1
|
Saparuddin F, Mohd Nawi MN, Ahmad Zamri L, Mansor F, Md Noh MF, Omar MA, Abdul Aziz NS, Wahab NA, Mediani A, Rajab NF, Sharif R. Metabolite, Biochemical, and Dietary Intake Alterations Associated with Lifestyle Interventions in Obese and Overweight Malaysian Women. Nutrients 2024; 16:3501. [PMID: 39458496 PMCID: PMC11510420 DOI: 10.3390/nu16203501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/28/2024] Open
Abstract
Differences in metabolic regulation among obesity phenotypes, specifically metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO) women, may lead to varied responses to interventions, which could be elucidated through metabolomics. Therefore, this study aims to investigate the differences in metabolite profiles between MHO and MUO women and the changes following a lifestyle intervention. Serum samples from 36 MHO and 34 MUO women who participated in a lifestyle intervention for weight loss were analysed using untargeted proton nuclear magnetic resonance spectroscopy (1H NMR) at baseline and 6 months post-intervention. Anthropometric, clinical, and dietary intake parameters were assessed at both time points. Both groups showed differential metabolite profiles at baseline and after six months. Seven metabolites, including trimethylamine-N-oxide (TMAO), arginine, ribose, aspartate, carnitine, choline, and tyrosine, significantly changed between groups post-intervention, which all showed a decreasing pattern in MHO. Significant reductions in body weight and body mass index (BMI) in the MUO correlated with changes in the carnitine and tyrosine levels. In conclusion, metabolite profiles differed significantly between MHO and MUO women before and after a lifestyle intervention. The changes in carnitine and tyrosine levels in MUO were correlated with weight loss, suggesting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fatin Saparuddin
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mohd Naeem Mohd Nawi
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Liyana Ahmad Zamri
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Azahadi Omar
- Sector for Biostatistic and Data Repository, National Institute of Heath, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | | | - Norasyikin A. Wahab
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nor Fadilah Rajab
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Razinah Sharif
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
2
|
Engelen MPKJ, Simbo SY, Ruebush LE, Thaden JJ, Ten Have GAM, Harrykissoon RI, Zachria AJ, Calder PC, Pereira SL, Deutz NEP. Functional and metabolic effects of omega-3 polyunsaturated fatty acid supplementation and the role of β-hydroxy-β-methylbutyrate addition in chronic obstructive pulmonary disease: A randomized clinical trial. Clin Nutr 2024; 43:2263-2278. [PMID: 39181037 DOI: 10.1016/j.clnu.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Short-term (4 weeks) supplementation with n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has recently been shown to improve protein metabolism in a dose dependent way in normal weight patients with Chronic Obstructive Pulmonary Disease (COPD). Furthermore, EPA/DHA supplementation was able to increase extremity lean soft tissue but not muscle function. No studies are available combining n-3 PUFAs and the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) supplementation in chronic clinical conditions. Whether adding HMB to daily EPA/DHA supplementation for 10 weeks enhances muscle and brain health, daily functional performance, and quality of life of patients with COPD by further improving their protein and amino acid homeostasis remains unknown. METHODS Patients with COPD (GOLD: II-IV, n = 46) received daily for 10 weeks, according to a randomized double-blind placebo-controlled three-group design, EPA/DHA (n = 16), EPA/DHA to which HMB was added (n = 14), or placebo (n = 16). The daily dose of 2.0 g of EPA/DHA or soy + corn oil as the placebo was provided via gel capsules, and 3.0 g of Ca-HMB or maltodextrin as placebo as powders. At pre- and post-intervention, a pulse mixture of multiple amino acids was administered to measure postabsorptive net protein breakdown (netPB as primary endpoint) and whole body production (WBP) and conversion rates of the amino acids. As secondary endpoints, lean soft tissue and fat mass were assessed by dual-energy X-ray absorptiometry, upper and lower muscle function by handgrip and single leg isokinetic dynamometry, brain (cognitive, wellbeing) health by assessments, daily functional performance by measuring 6-min walk distance, 4-m gait speed, and postural balance, and quality of life by questionnaire. Plasma enrichments and concentrations were analyzed by LC-MS/MS, and systemic inflammatory profile and metabolic hormones by Luminex. RESULTS HMB + EPA/DHA but not EPA/DHA supplementation increased postabsorptive netPB (p = 0.028), and WBPs of glutamine (p = 0.024), taurine (p = 0.039), and tyrosine (p = 0.036). Both EPA/DHA and HMB + EPA/DHA supplementation resulted in increased WBP of phenylalanine (p < 0.05). EPA/DHA but not HMB + EPA/DHA was able to increase WBP of arginine (p = 0.030), citrulline (p = 0.008), valine (p = 0.038), and conversion of citrulline to arginine (p = 0.009). Whole body and extremity fat mass were reduced after HMB + EPA/DHA supplementation only, whereas lean soft tissue was increased after EPA/DHA (p = 0.049) and HMB + EPA/DHA (p = 0.073). No other significant findings were observed. Reductions in several proinflammatory cytokines were observed in the HMB + EPA/DHA group including IL-2, IL-17, IL-6, IL-12P40, and TNF-β (p < 0.05). CONCLUSIONS Ten weeks of supplementation with 2 g of EPA/DHA daily is sufficient to induce muscle gain in COPD but HMB is needed to induce fat loss. Whether HMB is solely responsible for the fat mass loss or has a synergistic effect with EPA/DHA remains unclear. The increase in net protein breakdown observed with HMB + EPA/DHA supplementation may indicate a beneficial enhanced protein turnover cycling associated with increased lean soft tissue. CLINICAL TRIAL REGISTRY ClinicalTrials.gov; NCT03796455.
Collapse
Affiliation(s)
- Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA; Primary Care & Rural Medicine, Texas A&M University, College Station, TX, USA.
| | - Sunday Y Simbo
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Laura E Ruebush
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - John J Thaden
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Rajesh I Harrykissoon
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Anthony J Zachria
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | | | - Nicolaas E P Deutz
- Primary Care & Rural Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2024:S2090-1232(24)00178-4. [PMID: 38704087 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
5
|
Adebayo A, Ademosun A, Adedayo B, Oboh G. Antioxidant-rich Terminalia catappa fruit exerts antihypertensive effect via modulation of angiotensin-1-converting enzyme activity and H 2S/NO/cGMP signaling pathway in Wistar rats. Biomarkers 2023:1-11. [PMID: 37002876 DOI: 10.1080/1354750x.2023.2198680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
INTRODUCTION The present study aimed at investigating the effect of Terminalia catappa fruits on blood pressure, NO/cGMP signalling pathway, angiotensin-1-converting enzyme and arginase activity, and oxidative stress biomarkers in L-NAME-induced hypertensive rats. MATERIALS AND METHODS Forty-two Wistar rats were divided into seven groups. Hypertension was induced via oral administration of 40 mg/kg of L-NAME for 21 days. Thereafter, the hypertensive rats were treated with Terminalia catappa fruit-supplemented diet and sildenafil citrate for 21 days. The blood pressure was measured and cardiac homogenate was prepared for biochemical analyses. RESULTS The results showed that L-NAME caused a significant (p < 0.05) increase in systolic and diastolic blood pressure, and heart rate as well as ACE, arginase and PDE-5 activity, with a simultaneous decrease in NO and H2S levels as well as increased oxidative stress biomarkers. However, treatment with Terminalia catappa fruits-supplemented diets and sildenafil citrate lowered blood pressure and modulated ACE, arginase, and PDE-5 activity, improved NO and H2S levels, as well as antioxidant status. CONCLUSION Findings presented in this study provide useful information on the antihypertensive property of Terminalia catappa fruits, alongside some possible mechanisms. Hence, Terminalia catappa fruits could be considered a dietary regimen and functional food in alleviating hypertension.
