1
|
Cervantes J, Koska J, Kramer F, Akilesh S, Alpers CE, Mullick AE, Reaven P, Kanter JE. Elevated apolipoprotein C3 augments diabetic kidney disease and associated atherosclerosis in type 2 diabetes. JCI Insight 2024; 9:e177268. [PMID: 38743496 PMCID: PMC11383354 DOI: 10.1172/jci.insight.177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetes increases the risk of both cardiovascular disease and kidney disease. Notably, most of the excess cardiovascular risk in people with diabetes is in those with kidney disease. Apolipoprotein C3 (APOC3) is a key regulator of plasma triglycerides, and it has recently been suggested to play a role in both type 1 diabetes-accelerated atherosclerosis and kidney disease progression. To investigate if APOC3 plays a role in kidney disease in people with type 2 diabetes, we analyzed plasma levels of APOC3 from the Veterans Affairs Diabetes Trial. Elevated baseline APOC3 levels predicted a greater loss of renal function. To mechanistically test if APOC3 plays a role in diabetic kidney disease and associated atherosclerosis, we treated black and tan, brachyury, WT and leptin-deficient (OB; diabetic) mice, a model of type 2 diabetes, with an antisense oligonucleotide (ASO) to APOC3 or a control ASO, all in the setting of human-like dyslipidemia. Silencing APOC3 prevented diabetes-augmented albuminuria, renal glomerular hypertrophy, monocyte recruitment, and macrophage accumulation, partly driven by reduced ICAM1 expression. Furthermore, reduced levels of APOC3 suppressed atherosclerosis associated with diabetes. This suggests that targeting APOC3 might benefit both diabetes-accelerated atherosclerosis and kidney disease.
Collapse
Affiliation(s)
- Jocelyn Cervantes
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Juraj Koska
- VA Phoenix Health Care System, Phoenix, Arizona, USA
| | - Farah Kramer
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Charles E Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Peter Reaven
- VA Phoenix Health Care System, Phoenix, Arizona, USA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Bornfeldt KE. Apolipoprotein C3: form begets function. J Lipid Res 2024; 65:100475. [PMID: 37972731 PMCID: PMC10805671 DOI: 10.1016/j.jlr.2023.100475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
Increased circulating levels of apolipoprotein C3 (APOC3) predict cardiovascular disease (CVD) risk in humans, and APOC3 promotes atherosclerosis in mouse models. APOC3's mechanism of action is due in large part to its ability to slow the clearance of triglyceride-rich lipoproteins (TRLs) and their remnants when APOC3 is carried by these lipoproteins. However, different pools and forms of APOC3 exert distinct biological effects or associations with atherogenic processes. Thus, lipid-free APOC3 induces inflammasome activation in monocytes whereas lipid particle-bound APOC3 does not. APOC3-enriched LDL binds better to the vascular glycosaminoglycan biglycan than does LDL depleted of APOC3. Patterns of APOC3 glycoforms predict CVD risk differently. The function of APOC3 bound to HDL is largely unknown. There is still much to learn about the mechanisms of action of different forms and pools of APOC3 in atherosclerosis and CVD, and whether APOC3 inhibition would prevent CVD risk in patients on LDL-cholesterol lowering medications.
Collapse
Affiliation(s)
- Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute and Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Hsu CC, Kanter JE, Kothari V, Bornfeldt KE. Quartet of APOCs and the Different Roles They Play in Diabetes. Arterioscler Thromb Vasc Biol 2023; 43:1124-1133. [PMID: 37226733 PMCID: PMC10330679 DOI: 10.1161/atvbaha.122.318290] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
APOA1 and APOB are the structural proteins of high-density lipoprotein and APOB-containing lipoproteins, such as low-density lipoprotein and very low-density lipoprotein, respectively. The 4 smaller APOCs (APOC1, APOC2, APOC3, and APOC4) are exchangeable apolipoproteins; they are readily transferred among high-density lipoproteins and APOB-containing lipoproteins. The APOCs regulate plasma triglyceride and cholesterol levels by modulating substrate availability and activities of enzymes interacting with lipoproteins and by interfering with APOB-containing lipoprotein uptake through hepatic receptors. Of the 4 APOCs, APOC3 has been best studied in relation to diabetes. Elevated serum APOC3 levels predict incident cardiovascular disease and progression of kidney disease in people with type 1 diabetes. Insulin suppresses APOC3 levels, and accordingly, elevated APOC3 levels associate with insulin deficiency and insulin resistance. Mechanistic studies in a mouse model of type 1 diabetes have demonstrated that APOC3 acts in the causal pathway of diabetes-accelerated atherosclerosis. The mechanism is likely due to the ability of APOC3 to slow the clearance of triglyceride-rich lipoproteins and their remnants, thereby causing an increased accumulation of atherogenic lipoprotein remnants in lesions of atherosclerosis. Less is known about the roles of APOC1, APOC2, and APOC4 in diabetes.
