1
|
Alidadi M, Omidi N, Abdi M, Mohammadi M, Shabani M, Kashani IR. Melatonin ameliorates astrogliosis and microgliosis in a cuprizone demyelinating mouse model. Biochem Biophys Rep 2025; 41:101929. [PMID: 39926210 PMCID: PMC11803163 DOI: 10.1016/j.bbrep.2025.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Background and purpose Several investigations have reported that melatonin is involved in the amelioration of the inflammatory process, improvement of myelin function, and regeneration in the central nervous system (CNS). The current study aimed to evaluate the protective effect of melatonin in cuprizone (CPZ)-induced myelin damage in the corpus callosum (CC) and explore the plausible underlying mechanisms of remyelination capacity and/or neuroprotection. Method We administered cuprizone in chow either alone daily for 6 weeks or combined with simultaneously applied melatonin intra-peritoneal injections. we studied demyelination by LFB staining, oligodendrocyte staining using anti-Olig2 or anti-APC antibodies. In addition, we visualized microgliosis and astrocytosis by staining with anti-Iba-1 and anti-GFAP antibodies. Furthermore, we study the effect of melatonin on mRNA expression of Musashi-1, Hes-1 and Notch-1 genes. Results Our data showed that cuprizone intoxication caused a significant oligodendrocyte loss, demyelination, and reactive gliosis in CC. Administration of melatonin prevented the demyelination in CC as determined by Luxol fast blue staining. Furthermore, we found that the melatonin significantly suppressed the cuprizone-induced microgliosis and astrocytosis. while the frequency of oligodendrocytes (Olig2+) was significantly enhanced in the CC after melatonin administration. In addition, melatonin significantly modulated Musashi1, Hes1, and Notch1 mRNA expression in the CC of mice. Conclusion These results provide evidence that melatonin abolishes destructive cuprizone effects in the mouse corpus callosum by restoring oligodendrocyte generation, remyelination, and decreasing astrogliosis and microgliosis.
Collapse
Affiliation(s)
- Mehdi Alidadi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Omidi
- Cardiac Primary Prevention Research Center, Tehran Heart Center AND Department of Cardiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdad Abdi
- Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Mohammadi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yin Z, Tian L, Kou W, Cao G, Wang L, Xia Y, Lin Y, Tang S, Zhang J, Yang H. Xiyangshen Sanqi Danshen granules attenuated D-gal-induced C57BL/6J mouse aging through the AMPK/SIRT1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156213. [PMID: 39603038 DOI: 10.1016/j.phymed.2024.156213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Aging is a pressing global concern and is frequently accompanied by the emergence of many chronic diseases. Xiyangshen Sanqi Danshen granules (XSD) have antioxidant, anti-inflammatory and anti-fatigue functions, but the mechanism of their anti-aging effects is not clear. METHODS This study elucidated the anti-aging mechanism and potentially active ingredients of XSD by performing transcriptomic analysis and network pharmacological analysis in a D-galactose (D-gal)-induced C57BL/6J mouse aging model. RESULTS XSD improved learning and memory abilities while enhanced motor function in D-gal-induced aging mice, as shown by Morris water maze, passive avoidance test, and rotating rod test results. Additionally, XSD significantly increased the vascular pulse wave velocity (PWV), β-stiffness index and pressure strain elastic coefficient (EP), decreased carotid distensibility (CD) and decreased the expression levels of P53 and 8-OHdG in the common carotid arteries of D-gal mice. Transcriptome sequencing analysis identified that the AMPK/SIRT1 signaling pathway is the potential mechanism by which XSD attenuates aging. XSD also increased the protein levels of Ki67, AMPK, SIRT1 and the nuclear translocation of Nrf2 while decreased the protein levels of P21, P53, IL-18, 8-OHdG, nitrotyrosine, and COX-2 and the nuclear translocation of NF-κB p65 in the brains of D-gal-induced mice. The administration of the AMPK inhibitor and SIRT1 inhibitor hindered the anti-aging effect of XSD, as indicated by an elevation of 8-OHdG, COX-2, and nuclear translocation of NF-κB p65 ; and a decrease of Ki67 and the nuclear translocation of Nrf2. Network pharmacological analysis revealed that the potential active ingredients of XSD were quercetin, kaempferol, tanshinone IIA, isorhamnetin, ginsenoside F2, and cryptotanshinone. CONCLUSION Collectively, XSD mitigated D-gal-induced aging in C57BL/6J mice through enhancing the AMPK/SIRT1 signaling pathway. This research provides potential drugs for anti-aging and also promotes the usage of the anti-aging effect of XSD.
Collapse
Affiliation(s)
- Zhiru Yin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liangliang Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| | - Wenzhuo Kou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangzhao Cao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liju Wang
- Zhangzhou Pien Tze Huang Pharmaceutical Co.,Ltd, Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou 363000, China
| | - Yufa Xia
- Zhangzhou Pien Tze Huang Pharmaceutical Co.,Ltd, Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou 363000, China
| | - Yidong Lin
- Zhangzhou Pien Tze Huang Pharmaceutical Co.,Ltd, Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou 363000, China
| | - Shihuan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jingjing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Hongjun Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Shan SK, Lin X, Wu F, Li CC, Guo B, Li FXZ, Zheng MH, Wang Y, Xu QS, Lei LM, Tang KX, Wu YY, Duan JY, Cao YC, Wu YL, Tan CM, Liu ZH, Zhou ZA, Liao XB, Xu F, Yuan LQ. Vascular wall microenvironment: Endothelial cells original exosomes mediated melatonin-suppressed vascular calcification and vascular ageing in a m6A methylation dependent manner. Bioact Mater 2024; 42:52-67. [PMID: 39280584 PMCID: PMC11399808 DOI: 10.1016/j.bioactmat.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Vascular calcification and vascular ageing are "silent" diseases but are highly prevalent in patients with end stage renal failure and type 2 diabetes, as well as in the ageing population. Melatonin (MT) has been shown to induce cardiovascular protection effects. However, the role of MT on vascular calcification and ageing has not been well-identified. In this study, the aortic transcriptional landscape revealed clues for MT related cell-to-cell communication between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in vascular calcification and vascular ageing. Furthermore, we elucidated that it was exosomes that participate in the information transportation from ECs to VSMCs. The exosomes secreted from melatonin-treated ECs (MT-ECs-Exos) inhibited calcification and senescence of VSMCs. Mechanistically, miR-302d-5p was highly enriched in MT-ECs-Exos, while depletion of miR-302d-5p blocked the ability of MT-ECs-Exos to suppress VSMC calcification and senescence. Notably, Wnt3 was a bona fide target of miR-302d-5p and modulated VSMC calcification and senescence. Furthermore, we found that maturation of endothelial derived exosomal miR-302d-5p was promoted by WTAP in an N6-methyladenosine (m6A)-dependent manner. Interestingly, MT alleviated vascular calcification and ageing in 5/6-nephrectomy (5/6 NTP) mice, a chronic kidney disease (CKD) induced vascular calcification and vascular ageing mouse model. MT-ECs-Exos was absorbed by VSMCs in vivo and effectively prevented vascular calcification and ageing in 5/6 NTP mice. ECs-derived miR-302d-5p mediated MT induced anti-calcification and anti-ageing effects in 5/6 NTP mice. Our study suggests that MT-ECs-Exos alleviate vascular calcification and ageing through the miR-302d-5p/Wnt3 signaling pathway, dependent on m6A methylation.