Collapse
Affiliation(s)
- Adeniyi Adebayo
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Biochemistry Unit, Department of Chemical Sciences, Joseph Ayo Babalola University, P.M.B. 5006, Ikeji Arakeji, Nigeria
| | - Ayokunle Ademosun
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Bukola Adedayo
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| |
Collapse
|
6
|
Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett 2023; 28:21. [PMID: 36890458 PMCID: PMC9996905 DOI: 10.1186/s11658-023-00423-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/19/2023] [Indexed: 03/10/2023] Open
Abstract
Nitric oxide (NO) is one of the most important molecules released by endothelial cells, and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO bioavailability is a common hallmark of endothelial dysfunction underlying the pathogenesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric oxide synthase (eNOS) from the substrate L-arginine (L-Arg), with tetrahydrobiopterin (BH4) as an essential cofactor. Cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, aging, or smoking increase vascular oxidative stress that strongly affects eNOS activity and leads to eNOS uncoupling. Uncoupled eNOS produces superoxide anion (O2-) instead of NO, thus becoming a source of harmful free radicals exacerbating the oxidative stress further. eNOS uncoupling is thought to be one of the major underlying causes of endothelial dysfunction observed in the pathogenesis of vascular diseases. Here, we discuss the main mechanisms of eNOS uncoupling, including oxidative depletion of the critical eNOS cofactor BH4, deficiency of eNOS substrate L-Arg, or accumulation of its analog asymmetrical dimethylarginine (ADMA), and eNOS S-glutathionylation. Moreover, potential therapeutic approaches that prevent eNOS uncoupling by improving cofactor availability, restoration of L-Arg/ADMA ratio, or modulation of eNOS S-glutathionylation are briefly outlined.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Lawrence W Dobrucki
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland. .,BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdansk, Poland.
| |
Collapse
|
7
|
Gogiraju R, Renner L, Bochenek ML, Zifkos K, Molitor M, Danckwardt S, Wenzel P, Münzel T, Konstantinides S, Schäfer K. Arginase-1 Deletion in Erythrocytes Promotes Vascular Calcification via Enhanced GSNOR (S-Nitrosoglutathione Reductase) Expression and NO Signaling in Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2022; 42:e291-e310. [PMID: 36252109 DOI: 10.1161/atvbaha.122.318338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Erythrocytes (red blood cells) participate in the control of vascular NO bioavailability. The purpose of this study was to determine whether and how genetic deletion of ARG1 (arginase-1) affects vascular smooth muscle cell NO signaling, osteoblastic differentiation, and atherosclerotic lesion calcification. METHODS Atherosclerosis-prone mice with conditional, erythrocyte-restricted deletion of ARG1 (apoE-/- red blood cell.ARG1 knockout) were generated and vascular calcification studied using molecular imaging of the osteogenic activity agent OsteoSense, Alizarin staining or immunohistochemistry, qPCR of osteogenic markers and ex vivo assays. RESULTS Atherosclerotic lesion size at the aortic root did not differ, but calcification was significantly more pronounced in apoE-/- mice lacking erythrocyte ARG1. Incubation of murine and human VSMCs with lysed erythrocyte membranes from apoE-/- red blood cell. ARG1-knockout mice accelerated their osteogenic differentiation, and mRNA transcripts of osteogenic markers decreased following NO scavenging. In addition to NO signaling via sGC (soluble guanylyl cyclase), overexpression of GSNOR (S-nitrosoglutathione reductase) enhanced degradation of S-nitrosoglutathione to glutathione and reduced protein S-nitrosation of HSP (heat shock protein)-70 were identified as potential mechanisms of vascular smooth muscle cell calcification in mice lacking ARG1 in erythrocytes, and calcium phosphate deposition was enhanced by heat shock and prevented by GSNOR inhibition. Messenger RNA levels of enzymes metabolizing the arginase products L-ornithine and L-proline also were elevated in VSMCs, paralleled by increased proliferation, myofibroblast marker and collagen type 1 expression. CONCLUSIONS Our findings support an important role of erythrocyte ARG1 for NO bioavailability and L-arginine metabolism in VSMCs, which controls atherosclerotic lesion composition and calcification.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Luisa Renner
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Konstantinos Zifkos
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Michael Molitor
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany.,Institute for Clinical Chemistry (S.D.), University Medical Center Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Stavros Konstantinides
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| |
Collapse
|
8
|
Fan D, Liu C, Zhang Z, Huang K, Wang T, Chen S, Li Z. Progress in the Preclinical and Clinical Study of Resveratrol for Vascular Metabolic Disease. Molecules 2022; 27:7524. [PMID: 36364370 PMCID: PMC9658204 DOI: 10.3390/molecules27217524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Vascular metabolic dysfunction presents in various diseases, such as atherosclerosis, hypertension, and diabetes mellitus. Due to the high prevalence of these diseases, it is important to explore treatment strategies to protect vascular function. Resveratrol (RSV), a natural polyphenolic phytochemical, is regarded as an agent to regulate metabolic pathways. Many studies have proven that RSV has beneficial effects on improving metabolism in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), which provide new directions to treat vascular metabolic diseases. Herein, we overviewed that RSV could regulate cell metabolism activity by inhibiting glucose uptake, suppressing glycolysis, preventing cells from fatty acid-related damages, reducing lipogenesis, increasing fatty acid oxidation, enhancing lipolysis, elevating uptake and synthesis of glutamine, and increasing NO release. Furthermore, in clinical trials, although the results from different studies remain controversial, we proposed that RSV had better therapeutic effects at high concentrations and for patients with metabolic disorders.
Collapse
Affiliation(s)
- Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kan Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Li Z, Wang L, Ren Y, Huang Y, Liu W, Lv Z, Qian L, Yu Y, Xiong Y. Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Dis 2022; 8:413. [PMID: 36209203 PMCID: PMC9547100 DOI: 10.1038/s41420-022-01200-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Arginase, a binuclear manganese metalloenzyme in the urea, catalyzes the hydrolysis of L-arginine to urea and L-ornithine. Both isoforms, arginase 1 and arginase 2 perform significant roles in the regulation of cellular functions in cardiovascular system, such as senescence, apoptosis, proliferation, inflammation, and autophagy, via a variety of mechanisms, including regulating L-arginine metabolism and activating multiple signal pathways. Furthermore, abnormal arginase activity contributes to the initiation and progression of a variety of CVDs. Therefore, targeting arginase may be a novel and promising approach for CVDs treatment. In this review, we give a comprehensive overview of the physiological and biological roles of arginase in a variety of CVDs, revealing the underlying mechanisms of arginase mediating vascular and cardiac function, as well as shedding light on the novel and promising therapeutic approaches for CVDs therapy in individuals.
Collapse
Affiliation(s)
- Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Liwei Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Ziwei Lv
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China.
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Momma TY, Ottaviani JI. There is no direct competition between arginase and nitric oxide synthase for the common substrate l-arginine. Nitric Oxide 2022; 129:16-24. [PMID: 36126859 DOI: 10.1016/j.niox.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022]
Abstract
AIMS Extrahepatic arginases are postulated to be involved in cardiovascular-related pathologies by competing with nitric oxide synthase (NOS) for the common substrate l-arginine, subsequently decreasing nitric oxide production. However, previous models used to study arginase and NOS competition did not account for steady state level of l-arginine pool, which is dependent on conditions of l-arginine supply and utilization pathways. This work aimed at revisiting the concept of NOS and arginase competition while considering different conditions of l-arginine supply and l-arginine utilization pathways. METHODS AND RESULTS Mouse macrophage-like RAW cells and human vascular endothelial cells co-expressing NOS and arginase were used to reevaluate the concept of substrate competition between arginase and NOS under conditions of l-arginine supply that mimicked either a continuous (similar to in vivo conditions) or a limited supply (similar to previous in vitro models). Enzyme kinetics simulation models were used to gain mechanistic insight and to evaluate the tenability of a substrate competition between the two enzymes. In addition to arginase and NOS, other l-arginine pathways such as transporters and utilization towards protein synthesis were considered to understand the intricacies of l-arginine metabolism. Our results indicate that when there is a continuous supply of l-arginine, as is the case for most cells in vivo, arginase does not affect NOS activity by a substrate competition. Furthermore, we demonstrate that l-arginine pathways such as transporters and protein synthesis are more likely to affect NOS activity than arginase. CONCLUSIONS Arginase does not outcompete NOS for the common substrate l-arginine. Findings from this study should be considered to better understand the role of arginase in certain pathologies and for the interpretation of in vivo studies with arginase inhibitors.
Collapse
Affiliation(s)
- Tony Y Momma
- College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| | - Javier I Ottaviani
- College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA; Mars Inc., McLean, VA, 22101, USA
| |
Collapse
|
11
|
Shen LX, Yang D, Chen RF, Liu DH. Talaromyces marneffei Influences Macrophage Polarization and Sterilization Ability via the Arginine Metabolism Pathway in Vitro. Am J Trop Med Hyg 2022; 107:tpmd210568. [PMID: 35895344 PMCID: PMC9490654 DOI: 10.4269/ajtmh.21-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/07/2022] [Indexed: 11/26/2022] Open
Abstract
The opportunistic fungal pathogen Talaromyces marneffei, which is endemic across a narrow band of tropical Southeast Asia and southern China, is an intracellular pathogen that causes systemic and lethal infection through the mononuclear phagocyte system. The mechanisms by which T. marneffei successfully replicates and escapes the immune system remain unclear. To investigate the role of arginine metabolism in the escape of T. marneffei from killer macrophages, we assessed inducible nitric oxide synthase (iNOS) and arginase expression, nitric oxide (NO) production, arginase and phagocytic activity, and the killing of T. marneffei in a coculture system. Our results indicate that T. marneffei induced macrophage polarization toward the M2 phenotype and regulated the arginine metabolism pathway by prolonging infection, thereby reducing antimicrobial activity and promoting fungal survival. Moreover, inhibiting T. marneffei-induced macrophage arginase activity with Nω-hydroxy-nor-arginine restored NO synthesis and strengthened fungal killing. These findings indicate that T. marneffei affects macrophage polarization and inhibits macrophage antimicrobial function via the arginine metabolism pathway.
