1
|
Sung PH, Yin TC, Chiang JY, Chen CH, Huang CR, Lee MS, Yip HK. Synergic effect of combined xenogeneic mesenchymal stem cells and ceftriaxone on acute septic arthritis. Stem Cells Transl Med 2024; 13:724-737. [PMID: 38894649 PMCID: PMC11328939 DOI: 10.1093/stcltm/szae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/23/2023] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND This study tested the hypothesis that combined ceftriaxone (Cef) and human umbilical cord-derived mesenchymal stem cells (HUCDMSCs) was better than either therapy for alleviating acute septic arthritis (ASA). METHODS AND RESULTS Adult-male C57BL/6 mice were categorized into control group (Clt), group A (ASA only), group B [ASA + Cef (5 mg/kg, IM per day, at days 2 to 16 after ASA induction)], group C [ASA + HUCDMSCs (5 × 105 per mice at days 2, 3, 4 after ASA induction)], and group D (ASA + Cef + HUCDMSCs). Animals were euthanized by day 28. The result demonstrated that the body weight was significantly lower, whereas the ratio of kidney or spleen weight to WB, circulatory WBC count, bacterial colony-formation-unit from circulatory/kidney extraction were significantly higher in group A than in other groups (all P < .001). The proinflammatory cytokines (IL-6/TNF-α) of knee joint fluid were lowest in Clt and significantly and progressively reduced from groups A to D, whereas the circulatory levels of these 2 parameters at the time points of days 3/7/28 exhibited an identical pattern as knee joint fluid among the groups (all P-value < .0001). The scores of vertebral-bone destructions/inflamed synovium were lowest in Clt, highest in group A, significantly higher in group C than in groups B/D, and significantly higher in group C than in group D (all P < .0001). CONCLUSION Combined antibiotics and Cef and HUCDMSCs was superior to just one therapy for suppressing circulatory and tissue levels of inflammation and knee joint destruction in ASA.
Collapse
Affiliation(s)
- Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan, ROC
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung 833401, Taiwan, ROC
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung 833401, Taiwan, ROC
| | - Tsung-Cheng Yin
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 833401 Kaohsiung, Taiwan, ROC
- Center for General Education, Cheng Shiu University, Kaohsiung 833301, Taiwan, ROC
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, ROC
| | - Chih-Hung Chen
- Divisions of General Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan, ROC
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan, ROC
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung 833401, Taiwan, ROC
| | - Mel S Lee
- Department of Internal Medicine, Paochien Hospital, Pingtung 900068, Taiwan, ROC
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan, ROC
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung 833401, Taiwan, ROC
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung 833401, Taiwan, ROC
- Department of Nursing, Asia University Taichung 413305, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan, ROC
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan, ROC
| |
Collapse
|
2
|
Chen F, Che Z, Liu Y, Luo P, Xiao L, Song Y, Wang C, Dong Z, Li M, Tipoe GL, Yang M, Lv Y, Zhang H, Wang F, Xiao J. Invigorating human MSCs for transplantation therapy via Nrf2/DKK1 co-stimulation in an acute-on-chronic liver failure mouse model. Gastroenterol Rep (Oxf) 2024; 12:goae016. [PMID: 38529014 PMCID: PMC10963075 DOI: 10.1093/gastro/goae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/27/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Background Since boosting stem cell resilience in stressful environments is critical for the therapeutic efficacy of stem cell-based transplantations in liver disease, this study aimed to establish the efficacy of a transient plasmid-based preconditioning strategy for boosting the capability of mesenchymal stromal cells (MSCs) for anti-inflammation/antioxidant defenses and paracrine actions in recipient hepatocytes. Methods Human adipose mesenchymal stem cells (hADMSCs) were subjected to transfer, either with or without the nuclear factor erythroid 2-related factor 2 (Nrf2)/Dickkopf1 (DKK1) genes, followed by exposure to TNF-α/H2O2. Mouse models were subjected to acute chronic liver failure (ACLF) and subsequently injected with either transfected or untransfected MSCs. These hADMSCs and ACLF mouse models were used to investigate the interaction between Nrf2/DKK1 and the hepatocyte receptor cytoskeleton-associated protein 4 (CKAP4). Results Activation of Nrf2 and DKK1 enhanced the anti-stress capacity of MSCs in vitro. In a murine model of ACLF, transient co-overexpression of Nrf2 and DKK1 via plasmid transfection improved MSC resilience against inflammatory and oxidative assaults, boosted MSC transplantation efficacy, and promoted recipient liver regeneration due to a shift from the activation of the anti-regenerative IFN-γ/STAT1 pathway to the pro-regenerative IL-6/STAT3 pathway in the liver. Importantly, the therapeutic benefits of MSC transplantation were nullified when the receptor CKAP4, which interacts with DKK1, was specifically removed from recipient hepatocytes. However, the removal of the another receptor low-density lipoprotein receptor-related protein 6 (LRP6) had no impact on the effectiveness of MSC transplantation. Moreover, in long-term observations, no tumorigenicity was detected in mice following transplantation of transiently preconditioned MSCs. Conclusions Co-stimulation with Nrf2/DKK1 safely improved the efficacy of human MSC-based therapies in murine models of ACLF through CKAP4-dependent paracrine mechanisms.
Collapse
Affiliation(s)
- Feng Chen
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Yingxia Liu
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Pingping Luo
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Lu Xiao
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Yali Song
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Cunchuan Wang
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Zhiyong Dong
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Mianhuan Li
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - George L Tipoe
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Min Yang
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Yi Lv
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, P. R. China
| | - Hong Zhang
- Department of Surgery, The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, P. R. China
| | - Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
- Department of Surgery, The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, P. R. China
| |
Collapse
|
3
|
Pimenta GF, Awata WMC, Orlandin GG, Silva-Neto JA, Assis VO, da Costa RM, Bruder-Nascimento T, Tostes RC, Tirapelli CR. Melatonin prevents overproduction of reactive oxygen species and vascular dysfunction induced by cyclophosphamide. Life Sci 2024; 338:122361. [PMID: 38158040 DOI: 10.1016/j.lfs.2023.122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
AIMS Overproduction of reactive oxygen species (ROS) is a pathologic hallmark of cyclophosphamide toxicity. For this reason, antioxidant compounds emerge as promising tools for preventing tissue damage induced by cyclophosphamide. We hypothesized that melatonin would display cytoprotective action in the vasculature by preventing cyclophosphamide-induced oxidative stress. MATERIALS AND METHODS Male C57BL/6 mice (22-25 g) were injected with a single dose of cyclophosphamide (300 mg/kg; i.p.). Mice were pretreated or not with melatonin (10 mg/kg/day, i.p.), given during 4 days before cyclophosphamide injection. Functional (vascular reactivity) and oxidative/inflammatory patterns were evaluated at 24 h in resistance arteries. The antioxidant action of melatonin was assessed in vitro in cultured vascular smooth muscle cells (VSMCs) of mesenteric arteries. KEY FINDINGS Cyclophosphamide induced ROS generation in both mesenteric arterial bed (MAB) and cultured VSMCs, and this was normalized by melatonin. Cyclophosphamide-induced ROS generation and lipoperoxidation in the bladder and kidney was also prevented by melatonin. Increased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 were detected in the MAB of cyclophosphamide-treated mice, all of which were prevented by melatonin. Functional assays using second-order mesenteric arteries of cyclophosphamide-treated mice revealed a decrease in vascular contractility. Melatonin prevented vascular hypocontractility in the cyclophosphamide group. Melatonin partially prevented the decrease in myeloperoxidase (MPO) and N-acetyl-beta-D-glucosaminidase (NAG) activities in the MAB of the cyclophosphamide group. SIGNIFICANCE Melatonin may constitute a novel and promising therapeutic approach for management of the toxic effects induced by cyclophosphamide in the vasculature.
Collapse
Affiliation(s)
- Gustavo F Pimenta
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Wanessa M C Awata
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabrielly G Orlandin
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Julio A Silva-Neto
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Victor O Assis
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Rafael M da Costa
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Rita C Tostes
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Ramsay S, Zagorodnyuk V. Role of circadian rhythms and melatonin in bladder function in heath and diseases. Auton Neurosci 2023; 246:103083. [PMID: 36871511 DOI: 10.1016/j.autneu.2023.103083] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
The circadian system modulates all visceral organ physiological processes including urine storage and voiding. The "master clock" of the circadian system lies within suprachiasmatic nucleus of the hypothalamus while "peripheral clocks" are found in most peripheral tissue and organs, including the urinary bladder. Disruptions of circadian rhythms can cause organ malfunction and disorder or exacerbate pre-existing ones. It has been suggested that nocturia, which develops mostly in the elderly, could be a circadian-related disorder of the bladder. In the bladder, many types of gap junctions and ion channels in the detrusor, urothelium and sensory nerves are likely under strict local peripheral circadian control. The pineal hormone, melatonin, is a circadian rhythm synchroniser capable of controlling a variety of physiological processes in the body. Melatonin predominantly acts via the melatonin 1 and melatonin 2 G-protein coupled receptors expressed in the central nervous system, and many peripheral organs and tissues. Melatonin could be beneficial in the treatment of nocturia and other common bladder disorders. The ameliorating action of melatonin on bladder function is likely due to multiple mechanisms which include central effects on voiding and peripheral effects on the detrusor and bladder afferents. More studies are warranted to determine the precise mechanisms of circadian rhythm coordination of the bladder function and melatonin influences on the bladder in health and diseases.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
5
|
Iqbal M, Shams S, Rafiq H, Khan M, Khan S, Sadique Khattak U, Afridi SG, Bibi F, Abdulkareem AA, Naseer MI. Combinatorial Therapeutic Potential of Stem Cells and Benzimidazol Derivatives for the Reduction of Liver Fibrosis. Pharmaceuticals (Basel) 2023; 16:306. [PMID: 37259449 PMCID: PMC9965641 DOI: 10.3390/ph16020306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 12/31/2023] Open
Abstract
(1) Background: Liver fibrosis is currently one of the top ten causes of death worldwide. Stem cells transplantation using mesenchymal stem cells (MSCs) is an alternative therapy which is used in the place of organ transplant, due to the incapacity of stem cells to endure oxidative stress in the damage site, thus affecting the healing process. The present study aimed to enhance the therapeutic potential of MSCs using combined therapy, along with the novel synthetic compounds of benzimidazol derivatives. (2) Methods: Eighteen compound series (benzimidazol derivatives) were screened against liver fibrosis using an in vitro CCl4-induced injury model on cultured hepatocytes. IC50 values were calculated on the bases of LDH assay and cell viability assay. (3) Results: Among the eighteen compounds, compounds (10), (14) and (18) were selected on the basis of IC50 value, and compound (10) was the most potent and had the lowest IC50 value in the LDH assay (8.399 ± 0.23 uM) and cell viability assay (4.73 ± 0.37 uM). Next, these compounds were combined with MSCs using an in vitro hepatocytes injury culture and in vivo rat fibrotic model. The effect of the MSCs + compounds treatment on injured hepatocytes was evaluated using LDH assay, cell viability assay, GSH assay and real-time PCR analysis and immuno-staining for caspase-3. Significant reductions in LDH level, caspase-3 and apoptotic marker genes were noted in MSCs + compounds-treated injured hepatocytes. In vivo data also showed the increased homing of the MSCs, along with compounds after transplantation. Real-time PCR analysis and TUNEL assay results also support our study. (4) Conclusions: It was concluded that compounds (10), (14) and (18) can be used in combination with MSCs to reduce liver fibrosis.