Collapse
Affiliation(s)
- Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, People's Republic of China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ye-Chi Cao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yan-Lin Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Chang-Ming Tan
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Zi-Han Liu
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Zhi-Ang Zhou
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Xiao-Bo Liao
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| |
Collapse
|
4
|
Wang W, Wang Z, Cao J, Dong Y, Chen Y. Melatonin ameliorates chronic sleep deprivation against memory encoding vulnerability: Involvement of synapse regulation via the mitochondrial-dependent redox homeostasis-induced autophagy inhibition. Free Radic Biol Med 2024; 225:398-414. [PMID: 39396581 DOI: 10.1016/j.freeradbiomed.2024.10.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Voluntary sleep curtailment is increasingly more rampant in modern society and compromises healthy cognition, including memory, to varying degrees. However, whether memory encoding is impaired after chronic sleep deprivation (CSD) and the underlying molecular mechanisms involved remain unclear. Here, using the mice, we tested the impact of CSD on the encoding abilities of social recognition-dependent memory and object recognition-dependent memory. We found that memory encoding was indeed vulnerable to CSD, while memory retrieval remained unaffected. The hippocampal neurons of mice with memory encoding deficits exhibited significant synapse damage and hyperactive autophagy, which dissipates during regular sleep cycles. This excessive autophagy appeared to be triggered by damage to mitochondrial DNA (mtDNA), resulting from oxidative stress within the mitochondria. The relief at the behavioral and molecular biological levels can be achieved with intraperitoneal injections of the antioxidant compound melatonin. Moreover, our in vitro experiments using HT-22 cells demonstrated that oxidative stress induced by hydrogen peroxide led to oxidative damage, including mtDNA damage, and activation of autophagy. Melatonin treatment effectively countered these effects, restoring redox homeostasis and reducing excessive autophagic activity. Notably, this protective effect was not observed when melatonin was administered as a pre-treatment. Together, our findings reveal the vulnerability of memory encoding during chronic sleep curtailment, which is caused by oxidative stress and consequent enhancement of autophagy, suggest a potential therapeutic strategy for addressing these effects following prolonged wakefulness through melatonin intervention, and reiterate the significance of adequate sleep for memory formation and retention.
Collapse
Affiliation(s)
- Wei Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Allende LG, Natalí L, Cragnolini AB, Bollo M, Musri MM, de Mendoza D, Martín MG. Lysosomal cholesterol accumulation in aged astrocytes impairs cholesterol delivery to neurons and can be rescued by cannabinoids. Glia 2024; 72:1746-1765. [PMID: 38856177 DOI: 10.1002/glia.24580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Cholesterol is crucial for the proper functioning of eukaryotic cells, especially neurons, which rely on cholesterol to maintain their complex structure and facilitate synaptic transmission. However, brain cells are isolated from peripheral cholesterol by the blood-brain barrier and mature neurons primarily uptake the cholesterol synthesized by astrocytes for proper function. This study aimed to investigate the effect of aging on cholesterol trafficking in astrocytes and its delivery to neurons. We found that aged astrocytes accumulated high levels of cholesterol in the lysosomal compartment, and this cholesterol buildup can be attributed to the simultaneous occurrence of two events: decreased levels of the ABCA1 transporter, which impairs ApoE-cholesterol export from astrocytes, and reduced expression of NPC1, which hinders cholesterol release from lysosomes. We show that these two events are accompanied by increased microR-33 in aged astrocytes, which targets ABCA1 and NPC1. In addition, we demonstrate that the microR-33 increase is triggered by oxidative stress, one of the hallmarks of aging. By coculture experiments, we show that cholesterol accumulation in astrocytes impairs the cholesterol delivery from astrocytes to neurons. Remarkably, we found that this altered transport of cholesterol could be alleviated through treatment with endocannabinoids as well as cannabidiol or CBD. Finally, according to data demonstrating that aged astrocytes develop an A1 phenotype, we found that cholesterol buildup is also observed in reactive C3+ astrocytes. Given that reduced neuronal cholesterol affects synaptic plasticity, the ability of cannabinoids to restore cholesterol transport from aged astrocytes to neurons holds significant implications in aging and inflammation.