Collapse
Affiliation(s)
- Lin-xia Shen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Department of Dermatology and Venereology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Di Yang
- Department of Dermatology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Ri-feng Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Dong-hua Liu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
12
|
Ghosh A, Joseph B, Anil S. Nitric Oxide in the Management of Respiratory Consequences in COVID-19: A Scoping Review of a Different Treatment Approach. Cureus 2022; 14:e23852. [PMID: 35530860 PMCID: PMC9072273 DOI: 10.7759/cureus.23852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
The severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) virus causing COVID-19 significantly affects the respiratory functions of infected individuals by massively disrupting the pulmonary oxygenation and activating the synthesis of proinflammatory cytokines, inducing severe oxidative stress, enhanced vascular permeability, and endothelial dysfunction which have rendered researchers and clinicians to depend on prophylactic treatment due to the unavailability of proper disease management approaches. Previous studies have indicated that nitric oxide (NO) application appears to be significant concerning the antiviral activities, antioxidant, and anti-inflammatory properties in relieving disease-related symptoms. To identify, explore, and map the literature on the role of nitric oxide in the management of respiratory consequences in COVID-19 through this scoping review, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed during the search to answer the focal question: "What are the potential uses of nitric oxide in the management of respiratory failure in COVID-19?" Administering exogenous NO in the form of inhaled gas or stimulating the system to produce NO appears to be a suitable option to manage COVID-19-induced pneumonia and respiratory illness. This treatment modality seems to attenuate respiratory distress among patients suffering from severe infections or patients with comorbidities. Exogenous NO at different doses effectively reduces systemic hyperinflammation and oxidative stress, improves arterial oxygenation, and restores pulmonary alveolar cellular integrity to prevent the lungs and other organs from further damage. This therapy could pave the way for better management of COVID-19 before the onset of disease-related complications.
Collapse
Affiliation(s)
- Arunibha Ghosh
- Neurosciences, S.N.Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, IND
| | | | - Sukumaran Anil
- Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha, QAT.,Dentistry, College of Dental Medicine, Qatar University, Doha, QAT
| |
Collapse
|
13
|
Targeting Arginine in COVID-19-Induced Immunopathology and Vasculopathy. Metabolites 2022; 12:metabo12030240. [PMID: 35323682 PMCID: PMC8953281 DOI: 10.3390/metabo12030240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents a major public health crisis that has caused the death of nearly six million people worldwide. Emerging data have identified a deficiency of circulating arginine in patients with COVID-19. Arginine is a semi-essential amino acid that serves as key regulator of immune and vascular cell function. Arginine is metabolized by nitric oxide (NO) synthase to NO which plays a pivotal role in host defense and vascular health, whereas the catabolism of arginine by arginase to ornithine contributes to immune suppression and vascular disease. Notably, arginase activity is upregulated in COVID-19 patients in a disease-dependent fashion, favoring the production of ornithine and its metabolites from arginine over the synthesis of NO. This rewiring of arginine metabolism in COVID-19 promotes immune and endothelial cell dysfunction, vascular smooth muscle cell proliferation and migration, inflammation, vasoconstriction, thrombosis, and arterial thickening, fibrosis, and stiffening, which can lead to vascular occlusion, muti-organ failure, and death. Strategies that restore the plasma concentration of arginine, inhibit arginase activity, and/or enhance the bioavailability and potency of NO represent promising therapeutic approaches that may preserve immune function and prevent the development of severe vascular disease in patients with COVID-19.
Collapse
|
14
|
High Output Heart Failure in Multiple Myeloma: Pathogenetic Considerations. Cancers (Basel) 2022; 14:cancers14030610. [PMID: 35158878 PMCID: PMC8833382 DOI: 10.3390/cancers14030610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multiple myeloma is a plasma cell disorder that accounts for around 10% of all haematological malignancies. This neoplasia is often associated with a significant prevalence of cardiovascular complications resulting from several factors, unrelated and/or related to the disease. Among cardiovascular complications, the high output heart failure is of great importance as it is related to a worse prognosis for patients. It is important to point out that, despite the availability of more and more numerous and effective drugs, myeloma remains an incurable disease, with frequent relapses and several treatment lines, with the need, therefore, for a careful evaluation of patients, especially from a cardiological point of view. For this reason, we are proposing a comprehensive overview of different pathogenetic mechanisms responsible for high output heart failure in multiple myeloma, including artero-venous shunts, enhanced angiogenesis, glutamminolysis, hyperammonemia and hemorheological alterations, with the belief that a multidisciplinary approach, in clinical evaluation is critical for the optimal management of the patient. Abstract The high output heart failure is a clinical condition in which the systemic congestion is associated to a high output state, and it can be observed in a non-negligible percentage of hematological diseases, particularly in multiple myeloma, a condition in which the risk of adverse cardiovascular events may increase, with a worse prognosis for patients. For this reason, though an accurate literature search, we provided in this review a complete overview of different pathogenetic mechanisms responsible for high output heart failure in multiple myeloma. Indeed, this clinical finding is present in the 8% of multiple myeloma patients, and it may be caused by artero-venous shunts, enhanced angiogenesis, glutamminolysis, hyperammonemia and hemorheological alterations with increase in plasma viscosity. The high output heart failure in multiple myeloma is associated with significant morbidity and mortality, emphasizing the need for a multidisciplinary approach.
Collapse
|
15
|
Muller J, Attia R, Zedet A, Girard C, Pudlo M. An Update on Arginase Inhibitors and Inhibitory Assays. Mini Rev Med Chem 2021; 22:1963-1976. [PMID: 34967285 DOI: 10.2174/1389557522666211229105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
Arginase, which converts arginine into ornithine and urea, is a promising therapeutic target. Arginase is involved in cardiovascular diseases, parasitic infections and, through a critical role in immunity, in some cancers. There is a need to develop effective arginase inhibitors and therefore efforts to identify and optimize new inhibitors are increasing. Several methods of evaluating arginase activity are available, but few directly measure the product. Radiometric assays need to separate urea and dying reactions require acidic conditions and sometimes heating. Hence, there are a variety of different approaches available, and each approach has its own limits and benefits. In this review, we provide an update on arginase inhibitors, followed by a discussion on available arginase assays and alternative methods, with a focus on the intrinsic biases and parameters that are likely to impact results.