Collapse
Affiliation(s)
- Cheng-Chieh Hsu
- Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jenny E. Kanter
- Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Vishal Kothari
- Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Karin E. Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
4
|
Hsu CC, Fidler TP, Kanter JE, Kothari V, Kramer F, Tang J, Tall AR, Bornfeldt KE. Hematopoietic NLRP3 and AIM2 Inflammasomes Promote Diabetes-Accelerated Atherosclerosis, but Increased Necrosis Is Independent of Pyroptosis. Diabetes 2023; 72:999-1011. [PMID: 37083999 PMCID: PMC10281813 DOI: 10.2337/db22-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Serum apolipoprotein C3 (APOC3) predicts incident cardiovascular events in people with type 1 diabetes, and silencing of APOC3 prevents both lesion initiation and advanced lesion necrotic core expansion in a mouse model of type 1 diabetes. APOC3 acts by slowing the clearance of triglyceride-rich lipoproteins, but lipid-free APOC3 has recently been reported to activate an inflammasome pathway in monocytes. We therefore investigated the contribution of hematopoietic inflammasome pathways to atherosclerosis in mouse models of type 1 diabetes. LDL receptor-deficient diabetes mouse models were transplanted with bone marrow from donors deficient in NOD, LRR and pyrin domain-containing protein 3 (NLRP3), absent in melanoma 2 (AIM2) or gasdermin D (GSDMD), an inflammasome-induced executor of pyroptotic cell death. Mice with diabetes exhibited inflammasome activation and consistently, increased plasma interleukin-1β (IL-1β) and IL-18. Hematopoietic deletions of NLRP3, AIM2, or GSDMD caused smaller atherosclerotic lesions in diabetic mice. The increased lesion necrotic core size in diabetic mice was independent of macrophage pyroptosis because hematopoietic GSDMD deficiency failed to prevent necrotic core expansion in advanced lesions. Our findings demonstrate that AIM2 and NLRP3 inflammasomes contribute to atherogenesis in diabetes and suggest that necrotic core expansion is independent of macrophage pyroptosis. ARTICLE HIGHLIGHTS The contribution of hematopoietic cell inflammasome activation to atherosclerosis associated with type 1 diabetes is unknown. The goal of this study was to address whether hematopoietic NOD, LRR, and pyrin domain-containing protein 3 (NLRP3), absent in melanoma 2 (AIM2) inflammasomes, or the pyroptosis executioner gasdermin D (GSDMD) contributes to atherosclerosis in mouse models of type 1 diabetes. Diabetic mice exhibited increased inflammasome activation, with hematopoietic deletions of NLRP3, AIM2, or GSDMD causing smaller atherosclerotic lesions in diabetic mice, but the increased lesion necrotic core size in diabetic mice was independent of macrophage pyroptosis. Further studies on whether inflammasome activation contributes to cardiovascular complications in people with type 1 diabetes are warranted.