Collapse
Affiliation(s)
- Leandro G Allende
- Departamento de Neurobiología Molecular y celular, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lautaro Natalí
- Departamento de Bioquímica y Biofísica, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea B Cragnolini
- Instituto de Investigaciones Biológicas y Tecnológicas, CONICET-UNC, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Bollo
- Departamento de Bioquímica y Biofísica, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina M Musri
- Departamento de Bioquímica y Biofísica, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mauricio G Martín
- Departamento de Neurobiología Molecular y celular, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Jankovic T, Bogicevic M, Knezevic NN. The role of nitric oxide and hormone signaling in chronic stress, anxiety, depression and post-traumatic stress disorder. Mol Cell Endocrinol 2024; 590:112266. [PMID: 38718853 DOI: 10.1016/j.mce.2024.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024]
Abstract
This paper provides a summary of the role of nitric oxide (NO) and hormones in the development of chronic stress, anxiety, depression, and post-traumatic stress disorder (PTSD). These mental health conditions are prevalent globally and involve complex molecular interactions. Although there is a significant amount of research and therapeutic options available, the underlying mechanisms of these disorders are still not fully understood. The primary pathophysiologic processes involved in chronic stress, anxiety, depression, and PTSD include dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, the intracellular influence of neuronal nitric oxide synthase (nNOS) on transcription factors, an inflammatory response with the formation of nitrergic oxidative species, and reduced serotonergic transmission in the dorsal raphe nucleus. Despite the extensive literature on this topic, there is a great need for further research to clarify the complexities inherent in these pathways, with the primary aim of improving psychiatric care.
Collapse
Affiliation(s)
- Tamara Jankovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Marko Bogicevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Midwestern University Chicago College of Osteopathic Medicine, Downers Grove, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
7
|
Wang L, Wei Y, Sun Z, Tai W, Li H, Yin Y, Jiang LH, Wang JZ. Effectiveness and mechanisms of combined use of antioxidant nutrients in protecting against oxidative stress-induced neuronal loss and related neurological deficits. CNS Neurosci Ther 2024; 30:e14886. [PMID: 39072940 DOI: 10.1111/cns.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/04/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Oxidative stress is a well-known pathological factor driving neuronal loss and age-related neurodegenerative diseases. Melatonin, coenzyme Q10 and lecithin are three common nutrients with an antioxidative capacity. Here, we examined the effectiveness of them administrated individually and in combination in protecting against oxidative stress-induced neuronal death in vitro, and neurodegenerative conditions such as Alzheimer's disease and associated deficits in vivo. METHODS Mouse neuroblastoma Neuro-2a (N2a) cells were exposed with H2O2 for 6 h, and subsequently treated with melatonin, coenzyme Q10, and lecithin alone or in combination for further 24 h. Cell viability was assessed using the CCK-8 assay. Eight-week-old male mice were intraperitoneally injected with D-(+)-galactose for 10 weeks and administrated with melatonin, coenzyme Q10, lecithin, or in combination for 5 weeks starting from the sixth week, followed by behavioral tests to assess the effectiveness in mitigating neurological deficits, and biochemical assays to explore the underlying mechanisms. RESULTS Exposure to H2O2 significantly reduced the viability of N2a cells and increased oxidative stress and tau phosphorylation, all of which were alleviated by treatment with melatonin, coenzyme Q10, lecithin alone, and, most noticeably, by combined treatment. Administration of mice with D-(+)-galactose-induced oxidative stress and tau phosphorylation, brain aging, impairments in learning and memory, anxiety- and depression-like behaviors, and such detrimental effects were mitigated by melatonin, coenzyme Q10, lecithin alone, and, most consistently, by combined treatment. CONCLUSIONS These results suggest that targeting oxidative stress via supplementation of antioxidant nutrients, particularly in combination, is a better strategy to alleviate oxidative stress-mediated neuronal loss and brain dysfunction due to age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Lu Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yingjuan Wei
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Blood Transfusion, Xuchang Central Hospital, Xuchang, China
| | - Zhenzhou Sun
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenya Tai
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hui Li
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaling Yin
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lin-Hua Jiang
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- School of Biomedical Sciences, University of Leeds, Leeds, UK
- EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| | - Jian-Zhi Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
OuYang Y, Chen B, Yi J, Zhou S, Liu Y, Tian F, Zeng F, Xiao L, Liu B. Study on the molecular mechanisms of Liuwei Dihuang decoction against aging-related cognitive impairment based on network pharmacology and experimental verification. Heliyon 2024; 10:e32526. [PMID: 38961903 PMCID: PMC11219498 DOI: 10.1016/j.heliyon.2024.e32526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Objective Based on network pharmacology and experimental validation, this study aimed to screen the potential targets of Liuwei Dihuang decoction (LW) against mild cognitive impairment (MCI). Methods Based on network pharmacology, this study preliminarily explored the targets and molecular mechanisms of LW in the treatment of MCI. The results showed that the mechanism of action of LW against MCI may be related to the cAMP pathway. Then, an aging cell and animal model was established to further verify its molecular mechanism. Results A total of 23 active ingredients were identified in LW. In addition, through network pharmacological analysis, we found 22 anti-MCI active ingredients in LW, of which alisol B had the most significant effect, and predicted the potential mechanism pathway by which LW may improve MCI through the cAMP signaling pathway. Further in vivo and in vitro experiments confirmed that LW can alleviate cognitive dysfunction in aging mice and reduce D-galactose-induced senescent cells, which may be through activation of the cAMP/PKA/CREB signaling pathway. Conclusion This study found that the traditional Chinese medicine formula LW may play a role in improving MCI by regulating the cAMP/PKA/CREB signaling pathway, which provides a reference for further clinical research on the anti-MCI effect of LW and its molecular mechanism.