Collapse
Affiliation(s)
- Jason Muller
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Rym Attia
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Andy Zedet
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Corine Girard
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Marc Pudlo
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| |
Collapse
|
16
|
Ritz T, Salsman ML, Young DA, Lippert AR, Khan DA, Ginty AT. Boosting nitric oxide in stress and respiratory infection: Potential relevance for asthma and COVID-19. Brain Behav Immun Health 2021; 14:100255. [PMID: 33842899 PMCID: PMC8019595 DOI: 10.1016/j.bbih.2021.100255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO) is a ubiquitous signaling molecule that is critical for supporting a plethora of processes in biological organisms. Among these, its role in the innate immune system as a first line of defense against pathogens has received less attention. In asthma, levels of exhaled NO have been utilized as a window into airway inflammation caused by allergic processes. However, respiratory infections count among the most important triggers of disease exacerbations. Among the multitude of factors that affect NO levels are psychological processes. In particular, longer lasting states of psychological stress and depression have been shown to attenuate NO production. The novel SARS-CoV-2 virus, which has caused a pandemic, and with that, sustained levels of psychological stress globally, also adversely affects NO signaling. We review evidence on the role of NO in respiratory infection, including COVID-19, and stress, and argue that boosting NO bioavailability may be beneficial in protection from infections, thus benefitting individuals who suffer from stress in asthma or SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Thomas Ritz
- Department of Psychology, Southern Methodist University, 6116 N. Central Expressway, Suite 1160, Dallas, TX, USA
| | - Margot L Salsman
- Department of Psychology, Southern Methodist University, 6116 N. Central Expressway, Suite 1160, Dallas, TX, USA
| | - Danielle A Young
- Department of Psychology and Neuroscience, Baylor University, One Bear Place, 97334, Baylor Sciences Building, Suite B.309, Waco, TX, USA
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Fondren Science Building 303, P.O. Box, 750314, Dallas, TX, USA
| | - Dave A Khan
- Department of Internal Medicine, Allergy and Immunology, The University of Texas Southwestern Medical Center, 5323, Harry Hines Blvd., Dallas, TX, USA
| | - Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, One Bear Place, 97334, Baylor Sciences Building, Suite B.309, Waco, TX, USA
| |
Collapse
|
17
|
Minozzo BR, de Andrade EA, Vellosa JCR, Lipinski LC, Fernandes D, Nardi GM, Rodrigues RP, Kitagawa RR, Girard C, Demougeot C, Beltrame FL. Polyphenolic compounds of Euphorbia umbellata (Pax) Bruyns (Euphorbiaceae) improved endothelial dysfunction through arginase inhibition. Phytother Res 2021; 35:2557-2567. [PMID: 33350522 DOI: 10.1002/ptr.6986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2023]
Abstract
Euphorbia umbellata is used for its anti-inflammatory properties; however, there are limited data available regarding its effects on vascular function. Its bark is rich in polyphenolic compounds, which potentially improve endothelial dysfunction (ED). This study proposes to investigate the effects of E. umbellata bark extracts and its polyphenolic compounds on arginase (ARG) activity and nitric oxide (NO)-related targets. Chromatographic procedures were used for the chemical characterisation of the extracts. Furthermore, in silico (molecular docking), in vitro (ARG inhibition), in vivo (streptozotocin-induced hyperglycemia model), and ex vivo (l-arginine metabolism, vascular reactivity, western blot, and biochemical) techniques were carried out. Quercetin, gallic acid, and ellagic acid were identified in the extracts. In silico screening predicted that gallic acid and quercetin would have the most promising interactions with ARG -identified cavities. This was confirmed in vitro as both compounds had a direct inhibitory effect on ARG, as was the case regarding the extracts. Oral treatment preserved endothelium-dependent vasodilation through ARG inhibition together with an increase in l-arginine bioavailability and endothelial NO synthase expression. Biochemical parameters determined the lack of toxicity for sub-chronic treatment. E. umbellata bark extracts and its compounds can contribute to ED treatment, at least partly, through the inhibition of vascular ARG.
Collapse
Affiliation(s)
- Bruno Rodrigo Minozzo
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Evelyn Assis de Andrade
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | | | - Daniel Fernandes
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Geisson Marcos Nardi
- Department of Morphology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - Corine Girard
- PEPITE EA 4267, University Bourgogne Franche-Comté, Besançon, France
| | - Céline Demougeot
- PEPITE EA 4267, University Bourgogne Franche-Comté, Besançon, France
| | - Flávio Luís Beltrame
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
18
|
The Mystery of Red Blood Cells Extracellular Vesicles in Sleep Apnea with Metabolic Dysfunction. Int J Mol Sci 2021; 22:ijms22094301. [PMID: 33919065 PMCID: PMC8122484 DOI: 10.3390/ijms22094301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sleep is very important for overall health and quality of life, while sleep disorder has been associated with several human diseases, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. Obstructive sleep apnea (OSA) is the most common respiratory sleep-disordered breathing, which is caused by the recurrent collapse of the upper airway during sleep. OSA has emerged as a major public health problem and increasing evidence suggests that untreated OSA can lead to the development of various diseases including neurodegenerative diseases. In addition, OSA may lead to decreased blood oxygenation and fragmentation of the sleep cycle. The formation of free radicals or reactive oxygen species (ROS) can emerge and react with nitric oxide (NO) to produce peroxynitrite, thereby diminishing the bioavailability of NO. Hypoxia, the hallmark of OSA, refers to a decline of tissue oxygen saturation and affects several types of cells, playing cell-to-cell communication a vital role in the outcome of this interplay. Red blood cells (RBCs) are considered transporters of oxygen and nutrients to the tissues, and these RBCs are important interorgan communication systems with additional functions, including participation in the control of systemic NO metabolism, redox regulation, blood rheology, and viscosity. RBCs have been shown to induce endothelial dysfunction and increase cardiac injury. The mechanistic links between changes of RBC functional properties and cardiovascular are largely unknown. Extracellular vesicles (EVs) are secreted by most cell types and released in biological fluids both under physiological and pathological conditions. EVs are involved in intercellular communication by transferring complex cargoes including proteins, lipids, and nucleic acids from donor cells to recipient cells. Advancing our knowledge about mechanisms of RBC-EVs formation and their pathophysiological relevance may help to shed light on circulating EVs and to translate their application to clinical practice. We will focus on the potential use of RBC-EVs as valuable diagnostic and prognostic biomarkers and state-specific cargoes, and possibilities as therapeutic vehicles for drug and gene delivery. The use of RBC-EVs as a precision medicine for the diagnosis and treatment of the patient with sleep disorder will improve the prognosis and the quality of life in patients with cardiovascular disease (CVD).
Collapse
|
19
|
Shatanawi A, Momani MS, Al-Aqtash R, Hamdan MH, Gharaibeh MN. L-Citrulline Supplementation Increases Plasma Nitric Oxide Levels and Reduces Arginase Activity in Patients With Type 2 Diabetes. Front Pharmacol 2020; 11:584669. [PMID: 33414716 PMCID: PMC7783447 DOI: 10.3389/fphar.2020.584669] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is becoming a major contributor to cardiovascular disease. One of the early signs of T2DM associated cardiovascular events is the development of vascular dysfunction. This dysfunction has been implicated in increasing the morbidity and mortality of T2DM patients. One of the important characteristics of vascular dysfunction is the impaired ability of endothelial cells to produce nitric oxide (NO). Additionally, decreases in the availability of NO is also a major contributor of this pathology. NO is produced by the activity of endothelial NO synthase (eNOS) on its substrate, L-arginine. Reduced availability of L-arginine to eNOS has been implicated in vascular dysfunction in diabetes. Arginase, which metabolizes L-arginine to urea and ornithine, competes directly with NOS for L-arginine. Hence, increases in arginase activity can decrease arginine levels, reducing its availability to eNOS and decreasing NO production. Diabetes has been linked to elevated arginase and associated vascular endothelial dysfunction. We aimed to determine levels of plasma NO and arginase activity in (T2DM) patients and the effects of L-citrulline supplementation, a natural arginase inhibitor, on inhibiting arginase activity in these patients. Levels of arginase correlated with HbA1c levels in diabetic patients. Twenty-five patients received L-citrulline supplements (2000 mg/day) for 1 month. Arginase activity decreased by 21% in T2DM patients after taking L-citrulline supplements. Additionally, plasma NO levels increased by 38%. There was a modest improvement on H1Ac levels in these patients, though not statistically significant. The effect of L-citrulline on arginase activity was also studied in bovine aortic endothelial cells (BAECs) grown in high glucose (HG) conditions. HG (25 mM, 72 h) caused a 2-fold increase in arginase activity in BAECs and decreased NO production by 30%. L-citrulline (2.5 mM) completely prevented the increase in arginase activity and restored NO production levels. These data indicate that L-citrulline can have therapeutic benefits in diabetic patients through increasing NO levels and thus maintaining vascular function possibly through an arginase inhibition related pathway.
Collapse
Affiliation(s)
- Alia Shatanawi
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Munther S Momani
- Department of Internal Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Ruaa Al-Aqtash
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mohammad H Hamdan
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan.,Department of Neurosurgery, Saarland University Hospital, Homburg, Germany
| | - Munir N Gharaibeh
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
20
|
Moretto J, Pudlo M, Demougeot C. Human-based evidence for the therapeutic potential of arginase inhibitors in cardiovascular diseases. Drug Discov Today 2020; 26:138-147. [PMID: 33197620 DOI: 10.1016/j.drudis.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Johnny Moretto
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France.
| | - Marc Pudlo
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Céline Demougeot
- PEPITE EA4267, FHU INCREASE, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| |
Collapse
|
21
|
Abstract
Endothelial cell (EC) metabolism is important for health and disease. Metabolic pathways, such as glycolysis, fatty acid oxidation, and amino acid metabolism, determine vasculature formation. These metabolic pathways have different roles in securing the production of energy and biomass and the maintenance of redox homeostasis in vascular migratory tip cells, proliferating stalk cells, and quiescent phalanx cells, respectively. Emerging evidence demonstrates that perturbation of EC metabolism results in EC dysfunction and vascular pathologies. Here, we summarize recent insights into EC metabolic pathways and their deregulation in vascular diseases. We further discuss the therapeutic implications of targeting EC metabolism in various pathologies.