Collapse
Affiliation(s)
- Maryam Iqbal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Huma Rafiq
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Umer Sadique Khattak
- College of Veterinary Sciences, The University of Agriculture, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Yin T, Li Y, Sung P, Chiang JY, Shao P, Yip H, Lee MS. Adipose-derived mesenchymal stem cells overexpressing prion improve outcomes via the NLRP3 inflammasome/DAMP signalling after spinal cord injury in rat. J Cell Mol Med 2023; 27:482-495. [PMID: 36660907 PMCID: PMC9930430 DOI: 10.1111/jcmm.17620] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 01/21/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a highly destructive disease in human neurological functions. Adipose-derived mesenchymal stem cells (ADMSCs) have tissue regenerations and anti-inflammations, especially with prion protein overexpression (PrPcOE ). Therefore, this study tested whether PrPcOE -ADMSCs therapy offered benefits in improving outcomes via regulating nod-like-receptor-protein-3 (NLRP3) inflammasome/DAMP signalling after acute SCI in rats. Compared with ADMSCs only, the capabilities of PrPcOE -ADMSCs were significantly enhanced in cellular viability, anti-oxidative stress and migration against H2 O2 and lipopolysaccharide damages. Similarly, PrPcOE -ADMSCs significantly inhibited the inflammatory patterns of Raw264.7 cells. The SD rats (n = 32) were categorized into group 1 (Sham-operated-control), group 2 (SCI), group 3 (SCI + ADMSCs) and group 4 (SCI + PrPcOE -ADMSCs). Compared with SCI group 2, both ADMSCs and PrPcOE -ADMSCs significantly improved neurological functions. Additionally, the circulatory inflammatory cytokines levels (TNF-α/IL-6) and inflammatory cells (CD11b/c+/MPO+/Ly6G+) were highest in group 2, lowest in group 1, and significantly higher in group 3 than in group 4. By Day 3 after SCI induction, the protein expressions of inflammasome signalling (HGMB1/TLR4/MyD88/TRIF/c-caspase8/FADD/p-NF-κB/NEK7/NRLP3/ASC/c-caspase1/IL-ß) and by Day 42 the protein expressions of DAMP-inflammatory signalling (HGMB1/TLR-4/MyD88/TRIF/TRAF6/p-NF-κB/TNF-α/IL-1ß) in spinal cord tissues displayed an identical pattern as the inflammatory patterns. In conclusion, PrPcOE -ADMSCs significantly attenuated SCI in rodents that could be through suppressing the inflammatory signalling.
Collapse
Affiliation(s)
- Tsung‐Cheng Yin
- Department of Orthopaedic SurgeryKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for General EducationCheng Shiu UniversityKaohsiungTaiwan
| | - Yi‐Chen Li
- Clinical Medicine Research CenterNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan,Center of Cell TherapyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan,Institute of Clinical MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan,Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan
| | - Pei‐Hsun Sung
- Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for Shockwave Medicine and Tissue EngineeringKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - John Y. Chiang
- Department of Computer Science & EngineeringNational Sun Yat‐sen UniversityKaohsiungTaiwan,Department of Healthcare Administration and Medical InformaticsKaohsiung Medical UniversityKaohsiungTaiwan
| | - Pei‐Lin Shao
- Department of NursingAsia UniversityTaichungTaiwan
| | - Hon‐Kan Yip
- Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for Shockwave Medicine and Tissue EngineeringKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Department of NursingAsia UniversityTaichungTaiwan,Department of Medical ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan,Division of Cardiology, Department of Internal MedicineXiamen Chang Gung HospitalXiamenChina
| | - Mel S. Lee
- Department of Orthopaedic SurgeryKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Department of Orthopedic SurgeryPao‐Chien HospitalPingtungTaiwan
| |
Collapse
|
7
|
Brossard C, Pouliet AL, Lefranc A, Benadjaoud M, Dos Santos M, Demarquay C, Buard V, Benderitter M, Simon JM, Milliat F, Chapel A. Mesenchymal stem cells limit vascular and epithelial damage and restore the impermeability of the urothelium in chronic radiation cystitis. Stem Cell Res Ther 2023; 14:5. [PMID: 36627674 PMCID: PMC9832809 DOI: 10.1186/s13287-022-03230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/25/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cellular therapy seems to be an innovative therapeutic alternative for which mesenchymal stem cells (MSCs) have been shown to be effective for interstitial and hemorrhagic cystitis. However, the action of MSCs on chronic radiation cystitis (CRC) remains to be demonstrated. The aim of this study was to set up a rat model of CRC and to evaluate the efficacy of MSCs and their mode of action. METHODS CRC was induced by single-dose localized irradiation of the whole bladder using two beams guided by tomography in female Sprague-Dawley rat. A dose range of 20-80 Gy with follow-up 3-12 months after irradiation was used to characterize the dose effect and the kinetics of radiation cystitis in rats. For the treatment, the dose of 40 Gy was retained, and in order to potentiate the effect of the MSCs, MSCs were isolated from adipose tissue. After expansion, they were injected intravenously during the pre-chronic phase. Three injections of 5 million MSCs were administered every fortnight. Follow-up was performed for 12 months after irradiation. RESULTS We observed that the intensity and frequency of hematuria are proportional to the irradiation dose, with a threshold at 40 Gy and the appearance of bleeding from 100 days post-irradiation. The MSCs reduced vascular damage as well as damage to the bladder epithelium. CONCLUSIONS These results are in favor of MSCs acting to limit progression of the chronic phase of radiation cystitis. MSC treatment may afford real hope for all patients suffering from chronic radiation cystitis resistant to conventional treatments.
Collapse
Affiliation(s)
- Clément Brossard
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Anne-Laure Pouliet
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Anne‐Charlotte Lefranc
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Mohamedamine Benadjaoud
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed, 92260 Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRAcc, 92260 Fontenay-aux-Roses, France
| | - Christelle Demarquay
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Valerie Buard
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Marc Benderitter
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed, 92260 Fontenay-aux-Roses, France
| | - Jean-Marc Simon
- grid.411439.a0000 0001 2150 9058Département de Radiothérapie Oncologie, APHP, Hôpital Universitaire Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75651 Paris Cedex 13, France
| | - Fabien Milliat
- grid.418735.c0000 0001 1414 6236Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260 Fontenay-aux-Roses, France
| | - Alain Chapel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMed/LRMed, 92260, Fontenay-aux-Roses, France.
| |
Collapse
|
8
|
Ha JY, Lee EH, Chun SY, Lee JN, Ha YS, Chung JW, Yoon BH, Jeon M, Kim HT, Kwon TG, Yoo ES, Kim BS. The Efficacy and Safety of a Human Perirenal Adipose Tissue-Derived Stromal Vascular Fraction in an Interstitial Cystitis Rat Model. Tissue Eng Regen Med 2023; 20:225-237. [PMID: 36600004 PMCID: PMC10070579 DOI: 10.1007/s13770-022-00505-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 10/27/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Interstitial cystitis (IC) is a chronic and intractable disease that can severely deteriorate patients' quality of life. Recently, stem cell therapy has been introduced as a promising alternative treatment for IC in animal models. We aimed to verify the efficacy and safety of the human perirenal adipose tissue-derived stromal vascular fraction (SVF) in an IC rat model. METHODS From eight-week-old female rats, an IC rat model was established by subcutaneous injection of 200 μg of uroplakin3A. The SVF was injected into the bladder submucosal layer of IC rats, and pain scale analysis, awakening cytometry, and histological and gene analyses of the bladder were performed. For the in vivo safety analysis, genomic DNA purification and histological analysis were also performed to check tumorigenicity and thrombus formation. RESULTS The mean pain scores in the SVF 20 μl group were significantly lower on days 7 and 14 than those in the control group, and bladder intercontraction intervals were significantly improved in the SVF groups in a dose-dependent manner. Regeneration of the bladder epithelium, basement membrane, and lamina propria was observed in the SVF group. In the SVF groups, however, bladder fibrosis and the expression of inflammatory markers were not significantly improved compared to those in the control group. CONCLUSION This study demonstrated that a perirenal adipose tissue-derived SVF is a promising alternative for the management of IC in terms of improving bladder pain and overactivity.
Collapse
Affiliation(s)
- Ji Yong Ha
- Department of Urology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Chilgok Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Chilgok Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jae-Wook Chung
- Department of Urology, School of Medicine, Kyungpook National University, Chilgok Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Bo Hyun Yoon
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Minji Jeon
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Chilgok Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Eun Sang Yoo
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| | - Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| |
Collapse
|
9
|
Lin KC, Fang WF, Sung PH, Huang KT, Chiang JY, Chen YL, Huang CR, Li YC, Lee MS, Yip HK. Early and Dose-Dependent Xenogeneic Mesenchymal Stem Cell Therapy Improved Outcomes in Acute Respiratory Distress Syndrome Rodent Through Ameliorating Inflammation, Oxidative Stress, and Immune Reaction. Cell Transplant 2023; 32:9636897231190178. [PMID: 37592717 PMCID: PMC10469224 DOI: 10.1177/09636897231190178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
This study tested whether human umbilical cord-derived mesenchymal stem cells (HUCDMSCs) treatment effectively protected the rat lung against acute respiratory distress syndrome (ARDS) injury, and benefits of early and dose-dependent treatment. Rat pulmonary epithelial cell line L2 (PECL2) were categorized into G1 (PECL2), G2 (PECL2 + healthy rat lung-derived extraction/50 mg/ml co-cultured for 24 h), G3 (PECL2 + ARDS rat lung-derived extraction/50 mg/ml co-cultured for 24 h), and G4 (condition as G3 + HUCDMSCs/1 × 105/co-cultured for 24 h). The result showed that the protein expressions of inflammatory (HMGB-1/TLR-2/TLR-4/MAL/TRAM/MyD88/TRIF/TRAF6/IkB/NF-κB/IL-1β/TNF-α), oxidative-stress/mitochondrial-damaged (NOX-1/NOX-2/ASK1/p-MKK4/p-MKK7/JNKs/JUN/cytosolic-cytochrome-C/cyclophilin-D/DRP1), and cell-apoptotic/fibrotic (cleaved-caspase 3/cleaved-PARP/TGF-β/p-Smad3) biomarkers were significantly increased in G3 than in G1/G2 and were significantly reversed in G4 (all P < 0.001), but they were similar between G1/G2. Adult male rats (n = 42) were equally categorized into group 1 (normal control), group 2 (ARDS only), group 3 [ARDS + HUCDMSCs/1.2 × 106 cells intravenous administration at 3 h after 48 h ARDS induction (i.e., early treatment)], group 4 [ARDS + HUCDMSCs/1.2 × 106 cells intravenous administration at 24 h after 48 h ARDS induction (late treatment)], and group 5 [ARDS + HUCDMSCs/1.2 × 106 cells intravenous administration at 3 h/24 h after-48 h ARDS induction (dose-dependent treatment)]. By day 5 after ARDS induction, the SaO2%/immune regulatory T cells were highest in group 1, lowest in group 2, significantly lower in group 4 than in groups 3/5, and significantly lower in group 3 than in group 5, whereas the circulatory/bronchioalveolar lavage fluid inflammatory cells (CD11b-c+/LyG6+/MPO+)/circulatory immune cells (CD3-C4+/CD3-CD8+)/lung-leakage-albumin level/lung injury score/lung protein expressions of inflammatory (HMGB-1/TLR-2/TLR-4/MAL/TRAM/MyD88/TRIF/TRAF6/IκB-β/p-NF-κB/IL-1β/TNF-α)/fibrotic (p-SMad3/TGF-β), apoptosis (mitochondrial-Bax/cleaved-caspase-3)/oxidative-cell-stress (NOX-1/NOX-2/ASK1/p-MKK4/p-MKK7/p-JNKs/p-cJUN)/mitochondrial damaged (cyclophilin-D/DRP1/cytosolic-cytochrome-C) biomarkers displayed an opposite pattern of SaO2% among the groups (all P < 0.0001). Early administration was superior to and two-dose counterpart was even more superior to late HUCDMSCs treatment for protecting the lung against ARDS injury.
Collapse
Affiliation(s)
- Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, R. O. C
| | - Wen-Feng Fang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, R. O. C
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, R. O. C
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, R. O. C
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, R. O. C
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, R. O. C
| | - John Y. Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, R. O. C
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, R. O. C
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, R. O. C
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, R. O. C
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, R. O. C
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, R. O. C
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, R. O. C
| | | | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, R. O. C
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, R. O. C
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, R. O. C
- Department of Nursing, Asia University, Taichung, R. O. C
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, R. O. C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, R. O. C
| |
Collapse
|
10
|
Chen KH, Lin HS, Li YC, Sung PH, Chen YL, Yin TC, Yip HK. Synergic Effect of Early Administration of Probiotics and Adipose-Derived Mesenchymal Stem Cells on Alleviating Inflammation-Induced Chronic Neuropathic Pain in Rodents. Int J Mol Sci 2022; 23:ijms231911974. [PMID: 36233275 PMCID: PMC9570240 DOI: 10.3390/ijms231911974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
This study investigated the hypothesis that probiotics enhanced the therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs) on alleviating neuropathic pain (NP) due to chronic constriction injury (CCI) mainly through regulating the microbiota in rats. SD rats (n = 50) were categorized into group 1 (sham-control), group 2 (NP), group 3 (NP + probiotics (i.e., 1.5 billion C.F.U./day/rat, orally 3 h after NP procedure, followed by QOD 30 times)), group 4 (NP + ADMSCs (3.0 × 105 cells) 3 h after CCI procedure, followed by QOD six times (i.e., seven times in total, i.e., mimic a clinical setting of drug use) and group 5 (NP + probiotics + ADMSCs (3.0 × 105 cells)) and euthanized by day 60 after NP induction. By day 28 after NP induction, flow-cytometric analysis showed circulating levels of early (AN-V+/PI−) and late (AN-V+/PI+) apoptotic, and three inflammatory (CD11b-c+, Ly6G+ and MPO+) cells were lowest in group 1 and significantly progressively reduced in groups 2 to 5 (all p < 0.0001). By days 7, 14, 21, 28, and 60 after CCI, the thresholds of thermal paw withdrawal latency (PWL) and mechanical paw withdrawal threshold (PWT) were highest in group 1 and significantly progressively increased in groups 2 to 5 (all p < 0.0001). Numbers of pain-connived cells (Nav1.8+/peripherin+, p-ERK+/peripherin+, p-p38+/peripherin+ and p-p38+/NF200+) and protein expressions of inflammatory (p-NF-κB, IL-1ß, TNF-α and MMP-9), apoptotic (cleaved-caspase-3, cleaved-PARP), oxidative-stress (NOX-1, NOX-2), DNA-damaged (γ-H2AX) and MAPK-family (p-P38, p-JNK, p-ERK1/2) biomarkers as well as the protein levels of Nav.1.3, Nav.1.8, and Nav.1.9 in L4-L5 in dorsal root ganglia displayed an opposite pattern of mechanical PWT among the groups (all p < 0.0001). In conclusion, combined probiotic and ADMSC therapy was superior to merely one for alleviating CCI-induced NP mainly through suppressing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hung-Sheng Lin
- Division of Neurology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Chen Li
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: (T.-C.Y.); (H.-K.Y.)