Collapse
Affiliation(s)
- Yin OuYang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410000, China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Bowei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Siqian Zhou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410000, China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Yingfei Liu
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410000, China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Fengming Tian
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410000, China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Fanzuo Zeng
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410000, China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Lan Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410000, China
| | - Baiyan Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410000, China
- Hunan Academy of Chinese Medicine, Changsha, 410000, China
| |
Collapse
|
9
|
Zhang LJ, Zhang HZ, Liu YW, Tang M, Jiang YJ, Li FN, Guan LP, Jin QH. Sulphated Fucooligosaccharide from Sargassum Horneri: Structural Analysis and Anti-Alzheimer Activity. Neurochem Res 2024; 49:1592-1602. [PMID: 38305960 DOI: 10.1007/s11064-024-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
In the present study, sulfated polysaccharides were obtained by digestion of Sargassum horneri and preparation with enzyme-assisted extraction using three food-grade enzymes, and their anti- Alzheimer's activities were investigated. The results demonstrated that the crude sulfated polysaccharides extracted using AMGSP, CSP and VSP dose-dependently (25-100 µg·mL- 1) raised the spontaneous alternating manner (%) in the Y maze experiment of mice and reduced the escape latency time in Morris maze test. AMGSP, CSP and VSP also exhibited good anti-AChE and moderate anti-BuChE activities. CSP displayed the best inhibitory efficacy against AChE. with IC50 values of 9.77 µM. And, CSP also exhibited good inhibitory selectivity of AChE over BuChE. Next, CSP of the best active crude extract was separated by the preparation type high performance liquid phase to obtain the sulphated fucooligosaccharide section: SFcup (→3-α-L-fucp(2-SO3-)-1→4-α-L-fucp(2,3-SO3-)-1→section), SFcup showed a best inhibitory efficacy against AChE with IC50 values of 4.03 µM. The kinetic research showed that SFcup inhibited AChE through dual binding sites. Moreover, the molecular docking of SFcup at the AChE active site was in accordance with the acquired pharmacological results.
Collapse
Affiliation(s)
- Ling-Jian Zhang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Hao-Zheng Zhang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Ya-Wen Liu
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Min Tang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Yong-Jun Jiang
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China
| | - Fu-Nan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Li-Ping Guan
- Food and Pharmacy College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316022, China.
| | - Qing-Hao Jin
- College of Nursing, Zhejiang Pharmaceutical University, Zhejiang, Ningbo, 315153, China.
| |
Collapse
|
10
|
Mohamed Yusof NIS, Mohd Fauzi F. Nature's Toolbox for Alzheimer's Disease: A Review on the Potential of Natural Products as Alzheimer's Disease Drugs. Neurochem Int 2024; 176:105738. [PMID: 38616012 DOI: 10.1016/j.neuint.2024.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Numerous clinical trials involving natural products have been conducted to observe cognitive performances and biomarkers in Alzheimer's Disease (AD) patients. However, to date, no natural-based drugs have been approved by the FDA as treatments for AD. In this review, natural product-based compounds that were tested in clinical trials from 2011 to 2023, registered at www.clinicaltrials.gov were reviewed. Thirteen compounds, encompassing 7 different mechanisms of action were covered. Several observations were deduced, which are: i) several compounds showed cognitive improvement, but these improvements may not extend to AD, ii) compounds that are endogenous to the human body showed better outcomes, and iii) Docosahexaenoic acid (DHA) and cerebrolysin had the most potential as AD drugs among the 13 compounds. Based on the current findings, natural products may be more suitable as a supplement than AD drugs in most cases. However, the studies covered here were conducted in a relatively short amount of time, where compounds acting on AD pathways may take time to show any effect. Given the diverse pathways that these natural products are involved in, they may potentially produce synergistic effects that would be beneficial in treating AD. Additionally, natural products benefit from both physicochemical properties being in more favorable ranges and active transport playing a more significant role than it does for synthetic compounds.
Collapse
Affiliation(s)
| | - Fazlin Mohd Fauzi
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia; Center for Drug Discovery Research, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
11
|
Kazkayasi I, Telli G. Methylene Blue Attenuates Impaired Cognitive Functions and Reduces Hippocampal Aβ Levels and Oxidative Stress in D-Galactose-Induced Alzheimer’s Disease Mouse Model. BIOL BULL+ 2024; 51:700-710. [DOI: 10.1134/s106235902360455x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/02/2024]
|
12
|
Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3867-3895. [PMID: 38225412 DOI: 10.1007/s00210-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia, 1113, Bulgaria
- Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad, 2700, Bulgaria
| |
Collapse
|
13
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
14
|
Chen H, Wang Z, Gong L, Chen J, Huang Y, Guo W, Zhang Q, Li Y, Bao G, Li D, Chen Y. Attenuation effect of a polysaccharide from large leaf yellow tea by activating autophagy. Int J Biol Macromol 2024; 265:130697. [PMID: 38490395 DOI: 10.1016/j.ijbiomac.2024.130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Chemotherapy, the most common class of anticancer drugs, is considerably limited owing to its adverse side effects. In this study, we aimed to evaluate the protective effect and mechanism of action of large-leaf yellow tea polysaccharides (ULYTP-1, 1.29 × 104 Da) against chemotherapeutic 5-fluorouracil (5-Fu). Structural characterisation revealed that ULYTP-1 was a β-galactopyranouronic acid. Furthermore, ULYTP-1 promoted autolysosome formation, activating autophagy and reducing the oxidative stress and inflammation caused by 5-Fu. Our in vivo study of 4 T1 tumour-bearing mice revealed that ULYTP-1 also attenuated 5-Fu toxicity through modulation of the gut microbiota. Moreover, ULYTP-1 effectively protected immune organs and the liver from 5-Fu toxicity, while promoting its tumour-inhibitory properties. The current findings provide a new strategy for optimising chemotherapy regimens in the clinic.
Collapse
Affiliation(s)
- Hao Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Zhuang Wang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Lei Gong
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jielin Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yuzhe Huang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wenqiang Guo
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qiang Zhang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yong Li
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Guanhu Bao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Yan Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
15
|
Ahmad F, Karan A, Sharma R, Sharma NS, Sundar V, Jayaraj R, Mukherjee S, DeCoster MA. Evolving therapeutic interventions for the management and treatment of Alzheimer's disease. Ageing Res Rev 2024; 95:102229. [PMID: 38364913 DOI: 10.1016/j.arr.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Alzheimer's Disease (AD) patients experience diverse symptoms, including memory loss, cognitive impairment, behavioral abnormalities, mood changes, and mental issues. The fundamental objective of this review is to discuss novel therapeutic approaches, with special emphasis on recently approved marketed formulations for the treatment of AD, especially Aducanumab, the first FDA approved moiety that surpasses the blood-brain barrier (BBB) and reduces amyloid plaques in the brain, thereby reducing associated cognitive decline. However, it is still in the phase IV trial and is to be completed by 2030. Other drugs such as lecanemab are also under clinical trial and has recently been approved by the FDA and is also discussed here. In this review, we also focus on active and passive immunotherapy for AD as well as several vaccines, such as amyloid-beta epitope-based vaccines, amyloid-beta DNA vaccines, and stem cell therapy for AD, which are in clinical trials. Furthermore, ongoing pre-clinical trials associated with AD and other novel strategies such as curcumin-loaded nanoparticles, Crispr/ cas9, precision medicine, as well as some emerging therapies like anti-sense therapy are also highlighted. Additionally, we discuss some off-labeled drugs like non-steroidal anti-inflammatory drugs (NSAID), anti-diabetic drugs, and lithium, which can manage symptoms of AD and different non-pharmacological approaches are also covered which can help to manage AD. In summary, we have tried to cover all the therapeutic interventions which are available for the treatment and management of AD under sections approved, clinical phase, pre-clinical phase or futuristic interventions, off-labelled drugs, and non-pharmacological interventions for AD, offering positive findings and well as challenges that remain.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi, India
| | - Anik Karan
- Department of Mechanical and Bioengineering, University of Kansas, Lawrence, KS, USA.