Collapse
Affiliation(s)
- Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Peter Carmeliet
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; , .,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven B-3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven B-3000, Belgium
| |
Collapse
|
22
|
Muller J, Cardey B, Zedet A, Desingle C, Grzybowski M, Pomper P, Foley S, Harakat D, Ramseyer C, Girard C, Pudlo M. Synthesis, evaluation and molecular modelling of piceatannol analogues as arginase inhibitors. RSC Med Chem 2020; 11:559-568. [PMID: 33479657 PMCID: PMC7593889 DOI: 10.1039/d0md00011f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/29/2020] [Indexed: 11/21/2022] Open
Abstract
Arginase is involved in a wide range of pathologies including cardiovascular diseases and infectious diseases whilst it is also a promising target to improve cancer immunotherapy. To date, only a limited number of inhibitors of arginase have been reported. Natural polyphenols, among them piceatannol, are moderate inhibitors of arginase. Herein, we report our efforts to investigate catechol binding by quantum chemistry and generate analogues of piceatannol. In this work, we synthesized a novel series of amino-polyphenols which were then evaluated as arginase inhibitors. Their structure-activity relationships were elucidated by deep quantum chemistry modelling. 4-((3,4-Dihydroxybenzyl)amino)benzene-1,2-diol 3t displays a mixed inhibition activity on bovine and human arginase I with IC50 (K i) values of 76 (82) μM and 89 μM, respectively.
Collapse
Affiliation(s)
- J Muller
- PEPITE EA4267 , Univ. Bourgogne Franche-Comté , F-25000 Besançon , France . ; Tel: +(33) 381 665 542
| | - B Cardey
- Laboratoire Chrono-environnement (UMR CNRS 6249) , Univ. Bourgogne Franche-Comté , F-25000 Besançon , France
| | - A Zedet
- PEPITE EA4267 , Univ. Bourgogne Franche-Comté , F-25000 Besançon , France . ; Tel: +(33) 381 665 542
| | - C Desingle
- PEPITE EA4267 , Univ. Bourgogne Franche-Comté , F-25000 Besançon , France . ; Tel: +(33) 381 665 542
| | - M Grzybowski
- OncoArendi Therapeutics , PL02089 Warsaw , Poland
| | - P Pomper
- OncoArendi Therapeutics , PL02089 Warsaw , Poland
| | - S Foley
- Laboratoire Chrono-environnement (UMR CNRS 6249) , Univ. Bourgogne Franche-Comté , F-25000 Besançon , France
| | - D Harakat
- Institut de Chimie Moléculaire de Reims (UMR CNRS 7312) , Univ. Reims Champagne Ardenne , F-51000 Reims , France
| | - C Ramseyer
- Laboratoire Chrono-environnement (UMR CNRS 6249) , Univ. Bourgogne Franche-Comté , F-25000 Besançon , France
| | - C Girard
- PEPITE EA4267 , Univ. Bourgogne Franche-Comté , F-25000 Besançon , France . ; Tel: +(33) 381 665 542
| | - M Pudlo
- PEPITE EA4267 , Univ. Bourgogne Franche-Comté , F-25000 Besançon , France . ; Tel: +(33) 381 665 542
| |
Collapse
|
23
|
Exogenous NO Therapy for the Treatment and Prevention of Atherosclerosis. Int J Mol Sci 2020; 21:ijms21082703. [PMID: 32295055 PMCID: PMC7216146 DOI: 10.3390/ijms21082703] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
Amyl nitrite was introduced in 1867 as the first molecule of a new class of agents for the treatment of angina pectoris. In the following 150 years, the nitric oxide pathway has been the subject of a number of pharmacological approaches, particularly since when this elusive mediator was identified as one of the most important modulators of vascular homeostasis beyond vasomotion, including platelet function, inflammation, and atherogenesis. While having potent antianginal and antiischemic properties, however, nitric oxide donors are also not devoid of side effects, including the induction of tolerance, and, as shown in the last decade, of oxidative stress and endothelial dysfunction. In turn, endothelial dysfunction is itself felt to be involved in all stages of atherogenesis, from the development of fatty streaks to plaque rupture and thrombosis. In the present review, we summarize the agents that act on the nitric oxide pathway, with a particular focus on their potentially beneficial antiatherosclerotic and unwanted pro-atherosclerotic effects.
Collapse
|
24
|
van den Berg MPM, Kurhade SH, Maarsingh H, Erceg S, Hulsbeek IR, Boekema PH, Kistemaker LEM, van Faassen M, Kema IP, Elsinga PH, Dömling A, Meurs H, Gosens R. Pharmacological Screening Identifies SHK242 and SHK277 as Novel Arginase Inhibitors with Efficacy against Allergen-Induced Airway Narrowing In Vitro and In Vivo. J Pharmacol Exp Ther 2020; 374:62-73. [PMID: 32269169 DOI: 10.1124/jpet.119.264341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/31/2020] [Indexed: 02/02/2023] Open
Abstract
Arginase is a potential target for asthma treatment. However, there are currently no arginase inhibitors available for clinical use. Here, a novel class of arginase inhibitors was synthesized, and their efficacy was pharmacologically evaluated. The reference compound 2(S)-amino-6-boronohexanoic acid (ABH) and >200 novel arginase inhibitors were tested for their ability to inhibit recombinant human arginase 1 and 2 in vitro. The most promising compounds were separated as enantiomers. Enantiomer pairs SHK242 and SHK243, and SHK277 and SHK278 were tested for functional efficacy by measuring their effect on allergen-induced airway narrowing in lung slices of ovalbumin-sensitized guinea pigs ex vivo. A guinea pig model of acute allergic asthma was used to examine the effect of the most efficacious enantiopure arginase inhibitors on allergen-induced airway hyper-responsiveness (AHR), early and late asthmatic reactions (EAR and LAR), and airway inflammation in vivo. The novel compounds were efficacious in inhibiting arginase 1 and 2 in vitro. The enantiopure SHK242 and SHK277 fully inhibited arginase activity, with IC50 values of 3.4 and 10.5 μM for arginase 1 and 2.9 and 4.0 µM for arginase 2, respectively. Treatment of slices with ABH or novel compounds resulted in decreased ovalbumin-induced airway narrowing compared with control, explained by increased local nitric oxide production in the airway. In vivo, ABH, SHK242, and SHK277 protected against allergen-induced EAR and LAR but not against AHR or lung inflammation. We have identified promising novel arginase inhibitors for the potential treatment of allergic asthma that were able to protect against allergen-induced early and late asthmatic reactions. SIGNIFICANCE STATEMENT: Arginase is a potential drug target for asthma treatment, but currently there are no arginase inhibitors available for clinical use. We have identified promising novel arginase inhibitors for the potential treatment of allergic asthma that were able to protect against allergen-induced early and late asthmatic reactions. Our new inhibitors show protective effects in reducing airway narrowing in response to allergens and reductions in the early and late asthmatic response.
Collapse
Affiliation(s)
- M P M van den Berg
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - S H Kurhade
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - H Maarsingh
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - S Erceg
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - I R Hulsbeek
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - P H Boekema
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - L E M Kistemaker
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - M van Faassen
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - I P Kema
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - P H Elsinga
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - A Dömling
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - H Meurs
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - R Gosens
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| |
Collapse
|
25
|
Demchenko SA, Koklin IS, Koklina NY. Role of Arginase 2 as a potential pharmacological target for the creation of new drugs to correct cardiovascular diseases. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.50942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The review provides relevant information about arginase 2, the role of this enzyme in the formation of endothelial dysfunction and, as a consequence, the development of cardiovascular diseases.
History of the discovery of arginase and its functions: The discovery of arginase took place long before its active study as a substance that affects the formation of endothelial dysfunction.
Role of arginase 2 in the development of a number of cardiovascular diseases: The role of NO synthase and arginase 2 in the formation of oxidative stress is determined. The pathophysiological mechanisms of the development of a number of cardiovascular diseases, such as coronary heart disease, atherosclerosis, and aortic aneurysm, are described. The modern possibilities of treatment of endothelial dysfunction in the pathology of the cardiovascular system and the possibility of creation of new drugs are considered. An increase in the activity of arginase 2 was proven to occur in the case of the development of coronary heart disease (CHD), hypertension, type II diabetes mellitus, hypercholesterolemia, as well as in the process of aging. According to the WHO, coronary heart disease and apoplectic attack have topped the list of causes of death worldwide over the past 15 years.