Collapse
Affiliation(s)
- Cheng-Chieh Hsu
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Trevor P. Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jenny E. Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Vishal Kothari
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jingjing Tang
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Karin E. Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
5
|
Zvintzou E, Xepapadaki E, Skroubis G, Mparnia V, Giannatou K, Benabdellah K, Kypreos KE. High-Density Lipoprotein in Metabolic Disorders and Beyond: An Exciting New World Full of Challenges and Opportunities. Pharmaceuticals (Basel) 2023; 16:855. [PMID: 37375802 DOI: 10.3390/ph16060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
High-density lipoprotein (HDL) is an enigmatic member of the plasma lipid and lipoprotein transport system, best known for its ability to promote the reverse cholesterol efflux and the unloading of excess cholesterol from peripheral tissues. More recently, data in experimental mice and humans suggest that HDL may play important novel roles in other physiological processes associated with various metabolic disorders. Important parameters in the HDL functions are its apolipoprotein and lipid content, further reinforcing the principle that HDL structure defines its functionality. Thus, based on current evidence, low levels of HDL-cholesterol (HDL-C) or dysfunctional HDL particles contribute to the development of metabolic diseases such as morbid obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Interestingly, low levels of HDL-C and dysfunctional HDL particles are observed in patients with multiple myeloma and other types of cancer. Therefore, adjusting HDL-C levels within the optimal range and improving HDL particle functionality is expected to benefit such pathological conditions. The failure of previous clinical trials testing various HDL-C-raising pharmaceuticals does not preclude a significant role for HDL in the treatment of atherosclerosis and related metabolic disorders. Those trials were designed on the principle of "the more the better", ignoring the U-shape relationship between HDL-C levels and morbidity and mortality. Thus, many of these pharmaceuticals should be retested in appropriately designed clinical trials. Novel gene-editing-based pharmaceuticals aiming at altering the apolipoprotein composition of HDL are expected to revolutionize the treatment strategies, improving the functionality of dysfunctional HDL.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - George Skroubis
- Morbid Obesity Unit, Department of Surgery, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Victoria Mparnia
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Katerina Giannatou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
6
|
Hsu CC, Shao B, Kanter JE, He Y, Vaisar T, Witztum JL, Snell-Bergeon J, McInnes G, Bruse S, Gottesman O, Mullick AE, Bornfeldt KE. Apolipoprotein C3 induces inflammasome activation only in its delipidated form. Nat Immunol 2023; 24:408-411. [PMID: 36781985 PMCID: PMC9992333 DOI: 10.1038/s41590-023-01423-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023]
Abstract
Matters arising regarding the lipidation form of plasma APOC3 that induces an alternative NLRP3 activation pathway.
Collapse
Affiliation(s)
- Cheng-Chieh Hsu
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Yi He
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Joseph L Witztum
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Janet Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO, USA
| | | | | | | | | | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Giammanco A, Spina R, Cefalù AB, Averna M. APOC-III: a Gatekeeper in Controlling Triglyceride Metabolism. Curr Atheroscler Rep 2023; 25:67-76. [PMID: 36689070 PMCID: PMC9947064 DOI: 10.1007/s11883-023-01080-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW Apolipoprotein C-III (ApoC-III) is a widely known player in triglyceride metabolism, and it has been recently recognized as a polyhedric factor which may regulate several pathways beyond lipid metabolism by influencing cardiovascular, metabolic, and neurological disease risk. This review summarizes the different functions of ApoC-III and underlines the recent findings related to its multifaceted pathophysiological role. RECENT FINDINGS The role of ApoC-III has been implicated in HDL metabolism and in the development of atherosclerosis, inflammation, and ER stress in endothelial cells. ApoC-III has been recently considered an important player in insulin resistance mechanisms, lipodystrophy, diabetic dyslipidemia, and postprandial hypertriglyceridemia (PPT). The emerging evidence of the involvement of ApoC-III in the in the pathogenesis of Alzheimer's disease open the way to further study if modification of ApoC-III level slows disease progression. Furthermore, ApoC-III is clearly linked to cardiovascular disease (CVD) risk, and progression of coronary artery disease (CAD) as well as the calcification of aortic valve and recent clinical trials has pointed out the inhibition of ApoC-III as a promising approach to manage hypertriglyceridemia and prevent CVD. Several evidences highlight the role of ApoC-III not only in triglyceride metabolism but also in several cardio-metabolic pathways. Results from recent clinical trials underline that the inhibition of ApoC-III is a promising therapeutical strategy for the management of severe hypertriglyceridemia and in CVD prevention.