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi, India
| | - Navatha Shree Sharma
- Department of Surgery Transplant, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Richard Jayaraj
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Sudip Mukherjee
- Biomedical Engineering, Indian Institute of Technology- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mark A DeCoster
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA; Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
16
|
Xiao Y, Duan C, Gong P, Zhao Q, Wang XH, Geng F, Zeng J, Luo T, Xu Y, Zhao J. Kinsenoside from Anoectochilus roxburghii (Wall.) Lindl. suppressed oxidative stress to attenuate aging-related learning and memory impairment via ERK/Nrf2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117152. [PMID: 37689328 DOI: 10.1016/j.jep.2023.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anoectochilusroxburghii (Wall.) Lindl. (AR), as an exceptionally valuable traditional Chinese medicine, has been widely used to treat hepatitis, cancer, diabetes, etc. But, the effects and the primary functioning element of AR on attenuating aging and aging-related learning and memory degradation has not yet been explored. AIM OF THE STUDY This study aimed at exploring the protective property of aqueous extract of AR (AEAR) on alleviation of aging and aging-related learning and memory impairment in vivo, and further investigating the main active ingredient and mechanism of AEAR. MATERIALS AND METHODS D-galactose (D-gal) induced aging mice and HT22 cells exposed with L-Glutamic acid (Glu) were used as in vivo and in vitro model, separately. The effects of AEAR on aging and aging-related learning and memory degradation were explored by using morris water maze test, immunohistochemistry staining, biochemistry assay, etc. The effects and mechanism of AEAR and Kinsenoside (Kin) on antioxidation in vitro were investigated by cell viability assay, biochemistry assay, qRT-PCR, western blotting and molecular docking studies. RESULTS Treatment with AEAR (containing 69.52 ± 0.85% Kin, i.g.) for 63 days, alleviated low growth rate, abnormal brain, liver and thymus index, and decline in learning and memory capability of aging mice. Meanwhile, AEAR inhibited the decreased activities of SOD and GSH-PX, the decline in the ratio of GSH to GSSG, and the increase of MDA in both serum and brain, and also promoted the Nrf2 nuclear translocation in brain of aging mice induced by D-gal. The effects of AEAR on alleviating abnormal physiological characteristics, attenuating learning and memory impairment, and inhibiting oxidative stress in aging mice was similar to or even better than that of Vc. In HT22 cells exposed with Glu, Kin increased the cell viability, up-regulated the activities of SOD and GSH-PX, enhanced the ratio of GSH to GSSG, and down-regulated MDA, which was superior to AEAR. Kin up-regulated the ratio of p-ERK1/2 to ERK1/2, promoted the Nrf2 nuclear translocation and its downstream target genes, i.e. HO-1, NQO-1, GCLC and GCLM expression at the mRNA and protein levels, which were consistent with AEAR. Further, molecular docking results also confirmed that Kin had strong binding energy with ERK1 and ERK2. CONCLUSION The present study indicated that Kin could alleviate the oxidative stress in aging mice via activating the ERK/Nrf2 signaling pathway, in order to attenuate aging and aging-related learning and memory impairment, as the main active ingredient of AR.
Collapse
Affiliation(s)
- Yu Xiao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Changsong Duan
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Pushuang Gong
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.
| | - Xin Hui Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Jin Zeng
- Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality of National Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, Chengdu, 610041, China.