Arginase 2 as a potential pharmacological target: The purpose of this literature review is to determine the possibilities of use of arginase 2 as a new target for the pharmacological correction of cardiovascular diseases.
Collapse
|
26
|
Mahdi A, Kövamees O, Pernow J. Improvement in endothelial function in cardiovascular disease - Is arginase the target? Int J Cardiol 2019; 301:207-214. [PMID: 31785959 DOI: 10.1016/j.ijcard.2019.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023]
Abstract
Endothelial dysfunction represents an early change in the vascular wall in areas prone to atherosclerotic plaque formation and is present in association with several risk factors for cardiovascular disease. The underlying mechanisms behind endothelial dysfunction are multifactorial and complex. Arginase has emerged as a key player in the regulation of endothelial integrity by the ability of reciprocally inhibits nitric oxide formation and promoting oxidative stress. A chain of evidence suggest that arginase is implicated in the pathogenesis underlying endothelial dysfunction induced by several cardiovascular risk factors and established cardiovascular disease including diabetes, hypercholesteremia, ischemia/reperfusion, atherosclerosis, obesity, ageing and hypertension. Recent data has unveiled a key role of arginase as one of the key mechanisms underlying endothelial dysfunction in diabetes and may serve as a potential therapeutic target in previously overlooked compartments including red blood cells. The current review is devoted to discuss arginase as a key mediator in endothelial dysfunction and the potential for therapeutic possibilities to target this enzyme in various diseases, especially type 2 diabetes, atherosclerosis and ischemia/reperfusion with focus on translational and clinical aspects. Moreover, approaches of how and in which patient group(s) arginase may be targeted in future clinical trials are discussed.
Collapse
Affiliation(s)
- Ali Mahdi
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Oskar Kövamees
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
27
|
Arginase Inhibition Improves Endothelial Function in an Age-Dependent Manner in Healthy Elderly Humans. Rejuvenation Res 2019; 22:385-389. [DOI: 10.1089/rej.2018.2135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
28
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
He Q, Liu X, Zhong Y, Xu SS, Zhang ZM, Tang LL, Zhang LY, Du LZ. Arginine bioavailability and endothelin-1 system in the regulation of vascular function of umbilical vein endothelial cells from intrauterine growth restricted newborns. Nutr Metab Cardiovasc Dis 2018; 28:1285-1295. [PMID: 30392707 DOI: 10.1016/j.numecd.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Intrauterine growth restriction (IUGR) is a major risk factor for perinatal morbidity and mortality, leading to long-term adverse cardiovascular outcomes. The present study aimed to investigate the potential mechanisms in IUGR-associated vascular endothelial dysfunction. METHODS AND RESULTS Human umbilical vein endothelial cells (HUVECs) were derived from IUGR or normal newborns. We found that the proliferation of IUGR-derived HUVECs was accelerated compared to those from normal subjects. Gene profiles related to vascular function including vasomotion, oxidative stress, and angiogenesis were dysregulated in IUGR-HUVECs. Compared with HUVECs from normal newborns, nitric oxide (NO) production was reduced, with imbalance between endothelial nitric oxide synthase (eNOS) and arginase-2 (Arg-2) in IUGR. Meanwhile, intracellular asymmetric dimethylarginine (ADMA) level was elevated with diminished dimethylarginine dimethylaminohydrolase 1 (DDAH1) expression in IUGR-HUVECs. Furthermore, endothelin-1 (ET-1) and hypoxia-inducible factor 1α (HIF-1α) expression were increased, and endothelin receptor type-B (ETBR) was reduced in the IUGR group. IUGR-HUVECs exposed to hypoxia increased the ratio of ADMA to l-arginine, HIF-1α and protein arginine methyltransferase 1 (PRMT1) expression compared to controls. CONCLUSIONS The present study demonstrated that the reduction of NO bioavailability and release results from elevated Arg-2, accumulation of intracellular ADMA, and imbalance of ET-1 and ETBR, further leading to IUGR-associated vascular endothelial dysfunction. Our study provides novel evidence on the mechanism underlying fetal programming associated with IUGR, which will serve as potential therapeutic targets in the prevention of adverse cardiovascular consequences in adulthood.
Collapse
Affiliation(s)
- Q He
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China
| | - X Liu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China
| | - Y Zhong
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China
| | - S S Xu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China
| | - Z M Zhang
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China
| | - L L Tang
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai, 200127, China
| | - L Y Zhang
- Fujian University of Medicine, NICU, Fuzhou Children's Hospital of Fujian Province, Fuzhou, 350005, Fujian Province, China
| | - L Z Du
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China.
| |
Collapse
|
30
|
Ng KP, Manjeri A, Lee LM, Chan ZE, Tan CY, Tan QD, Majeed A, Lee KL, Chuah C, Suda T, Ong ST. The arginase inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) induces apoptosis in leukemic cells specifically under hypoxic conditions but CRISPR/Cas9 excludes arginase 2 (ARG2) as the functional target. PLoS One 2018; 13:e0205254. [PMID: 30307989 PMCID: PMC6181325 DOI: 10.1371/journal.pone.0205254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/23/2018] [Indexed: 01/10/2023] Open
Abstract
Cancer cells, including in chronic myeloid leukemia (CML), depend on the hypoxic response to persist in hosts and evade therapy. Accordingly, there is significant interest in drugging cancer-specific hypoxic responses. However, a major challenge in leukemia is identifying differential and druggable hypoxic responses between leukemic and normal cells. Previously, we found that arginase 2 (ARG2), an enzyme of the urea cycle, is overexpressed in CML but not normal progenitors. ARG2 is a target of the hypoxia inducible factors (HIF1−α and HIF2−α), and is required for the generation of polyamines which are required for cell growth. We therefore explored if the clinically-tested arginase inhibitor Nω−hydroxy−nor−arginine (nor−NOHA) would be effective against leukemic cells under hypoxic conditions. Remarkably, nor−NOHA effectively induced apoptosis in ARG2-expressing cells under hypoxia but not normoxia. Co-treatment with nor−NOHA overcame hypoxia-mediated resistance towards BCR−ABL1 kinase inhibitors. While nor−NOHA itself is promising in targeting the leukemia hypoxic response, we unexpectedly found that its anti-leukemic activity was independent of ARG2 inhibition. Genetic ablation of ARG2 using CRISPR/Cas9 had no effect on the viability of leukemic cells and their sensitivity towards nor−NOHA. This discrepancy was further evidenced by the distinct effects of ARG2 knockouts and nor−NOHA on cellular respiration. In conclusion, we show that nor−NOHA has significant but off-target anti-leukemic activity among ARG2-expressing hypoxic cells. Since nor−NOHA has been employed in clinical trials, and is widely used in studies on endothelial dysfunction, immunosuppression and metabolism, the diverse biological effects of nor−NOHA must be cautiously evaluated before attributing its activity to ARG inhibition.
Collapse
Affiliation(s)
- King Pan Ng
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore
| | - Aditi Manjeri
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore
| | - Lin Ming Lee
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore
| | - Zhu En Chan
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore
| | - Chin Yee Tan
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore
| | - Qiancheng Darren Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - A'Qilah Majeed
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Kian Leong Lee
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Charles Chuah
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore.,Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,International Research Center for Medical Sciences, Kumamoto University, Japan
| | - S Tiong Ong
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore.,Department of Haematology, Singapore General Hospital, Singapore, Singapore.,Department of Medical Oncology, National Cancer Centre, Singapore, Singapore.,Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
31
|
Peyton KJ, Liu XM, Shebib AR, Johnson FK, Johnson RA, Durante W. Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats. Amino Acids 2018; 50:747-754. [PMID: 29700652 DOI: 10.1007/s00726-018-2567-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023]
Abstract
This study investigated the temporal activation of arginase in obese Zucker rats (ZR) and determined if arginase inhibition prevents the development of hypertension and improves insulin resistance in these animals. Arginase activity, plasma arginine and nitric oxide (NO) concentration, blood pressure, and insulin resistance were measured in lean and obese animals. There was a chronological increase in vascular and plasma arginase activity in obese ZR beginning at 8 weeks of age. The increase in arginase activity in obese animals was associated with a decrease in insulin sensitivity and circulating levels of arginine and NO. The rise in arginase activity also preceded the increase in blood pressure in obese ZR detected at 12 weeks of age. Chronic treatment of 8-week-old obese animals with an arginase inhibitor or L-arginine for 4 weeks prevented the development of hypertension and improved plasma concentrations of arginine and NO. Arginase inhibition also improved insulin sensitivity in obese ZR while L-arginine supplementation had no effect. In conclusion, arginase inhibition prevents the development of hypertension and improves insulin sensitivity while L-arginine administration only mitigates hypertension in obese animals. Arginase represents a promising therapeutic target in ameliorating obesity-associated vascular and metabolic dysfunction.