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen 361028, China
- Correspondence: (T.-C.Y.); (H.-K.Y.)
| |
Collapse
|
11
|
Zou S, Shimizu T, Kurabayashi A, Yamamoto M, Shimizu S, Higashi Y, Shimizu N, Karashima T, Saito M. Protective effects of hydrogen sulfide pretreatment on cyclophosphamide-induced bladder dysfunction in rats via suppression of bladder afferent nerves. Nitric Oxide 2022; 127:54-63. [PMID: 35918055 DOI: 10.1016/j.niox.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Cyclophosphamide (CYP), a broad-spectrum anticancer drug, causes serious side effects, such as haemorrhagic cystitis (HC). Hydrogen sulfide (H2S), an endogenous gasotransmitter, has physiological properties, including anti-inflammation, anti-oxidation, and neuromodulation. In this study, we investigated the effects of NaHS (H2S donor) pretreatment on bladder dysfunction in CYP-treated rats. Male Wistar rats were intraperitoneally pretreated with NaHS (3 or 10 μmol/kg) or vehicle once daily for 7 days before cystometry, and CYP (150 mg/kg) or saline was intraperitoneally administered 2 days before cystometry. After cystometry, the bladder tissues were collected for haematoxylin and eosin staining. In some rats, capsaicin (CAP), which can desensitise CAP-sensitive afferent nerves, was subcutaneously injected at 125 mg/kg 4 days before cystometry. CYP reduced intercontraction intervals (ICI) and bladder compliance (Comp) and increased the number of non-voiding contractions (NVCs) compared with the saline-treated control group. NaHS pretreatment dose-dependently improved the CYP-induced these changes. In bladder tissues, CYP increased histological scores of neutrophil infiltration, haemorrhage, and oedema, while NaHS had no effect on these CYP-induced changes. CAP showed a tendency to suppress CYP-induced changes in ICI. NaHS-induced improvement in CYP-induced changes in urodynamic parameters were not detected in CAP-treated rats. These findings suggest that NaHS pretreatment prevented bladder dysfunction in CYP-treated rats by suppressing CAP-sensitive bladder afferent nerves, but not by suppressing bladder inflammation. Therefore, H2S represents a new candidate as a protective drug for bladder dysfunction induced by HC, a side effect of CYP chemotherapy.
Collapse
Affiliation(s)
- Suo Zou
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| | - Atsushi Kurabayashi
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Masaki Yamamoto
- Department of Pediatrics, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Nobutaka Shimizu
- Department of Pelvic Floor Center, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
12
|
Xiong Y, Song J, Huang X, Pan Z, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Exosomes Derived From Mesenchymal Stem Cells: Novel Effects in the Treatment of Ischemic Stroke. Front Neurosci 2022; 16:899887. [PMID: 35585925 PMCID: PMC9108502 DOI: 10.3389/fnins.2022.899887] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is defined as an infarction in the brain, caused by impaired cerebral blood supply, leading to local brain tissue ischemia, hypoxic necrosis, and corresponding neurological deficits. At present, revascularization strategies in patients with acute ischemic stroke include intravenous thrombolysis and mechanical endovascular treatment. However, due to the short treatment time window (<4.5 h) and method restrictions, clinical research is focused on new methods to treat ischemic stroke. Exosomes are nano-sized biovesicles produced in the endosomal compartment of most eukaryotic cells, containing DNA, complex RNA, and protein (30-150 nm). They are released into surrounding extracellular fluid upon fusion between multivesicular bodies and the plasma membrane. Exosomes have the characteristics of low immunogenicity, good innate stability, high transmission efficiency, and the ability to cross the blood-brain barrier, making them potential therapeutic modalities for the treatment of ischemic stroke. The seed sequence of miRNA secreted by exosomes is base-paired with complementary mRNA to improve the microenvironment of ischemic tissue, thereby regulating downstream signal transduction activities. With exosome research still in the theoretical and experimental stages, this review aims to shed light on the potential of exosomes derived from mesenchymal stem cells in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Jianping Song
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Neurosurgery, National Regional Medical Center, Fudan University Huashan Hospital Fujian Campus, The First Affiliated Hospital Binhai Campus, Fujian Medical University, Fuzhou, China
| | - Xinyue Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, “Attikon” University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
- Department of Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
13
|
Administration of Melatonin in Diabetic Retinopathy Is Effective and Improves the Efficacy of Mesenchymal Stem Cell Treatment. Stem Cells Int 2022; 2022:6342594. [PMID: 35450343 PMCID: PMC9017455 DOI: 10.1155/2022/6342594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/26/2022] [Indexed: 11/29/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic technique for the treatment of a variety of diseases; nevertheless, stem cell therapy may not always work as well as it could. The goal of this study was to test the hypothesis that employing a powerful antioxidant like melatonin improves stem cell transplantation success and potentiates stem cell function in the therapy of diabetic retinopathy. For this purpose, 50 adult male rats were divided into the following: control group: this group received 0.5 ml of 0.1 M of sodium citrate buffer (pH = 4.5) (intraperitoneal (I.P.)). The confirmed diabetic rats were divided into 4 groups: diabetic group: confirmed diabetic rats received no treatments with a regular follow of the blood glucose profile for 8 weeks; melatonin group: confirmed diabetic rats received melatonin (5 mg/kg/day); stem cell group: the confirmed diabetic rats were given intravitreal injection of stem cells (2 μl cell suspension of stem cells (3 × 104 cells/μl)); and melatonin+stem cell group: confirmed diabetic rats received melatonin (5 mg/kg/day), orally once daily for 8 weeks, and 2 μl cell suspension of stem cells (3 × 104 cells/μl) was carefully injected into the vitreous cavity. Our results showed that administration of melatonin and/or stem cell restored the retinal oxidative/antioxidant redox and reduced retinal inflammatory mediators. Coadministration of melatonin and stem cells enhanced the number of transplanted stem cells in the retinal tissue and significantly reduced retinal BDEF, VEGF, APOA1, and RBP4 levels as compared to melatonin and/or stem alone. We may conclude that rats treated with melatonin and stem cells had their retinal oxidative/antioxidant redox values restored to normal and their histological abnormalities reduced. These findings support the hypothesis that interactions with the BDEF, VEGF, APOA1, and RBP4 signaling pathways are responsible for these effects.
Collapse
|
14
|
Cavernous Nerve Injury Resulted Erectile Dysfunction and Regeneration. J Immunol Res 2022; 2021:5353785. [PMID: 34970630 PMCID: PMC8714392 DOI: 10.1155/2021/5353785] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023] Open
Abstract
Erectile dysfunction (ED) is an important cause of reduced quality of life for men and their partners. Recent studies have found that cavernous nerve injury (CNI) during prostate cancer surgery and other pelvic surgery results in medically induced CNIED in more than 80% of patients. The efficacy of first- and second-line treatment options for ED is poor. A great deal of research has been devoted to exploring new methods of neuroprotection and nerve regeneration to save erectile function in patients with CNIED, especially in patients with cavernous nerve injury after prostate cancer surgery. In addition, such as neuromodulatory proteins, proimmune ligands, gene therapy, stem cell therapy, and the current cutting-edge low-energy shock wave therapy have shown advantages in basic research and limited clinical studies. In the context of today's modern medicine, these new therapeutic techniques are expected to be new tools in the treatment of cavernous nerve injury erectile dysfunction. This article presents the main causes, mechanisms, and treatment of cavernous nerve injury erectile dysfunction and combines them with new treatment strategies.
Collapse
|
15
|
Wen C, Xie L, Hu C. Roles of mesenchymal stem cells and exosomes in interstitial cystitis/bladder pain syndrome. J Cell Mol Med 2021; 26:624-635. [PMID: 34953040 PMCID: PMC8817120 DOI: 10.1111/jcmm.17132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is characterized by several symptoms of higher sensitivity of the lower urinary tract, such as bladder pain/discomfort, urgency, urinary frequency, pelvic pain and nocturia. Although the pathophysiology of IC/BPS is not fully understood, the hypothesis suggests that mast cell activation, glycosaminoglycan (GAG) layer defects, urothelium permeability disruption, inflammation, autoimmune disorder and infection are potential mechanisms. Mesenchymal stem cells (MSCs) have been proven to protect against tissue injury in IC/BPS by migrating into bladders, differentiating into key bladder cells, inhibiting mast cell accumulation and cellular apoptosis, inhibiting inflammation and oxidative stress, alleviating collagen fibre accumulation and enhancing tissue regeneration in bladder tissues. In addition, MSCs can protect against tissue injury in IC/BPS by secreting various soluble factors, including exosomes and other soluble factors, with antiapoptotic, anti-inflammatory, angiogenic and immunomodulatory properties in a cell-to-cell independent manner. In this review, we comprehensively summarized the current potential pathophysiological mechanisms and standard treatments of IC/BPS, and we discussed the potential mechanisms and therapeutic effects of MSCs and MSC-derived exosomes in alleviating tissue injury in IC/BPS models.
Collapse
Affiliation(s)
- Chao Wen
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Liping Xie
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chenxia Hu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Chen J, Chen L, Wu Y, Fang Y, Zeng F, Wu S, Zhao Y. A H 2O 2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-II fluorescent imaging. Nat Commun 2021; 12:6870. [PMID: 34824274 PMCID: PMC8617030 DOI: 10.1038/s41467-021-27233-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
Developing high-quality NIR-II fluorophores (emission in 1000-1700 nm) for in vivo imaging is of great significance. Benzothiadiazole-core fluorophores are an important class of NIR-II dyes, yet ongoing limitations such as aggregation-caused quenching in aqueous milieu and non-activatable response are still major obstacles for their biological applications. Here, we devise an activatable nanoprobe to address these limitations. A molecular probe named BTPE-NO2 is synthesized by linking a benzothiadiazole core with two tetraphenylene groups serving as hydrophobic molecular rotors, followed by incorporating two nitrophenyloxoacetamide units at both ends of the core as recognition moieties and fluorescence quenchers. An FDA-approved amphiphilic polymer Pluronic F127 is then employed to encapsulate the molecular BTPE-NO2 to render the nanoprobe BTPE-NO2@F127. The pathological levels of H2O2 in the disease sites cleave the nitrophenyloxoacetamide groups and activate the probe, thereby generating strong fluorescent emission (950~1200 nm) and ultrasound signal for multi-mode imaging of inflammatory diseases. The nanoprobe can therefore function as a robust tool for detecting and imaging the disease sites with NIR-II fluorescent and multispectral optoacoustic tomography (MSOT) imaging. Moreover, the three-dimensional MSOT images can be obtained for visualizing and locating the disease foci.