Collapse
Affiliation(s)
- Antonina Giammanco
- grid.10776.370000 0004 1762 5517Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Palermo, Italy
| | - Rossella Spina
- grid.10776.370000 0004 1762 5517Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Palermo, Italy
| | - Angelo B. Cefalù
- grid.10776.370000 0004 1762 5517Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Palermo, Italy
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro" (PROMISE), University of Palermo, Palermo, Italy. .,Institute of Biophysics (IBF), National Research Council (CNR), Palermo, Italy.
| |
Collapse
|
8
|
Sandholm N, Hotakainen R, Haukka JK, Jansson Sigfrids F, Dahlström EH, Antikainen AA, Valo E, Syreeni A, Kilpeläinen E, Kytölä A, Palotie A, Harjutsalo V, Forsblom C, Groop PH. Whole-exome sequencing identifies novel protein-altering variants associated with serum apolipoprotein and lipid concentrations. Genome Med 2022; 14:132. [PMID: 36419110 PMCID: PMC9685920 DOI: 10.1186/s13073-022-01135-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Dyslipidemia is a major risk factor for cardiovascular disease, and diabetes impacts the lipid metabolism through multiple pathways. In addition to the standard lipid measurements, apolipoprotein concentrations provide added awareness of the burden of circulating lipoproteins. While common genetic variants modestly affect the serum lipid concentrations, rare genetic mutations can cause monogenic forms of hypercholesterolemia and other genetic disorders of lipid metabolism. We aimed to identify low-frequency protein-altering variants (PAVs) affecting lipoprotein and lipid traits. METHODS We analyzed whole-exome (WES) and whole-genome sequencing (WGS) data of 481 and 474 individuals with type 1 diabetes, respectively. The phenotypic data consisted of 79 serum lipid and apolipoprotein phenotypes obtained with clinical laboratory measurements and nuclear magnetic resonance spectroscopy. RESULTS The single-variant analysis identified an association between the LIPC p.Thr405Met (rs113298164) and serum apolipoprotein A1 concentrations (p=7.8×10-8). The burden of PAVs was significantly associated with lipid phenotypes in LIPC, RBM47, TRMT5, GTF3C5, MARCHF10, and RYR3 (p<2.9×10-6). The RBM47 gene is required for apolipoprotein B post-translational modifications, and in our data, the association between RBM47 and apolipoprotein C-III concentrations was due to a rare 21 base pair p.Ala496-Ala502 deletion; in replication, the burden of rare deleterious variants in RBM47 was associated with lower triglyceride concentrations in WES of >170,000 individuals from multiple ancestries (p=0.0013). Two PAVs in GTF3C5 were highly enriched in the Finnish population and associated with cardiovascular phenotypes in the general population. In the previously known APOB gene, we identified novel associations at two protein-truncating variants resulting in lower serum non-HDL cholesterol (p=4.8×10-4), apolipoprotein B (p=5.6×10-4), and LDL cholesterol (p=9.5×10-4) concentrations. CONCLUSIONS We identified lipid and apolipoprotein-associated variants in the previously known LIPC and APOB genes, as well as PAVs in GTF3C5 associated with LDLC, and in RBM47 associated with apolipoprotein C-III concentrations, implicated as an independent CVD risk factor. Identification of rare loss-of-function variants has previously revealed genes that can be targeted to prevent CVD, such as the LDL cholesterol-lowering loss-of-function variants in the PCSK9 gene. Thus, this study suggests novel putative therapeutic targets for the prevention of CVD.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Ronja Hotakainen
- Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jani K Haukka
- Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Fanny Jansson Sigfrids
- Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emma H Dahlström
- Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni A Antikainen
- Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erkka Valo
- Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Syreeni
- Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elina Kilpeläinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anastasia Kytölä
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Valma Harjutsalo
- Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Bornfeldt KE. The Remnant Lipoprotein Hypothesis of Diabetes-Associated Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2022; 42:819-830. [PMID: 35616031 DOI: 10.1161/atvbaha.122.317163] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Both type 1 and type 2 diabetes are associated with an increased risk of atherosclerotic cardiovascular disease (CVD). Research based on human-first or bedside-to-bench approaches has provided new insights into likely mechanisms behind this increased risk. Although both forms of diabetes are associated with hyperglycemia, it is becoming increasingly clear that altered lipoprotein metabolism also plays a critical role in predicting CVD risk in people with diabetes. This review examines recent findings indicating that increased levels of circulating remnant lipoproteins could be a missing link between diabetes and CVD. Although CVD risk associated with diabetes is clearly multifactorial in nature, these findings suggest that we should increase efforts in evaluating whether remnant lipoproteins or the proteins that govern their metabolism are biomarkers of incident CVD in people living with diabetes and whether reducing remnant lipoproteins will prevent the increased CVD risk associated with diabetes.
Collapse
Affiliation(s)
- Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition and Department of Laboratory Medicine and Pathology, University of Washington Medicine Diabetes Institute, Seattle
| |
Collapse
|