Collapse
Affiliation(s)
- Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Ahmad R Shebib
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Fruzsina K Johnson
- College of Osteopathic Medicine, William Cary University, Hattiesburg, MS, USA
| | - Robert A Johnson
- College of Osteopathic Medicine, William Cary University, Hattiesburg, MS, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA.
| |
Collapse
|
32
|
Kazimirskii AN, Poryadin GV, Salmasi ZM, Semenova LY. Endogenous Regulators of the Immune System (sCD100, Malonic Dialdehyde, and Arginase). Bull Exp Biol Med 2018; 164:693-700. [PMID: 29577184 DOI: 10.1007/s10517-018-4061-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 11/27/2022]
Abstract
Tissue damage in various diseases, hypoxic conditions, and some pathologies are associated with production of endogenous factors such as the soluble form of the surface receptor CD100, malonic dialdehyde, and arginase and their release into circulation. These factors modulate functional state of lymphocytes in the immune system: potentiate activation of B lymphocytes, activate synthesis and secretion of IL-25 and IL-17 cytokines, and suppress proliferative activity of T lymphocytes, thus modulating immunological reactivity of the organism. Reactions of innate and adaptive immunity develop against the background of changed immunological reactivity, which should be taken into account in the development of pathogenetically substantiated therapy.
Collapse
Affiliation(s)
- A N Kazimirskii
- Department of Pathology and Clinical Pathology, N. I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Moscow, Russia.
| | - G V Poryadin
- Department of Pathology and Clinical Pathology, N. I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Moscow, Russia
| | - Zh M Salmasi
- Department of Pathology and Clinical Pathology, N. I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Moscow, Russia
| | - L Yu Semenova
- Department of Pathology and Clinical Pathology, N. I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
33
|
Tavares G, Venturini G, Padilha K, Zatz R, Pereira AC, Thadhani RI, Rhee EP, Titan SMO. 1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics. Metabolomics 2018; 14:39. [PMID: 30830377 DOI: 10.1007/s11306-018-1337-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/06/2018] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Metabolomics allows exploration of novel biomarkers and provides insights on metabolic pathways associated with disease. To date, metabolomics studies on CKD have been largely limited to Caucasian populations and have mostly examined surrogate end points. OBJECTIVE In this study, we evaluated the role of metabolites in predicting a primary outcome defined as dialysis need, doubling of serum creatinine or death in Brazilian macroalbuminuric DKD patients. METHODS Non-targeted metabolomics was performed on plasma from 56 DKD patients. Technical triplicates were done. Metabolites were identified using Agilent Fiehn GC/MS Metabolomics and NIST libraries (Agilent MassHunter Work-station Quantitative Analysis, version B.06.00). After data cleaning, 186 metabolites were left for analyses. RESULTS During a median follow-up time of 2.5 years, the PO occurred in 17 patients (30.3%). In non-parametric testing, 13 metabolites were associated with the PO. In univariate Cox regression, only 1,5-anhydroglucitol (HR 0.10; 95% CI 0.01-0.63, p = .01), norvaline and L-aspartic acid were associated with the PO. After adjustment for baseline renal function, 1,5-anhydroglucitol (HR 0.10; 95% CI 0.02-0.63, p = .01), norvaline (HR 0.01; 95% CI 0.001-0.4, p = .01) and aspartic acid (HR 0.12; 95% CI 0.02-0.64, p = .01) remained significantly and inversely associated with the PO. CONCLUSION Our results show that lower levels of 1,5-anhydroglucitol, norvaline and L-aspartic acid are associated with progression of macroalbuminuric DKD. While norvaline and L-aspartic acid point to interesting metabolic pathways, 1,5-anhydroglucitol is of particular interest since it has been previously shown to be associated with incident CKD. This inverse biomarker of hyperglycemia should be further explored as a new tool in DKD.
Collapse
Affiliation(s)
- Gesiane Tavares
- Nephrology Division, University of São Paulo Medical School, Av Dr Enéas de Carvalho Aguiar, 255, São Paulo, SP, 05403-000, Brazil.
| | - Gabriela Venturini
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Roberto Zatz
- Nephrology Division, University of São Paulo Medical School, Av Dr Enéas de Carvalho Aguiar, 255, São Paulo, SP, 05403-000, Brazil
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Ravi I Thadhani
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eugene P Rhee
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Silvia M O Titan
- Nephrology Division, University of São Paulo Medical School, Av Dr Enéas de Carvalho Aguiar, 255, São Paulo, SP, 05403-000, Brazil
| |
Collapse
|
34
|
Toogood PL. Small molecule immuno-oncology therapeutic agents. Bioorg Med Chem Lett 2017; 28:319-329. [PMID: 29326017 DOI: 10.1016/j.bmcl.2017.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Treatment of cancer by activation of an antitumor immune response is now a widely practiced and well-accepted approach to therapy. However, despite dramatic responses in some patients, the high proportion of unresponsive patients points to a considerable unmet medical need. Although antibody therapies have led the way, small molecule immuno-oncology agents are close behind. This perspective provides an overview of some of the many small molecule approaches being explored. It encompasses small molecule modulators of validated targets such as programed cell death 1 (PD-1) as well as novel approaches still to be proven clinically.
Collapse
Affiliation(s)
- Peter L Toogood
- Lycera Corp., 1350 Highland Drive, Ann Arbor, MI, United States.
| |
Collapse
|
35
|
Moon J, Kim OY, Jo G, Shin MJ. Alterations in Circulating Amino Acid Metabolite Ratio Associated with Arginase Activity Are Potential Indicators of Metabolic Syndrome: The Korean Genome and Epidemiology Study. Nutrients 2017; 9:E740. [PMID: 28704931 PMCID: PMC5537854 DOI: 10.3390/nu9070740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023] Open
Abstract
Upregulated arginase activity, which competes with nitric oxide synthase (NOS), impairs nitric oxide production and has been implicated in various metabolic disorders. This study examined whether circulating amino acid metabolite ratios are associated with arginase and NOS activities and whether arginine bioavailability is associated with metabolic syndrome (MetS). Data related to arginase and NOS activities were collected from non-diabetic Koreans without cardiovascular disease (n = 1998) in the Ansan-Ansung cohorts (2005-2006). Subsequently, correlation and multivariate logistic regression analyses were performed. With the increase in the number of MetS risk factors, ratios of circulating amino acid metabolites, such as those of ornithine/citrulline, proline/citrulline, and ornithine/arginine, also significantly increased, whereas arginine bioavailability significantly decreased. These metabolite ratios and arginase bioavailability were also significantly correlated with MetS risk-related parameters, which remained significant after adjusting for covariates. In addition, logistic regression analysis revealed that high ratios of circulating metabolites and low arginine bioavailability, which indicated increased arginase activity, were significantly associated with a high MetS risk. This study demonstrated that altered ratios of circulating amino acid metabolites indicates increased arginase activity and decreased arginine bioavailability, both of which can be potential markers for MetS risk.
Collapse
Affiliation(s)
- Jiyoung Moon
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, Seoul 02841, Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea.
| | - Garam Jo
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, Seoul 02841, Korea.
| | - Min-Jeong Shin
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, Seoul 02841, Korea.
| |
Collapse
|
36
|
Vanhoutte PM, Zhao Y, Xu A, Leung SWS. Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator. Circ Res 2017; 119:375-96. [PMID: 27390338 DOI: 10.1161/circresaha.116.306531] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022]
Abstract
Endothelial cells control vascular tone by releasing nitric oxide (NO) produced by endothelial NO synthase. The activity of endothelial NO synthase is modulated by the calcium concentration and by post-translational modifications (eg, phosphorylation). When NO reaches vascular smooth muscle, soluble guanylyl cyclase is its primary target producing cGMP. NO production is stimulated by circulating substances (eg, catecholamines), platelet products (eg, serotonin), autacoids formed in (eg, bradykinin) or near (eg, adiponectin) the vascular wall and physical factors (eg, shear stress). NO dysfunction can be caused, alone or in combination, by abnormal coupling of endothelial cell membrane receptors, insufficient supply of substrate (l-arginine) or cofactors (tetrahydrobiopterin), endogenous inhibitors (asymmetrical dimethyl arginine), reduced expression/presence/dimerization of endothelial NO synthase, inhibition of its enzymatic activity, accelerated disposition of NO by reactive oxygen species and abnormal responses (eg, biased soluble guanylyl cyclase activity producing cyclic inosine monophosphate) of the vascular smooth muscle. Major culprits causing endothelial dysfunction, irrespective of the underlying pathological process (aging, obesity, diabetes mellitus, and hypertension), include stimulation of mineralocorticoid receptors, activation of endothelial Rho-kinase, augmented presence of asymmetrical dimethyl arginine, and exaggerated oxidative stress. Genetic and pharmacological interventions improve dysfunctional NO-mediated vasodilatations if protecting the supply of substrate and cofactors for endothelial NO synthase, preserving the presence and activity of the enzyme and reducing reactive oxygen species generation. Common achievers of such improvement include maintained levels of estrogens and increased production of adiponectin and induction of silent mating-type information regulation 2 homologue 1. Obviously, endothelium-dependent relaxations are not the only beneficial action of NO in the vascular wall. Thus, reduced NO-mediated responses precede and initiate the atherosclerotic process.