| | - Tianfeng Luo
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Yisha Xu
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Junning Zhao
- National Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, National Medical Products Administration of China, Beijing, 100037, China; Key Laboratory of Biological Evaluation of Traditional Chinese Medicine Quality of National Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
17
|
Duan H, Yu Q, Ni Y, Li J, Yu L, Fan L. Interactions between wheat germ polysaccharide and gut microbiota through in vitro batch fecal fermentation and an aging mice model: Targeting enrichment of Bacteroides uniformis and Bifidobacterium pseudocatenulatum. Int J Biol Macromol 2023; 253:127559. [PMID: 37865367 DOI: 10.1016/j.ijbiomac.2023.127559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The interaction between wheat germ polysaccharide (WGP) and gut microbiota remains relatively less investigated. Thus, this study explored their interaction via in vitro batch fecal fermentation. WGP elevated dramatically the relative abundances of Bacteroides (especially Ba. xylanisolvens, Ba. uniformis, and Ba. intestinalis), Bifidobacterium (especially Bi. pseudocatenulatum) and Eubacterium, and decreased Alistipes, Klebsiella, Bilophila and Sutterella. Moreover, the metabolomics and Spearman correlation results showed that these alterations in gut microbiota gave rise to over 13-fold augmentation in the quantities of short-chain fatty acids (SCFAs) and indole-3-lactic acid, as well as 7.17- and 4.23-fold increase in acetylcholine and GABA, respectively, at 24 h of fermentation. Interestingly, PICRUSt analysis showed that WGP markedly reduced aging pathway, and enriched nervous system pathway. Therefore, the D-gal-induced aging mice model was used to further verify these effects. The results demonstrated that WGP had a protective effect on D-gal-induced behavioral deficits, particularly in locomotor activity, and spatial and recognition memory. WGP elevated dramatically the relative abundances of Bacteroides (especially Ba. sartorii and Ba. uniformis), Bifidobacterium (especially Bi. pseudocatenulatum) and Parabacteroides, and decreased Alistipes and Candidatus Arthromitus. These findings highlight the potential utility of WGP as a dietary supplement for retarding the aging process and mitigating age-associated learning and memory decline via the targeted enrichment of Bacteroides and Bifidobacterium and the related metabolites.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Chen F, Pan J, Yu L, Wang S, Zhang C, Zhao J, Narbad A, Zhai Q, Tian F. Lactiplantibacillus plantarum CCFM8661 alleviates D-galactose-induced brain aging in mice by the regulation of the gut microbiota. Food Funct 2023; 14:10135-10150. [PMID: 37901912 DOI: 10.1039/d3fo03377e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Aging is characterized by a decline in biological functions, leading to various health issues. There is significant interest in mitigating age and age-related health issues. Gut microbiota has emerged as a crucial target for combating aging and influencing host health. This study evaluated the anti-aging effects of Lactiplantibacillus plantarum CCFM8661 in mice and the role of the gut microbiota in mediating its effects. Aging was induced in mice using D-galactose, and L. plantarum CCFM8661 was orally administered for 8 weeks to evaluate its effects on age-related decline and the gut microbiota. The results demonstrated that supplementation with L. plantarum CCFM8661 effectively alleviated cognitive impairment and oxidative stress in the aging brain, as well as liver oxidation and bone damage, and impaired intestinal barrier function in aging mice. Furthermore, L. plantarum CCFM8661 modulated the gut microbiota of aging mice, increasing the abundance of beneficial bacteria, such as Ruminococcaceae, and influenced the functionality of the gut microbiota to promote the production of active metabolites. These findings suggest that L. plantarum CCFM8661 has a mitigating effect on organismal aging, especially brain aging.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, 16 NR4 7UQ, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
19
|
Gong M, Jia J. Rutaecarpine Mitigates Cognitive Impairment by Balancing Mitochondrial Function Through Activation of the AMPK/PGC1α Pathway. Mol Neurobiol 2023; 60:6598-6612. [PMID: 37468737 DOI: 10.1007/s12035-023-03505-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Mitochondrial dysfunction plays a fundamental role in the pathogenesis of cognitive deficit. Rutaecarpine (Rut) is a natural alkaloid with anti-inflammatory and antioxidant properties. This study explored whether Rut treatment could enhance cognitive function by improving mitochondrial function and examined the potential mechanisms underlying this ameliorative effect. We used the Morris water maze and Y-maze tests to evaluate the behavioral effects of Rut in a mouse model of cognitive impairment induced by subcutaneous injection of D-galactose (D-gal). Furthermore, we assessed the effects of Rut on mitochondrial function using cell viability assays, flow cytometry, western blotting, biochemical analysis, and immunochemical techniques in vivo and in vitro. The results indicated Rut treatment attenuated cognitive deficits and mitochondrial dysfunction in the mouse model. Similarly, it maintained the balance of mitochondrial dynamics in neurocytes and reduced oxidative stress and mitochondrial apoptosis in the HT22 cell model. Moreover, we found that these protective effects were dependent on the activation of the AMP-activated protein kinase/proliferator-activated receptor gamma coactivator 1-alpha (AMPK/PGC1α) signaling pathway. Our data indicate that Rut treatment are sensitive to reversal cognitive deficits and mitochondrial dysfunction induced by D-gal; this suggests that Rut is a promising mitochondria-targeted therapeutic agent for treating cognitive impairment.
Collapse
Affiliation(s)
- Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Xicheng District, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Xicheng District, Beijing, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, People's Republic of China.
| |
Collapse
|
20
|
Sarhan NR, El Nashar EM, Hamza E, El-Beah SM, Alghamdi MA, Al-Khater KM, Aldahhan RA, Abul-Ela ES. Nuclear factor erythrogen-2 associated factor 2 (Nrf2) signaling is an essential molecular pathway for the anti-aging effect of whey protein in the prefrontal cortex of aging rat model (Histological and Biochemical Study). Tissue Cell 2023; 84:102192. [PMID: 37579617 DOI: 10.1016/j.tice.2023.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Aging is a highly complicated natural process. Brain aging is associated with remarkable neurodegenerative changes and oxidative damage. Whey protein (WP) has been mentioned to have an antioxidant property. Nuclear factor erythrogen-2 associated factor 2 (Nrf2) signaling pathway is an antioxidant defense system. Nrf2 activity declines with age so, its activation could be a promising therapeutic strategy for aging. This study aimed to explore the anti-aging role of WP against D-galactose (D-gal) induced age-related degenerative changes and oxidative damage in the prefrontal cortex (PFC) and investigate its underlying mechanisms. Forty adult male rats were divided into 4 groups; control, WP group received WP (28.77 mg/kg/day) by gastric tube on the 4th experimental week; D-gal (model group) received D-gal (300 mg/kg/day) intraperitoneally for 8 weeks and D-gal +WP group received WP on the 4th week of D-gal treatment. Specimens from PFC were obtained for biochemical, histological, immunohistochemical and western blot analysis. WP treatment in D-gal +WP group reduced lipid peroxidation, enhanced antioxidant enzyme activities, decreased advanced glycation end products level and improved the histological and ultrastructural alterations. Moreover, the number of neurons expressed the senescence marker; p21 and percentage area of the astrocytic marker; glial fibrillary acidic protein were significantly reduced. WP also enhanced Nrf2 pathway and its downstream targets; heme oxygenase-1 and NADPH quinone oxidoreductase 1. In conclusion WP alleviates the D-gal-induced PFC aging through activating Nrf2 pathway, reducing cell senescence and gliosis. So, it may be a potential therapeutic target to retard the aging process.
