sunscreen constituents are hindered by their photostability, toxicity and damage to marine ecosystems. Natural selection and evolution have ensured that plants and animals have developed effective protective mechanisms against the deleterious side effects of oxidative stress and ultraviolet radiation (UV). Hence, natural antioxidants such as sun blockers are drawing considerable attention. The exact mechanism by which natural components act as sunscreen molecules has not been clearly established. However, conjugated π system is reported to play an important role in protecting the vital genetic material within the organism. Compared to artificial sunscreens, natural sunscreens with strong UV absorptive capacities are largely limited by low specific extinction value and by their inability to spread in large-scale sunscreen cosmetic applications. Previous studies have documented that natural components exert their photoprotective effects (such as improved skin elasticity and hydration, skin texture, and wrinkles) through their antioxidant effects, and through the regulation of UV-induced skin inflammation, barrier impairment and aging. This review focuses on natural antioxidant topical formulations with sun protection factor (SPF). Lignin, melanin, silymarin and other ingredients have been added to high sun protection nature sunscreens without any physical or chemical UV filters. This paper also provides a reference for adopting novel technical measures (extracting high content components, changing the type of solution, optimizing formulation, applying Nano technology, et al) to design and prepare nature sunscreen formulations equated with commercial sunscreen formulations. Another strategy is to add natural antioxidants from plants, animals, microorganisms and marine organisms as special enhancer or modifier ingredients to reinforce SPF values. Although the photoprotective effects of natural components have been established, their deleterious side effects have not been elucidated.
Collapse
|
26
|
Kumar N, Jose J. Current developments in the nanomediated delivery of photoprotective phytochemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38446-38471. [PMID: 32761528 DOI: 10.1007/s11356-020-10100-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Natural products have been used to protect the skin from harmful UV radiation for decades. Due to the ecotoxicological implications of synthetic sunscreen exposure in aquatic ecosystems, there is a greater need to explore alternative sources of UV filters. Recent research has focused on discovering novel UV absorbing photoprotective molecules from nature. In response to the excessive damage caused by UVB rays, plants induce the production of high concentrations of phytoprotective secondary metabolites and anti-oxidative enzymes. Despite promising UV absorbing and photoprotective properties, plant secondary metabolites have been underutilized in topical delivery due to low solubility and high instability. Numerous phytochemicals have been effectively nanosized, incorporated in formulations, and studied for their sustained effects in photoprotection. The present review outlines recent developments in nanosizing and delivering photoprotective crude plant extract and phytochemicals from a phytochemical perspective. We searched for articles using keywords: "UV damage," "skin photoprotection," "photodamage," and "nano delivery" in varied combinations. We identified and reviewed literature from 43 original research articles exploring nanosized phytochemicals and crude plant extracts with photoprotective activity. Nanosized phytochemicals retained higher amounts of bioactive compounds in the skin and acted as depots for their sustained release. Novel approaches in nanosizing considerably improved the photostability, efficacy, and water resistance of plant secondary metabolites. We further discuss the need for broad-spectrum sunscreen products, potential challenges, and future growth in this area.
Collapse
Affiliation(s)
- Nimmy Kumar
- Department of Pharmacognosy, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, 575018, Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Mangalore, 575018, India.
| |
Collapse
|
27
|
Arroyo GV, Madrid AT, Gavilanes AF, Naranjo B, Debut A, Arias MT, Angulo Y. Green synthesis of silver nanoparticles for application in cosmetics. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1304-1320. [PMID: 32715864 DOI: 10.1080/10934529.2020.1790953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In this work, we analyzed the advantages of using silver nanoparticles (AgNPs) synthesized with natural extracts in ultraviolet-visible spectroscopy (UV-Vis) protective cream. The photodegradation properties of the new UV-Vis protective milk show an increase in its absorption band compared to AgNP-free cream. Previous to the study of the AgNPs mixed within the body milk, we studied the optical UV-Vis properties of extracts at different collection times, as they can influence the spectral range of UV-Vis absorption of the hybrid compound (AgNPs + natural extract). Shape and size of the AgNPs differs from the type of reducing agent as well as the concentration of silver nitrate used. We also compared the cytotoxicity in cell lines and the antibacterial effect of the AgNPs without and with organic coating. All these studies showed that we obtained hybrid sun-protective body milk with a high degree of solar protection and with low cytotoxicity at a cellular level, thus improving its protective properties. The synthetized hybrid compound could be a possible cost-affordable alternative for the market.