Collapse
Affiliation(s)
- Junjie Chen
- grid.79703.3a0000 0004 1764 3838Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640 China
| | - Longqi Chen
- grid.79703.3a0000 0004 1764 3838Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640 China
| | - Yinglong Wu
- grid.59025.3b0000 0001 2224 0361Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
| | - Yichang Fang
- grid.79703.3a0000 0004 1764 3838Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640 China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
17
|
Tabata H, Sasaki M, Kataoka-Sasaki Y, Shinkai N, Ichihara K, Masumori N, Kocsis JD, Honmou O. Possible role of intravenous administration of mesenchymal stem cells to alleviate interstitial cystitis/bladder pain syndrome in a Toll-like receptor-7 agonist-induced experimental animal model in rat. BMC Urol 2021; 21:156. [PMID: 34774029 PMCID: PMC8590770 DOI: 10.1186/s12894-021-00923-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Interstitial cystitis/bladder pain syndrome (IC/BPS) categorized with and without Hunner lesions is a condition that displays chronic pelvic pain related to the bladder with no efficacious treatment options. There are strong associations suggested between Hunner-type IC and autoimmune diseases. Recently, we established an animal model of Hunner-type IC using a Toll-like receptor-7 (TLR7) agonist. Intravenous infusion of mesenchymal stem cells (MSCs) can be used to treat injury via multimodal and orchestrated therapeutic mechanisms including anti-inflammatory effects. Here, we investigated whether infused MSCs elicit therapeutic efficacy associated with the TLR7-related anti-inflammatory pathway in our Hunner-type IC model. METHODS Voiding behaviors were monitored 24 h prior to the Loxoribine (LX), which is a TLR7 agonist instillation in order to establish a Hunner-type IC model (from - 24 to 0 h) in female Sprague-Dawley rats. LX was instilled transurethrally into the bladder. At 0 h, the initial freezing behavior test confirmed that no freezing behavior was observed in any of the animals. The LX-instilled animals were randomized. Randomized LX-instilled rats were intravenously infused with MSCs or with vehicle through the right external jugular vein. Sampling tissue for green fluorescent protein (GFP)-positive MSCs were carried out at 48 h. Second voiding behavior tests were monitored from 72 to 96 h. After the final evaluation of the freezing behavior test at 96 h after LX instillation (72 h after MSC or vehicle infusion), histological evaluation with H&E staining and quantitative real-time polymerase chain reaction (RT-PCR) to analyze the mRNA expression levels of inflammatory cytokines were performed. RESULTS Freezing behavior was reduced in the MSC group, and voiding behavior in the MSC group did not deteriorate. Hematoxylin-eosin staining showed that mucosal edema, leukocyte infiltration, and hemorrhage were suppressed in the MSC group. The relative expression of interferon-β mRNA in the bladder of the MSC group was inhibited. Numerous GFP-positive MSCs were distributed mainly in the submucosal and mucosal layers of the inflammatory bladder wall. CONCLUSION Intravenous infusion of MSCs may have therapeutic efficacy in a LX-instilled Hunner-type IC rat model via a TLR7-related anti-inflammatory pathway.
Collapse
Affiliation(s)
- Hidetoshi Tabata
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
| | - Nobuo Shinkai
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Koji Ichihara
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| |
Collapse
|
18
|
Feng ZY, Yang SD, Wang T, Guo S. Effect of Melatonin for Regulating Mesenchymal Stromal Cells and Derived Extracellular Vesicles. Front Cell Dev Biol 2021; 9:717913. [PMID: 34540834 PMCID: PMC8440901 DOI: 10.3389/fcell.2021.717913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Melatonin is a hormone, synthesized in the pineal gland, which primarily controls the circadian rhythm of the body. In recent years, melatonin has also been shown to regulate metabolism, provide neuroprotection, and act as an anti-inflammatory, free radical scavenger. There has also been a recent research interest in the role of melatonin in regulating mesenchymal stromal cells (MSCs). MSCs are pivotal for their ability to differentiate into a variety of different tissues. There is also increasing evidence for the therapeutic prospects of MSCs via paracrine signaling. In addition to secreting cytokines and chemokines, MSCs can secrete extracellular vesicles (EVs), allowing them to respond to injury and promote tissue regeneration. While there has been a major research interest in the use of MSCs for regenerative medicine, the clinical application is limited by many risks, including tumorigenicity, senescence, and sensitivity to toxic environments. The use of MSC-derived EVs for cell-free therapy can potentially avoid the disadvantages of MSCs, which makes this an exciting prospect for regenerative medicine. Prior research has shown that MSCs, via paracrine mechanisms, can identify receptor-independent responses to melatonin and then activate a series of downstream pathways, which exert a variety of effects, including anti-tumor and anti-inflammatory effects. Here we review the synthesis of melatonin, its mechanisms of action, and the effect of melatonin on MSCs via paracrine signaling. Furthermore, we summarize the current clinical applications of melatonin and discuss future prospects.
Collapse
Affiliation(s)
- Zi-Yi Feng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu-De Yang
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ting Wang
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Lin KC, Yeh JN, Chen YL, Chiang JY, Sung PH, Lee FY, Guo J, Yip HK. Xenogeneic and Allogeneic Mesenchymal Stem Cells Effectively Protect the Lung Against Ischemia-reperfusion Injury Through Downregulating the Inflammatory, Oxidative Stress, and Autophagic Signaling Pathways in Rat. Cell Transplant 2021; 29:963689720954140. [PMID: 33050736 PMCID: PMC7784512 DOI: 10.1177/0963689720954140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study tested the hypothesis that both allogenic adipose-derived mesenchymal stem cells (ADMSCs) and human inducible pluripotent stem cell-derived MSCs (iPS-MSCs) offered a comparable effect for protecting the lung against ischemia-reperfusion (IR) injury in rodent through downregulating the inflammatory, oxidative stress, and autophagic signaling pathways. Adult male Sprague–Dawley rats (n = 32) were categorized into group 1 (sham-operated control), group 2 (IRI), group 3 [IRI + ADMSCs (1.0 × 106 cells)/tail-vein administration at 0.5/18/36 h after IR], and group 4 [IRI + iPS-MSCs (1.0 × 106 cells)/tail-vein administration at 0.5/18/36 h after IR], and lungs were harvested at 72 h after IR procedure. In vitro study demonstrated that protein expressions of three signaling pathways in inflammation (TLR4/MyD88/TAK1/IKK/I-κB/NF-κB/Cox-2/TNF-α/IL-1ß), mitochondrial damage/cell apoptosis (cytochrome C/cyclophilin D/DRP1/ASK1/APAF-1/mitochondrial-Bax/caspase3/8/9), and autophagy/cell death (ULK1/beclin-1/Atg5,7,12, ratio of LCB3-II/LC3B-I, p-AKT/m-TOR) were significantly higher in lung epithelial cells + 6h hypoxia as compared with the control, and those were significantly reversed by iPS-MSC treatment (all P < 0.001). Flow cytometric analysis revealed that percentages of the inflammatory cells in bronchioalveolar lavage fluid and circulation, and immune cells in circulation/spleen as well as circulatory early and late apoptotic cells were highest in group 2, lowest in group 1, and significantly higher in group 3 than in group 4 (all P < 0.0001). Microscopy showed the lung injury score and numbers of inflammatory cells and Western blot analysis showed the signaling pathways of inflammation, mitochondrial damage/cell apoptosis, autophagy, and oxidative stress exhibited an identical pattern of flow cytometric results among the four groups (all P < 0.0001). Both xenogeneic and allogenic MSCs protected the lung against IRI via suppressing the inflammatory, oxidative stress, and autophagic signaling.
Collapse
Affiliation(s)
- Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Jun-Ning Yeh
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Fan-Yen Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,*Both the authors contributed equally to this article
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung.,Department of Nursing, Asia University, Taichung.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.,*Both the authors contributed equally to this article
| |
Collapse
|
20
|
Xu Y, Yang F, Xie J, Li W, Liu B, Chen J, Ding H, Cai J. Human Umbilical Cord Mesenchymal Stem Cell Therapy Mitigates Interstitial Cystitis by Inhibiting Mast Cells. Med Sci Monit 2021; 27:e930001. [PMID: 34354037 PMCID: PMC8353995 DOI: 10.12659/msm.930001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Interstitial cystitis (IC) is a recurrent and chronic inflammatory disease that compromises patients’ quality of life. Effective treatments for IC are limited. This study aimed to evaluate the therapeutic potency of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) in an IC-induced rat model and investigate the potential molecular mechanism in a mast cell model (rat basophilic leukemia cells, RBL-2H3) in treating IC in a coculture system. Material/Methods The rat model of IC was induced by cyclophosphamide (CYP). Rats were randomly divided into 3 groups: sham, IC+PBS, and IC+MSC. In the coculture system, RBL-2H3 cells were sensitized overnight to Compound 48/80 (C48/80), cocultured with UC-MSCs for 3 days, and collected for subsequent experiments. RBL-2H3 cells were randomly divided into 3 groups: sham, C48, and UC-MSCs (C48+MSC). Results The UC-MSCs marked by thymidine analog 5-ethynyl-2-deoxyuridine (EdU) were transplanted in the treatment group, and were densely distributed in the bladder. Accordingly, the conscious cystometry was measured and the bladder tissues were harvested. Compared with the sham group, the treated IC rats exhibited shorter bladder voiding intervals (307±35 vs 217±37 s; P<0.01), more integral epithelia, and less collagen fiber aggregation, infiltration and degranulation of mast cells, and inflammatory cytokines in the bladder tissue. In the coculture system, compared with the C48 group, the UC-MSC-treated RBL-2H3 cells had suppressed degranulation. Conclusions UC-MSCs treatment showed a promising therapeutic effect on treating IC in vivo and in vitro. UC-MSCs inhibit mast cell degranulation in IC and could be a potential therapeutic target to ameliorate inflammation in IC.
Collapse
Affiliation(s)
- Yuancheng Xu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Fei Yang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Juncong Xie
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Wenbiao Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Bolong Liu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Jialiang Chen
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Honglu Ding
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Jiarong Cai
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
21
|
Chen YT, Chuang FC, Yang CC, Chiang JY, Sung PH, Chu YC, Huang CR, Huang KH, Yip HK. Combined melatonin-adipose derived mesenchymal stem cells therapy effectively protected the testis from testicular torsion-induced ischemia-reperfusion injury. Stem Cell Res Ther 2021; 12:370. [PMID: 34187560 PMCID: PMC8243739 DOI: 10.1186/s13287-021-02439-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022] Open
Abstract
Background This study tested the hypothesis that combined melatonin (Mel) and adipose-derived mesenchymal stem cells (ADMSCs) treatment was superior to either one alone on protecting the testis against acute testicular torsion-induced ischemia-reperfusion (TTIR) injury. Methods and results Male adult SD rats (n = 30) were equally categorized into group 1 (sham-operated control), group 2 [TTIR/by torsion of right/left testis (i.e., ischemia) with rotated 720° counterclockwise for 2 h, then detorsion (i.e., reperfusion) to the original position for 72 h], group 3 (TTIR + Mel/intraperitoneal administration/50 mg/kg at 30 min after ischemia, followed by 20 mg at 3 h and days 1/2/3 after TTIR), group 4 (TTIR + ADMSCs/1.2 × 106 cells/by tail-vein administration at 30 min after ischemia, followed by days 1/2 TTIR), and group 5 (TTIR + Mel + ADMSCs/tail-vein administration). The result showed that the protein expressions of oxidative-stress (NOX-1/NOX-2/oxidized-protein), apoptotic/mitochondrial-damaged (mitochondrial-Bax/cleaved-caspase3/cleaved-PARP/cytosolic-cytochrome C), and fibrotic (TGF-ß/Smad3) biomarkers as well as testicular damage scores were lowest in group 1, highest in group 2, and significantly higher in groups 3/4 than in group 5, but they showed no difference between groups 3/4, whereas the protein expressions of androgen receptor (AR) and vimentin showed an opposite pattern of oxidative stress (all p < 0.0001). The cellular levels of inflammation (MMP-9/MPO/CD68) exhibited an identical pattern, whereas the numbers of Sertoli cells, α-tubulin, AR and vimentin as well as thickness of seminiferous tubule exhibited an opposite pattern of oxidative stress among the groups (all p < 0.0001). Conclusion Mel-ADMSCs effectively protected the testis against TTIR injury.