Collapse
Affiliation(s)
- Nahla Reda Sarhan
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Egypt; Medical Histology and Cell Biology Department, Faculty of Medicine, Horus University - Egypt.
| | - Eman Mohamed El Nashar
- Department of Anatomy, college of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Eman Hamza
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Horus University - Egypt
| | - Shimaa M El-Beah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Egypt
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, college of Medicine, King Khalid University, Abha 61421, Saudi Arabia; Genomics and Personalized Medicine Unit, college of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Khulood Mohammed Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box, 2114, Dammam 31451, Saudi Arabia
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box, 2114, Dammam 31451, Saudi Arabia
| | - Eman Shaaban Abul-Ela
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
21
|
Rahman MA, Shuvo AA, Apu MMH, Bhakta MR, Islam F, Rahman MA, Islam MR, Reza HM. Combination of epigallocatechin 3 gallate and curcumin improves D-galactose and normal-aging associated memory impairment in mice. Sci Rep 2023; 13:12681. [PMID: 37542120 PMCID: PMC10403524 DOI: 10.1038/s41598-023-39919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023] Open
Abstract
Previously, we observed curcumin improves aging-associated memory impairment in D-galactose (D-gal) and normal-aged (NA) mice. Evidence showed that multiple agents can be used in managing aging-induced memory dysfunction, drawn by the contribution of several pathways. Curcumin and Epigallocatechin 3 gallate (EGCG) combination substantially reduced the oxidative stress that commonly mediates aging. This study examined the combined effect of EGCG and curcumin on memory improvement in two recognized models, D-gal and normal-aged (NA) mice. The co-administration of EGCG and curcumin significantly (p < 0.05) increased retention time detected by passive avoidance (PA) and freezing response determined in contextual fear conditioning (CFC) compared to the discrete administration of EGCG or curcumin. Biochemical studies revealed that the combination of EGCG and curcumin remarkably ameliorated the levels (p < 0.05) of glutathione, superoxide dismutase, catalase, advanced oxidation protein products, nitric oxide, and lipid peroxidation compared to the monotherapy of EGCG or curcumin in mice hippocampi. The behavioral and biochemical studies revealed that the combination of EGCG and curcumin showed better improvement in rescuing aging-associated memory disorders in mice. EGCG and curcumin combination could serve as a better choice in managing aging-related memory disorders.
Collapse
Affiliation(s)
- Md Ashrafur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
- Department of Pharmaceutical Sciences, Wilkes University, Wilkes Barre, PA, 18766, USA.
| | - Arif Anzum Shuvo
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Mehedi Hasan Apu
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Monisha Rani Bhakta
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Farzana Islam
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Atiqur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh.
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
22
|
Lou Q, Meng XE, Wei C, Tong J, Chen Y, Li M, Wang Q, Guo S, Duan JA, Shang EX, Zhu Y. Jian-Yan-Ling capsules ameliorate cognitive impairment in mice with D-galactose-induced senescence and inhibit the oxidation-induced apoptosis of HT22 hippocampal cells by regulating the Nrf2-HO1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116356. [PMID: 36924864 DOI: 10.1016/j.jep.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Jian-Yan-Ling (JYL) capsule is a famous anti-aging Chinese patent medicine. It is applied mainly to delay senescence to improve cognition in aging individuals. However, the action mechanisms of JYL for improving cognition have not been determined. AIM OF THE STUDY We will evaluate the effect of the JYL capsule at improving the cognition of aging mice by improving oxidative stress in the hippocampus and exploring its action mechanism. MATERIALS AND METHODS A senescence mouse model was developed via intraperitoneal injection of D-galactose. The effect of the JYL capsule at improving the learning and memory abilities of mice was evaluated using the Morris water maze and novel object recognition tests. The apotosis of model mice hippocampus' were determined by TUNEL analysis. The antioxidant capacity of the JYL capsule was evaluated by determining the activities of antioxidant enzymes and expressions of oxidative products. The regulation of the Nrf2/HO-1 signaling pathway of the JYL capsule was evaluated by determining the expressions of related proteins via western blotting analysis. In vitro, H2O2-treated mouse hippocampal HT22 cells were used to evaluate the antioxidant capacity of JYL-containing rat serum by determining the cell viability, apoptotic level and expressions of related proteins. RESULTS JYL capsules enhanced the learning and memory abilities of model mice according to behavioral tests. The results of TUNEL analysis showed that the JYL capsule ameliorated hippocampal apoptosis in model mice. JYL capsules also exerted significant antioxidant capacity by increasing the activities of antioxidant enzymes while decreasing the levels of oxidative products both in the hippocampus and serum. The regulation of Nrf2/HO-1 pathway might contribute to the antioxidant function. In vitro, JYL-containing rat serum protected HT22 cells from H2O2 induced oxidative stress. The apoptosis of HT22 cells was also attenuated by regulating the caspase and Nrf2/HO-1 signaling pathways. CONCLUSIONS The amelioration of neuronal oxidative stress of hippocampus might contribute to the D-galactose-induced cognition impairment of senescence mice. These findings provide evidence for the application of JYL capsules to enhance cognition in aging individuals.
Collapse
Affiliation(s)
- Qianyin Lou
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Xue-Er Meng
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Chongqi Wei
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Jiaxiang Tong
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Yang Chen
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Mengting Li
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Qingqing Wang
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Sheng Guo
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Jin-Ao Duan
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Er-Xin Shang
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| | - Yue Zhu
- Nanjing University of Chinese Medicine, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing, 210023, China.