Collapse
Affiliation(s)
- Geovanna V Arroyo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Alison T Madrid
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Alex F Gavilanes
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Blanca Naranjo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Alexis Debut
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Marbel T Arias
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Yolanda Angulo
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| |
Collapse
|
28
|
Fonseca-Santos B, Silva PB, Rigon RB, Sato MR, Chorilli M. Formulating SLN and NLC as Innovative Drug Delivery Systems for Non-Invasive Routes of Drug Administration. Curr Med Chem 2020; 27:3623-3656. [PMID: 31232233 DOI: 10.2174/0929867326666190624155938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023]
Abstract
Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| | - Patrícia Bento Silva
- University of Brasilia (UnB), Department of Genetics and Morphology, Brasilia, Federal District 70910-970, Brazil
| | - Roberta Balansin Rigon
- University of Campinas (UNICAMP), Faculty of Pharmaceutical Sciences, Campinas, Sao Paulo 13083-871, Brazil
| | - Mariana Rillo Sato
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| | - Marlus Chorilli
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| |
Collapse
|
29
|
Rodrigues LR, Jose J. Exploring the photo protective potential of solid lipid nanoparticle-based sunscreen cream containing Aloe vera. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20876-20888. [PMID: 32249384 DOI: 10.1007/s11356-020-08543-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, the sunscreen creams are composed of mostly synthetic chemicals and other organic compounds which were found to enter into the blood stream on topical application raising concerns in the scientific community. The scientific community has now shifted their attention to herbal formulations due to toxicity of these synthetic molecules. Aloe vera is a xerophitic plant having excellent anti-oxidant properties. The permeation effect and drug stability of the drug candidate can be significantly enhanced by formulating it into solid lipid nanoparticles (SLN). The main objectives of the study were to formulate and evaluate Aloe vera-loaded SLN sunscreen cream and to determine its photoprotective potential. The Aloe vera-loaded SLNs were formulated by microemulsification technique. The developed SLNs were studied for its entrapment efficiency, poly dispersity index (PDI), zeta potential, particle size, and other characterization techniques. Finally, the optimized SLNs were incorporated into the sunscreen cream and evaluated for its spreadability, viscosity, extrudability, drug content, in vitro drug release, ex vivo permeation, determination of sun protection factor (SPF), skin irritation test, and accelerated stability studies. The in vitro SPF was found out to be 16.9 ± 2.44 and the in vivo SPF observed to be approximately 14.81 ± 3.81, respectively. Stability studies were performed under accelerated conditions and no appreciable changes in the parameters were noticed. The solid lipid nanoparticles of Aloe vera were incorporated into a cream and the SPF of the resultant sunscreen cream was found to be on par with the sunscreens that were currently available in the market.
Collapse
Affiliation(s)
- Lavita Roshni Rodrigues
- Department of Pharmaceutics, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Mangalore, 575018, India.
| |
Collapse
|
30
|
Jose J, Kumar R, Harilal S, Mathew GE, Parambi DGT, Prabhu A, Uddin MS, Aleya L, Kim H, Mathew B. Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19214-19225. [PMID: 31884543 DOI: 10.1007/s11356-019-07231-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/02/2019] [Indexed: 05/07/2023]
Abstract
Cancer remains as the major cause of death worldwide. The main reason why available therapies fail is that a vicious cycle in established which initiates multiple pathways and recurrence after metastasis. Hyperthermic treatment, which involves heating tumor tissues to a moderate temperature of 40-43 °C, has emerged as an effective strategy for treating tumors. This method is highly efficient at destroying tumor cells and does not induce the side effects of conventional cancer treatments. On the other hand, hyperthermic treatment method can be co-administered with conventional treatments. Nanotechnology had created huge opportunities in almost all areas of research, including the field of hyperthermic treatment. The utilization of magnetic nanoparticles (MNPs) offers functionalities not possible using conventional magnetic materials. In this review, we detail recent developments and applications of MNPs for hyperthermic treatment and discuss future possibilities.
Collapse
Affiliation(s)
- Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Mangalore, 575018, India
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala, 680596, India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala, 680596, India
| | | | | | - Ankitha Prabhu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Mangalore, 575018, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Lotfi Aleya
- Chrono-Environment Laboratory, CNRS-6249, Bourgogne Franche-Comte University, Besancon, France
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry Research Lab, Ahalia School of Pharmacy, Palakkad, Kerala, 678557, India.
| |
Collapse
|
31
|
Abstract
Fucoxanthin is a bioactive compound that is a kind of natural carotenoid. Fucoxanthin is known to protect against UV-B-induced cell damage in hairless mice, even though it is physiochemically unstable to heat and acid due to its polyunsaturated structure, indicating that fucoxanthin possesses a low bioavailability, and this disadvantage limits its application in the cosmetic industry. Solid lipid nanoparticle (SLN) systems are known to be suitable as carriers for sunscreen agents. In this research work, the sunscreen-boosting effect of SLN, as a deliverer of functional ingredient, especially fucoxanthin, has been developed and evaluated by comparing the sunburn protection factors (SPF) of macroemulsion (cream and lotion type) and an SLN formula containing various kinds of sunscreen agents, respectively. Several results such as stability test, particle size, DSC analysis, and X-ray analysis show that the SLN formula loading fucoxanthin has the possibility of being a stable and high-functioning ingredient delivery system. Moreover, the SLN formula has shown a higher SPF value than others, meaning that the SLN formula exhibits a good sunscreen-boosting effect. This study indicates that the use of SLN as a carrier enhanced the bioavailability of fucoxanthin and shows that SLN could be a promising carrier for the production of sunscreen products by allowing the scaling-up of production.
Collapse
|
32
|
Ferreira LM, Sari MHM, Azambuja JH, da Silveira EF, Cervi VF, Marchiori MCL, Maria-Engler SS, Wink MR, Azevedo JG, Nogueira CW, Braganhol E, Cruz L. Xanthan gum-based hydrogel containing nanocapsules for cutaneous diphenyl diselenide delivery in melanoma therapy. Invest New Drugs 2019; 38:662-674. [DOI: 10.1007/s10637-019-00823-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
|
33
|
Raju D, Jose J. Development and evaluation of novel topical gel of neem extract for the treatment of bacterial infections. J Cosmet Dermatol 2019; 18:1776-1783. [DOI: 10.1111/jocd.12965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/20/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Dhidhin Raju
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences NITTE Deemed to be University Mangalore India
| | - Jobin Jose
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences NITTE Deemed to be University Mangalore India
| |
Collapse
|
34
|
Rajnochová Svobodová A, Gabrielová E, Michaelides L, Kosina P, Ryšavá A, Ulrichová J, Zálešák B, Vostálová J. UVA-photoprotective potential of silymarin and silybin. Arch Dermatol Res 2018; 310:413-424. [DOI: 10.1007/s00403-018-1828-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/01/2018] [Accepted: 03/19/2018] [Indexed: 01/27/2023]
|