Collapse
Affiliation(s)
- Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Fei-Chi Chuang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Ching Chu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Hui Huang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan. .,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Department of Nursing, Asia University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.
| |
Collapse
|
22
|
Human Umbilical Cord-Derived Mesenchymal Stem Cells for Acute Respiratory Distress Syndrome. Crit Care Med 2021; 48:e391-e399. [PMID: 32187077 DOI: 10.1097/ccm.0000000000004285] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To investigate the safety, feasibility, and possible adverse events of single-dose human umbilical cord-derived mesenchymal stem cells in patients with moderate-to-severe acute respiratory distress syndrome. DESIGN Prospective phase I clinical trial. SETTING Medical center in Kaohsiung, Taiwan. PATIENTS Moderate-to-severe acute respiratory distress syndrome with a PaO2/FIO2 ratio less than 200. INTERVENTIONS Scaling for doses was required by Taiwan Food and Drug Administration as follows: the first three patients received low-dose human umbilical cord-derived mesenchymal stem cells (1.0 × 10 cells/kg), the next three patients with intermediate dose (5.0 × 10 cells/kg), and the final three patients with high dose (1.0 × 10 cells/kg) between December 2017 and August 2019. MEASUREMENTS AND MAIN RESULTS Nine consecutive patients were enrolled into the study. In-hospital mortality was 33.3% (3/9), including two with recurrent septic shock and one with ventilator-induced severe pneumomediastinum and subcutaneous emphysema. No serious prespecified cell infusion-associated or treatment-related adverse events was identified in any patient. Serial flow-cytometric analyses of circulating inflammatory biomarkers (CD14CD33/CD11b+CD16+/CD16+MPO+/CD11b+MPO+/CD14CD33+) and mesenchymal stem cell markers (CD26+CD45-/CD29+CD45-/CD34+CD45-/CD44+CD45-/CD73+CD45-/CD90+CD45-/CD105+CD45-/CD26+CD45-) were notably progressively reduced (p for trend < 0.001), whereas the immune cell markers (Helper-T-cell/Cytotoxity-T-cell/Regulatory-T-cell) were notably increased (p for trend < 0.001) after cell infusion. CONCLUSIONS The result of this phase I clinical trial showed that a single-dose IV infusion of human umbilical cord-derived mesenchymal stem cells was safe with favorable outcome in nine acute respiratory distress syndrome patients.
Collapse
|
23
|
Yip HK, Lin KC, Sung PH, Chiang JY, Yin TC, Wu RW, Chen KH. Umbilical cord-derived MSC and hyperbaric oxygen therapy effectively protected the brain in rat after acute intracerebral haemorrhage. J Cell Mol Med 2021; 25:5640-5654. [PMID: 33938133 PMCID: PMC8184691 DOI: 10.1111/jcmm.16577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
This study tested the hypothesis that combined therapy with human umbilical cord‐derived mesenchymal stem cells (HUCDMSCs) and hyperbaric oxygen (HBO) was superior to either one on preserving neurological function and reducing brain haemorrhagic volume (BHV) in rat after acute intracerebral haemorrhage (ICH) induced by intracranial injection of collagenase. Adult male SD rats (n = 30) were equally divided into group 1 (sham‐operated control), group 2 (ICH), group 3 (ICH +HUCDMSCs/1.2 × 106 cells/intravenous injection at 3h and days 1 and 2 after ICH), group 4 (ICH +HBO/at 3 hours and days 1 and 2 after ICH) and group 5 (ICH +HUCDMSCs‐HBO), and killed by day 28 after ICH. By day 1, the neurological function was significantly impaired in groups 2‐5 than in group 1 (P < .001), but it did not differ among groups 2 to 5. By days 7, 14 and 28, the integrity of neurological function was highest in group 1, lowest in group 2 and significantly progressively improved from groups 3 to 5 (all P < .001). By day 28, the BHV was lowest in group 1, highest in group 2 and significantly lower in group 5 than in groups 3/4 (all P < .0001). The protein expressions of inflammation (HMGB1/TLR‐2/TLR‐4/MyD88/TRAF6/p‐NF‐κB/IFN‐γ/IL‐1ß/TNF‐α), oxidative stress/autophagy (NOX‐1/NOX‐2/oxidized protein/ratio of LC3B‐II/LC3B‐I) and apoptosis (cleaved‐capspase3/PARP), and cellular expressions of inflammation (CD14+, F4/80+) in brain tissues exhibited an identical pattern, whereas cellular levels of angiogenesis (CD31+/vWF+/small‐vessel number) and number of neurons (NeuN+) exhibited an opposite pattern of BHV among the groups (all P < .0001). These results indicate that combined HUCDMSC‐HBO therapy offered better outcomes after rat ICH.
Collapse
Affiliation(s)
- Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, China
| | - Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Re-Wen Wu
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
24
|
García-Bernal D, López-García S, Sanz JL, Guerrero-Gironés J, García-Navarro EM, Moraleda JM, Forner L, Rodríguez-Lozano FJ. Melatonin Treatment Alters Biological and Immunomodulatory Properties of Human Dental Pulp Mesenchymal Stem Cells via Augmented Transforming Growth Factor Beta Secretion. J Endod 2020; 47:424-435. [PMID: 33359532 DOI: 10.1016/j.joen.2020.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Melatonin is an endogenous neurohormone with well-reported anti-inflammatory and antioxidant properties, but the direct biological and immunomodulatory effects of melatonin on human dental pulp stem cells (hDPSCs) has not been fully elucidated. The aim of this study was to evaluate the influence of melatonin on the cytocompatibility, proliferation, cell migration, odontogenic differentiation, mineralized nodule formation, and immunomodulatory properties of hDPSCs. METHODS To address the melatonin biological effects on hDPSCs, the cytocompatibility, proliferation, cell migration, odontogenic differentiation, mineralized nodule formation, and immunomodulatory properties of hDPSCs after melatonin treatment were evaluated. The statistical differences were evaluated using 1-way analysis of variance with the Tukey multiple comparison test. RESULTS We found that melatonin did not alter hDPSC immunophenotype or cell viability, even at the highest concentrations used. However, using intermediate melatonin concentrations (10-300 μmol/L), a significantly higher proliferation rate (P < .05 and P < .01) and migration of hDPSCs (P < .01) were observed. Importantly, melatonin treatment (100 μmol/L) significantly increased the secretion of the anti-inflammatory cytokine transforming growth factor beta (P < .05 and P < .01) and provoked a more robust antiproliferative effect on mitogen-stimulated T cells (P < .05). Finally, and unlike previous results found with mesenchymal stem cells from other sources, melatonin fails to induce or accelerate the spontaneous osteogenic differentiation of hDPSCs. CONCLUSIONS Together, these findings provide key data on the bioactivity of melatonin and its effects on hPDSC biological and immunomodulatory properties.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain; Internal Medicine Department, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Sergio López-García
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
| | - José L Sanz
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | | | - Esther M García-Navarro
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
| | - Jose M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain; Internal Medicine Department, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Leopoldo Forner
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Francisco J Rodríguez-Lozano
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain; School of Dentistry, Faculty of Medicine, University of Murcia, Murcia, Spain.
| |
Collapse
|
25
|
Abstract
Stem cells are capable of self-renewal and differentiation into a range of cell types and promote the release of chemokines and progenitor cells necessary for tissue regeneration. Mesenchymal stem cells are multipotent progenitor cells with enhanced proliferation and differentiation capabilities and less tumorigenicity than conventional adult stem cells; these cells are also easier to acquire. Bladder dysfunction is often chronic in nature with limited treatment modalities due to its undetermined pathophysiology. Most treatments focus on symptom alleviation rather than pathognomonic changes repair. The potential of stem cell therapy for bladder dysfunction has been reported in preclinical models for stress urinary incontinence, overactive bladder, detrusor underactivity, and interstitial cystitis/bladder pain syndrome. Despite these findings, however, stem cell therapy is not yet available for clinical use. Only one pilot study on detrusor underactivity and a handful of clinical trials on stress urinary incontinence have reported the effects of stem cell treatment. This limitation may be due to stem cell function loss following ex vivo expansion, poor in vivo engraftment or survival after transplantation, or a lack of understanding of the precise mechanisms of action underlying therapeutic outcomes and in vivo behavior of stem cells administered to target organs. Efficacy comparisons with existing treatment modalities are also needed for the successful clinical application of stem cell therapies. This review describes the current status of stem cell research on treating bladder dysfunction and suggests future directions to facilitate clinical applications of this promising treatment modality, particularly for bladder dysfunction.
Collapse
|
26
|
Liao N, Shi Y, Wang Y, Liao F, Zhao B, Zheng Y, Zeng Y, Liu X, Liu J. Antioxidant preconditioning improves therapeutic outcomes of adipose tissue-derived mesenchymal stem cells through enhancing intrahepatic engraftment efficiency in a mouse liver fibrosis model. Stem Cell Res Ther 2020; 11:237. [PMID: 32546282 PMCID: PMC7298967 DOI: 10.1186/s13287-020-01763-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although it has been preclinically suggested that adipose tissue-derived mesenchymal stem cell (ADSC)-based therapy could effectively treat chronic liver diseases, the hepatic engraftment of ADSCs is still extremely low, which severely limits their long-term efficacy for chronic liver diseases. This study was designed to investigate the impact of antioxidant preconditioning on hepatic engraftment efficiency and therapeutic outcomes of ADSC transplantation in liver fibrotic mice. METHODS Liver fibrosis model was established by using intraperitoneal injection of carbon tetrachloride (CCl4) in the male C57BL/6 mice. Subsequently, the ADSCs with or without antioxidant pretreatment (including melatonin and reduced glutathione (GSH)) were administrated into fibrotic mice via tail vein injection. Afterwards, the ADSC transplantation efficiency was analyzed by ex vivo imaging, and the liver functions were assessed by biochemical analysis and histopathological examination, respectively. Additionally, a typical hydrogen peroxide (H2O2)-induced cell injury model was applied to mimic the cell oxidative injury to further investigate the protective effects of antioxidant preconditioning on cell migration, proliferation, and apoptosis of ADSCs. RESULTS Our data showed that antioxidant preconditioning could enhance the therapeutic effects of ADSCs on liver function recovery by reducing the level of AST, ALT, and TBIL, as well as the content of hepatic hydroxyproline and fibrotic area in liver tissues. Particularly, we also found that antioxidant preconditioning could enhance hepatic engraftment efficiency of ADSCs in liver fibrosis model through inhibiting oxidative injury. CONCLUSIONS Antioxidant preconditioning could effectively improve therapeutic effects of ADSC transplantation for liver fibrosis through enhancing intrahepatic engraftment efficiency by reducing oxidative injuries. These findings might provide a practical strategy for enhancing ADSC transplantation and therapeutic efficiency.
Collapse
Affiliation(s)
- Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Yingjun Shi
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Fangyu Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China. .,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China. .,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China. .,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350007, People's Republic of China. .,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People's Republic of China. .,The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| |
Collapse
|
27
|
Kim BS, Chun SY, Lee EH, Chung JW, Lee JN, Ha YS, Choi JY, Song PH, Kwon TG, Han MH, Kim DH, Yoo ES. Efficacy of combination therapy with pentosan polysulfate sodium and adipose tissue-derived stem cells for the management of interstitial cystitis in a rat model. Stem Cell Res 2020; 45:101801. [PMID: 32334368 DOI: 10.1016/j.scr.2020.101801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
We evaluated the synergistic effects of pentosan polysulfate sodium (PPS) and mesenchymal stem cells (MSCs) in an interstitial cystitis (IC) rat model. After generation of the IC rat model, the rats were divided into 4 groups according to the treatment they received: phosphate-buffered saline injection into bladder submucosa, daily oral PPS feeding, MSC injection into bladder submucosa, or MSC injection into bladder submucosa with daily oral PPS feeding. After treatment, conscious cystometry and pain scale measurement were performed and their bladders were obtained for histological and proinflammatory-related gene expression analysis. On cystometric analysis, all treatment groups showed significantly increased intercontraction intervals and lower pain scores compared to those of the control group. Histological analysis revealed regenerated urothelium, less fibrosis, and decreased mast cell infiltration in all treatment groups compared to the control group. Significantly lower expression of TNF-α, IFN-γ, MCP, IL-6, TLR2, and TLR11 was observed in the PPS with MSC group compared to the other groups. Combination therapy with PPS and MSCs showed histological and functional effects in an IC rat model, including synergistic effects leading to increased intercontraction interval and decreased inflammatory reactions.
Collapse
Affiliation(s)
- Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Eun Hye Lee
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Jae-Wook Chung
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jae Young Choi
- Department of Urology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Phil Hyun Song
- Department of Urology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Dae Hwan Kim
- Department of Laboratory Animal Research Support Team, Yeungnam University Hospital, Daegu, South Korea
| | - Eun Sang Yoo
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
28
|
Abdal Dayem A, Kim K, Lee SB, Kim A, Cho SG. Application of Adult and Pluripotent Stem Cells in Interstitial Cystitis/Bladder Pain Syndrome Therapy: Methods and Perspectives. J Clin Med 2020; 9:jcm9030766. [PMID: 32178321 PMCID: PMC7141265 DOI: 10.3390/jcm9030766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic disease without definite etiology characterized by bladder-related pelvic pain. IC/BPS is associated with pain that negatively affects the quality of life. There are various therapeutic approaches against IC/BPS. However, no efficient therapeutic agent against IC/BPS has been discovered yet. Urothelium dysfunction is one of the key factors of IC/BPS-related pathogenicity. Stem cells, including adult stem cells (ASCs) and pluripotent stem cells (PSCs), such as embryonic stem cells (ESCs) and induced PSCs (iPSCs), possess the abilities of self-renewal, proliferation, and differentiation into various cell types, including urothelial and other bladder cells. Therefore, stem cells are considered robust candidates for bladder regeneration. This review provides a brief overview of the etiology, pathophysiology, diagnosis, and treatment of IC/BPS as well as a summary of ASCs and PSCs. The potential of ASCs and PSCs in bladder regeneration via differentiation into bladder cells or direct transplantation into the bladder and the possible applications in IC/BPS therapy are described in detail. A better understanding of current studies on stem cells and bladder regeneration will allow further improvement in the approaches of stem cell applications for highly efficient IC/BPS therapy.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
- Correspondence: (A.K.); (S.-G.C.); Tel.: +82-2-2030-7675 (A.K.); +82-2-450-4207 (S.-G.C.); Fax: +82-2-2030-7748 (A.K.); +82-2-450-4207 (S.-G.C.)