Collapse
Affiliation(s)
- Paul M Vanhoutte
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yingzi Zhao
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Susan W S Leung
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Tsukiyama Y, Ito T, Nagaoka K, Eguchi E, Ogino K. Effects of exercise training on nitric oxide, blood pressure and antioxidant enzymes. J Clin Biochem Nutr 2017; 60:180-186. [PMID: 28603344 PMCID: PMC5463976 DOI: 10.3164/jcbn.16-108] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 01/28/2023] Open
Abstract
The relationship between exercise training and nitric oxide-related parameters was examined in a cross-sectional study and an intervention study. A cross-sectional study using 184 employees was conducted to observe the association of exercise habits with serum arginase (ELISA and activity), l-arginine, l-citrulline, l-ornithine, NOx, exhaled nitric oxide, blood pressure, FEV1%, hs-CRP, HDL-cholesterol, IgE, and life style factors. An intervention study was also conducted to evaluate the changes of serum arginase I, nitric oxide-related parameters, and mRNA levels of anti-oxidant enzymes in blood monocytes before and after 1 h of aerobic exercise training per day for a month. Exercise habits were associated with increased arginase activity and a moderate alcohol drinking habit, after adjustment with several covariates. Aerobic exercise training induced a decrease in l-arginine and diastolic blood pressure and induced an increase in NO2− and urea. Moreover, mRNA expression of anti-oxidant enzymes, such as catalase and GPX1, and a life elongation enzyme, SIRT3, were significantly increased after aerobic exercise. The results that aerobic exercise training increased NO generation, reduced blood pressure, and induced anti-oxidant enzymes via SIRT3 suggest that exercise training may be an important factor for the prevention of disease by inducing intrinsic NO and anti-oxidant enzymes.
Collapse
Affiliation(s)
- Yorika Tsukiyama
- Department of Public Health, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Tatsuo Ito
- Department of Public Health, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Kenjiro Nagaoka
- Department of Public Health, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Eri Eguchi
- Department of Public Health, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Keiki Ogino
- Department of Public Health, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
38
|
Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology (Bethesda) 2017; 32:126-140. [PMID: 28202623 PMCID: PMC5337830 DOI: 10.1152/physiol.00031.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of endothelial cell (EC) metabolism and its regulatory role in the angiogenic behavior of ECs during vessel formation and in the function of different EC subtypes determined by different vascular beds has been recognized only in the last few years. Even more importantly, apart from a role of nitric oxide and reactive oxygen species in EC dysfunction, deregulations of EC metabolism in disease only recently received increasing attention. Although comprehensive metabolic characterization of ECs still needs further investigation, the concept of targeting EC metabolism to treat vascular disease is emerging. In this overview, we summarize EC-specific metabolic pathways, describe the current knowledge on their deregulation in vascular diseases, and give an outlook on how vascular endothelial metabolism can serve as a target to normalize deregulated endothelium.
Collapse
Affiliation(s)
- Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Frias MA, Thomas A, Brulhart-Meynet MC, Kövamees O, Pernow J, Eriksson M, Angelin B, James RW, Brinck JW. High-density lipoprotein-associated sphingosine-1-phosphate activity in heterozygous familial hypercholesterolaemia. Eur J Clin Invest 2017; 47:38-43. [PMID: 27861771 DOI: 10.1111/eci.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/06/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Patients with heterozygous familial hypercholesterolaemia (FH) suffer from high plasma cholesterol and an environment of increased oxidative stress. We examined its potential effects on high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P) content (HDL-S1P) and HDL-mediated protection against oxidative stress, both with and without statin treatment. MATERIALS AND METHODS In a case-control study, HDL was isolated from 12 FH patients with and without statin treatment and from 12 healthy controls. The HDL-S1P content and the capacity of HDL to protect cardiomyocytes against oxidative stress in vitro were measured. RESULTS HDL-associated S1P was significantly correlated with cell protection, but not with HDL-cholesterol or apolipoprotein AI. The latter did not correlate with HDL-mediated cell protection. Neither the HDL-S1P content nor HDL protective capacity differed between nontreated FH patients and controls. The relative amounts of apolipoprotein AI and apolipoprotein M were similar between controls and FH patients. Statin treatment had no effect on any of these measures. CONCLUSIONS The FH environment is not detrimental to HDL-S1P content or HDL-S1P-mediated cell protection. Statin treatment does not modulate HDL function in this regard.
Collapse
Affiliation(s)
- Miguel A Frias
- Department of internal medicine specialities, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Aurélien Thomas
- Unit of Toxicology, University Centre of Legal Medicine, Lausanne-Geneva, Switzerland
| | | | - Oskar Kövamees
- Division of Cardiology, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - Mats Eriksson
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, Centre for Innovative Medicine, Karolinska Institutet, Stockholm, Sweden.,KI/AZ Integrated CardioMetabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Bo Angelin
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, Centre for Innovative Medicine, Karolinska Institutet, Stockholm, Sweden.,KI/AZ Integrated CardioMetabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Richard W James
- Department of internal medicine specialities, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Jonas W Brinck
- Department of internal medicine specialities, Medical Faculty, Geneva University, Geneva, Switzerland.,Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, Centre for Innovative Medicine, Karolinska Institutet, Stockholm, Sweden.,KI/AZ Integrated CardioMetabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Pudlo M, Demougeot C, Girard-Thernier C. Arginase Inhibitors: A Rational Approach Over One Century. Med Res Rev 2016; 37:475-513. [DOI: 10.1002/med.21419] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Marc Pudlo
- PEPITE - EA4267; University Bourgogne Franche-Comté; Besançon France
| | - Céline Demougeot
- PEPITE - EA4267; University Bourgogne Franche-Comté; Besançon France
| | | |
Collapse
|
41
|
McGarrity S, Halldórsson H, Palsson S, Johansson PI, Rolfsson Ó. Understanding the Causes and Implications of Endothelial Metabolic Variation in Cardiovascular Disease through Genome-Scale Metabolic Modeling. Front Cardiovasc Med 2016; 3:10. [PMID: 27148541 PMCID: PMC4834436 DOI: 10.3389/fcvm.2016.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/03/2016] [Indexed: 01/04/2023] Open
Abstract
High-throughput biochemical profiling has led to a requirement for advanced data interpretation techniques capable of integrating the analysis of gene, protein, and metabolic profiles to shed light on genotype-phenotype relationships. Herein, we consider the current state of knowledge of endothelial cell (EC) metabolism and its connections to cardiovascular disease (CVD) and explore the use of genome-scale metabolic models (GEMs) for integrating metabolic and genomic data. GEMs combine gene expression and metabolic data acting as frameworks for their analysis and, ultimately, afford mechanistic understanding of how genetic variation impacts metabolism. We demonstrate how GEMs can be used to investigate CVD-related genetic variation, drug resistance mechanisms, and novel metabolic pathways in ECs. The application of GEMs in personalized medicine is also highlighted. Particularly, we focus on the potential of GEMs to identify metabolic biomarkers of endothelial dysfunction and to discover methods of stratifying treatments for CVDs based on individual genetic markers. Recent advances in systems biology methodology, and how these methodologies can be applied to understand EC metabolism in both health and disease, are thus highlighted.
Collapse
Affiliation(s)
- Sarah McGarrity
- Center for Systems Biology, University of Iceland , Reykjavik , Iceland
| | - Haraldur Halldórsson
- Department of Pharmacology and Toxicology, School of Health Sciences, University of Iceland , Reykjavik , Iceland
| | - Sirus Palsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland; Sinopia Biosciences Inc., San Diego, CA, USA
| | - Pär I Johansson
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland; Department of Biochemistry and Molecular Biology, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|