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
- Correspondence: (A.K.); (S.-G.C.); Tel.: +82-2-2030-7675 (A.K.); +82-2-450-4207 (S.-G.C.); Fax: +82-2-2030-7748 (A.K.); +82-2-450-4207 (S.-G.C.)
| |
Collapse
|
29
|
Xu Z, You W, Liu J, Wang Y, Shan T. Elucidating the Regulatory Role of Melatonin in Brown, White, and Beige Adipocytes. Adv Nutr 2020; 11:447-460. [PMID: 31355852 PMCID: PMC7442421 DOI: 10.1093/advances/nmz070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/28/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The high prevalence of obesity and its associated metabolic diseases has heightened the importance of understanding control of adipose tissue development and energy metabolism. In mammals, 3 types of adipocytes with different characteristics and origins have been identified: white, brown, and beige. Beige and brown adipocytes contain numerous mitochondria and have the capability to burn energy and counteract obesity, while white adipocytes store energy and are closely associated with metabolic disorders and obesity. Thus, regulation of the development and function of different adipocytes is important for controlling energy balance and combating obesity and related metabolic disorders. Melatonin is a neurohormone, which plays multiple roles in regulating inflammation, blood pressure, insulin actions, and energy metabolism. This article summarizes and discusses the role of melatonin in white, beige, and brown adipocytes, especially in affecting adipogenesis, inducing beige formation or white adipose tissue browning, enhancing brown adipose tissue mass and activities, improving anti-inflammatory and antioxidative effects, regulating adipokine secretion, and preventing body weight gain. Based on the current findings, melatonin is a potential therapeutic agent to control energy metabolism, adipogenesis, fat deposition, adiposity, and related metabolic diseases.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; and Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China,Address correspondence to TS (E-mail: )
| |
Collapse
|
30
|
Synergistic Effects of N-Acetylcysteine and Mesenchymal Stem Cell in a Lipopolysaccharide-Induced Interstitial Cystitis Rat Model. Cells 2019; 9:cells9010086. [PMID: 31905757 PMCID: PMC7017055 DOI: 10.3390/cells9010086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to reduce the amount of stem cells used in treating preclinical interstitial cystitis (IC model) by investigating the synergistic effects of multipotent mesenchymal stem cells (M-MSCs; human embryonic stem cell-derived) and N-acetylcysteine (NAC). Eight-week-old female Sprague-Dawley rats were divided into seven groups, i.e., sham (n = 10), lipopolysaccharide/protamine sulfate (LPS/PS; n = 10), LPS/PS + NAC (n = 10), LPS/PS with 25K MSC (n = 10), LPS/PS with 50K MSC (n = 10) LPS/PS + 25K MSC + NAC (n = 10), and LPS/PS + 50K MSC + NAC (n = 10). To induce the IC rat model, protamine sulfate (10 mg, 45 min) and LPS (750 μg, 30 min) were instilled once a week for five consecutive weeks via a transurethral PE-50 catheter. Phosphate-buffered saline (PBS) was used in the sham group. One week after the final instillation, M-MSCs with two suboptimal dosages (i.e., 2.5 or 5.0 × 104 cells) were directly transplanted into the outer-layer of the bladder. Simultaneously, 200 mg/kg of NAC or PBS was intraperitoneally injected daily for five days. The therapeutic outcome was evaluated one week after M-MSC or PBS injection by awake cystometry and histological analysis. Functionally, LPS/PS insult led to irregular micturition, decreased intercontraction intervals, and decreased micturition volume. Both monotherapy and combination therapy significantly increased contraction intervals, increased urination volume, and reduced the residual volume, thereby improving the urination parameters compared to those of the LPS group. In particular, a combination of NAC dramatically reduced the amount of M-MSCs used for significant restoration in histological damage, including inflammation and apoptosis. Both M-MSCs and NAC-based therapy had a beneficial effect on improving voiding dysfunction, regenerating denudated urothelium, and relieving tissue inflammation in the LPS-induced IC/BPS rat model. The combination of M-MSC and NAC was superior to MSC or NAC monotherapy, with therapeutic efficacy that was comparable to that of previously optimized cell dosage (1000K) without compromised therapeutic efficacy.
Collapse
|
31
|
Wu KC, Lin WY, Sung YT, Wu WY, Cheng YH, Chen TS, Chiang BJ, Chien CT. Glycine tomentella hayata extract and its ingredient daidzin ameliorate cyclophosphamide-induced hemorrhagic cystitis and oxidative stress through the action of antioxidation, anti-fibrosis, and anti-inflammation. CHINESE J PHYSIOL 2019; 62:188-195. [PMID: 31670282 DOI: 10.4103/cjp.cjp_60_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We explored the therapeutic potential of intragastric administration of traditional Chinese medicine Glycine tomentella Hayata (I-Tiao-Gung [ITG]) extract and its major component Daidzin on cyclophosphamide (CYP)-induced cystitis, oxidative stress, fibrosis, inflammation, and bladder hyperactivity in rats. Female Wistar rats were divided into control, CYP (200 mg/kg), CYP+ITG (1.17 g/kg/day), and CYP+Daidzin (12.5 mg/kg/day) groups. We measured the voiding function by the transcystometrogram and evaluated the pathology with the hematoxylin and eosin and Masson stain. We determined the bladder reactive oxygen species (ROS) amount by an ultrasensitive chemiluminescence analyzer, the expression of 3-nitrotyrosine (3-NT) and NADPH oxidase 4 (NOX4) by Western blot and the expression of multiple cytokine profiles, including matrix metalloproteinase (MMP)-8 and tissue inhibitor of metalloproteinase (TIMP)-1 through a cytokine array. ITG extract contains 1.07% of Daidzin through high-performance liquid chromatography. The effect of ITG extract and Daidzin in scavenging hydrogen peroxide activity was more efficient than distilled water. CYP-induced higher urination frequency, shorter intercontraction interval, and lower maximal voiding pressure in the bladders and these symptoms were significantly ameliorated in CYP+ITG and CYP+Daidzin groups. The amount of in vivo bladder ROS and the expression of 3-NT and NOX4 expressions were significantly increased in CYP group but were efficiently decreased in the CYP+ITG and CYP+Daidzin groups. CYP-induced fibrosis, hemorrhage, leukocyte infiltration, and edema in the bladders were significantly attenuated in the CYP+ITG and CYP+Daidzin groups. These results suggested that ITG extract and its active component Daidzin effectively improved CYP-induced oxidative stress, inflammation, and fibrosis through inhibiting the MMP-8, TIMP-1, and oxidative stress.
Collapse
Affiliation(s)
- Kung-Chieh Wu
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Yu Lin
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei; Department of Urology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Yi-Ting Sung
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Yi Wu
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Hsiuan Cheng
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Tung-Sheng Chen
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Bing-Juin Chiang
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei; Department of Urology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
32
|
Nasiri E, Alizadeh A, Roushandeh AM, Gazor R, Hashemi-Firouzi N, Golipoor Z. Melatonin-pretreated adipose-derived mesenchymal stem cells efficeintly improved learning, memory, and cognition in an animal model of Alzheimer's disease. Metab Brain Dis 2019; 34:1131-1143. [PMID: 31129766 DOI: 10.1007/s11011-019-00421-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Currently, mesenchymal stem cells (MSCs) based therapy has extensive attraction for Alzheimer's disease (AD). However, low survival rate of MSCs after transplantation is a huge challenging. The current study aimed to improve adipose-derived MSCs (AD-MSCs)-based therapy by their pre-treatment with melatonin (MT) 'a well-known antioxidant' in an animal model of AD. In this study, after isolating rat AD-MSCs from the epididymal white adipose tissues, the cells were pretreated with 5μM of MT for 24 hours. Forty male Wistar rats were randomly allocated to control, sham, amyloid-beta (Aβ) peptide, AD-MSCs and MT-pretreated ADMSCs groups. The novel object recognition, passive avoidance test, Morris water maze and open field test were performed two months following the cell transplantation. The rats were sacrificed 69 days following cell therapy. The brain tissues were removed for histopathological analysis and also immunohistochemistry was performed for two Aβ1-42 and Iba1 proteins. It has been revealed that both AD-MSCs and MT-AD-MSCs migrated to brain tissues after intravenous transplantation. However, MT-ADMSCs significantly improved learning, memory and cognition compared with AD-MSCs (P<0.05). Furthermore, clearance of Aβ deposition and reduction of microglial cells were significantly increased in the MT-ADMSCs compared with AD-MSCs. Although stem cell therapy has been introduced as a promising strategy in neurodegenerative diseases, however, its therapeutic properties are limited. It is suggested that pretreatment of MSCs with melatonin partly would increase the cells efficiency and consequently could decrease AD complication including memory and cognition.
Collapse
Affiliation(s)
- Ebrahim Nasiri
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Rouhollah Gazor
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zoleikha Golipoor
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
33
|
Yu S, Zhang X, Xu Z, Hu C. Melatonin promotes proliferation of neural stem cells from adult mouse spinal cord via the PI3K/AKT signaling pathway. FEBS Lett 2019; 593:1751-1762. [PMID: 31127855 DOI: 10.1002/1873-3468.13458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 01/03/2023]
Abstract
In this study, we tested the effect of melatonin on proliferation and differentiation of neural stem/progenitor cells (NSPCs) obtained from adult mouse spinal cord. We found that melatonin increases neurosphere formation from adult spinal cord NSPCs but does not alter the differentiation of the cells. Western blot results show that adult spinal cord NSPCs express both MT1 and MT2 melatonin receptors. The melatonin receptor antagonist 4P-PDOT abrogates the melatonin-induced neurosphere formation. Melatonin increases the phosphorylation level of protein kinase B (AKT). Blockage of phosphatidylinositol 3-kinase (PI3K), a kinase upstream of AKT, abolishes the stimulatory effect of melatonin on spinal cord NSPCs. We conclude that melatonin promotes the proliferation of adult spinal cord NSPCs via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Shuntai Yu
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xuefeng Zhang
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zilan Xu
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Changlong Hu
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Hu C, Li L. Melatonin plays critical role in mesenchymal stem cell-based regenerative medicine in vitro and in vivo. Stem Cell Res Ther 2019; 10:13. [PMID: 30635065 PMCID: PMC6329089 DOI: 10.1186/s13287-018-1114-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although stem cells have emerged as promising sources for regenerative medicine, there are many potential safety hazards for their clinical application, including tumorigenicity, an availability shortage, senescence, and sensitivity to toxic environments. Mesenchymal stem cells (MSCs) have various advantages compared to other stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); thus, MSCs have been intensely investigated in recent studies. However, they are placed in a harsh environment after isolation and transplantation, and the adverse microenvironment substantially reduces the viability and therapeutic effects of MSCs. Intriguingly, melatonin (MT), which is primarily secreted by the pineal organ, has been found to influence the fate of MSCs during various physiological and pathological processes. In this review, we will focus on the recent progress made regarding the influence of MT on stem cell biology and its implications for regenerative medicine. In addition, several biomaterials have been proven to significantly improve the protective effects of MT on MSCs by controlling the release of MT. Collectively, MT will be a promising agent for enhancing MSC activities and the regenerative capacity via the regulation of reactive oxygen species (ROS) generation and the release of immune factors in regenerative medicine.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
35
|
Chen YL, Lin YP, Sun CK, Huang TH, Yip HK, Chen YT. Extracorporeal shockwave against inflammation mediated by GPR120 receptor in cyclophosphamide-induced rat cystitis model. Mol Med 2018; 24:60. [PMID: 30482157 PMCID: PMC6260739 DOI: 10.1186/s10020-018-0062-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/11/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We tested the hypothesis that extracorporeal shockwave treatment (ESWT) can abolish inflammation and restore urothelial barrier integrity in acute interstitial cystitis by upregulating the fatty acid receptor GPR120. METHODS A total of 30 female Sprague-Dawley rats were categorized into five groups: (1) sham-operated rats (SC); (2) rats treated with ESWT (SC + ESWT); (3) rats with bladder irritation using 150 mg/kg cyclophosphamide through intraperitoneal injection; (4) cyclophosphamide rats treated with ESWT (cyclophosphamide+ESWT); (5) cyclophosphamide rats treated with GPR120 agonist (cyclophosphamide+GW9508). RESULTS On Day 3, urine and bladder specimens were collected for biochemical, histopathological, immunological, and immunoblotting analysis. Following stimulation with cyclophosphamide, the inhibition of the elevated levels of TAK1/NF-κB and phospho-TAK1/NF-κB by ESWT and GPR120 agonists in RT4 cells was associated with a suppression of NF-κB translocation from the cytosol to the nucleus. Accordingly, this anti-inflammatory effect was abolished by GPR120 antagonist and knockdown of GPR120. Histologically, bladder inflammation in cyclophosphamide-treated rats was suppressed by GW9508 or ESWT. Masson's trichrome and Sirius red staining revealed that cyclophosphamide treatment enhanced synthesis of extracellular matrix in rats that was reversed by GW9508 or ESWT. Upregulated pro-inflammatory mediators and cytokines in the cyclophosphamide-treated rats were also suppressed in the GW9508- or ESWT-treated rats. The significantly increased inflammatory cell infiltration as well as the impaired urothelial integrity of the bladder after cyclophosphamide treatment were reversed by treatment with GW9508 or ESWT. CONCLUSIONS These findings suggest that GPR120, the sensing receptor for ESWT, may be useful in the treatment of interstitial cystitis by inhibiting inflammatory response in bladder cells.
Collapse
Affiliation(s)
- Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Road, Niaosong District, Kaohsiung, 83301, Taiwan.,Department of health and Beauty, Shu-Zen Junior College of Medicine and Management, No.452, Huanqiu Rd. Luzhu Dist., Kaohsiung, 82144, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Yuan-Ping Lin
- Department of health and Beauty, Shu-Zen Junior College of Medicine and Management, No.452, Huanqiu Rd. Luzhu Dist., Kaohsiung, 82144, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, No. 1, Yi-Da Road, Jiao-Su Village, Yan-Chao District, Kaohsiung, 82445, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Road, Niaosong District, Kaohsiung, 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Road, Niaosong District, Kaohsiung, 83301, Taiwan. .,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan. .,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan. .,Department of Nursing, Asia University, Taichung, 41354, Taiwan.
| | - Yen-Ta Chen
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan. .,Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosong District, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
36
|
Do MicroRNAs Modulate Visceral Pain? BIOMED RESEARCH INTERNATIONAL 2018; 2018:5406973. [PMID: 30627562 PMCID: PMC6304628 DOI: 10.1155/2018/5406973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
Visceral pain, a common characteristic of multiple diseases relative to viscera, impacts millions of people worldwide. Although hundreds of studies have explored mechanisms underlying visceral pain, it is still poorly managed. Over the past decade, strong evidence emerged suggesting that microRNAs (miRNAs) play a significant role in visceral nociception through altering neurotransmitters, receptors and other genes at the posttranscriptional level. Under pathological conditions, one kind of miRNA may have several target mRNAs and several kinds of miRNAs may act on one target, suggesting complex interactions and mechanisms between miRNAs and target genes lead to pathological states. In this review we report on recent progress in examining miRNAs responsible for visceral sensitization and provide miRNA-based therapeutic targets for the management of visceral pain.
Collapse
|
37
|
The multiple functions of melatonin in regenerative medicine. Ageing Res Rev 2018; 45:33-52. [PMID: 29630951 DOI: 10.1016/j.arr.2018.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Melatonin research has been experiencing hyper growth in the last two decades; this relates to its numerous physiological functions including anti-inflammation, oncostasis, circadian and endocrine rhythm regulation, and its potent antioxidant activity. Recently, a large number of studies have focused on the role of melatonin in the regeneration of cells or tissues after their partial loss. In this review, we discuss the recent findings on the molecular involvement of melatonin in the regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others.
Collapse
|
38
|
Abstract
Stem cell aging is a process in which stem cells progressively lose their ability to self-renew or differentiate, succumb to senescence or apoptosis, and eventually become functionally depleted. Unresolved oxidative stress and concomitant oxidative damages of cellular macromolecules including nucleic acids, proteins, lipids, and carbohydrates have been recognized to contribute to stem cell aging. Excessive production of reactive oxygen species and insufficient cellular antioxidant reserves compromise cell repair and metabolic homeostasis, which serves as a mechanistic switch for a variety of aging-related pathways. Understanding the molecular trigger, regulation, and outcomes of those signaling networks is critical for developing novel therapies for aging-related diseases by targeting stem cell aging. Here we explore the key features of stem cell aging biology, with an emphasis on the roles of oxidative stress in the aging process at the molecular level. As a concept of cytoprotection of stem cells in transplantation, we also discuss how systematic enhancement of endogenous antioxidant capacity before or during graft into tissues can potentially raise the efficacy of clinical therapy. Finally, future directions for elucidating the control of oxidative stress and developing preventive/curative strategies against stem cell aging are discussed.
Collapse
Affiliation(s)
- Feng Chen
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Yingxia Liu
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Nai-Kei Wong
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Jia Xiao
- 1 State Key Discipline of Infectious Diseases and Chemical Biology Laboratory for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China.,2 Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- 3 GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| |
Collapse
|
39
|
Akbari M, Ostadmohammadi V, Tabrizi R, Lankarani KB, Heydari ST, Amirani E, Reiter RJ, Asemi Z. The effects of melatonin supplementation on inflammatory markers among patients with metabolic syndrome or related disorders: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology 2018; 26:899-907. [PMID: 29907916 DOI: 10.1007/s10787-018-0508-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/11/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Maryam Akbari
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahidreza Ostadmohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran B Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Taghi Heydari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, TX, USA
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
40
|
Xenogeneic human umbilical cord-derived mesenchymal stem cells reduce mortality in rats with acute respiratory distress syndrome complicated by sepsis. Oncotarget 2018; 8:45626-45642. [PMID: 28484089 PMCID: PMC5542214 DOI: 10.18632/oncotarget.17320] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
This study tested the hypothesis that xenogeneic human umbilical cord-derived mesenchymal stem cell (HUCDMSC) therapy would improve survival rates in rats with acute respiratory distress-syndrome (ARDS, induction by 48 h inhalation of 100% oxygen) and sepsis-syndrome (SS, induction by cecal-ligation and puncture) (ARDS-SS). Adult-male Sprague-Dawley rats were categorized into group 1 (sham-controls), group 2 (ARDS-SS), group 3 [ARDS-SS+HUCDMSC (1.2 ×106 cells administered 1 h after SS-induction)], and group 4 [ARDS-SS+HUCDMSC (1.2 ×106 cells administered 24 h after SS-induction)]. The mortality rate was higher in groups 2 and 4 than in groups 1 and 3 (all p<0.0001). The blood pressure after 28 h was lower in groups 2, 3 and 4 (p<0.0001) than in group 1. Albumin levels and percentages of inflammatory cells in broncho-alveolar lavage fluid, and the percentages of inflammatory and immune cells in circulation, were lowest in group 1, highest in group 2, and higher in group 3 than group 4 (all p<0.0001). The percentages of inflammatory cells in ascites and kidney parenchyma showed identical patterns, as did kidney injury scores (all p<0.0001). EarlyHUCDMSC therapy reduced rodent mortality after induced ARDS-SS.
Collapse
|
41
|
Chen KH, Chen CH, Wallace CG, Yuen CM, Kao GS, Chen YL, Shao PL, Chen YL, Chai HT, Lin KC, Liu CF, Chang HW, Lee MS, Yip HK. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget 2018; 7:74537-74556. [PMID: 27793019 PMCID: PMC5342685 DOI: 10.18632/oncotarget.12902] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/14/2016] [Indexed: 12/16/2022] Open
Abstract
We tested the hypothesis that combined xenogenic (from mini-pig) adipose-derived mesenchymal stem cell (ADMSC) and ADMSC-derived exosome therapy could reduce brain-infarct zone (BIZ) and enhance neurological recovery in rat after acute ischemic stroke (AIS) induced by 50-min left middle cerebral artery occlusion. Adult-male Sprague-Dawley rats (n = 60) were divided equally into group 1 (sham-control), group 2 (AIS), group 3 [AIS-ADMSC (1.2×106 cells)], group 4 [AIS-exosome (100μg)], and group 5 (AIS-exosome-ADMSC). All therapies were provided intravenously at 3h after AIS procedure. BIZ determined by histopathology (by day-60) and brain MRI (by day-28) were highest in group 2, lowest in group 1, higher in groups 3 and 4 than in group 5, but they showed no difference between groups 3 and 4 (all p < 0.0001). By day-28, sensorimotor functional results exhibited an opposite pattern to BIZ among the five groups (p < 0.005). Protein expressions of inflammatory (inducible nitric oxide synthase/tumor necrosis factor-α/nuclear factor-κB/interleukin-1β/matrix metalloproteinase-9/plasminogen activator inhibitor-1/RANTES), oxidative-stress (NOX-1/NOX-2/oxidized protein), apoptotic (caspase-3/ Poly-ADP-ribose polymerase), and fibrotic (Smad3/transforming growth factor-β) biomarkers, and cellular expressions of brain-damaged (γ-H2AX+/ XRCC1-CD90+/p53BP1-CD90+), inflammatory (CD11+/CD68+/glial fibrillary acid protein+) and brain-edema (aquaporin-4+) markers showed a similar pattern of BIZ among the groups (all n < 0.0001). In conclusion, xenogenic ADMSC/ADMSC-derived exosome therapy was safe and offered the additional benefit of reducing BIZ and improving neurological function in rat AIS.
Collapse
Affiliation(s)
- Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Hung Chen
- Department of Internal Medicine, Division of General Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | - Chun-Man Yuen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Gour-Shenq Kao
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, Taiwan
| | - Yung-Lung Chen
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Han-Tan Chai
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chu-Feng Liu
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
42
|
Sung PH, Lee FY, Lin LC, Chen KH, Lin HS, Shao PL, Li YC, Chen YL, Lin KC, Yuen CM, Chang HW, Lee MS, Yip HK. Melatonin attenuated brain death tissue extract-induced cardiac damage by suppressing DAMP signaling. Oncotarget 2017; 9:3531-3548. [PMID: 29423064 PMCID: PMC5790481 DOI: 10.18632/oncotarget.23180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022] Open
Abstract
We tested the hypothesis that melatonin prevents brain death (BD) tissue extract (BDEX)-induced cardiac damage by suppressing inflammatory damage-associated molecular pattern (DAMP) signaling in rats. Six hours after BD induction, levels of a DAMP component (HMGB1) and inflammatory markers (TLR-2, TLR-4, MYD88, IκB, NF-κB, IL-1β, IFN-γ, TNF-α and IL-6) were higher in brain tissue from BD animals than controls. Levels of HMGB1 and inflammatory markers were higher in BDEX-treated H9C2 cardiac myoblasts than in cells treated with healthy brain tissue extract. These increases were attenuated by melatonin but re-induced with luzindole (all P < 0.001). Additional male rats (n = 30) were divided into groups 1 (negative control), 2 (healthy brain tissue extract implanted in the left ventricular myocardium [LVM]), 3 (BDEX-LVM), 4 (BDEX-LVM + melatonin), and 5 (BDEX-LVM + melatonin + luzindole). Collagen deposition/fibrosis and LVM levels of MTR2, HMGB1, inflammatory markers, oxidative stress, apoptosis, mitochondrial damage and DNA damage were highest in group 3, lowest in groups 1 and 2, and higher in group 5 than in group 4. Heart function and LVM levels of MTR1 and anti-inflammatory, mitochondrial-integrity and anti-oxidative markers exhibited a pattern opposite that of the inflammatory markers in the five groups (all P < 0.0001). These results indicate melatonin inhibits BDEX-induced cardiac damage by suppressing the DAMP inflammatory axis.
Collapse
Affiliation(s)
- Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fan-Yen Lee
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ling-Chun Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Sheng Lin
- Division of Neurology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Man Yuen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
43
|
Xie J, Liu B, Chen J, Xu Y, Zhan H, Yang F, Li W, Zhou X. Umbilical cord-derived mesenchymal stem cells alleviated inflammation and inhibited apoptosis in interstitial cystitis via AKT/mTOR signaling pathway. Biochem Biophys Res Commun 2017; 495:546-552. [PMID: 29137981 DOI: 10.1016/j.bbrc.2017.11.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022]
Abstract
Interstitial cystitis (IC) is a bladder syndrome characterized by pelvic pain and urinary frequency without infection or other identifiable pathology. There are no effective treatments to cure IC. This study investigated the effects of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) injection on IC rat model. Furthermore, we used a coculture system to find the possible molecular mechanism on the human uroepithelial cells (SV-HUC-1), which was the cell model of IC. A rat model of IC was established via systemic injection with cyclophosphamide (CYP) and a cell model of IC was induced by being exposed to tumor necrosis factor (TNF)-α (10 ng/ml). After one week, UC-MSCs injection significantly ameliorated the bladder voiding function in IC rat model. And the Histo- and immunohistochemical analyses showed that UC-MSCs can repair impaired bladder, reduce mast cell infiltration and inhibit apoptosis of urothelium. ELISA results showed that UC-MSCs can decrease IL-1β, IL-6 and TNF-α in bladder. In the coculture system, UC-MSCs can promote proliferation of impaired SV-HUC-1 cells, and inhibit apoptosis. However, while knocked down EGF secreted by UC-MSCs with siRNA, the effects would be weaken. Western blot showed that UC-MSCs increase protein expression levels of p-AKT and p-mTOR in SV-HUC-1 cells, and decrease the levels of cleaved caspase-3. Taken together, we provide evidence that UC-MSCs therapy can successfully alleviate IC in a preclinical animal Model and cell model by alleviating inflammation, promoting proliferation and inhibiting apoptosis. In addition, we demonstrate that the AKT/mTOR signaling pathway was activated.
Collapse
Affiliation(s)
- Juncong Xie
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bolong Liu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jialiang Chen
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuancheng Xu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hailun Zhan
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Fei Yang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wenbiao Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
44
|
Inhibition of microRNA-214 promotes epithelial-mesenchymal transition process and induces interstitial cystitis in postmenopausal women by upregulating Mfn2. Exp Mol Med 2017; 49:e357. [PMID: 28729638 PMCID: PMC5565960 DOI: 10.1038/emm.2017.98] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
Our study aims to investigate the roles that microRNA-214 (miR-214) plays in the epithelial mesenchymal transition (EMT) process and the development of interstitial cystitis (IC) in postmenopausal women by targeting Mitofusin 2 (Mfn2). IC bladder tissues and adjacent normal bladder tissues were collected from postmenopausal women. Immunohistochemistry (IHC) staining was conducted. The target relationship between miR-214 and Mfn2 was determined by a dual luciferase reporter gene assay. Adipose-derived mesenchymal stem cells (ADMSCs) were extracted from postmenopausal rats and assigned to the blank, mimics, miR-214 inhibitors, mimics negative control (NC), inhibitors NC, Mfn2 siRNA, miR-214 inhibitors and Mfn2 siRNA groups. Exosomes secreted by transfected ADMSCs were instilled into the bladders of postmenopausal rats. The expression of miR-214 and Mfn2 mRNA and EMT markers was assessed by qRT-PCR and western blotting. It was confirmed that Mfn2 was the target gene of miR-214 in IC. Compared with the normal bladder tissues, miR-214 decreased, but Mfn2 increased in IC bladder tissues. Compared with the blank group, the expression of miR-214 and the expression levels of N-cadherin, Fibronectin, Twist1, Snail and Vimentin mRNA and protein increased, whereas the expression levels of Mfn2, E-cadherin and ZO-1 mRNA and protein decreased in the miR-214 mimics and Mfn2 groups. The expression of MiR-214 and the expression levels of N-cadherin, Fibronectin, Twist1, Snail and Vimentin mRNA and protein decreased, whereas the expression levels of Mfn2, E-cadherin and ZO-1 mRNA and protein increased in the miR-214 inhibitors group. Our findings indicate that the inhibition of miR-214 promotes the EMT process and contributes to bladder wall fibrosis by up-regulating Mfn2, thus leading to the occurrence of IC in postmenopausal women.
Collapse
|
45
|
Li J, Luo H, Dong X, Liu Q, Wu C, Zhang T, Hu X, Zhang Y, Song B, Li L. Therapeutic effect of urine-derived stem cells for protamine/lipopolysaccharide-induced interstitial cystitis in a rat model. Stem Cell Res Ther 2017; 8:107. [PMID: 28482861 PMCID: PMC5422864 DOI: 10.1186/s13287-017-0547-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/04/2017] [Accepted: 03/31/2017] [Indexed: 01/21/2023] Open
Abstract
Background Interstitial cystitis (IC) is a chronic inflammation disorder mainly within the submucosal and muscular layers of the bladder. As the cause of IC remains unknown, no effective treatments are currently available. Administration of stem cell provides a potential for treatment of IC. Methods This study was conducted using urine-derived stem cells (USCs) for protamine/lipopolysaccharide (PS/LPS)-induced interstitial cystitis in a rodent model. In total, 60 female Sprague–Dawley rats were randomized into three experimental groups (n = 5/group): sham controls; IC model alone; and IC animals intravenously treated with USCs (1.2 × 106 suspended in 0.2 ml phosphate-buffered saline (PBS). Results Our data showed that the bladder micturition function was significantly improved in IC animals intravenously treated with USCs compared to those in the IC model alone group. The amount of antioxidants and antiapoptotic protein biomarkers heme oxygenase (HO)-1, NAD(P)H quinine oxidoreductase (NQO)-1, and Bcl-2 within the bladder tissues were significantly higher in IC animals intravenously treated with USCs and lower in the sham controls group as assessed by Western blot and immunofluorescent staining. In addition, the expression of autophagy-related protein LC3A was significantly higher in the IC model alone group than that in IC animals intravenously treated with USCs. Inflammatory biomarkers and apoptotic biomarkers (interleukin (IL)-6, tumor necrosis factor (TNF)α, nuclear factor (NF)-κB, caspase 3, and Bax) and the downstream inflammatory and oxidative stress biomarkers (endoplasmic reticulum stress and autophagy-related protein (GRP78, LC3, Beclin1)) in the bladder tissue revealed statistically different results between groups. Conclusions USCs restored the bladder function and histological construction via suppressing oxidative stress, inflammatory reaction, and apoptotic processes in a PS/LPS-induced IC rodent model, which provides potential for treatment of patients with IC.
Collapse
Affiliation(s)
- Jia Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hui Luo
- Department of Physical examination, Second Affiliated Hospital, Third Military University, Chongqing, 40037, China
| | - Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chao Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Teng Zhang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xiaoyan Hu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuanyuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, USA
| | - Bo Song
- Department of Urology, First Affiliated Hospital, Third Military University, Chongqing, 40037, China.
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
46
|
Lee MS, Yin TC, Sung PH, Chiang JY, Sun CK, Yip HK. Melatonin enhances survival and preserves functional integrity of stem cells: A review. J Pineal Res 2017; 62. [PMID: 27736010 DOI: 10.1111/jpi.12372] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022]
Abstract
Despite state-of-the-art pharmaceutical regimens, continuous improvements in diagnostic techniques as well as refinements in equipment and interventional procedures, many diseases remain refractory to conventional therapies. Recent advances in stem cell (SC) biology have opened an avenue to exploring its therapeutic potential in various disease entities, especially those that are ischemia-related and refractory to conventional treatment. A number of experimental studies and clinical trials have already demonstrated promising outcomes. On the other hand, SC therapy is associated with major problems. For instance, ischemia, inflammation, and oxidative stress are some of the factors unfavorable for SC survival once SCs are implanted into the ischemic area in an attempt to enhance tissue regeneration and restore organ function. Melatonin, which is originally derived from pineal gland in the regulation of human circadian rhythms and sleep, is a potent free radical scavenger and metal chelator with the capacity to alleviate oxidative stress and inflammatory reactions as well as stabilizing cell membranes. Accumulating data have demonstrated that melatonin-supported SC therapy is superior to SC alone for improving ischemia-related organ dysfunction. In this review, we describe and interpret the potential role of melatonin in sustaining the survival and preserving the functional integrity of SC.
Collapse
Affiliation(s)
- Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
47
|
Wu M, Gu L, Gong Q, Sun J, Ma Y, Wu H, Wang Y, Guo G, Li X, Zhu H. Strategies to reduce the intracellular effects of iron oxide nanoparticle degradation. Nanomedicine (Lond) 2017; 12:555-570. [PMID: 28181458 DOI: 10.2217/nnm-2016-0328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have a significant self-renewal capacity and can differentiate into a variety of cell types. Cell labeling is crucial as it is difficult to detect cell fate after transplantation in vivo. MSCs labeled with iron oxide nanoparticles (IONPs), which can be tracked by MRI, have tremendous potential in regenerative medicine and oncological research. As a part of nanoparticle, the iron oxide core is a key aspect that can exhibit adverse or beneficial effects on MSCs labeled for tracking. Some IONPs exhibit adverse effects, such as cytotoxicity and apoptosis, while other IONPs exhibit beneficial functions that can promote both MSC proliferation and homing efficiency. This review reveals the cytotoxic mechanisms and potential functions of the iron oxide core of IONPs in cell labeling as well as strategies for minimizing the intracellular effects of IONPs.
Collapse
Affiliation(s)
- Min Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiayu Sun
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yiqi Ma
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yu Wang
- College of Life Science, Sichuan Normal University, Chengdu 610068, China
| | - Gang Guo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Song L, Tian L, Ma Y, Xie Y, Feng H, Qin F, Mo L, Lin S, Hou L, Wang C. Protection of flavonoids from Smilax china L. rhizome on phenol mucilage-induced pelvic inflammation in rats by attenuating inflammation and fibrosis. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
49
|
Zhang S, Chen S, Li Y, Liu Y. Melatonin as a promising agent of regulating stem cell biology and its application in disease therapy. Pharmacol Res 2016; 117:252-260. [PMID: 28042087 DOI: 10.1016/j.phrs.2016.12.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/20/2023]
Abstract
Stem cells have emerged as an important approach to repair and regenerate damaged tissues or organs and show great therapeutic potential in a variety of diseases. However, the low survival of engrafted stem cells still remains a major challenge for stem cell therapy. As a major hormone from the pineal gland, melatonin has been shown to play an important role in regulating the physiological and pathological functions of stem cells, such as promoting proliferation, migration and differentiation. Thus, melatonin combined with stem cell transplantation displayed promising application potential in neurodegenerative diseases, liver cirrhosis, wound healing, myocardial infarction, kidney ischemia injury, osteoporosis, etc. It exerts its physiological and pathological functions through its anti-oxidant, anti-inflammatory, anti-apoptosis and anti-ageing properties. Here, we summarize recent advances on exploring the biological role of melatonin in stem cells, and discuss its potential applications in stem cell-based therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Simon Chen
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yuan Li
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yu Liu
- Department of Clinical Laboratory Diagnosis, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
50
|
Mehrzadi S, Safa M, Kamrava SK, Darabi R, Hayat P, Motevalian M. Protective mechanisms of melatonin against hydrogen-peroxide-induced toxicity in human bone-marrow-derived mesenchymal stem cells. Can J Physiol Pharmacol 2016; 95:773-786. [PMID: 28177678 DOI: 10.1139/cjpp-2016-0409] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many obstacles compromise the efficacy of bone marrow mesenchymal stem cells (BM-MSCs) by inducing apoptosis in the grafted BM-MSCs. The current study investigates the effect of melatonin on important mediators involved in survival of BM-MSCs in hydrogen peroxide (H2O2) apoptosis model. In brief, BM-MSCs were isolated, treated with melatonin, and then exposed to H2O2. Their viability was assessed by MTT assay and apoptotic fractions were evaluated through Annexin V, Hoechst staining, and ADP/ATP ratio. Oxidative stress biomarkers including ROS, total antioxidant power (TAP), superoxide dismutase (SOD) and catalase (CAT) activity, glutathione (GSH), thiol molecules, and lipid peroxidation (LPO) levels were determined. Secretion of inflammatory cytokines (TNF-α and IL-6) were measured by ELISA assay. The protein expression of caspase-3, Bax, and Bcl-2, was also evaluated by Western blotting. Melatonin pretreatment significantly increased viability and decreased apoptotic fraction of H2O2-exposed BM-MSCs. Melatonin also decreased ROS generation, as well as increasing the activity of SOD and CAT enzymes and GSH content. Secretion of inflammatory cytokines in H2O2-exposed cells was also reduced by melatonin. Expression of caspase-3 and Bax proteins in H2O2-exposed cells was diminished by melatonin pretreatment. The findings suggest that melatonin may be an effective protective agent against H2O2-induced oxidative stress and apoptosis in MSC.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- a Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- b Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,c Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- d ENT and Head & Neck Research Center, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Radbod Darabi
- e Center for Stem Cell and Regenerative Medicine (CSCRM), Brown Foundation Institute of Molecular Medicine (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Parisa Hayat
- b Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- a Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|