| |
Collapse
|
23
|
Khan A, Park JS, Kang MH, Lee HJ, Ali J, Tahir M, Choe K, Kim MO. Caffeic Acid, a Polyphenolic Micronutrient Rescues Mice Brains against Aβ-Induced Neurodegeneration and Memory Impairment. Antioxidants (Basel) 2023; 12:1284. [PMID: 37372012 DOI: 10.3390/antiox12061284] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress plays an important role in cognitive dysfunctions and is seen in neurodegeneration and Alzheimer's disease (AD). It has been reported that the polyphenolic compound caffeic acid possesses strong neuroprotective and antioxidant effects. The current study was conducted to investigate the therapeutic potential of caffeic acid against amyloid beta (Aβ1-42)-induced oxidative stress and memory impairments. Aβ1-42 (5 μL/5 min/mouse) was administered intracerebroventricularly (ICV) into wild-type adult mice to induce AD-like pathological changes. Caffeic acid was administered orally at 50 mg/kg/day for two weeks to AD mice. Y-maze and Morris water maze (MWM) behavior tests were conducted to assess memory and cognitive abilities. Western blot and immunofluorescence analyses were used for the biochemical analyses. The behavioral results indicated that caffeic acid administration improved spatial learning, memory, and cognitive abilities in AD mice. Reactive oxygen species (ROS) and lipid peroxidation (LPO) assays were performed and showed that the levels of ROS and LPO were markedly reduced in the caffeic acid-treated mice, as compared to Aβ-induced AD mice brains. Moreover, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were regulated with the administration of caffeic acid, compared to the Aβ-injected mice. Next, we checked the expression of ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic proteins (GFAP), and other inflammatory markers in the experimental mice, which suggested enhanced expression of these markers in AD mice brains, and were reduced with caffeic acid treatment. Furthermore, caffeic acid enhanced synaptic markers in the AD mice model. Additionally, caffeic acid treatment also decreased Aβ and BACE-1 expression in the Aβ-induced AD mice model.
Collapse
Affiliation(s)
- Amjad Khan
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Hwa Kang
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jawad Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Muhammad Tahir
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229ER Maastricht, The Netherlands
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
24
|
He T, Lin X, Su A, Zhang Y, Xing Z, Mi L, Wei T, Li Z, Wu W. Mitochondrial dysfunction-targeting therapeutics of natural products in Parkinson's disease. Front Pharmacol 2023; 14:1117337. [PMID: 37234707 PMCID: PMC10206024 DOI: 10.3389/fphar.2023.1117337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, often occurs in middle-aged and elderly individuals. The pathogenesis of PD is complex and includes mitochondrial dysfunction, and oxidative stress. Recently, natural products with multiple structures and their bioactive components have become one of the most important resources for small molecule PD drug research targeting mitochondrial dysfunction. Multiple lines of studies have proven that natural products display ameliorative benefits in PD treatment by regulating mitochondrial dysfunction. Therefore, a comprehensive search of recent published articles between 2012 and 2022 in PubMed, Web of Science, Elesvier, Wliey and Springer was carried out, focusing on original publications related to natural products against PD by restoring mitochondrial dysfunction. This paper presented the mechanisms of various kinds of natural products on PD-related mitochondrial dysfunction regulation and provided evidence that natural products are promising to be developed as drugs for PD therapeutics.
Collapse
|
25
|
Wang X, Leong ATL, Tan SZK, Wong EC, Liu Y, Lim LW, Wu EX. Functional MRI reveals brain-wide actions of thalamically-initiated oscillatory activities on associative memory consolidation. Nat Commun 2023; 14:2195. [PMID: 37069169 PMCID: PMC10110623 DOI: 10.1038/s41467-023-37682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
As a key oscillatory activity in the brain, thalamic spindle activities are long believed to support memory consolidation. However, their propagation characteristics and causal actions at systems level remain unclear. Using functional MRI (fMRI) and electrophysiology recordings in male rats, we found that optogenetically-evoked somatosensory thalamic spindle-like activities targeted numerous sensorimotor (cortex, thalamus, brainstem and basal ganglia) and non-sensorimotor limbic regions (cortex, amygdala, and hippocampus) in a stimulation frequency- and length-dependent manner. Thalamic stimulation at slow spindle frequency (8 Hz) and long spindle length (3 s) evoked the most robust brain-wide cross-modal activities. Behaviorally, evoking these global cross-modal activities during memory consolidation improved visual-somatosensory associative memory performance. More importantly, parallel visual fMRI experiments uncovered response potentiation in brain-wide sensorimotor and limbic integrative regions, especially superior colliculus, periaqueductal gray, and insular, retrosplenial and frontal cortices. Our study directly reveals that thalamic spindle activities propagate in a spatiotemporally specific manner and that they consolidate associative memory by strengthening multi-target memory representation.
Collapse
Affiliation(s)
- Xunda Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alex T L Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shawn Z K Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Eddie C Wong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lee-Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
26
|
Ramsay S, Zagorodnyuk V. Role of circadian rhythms and melatonin in bladder function in heath and diseases. Auton Neurosci 2023; 246:103083. [PMID: 36871511 DOI: 10.1016/j.autneu.2023.103083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
The circadian system modulates all visceral organ physiological processes including urine storage and voiding. The "master clock" of the circadian system lies within suprachiasmatic nucleus of the hypothalamus while "peripheral clocks" are found in most peripheral tissue and organs, including the urinary bladder. Disruptions of circadian rhythms can cause organ malfunction and disorder or exacerbate pre-existing ones. It has been suggested that nocturia, which develops mostly in the elderly, could be a circadian-related disorder of the bladder. In the bladder, many types of gap junctions and ion channels in the detrusor, urothelium and sensory nerves are likely under strict local peripheral circadian control. The pineal hormone, melatonin, is a circadian rhythm synchroniser capable of controlling a variety of physiological processes in the body. Melatonin predominantly acts via the melatonin 1 and melatonin 2 G-protein coupled receptors expressed in the central nervous system, and many peripheral organs and tissues. Melatonin could be beneficial in the treatment of nocturia and other common bladder disorders. The ameliorating action of melatonin on bladder function is likely due to multiple mechanisms which include central effects on voiding and peripheral effects on the detrusor and bladder afferents. More studies are warranted to determine the precise mechanisms of circadian rhythm coordination of the bladder function and melatonin influences on the bladder in health and diseases.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
27
|
Moderate-Intensity Intermittent Training Alters the DNA Methylation Pattern of PDE4D Gene in Hippocampus to Improve the Ability of Spatial Learning and Memory in Aging Rats Reduced by D-Galactose. Brain Sci 2023; 13:brainsci13030422. [PMID: 36979232 PMCID: PMC10046546 DOI: 10.3390/brainsci13030422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
(1) Background: Aging is the main risk factor for most neurodegenerative diseases, and the inhibition of Phosphodiesterase 4(PDE4) is considered a potential target for the treatment of neurological diseases. The purpose of this study was to investigate the inhibitory effect of moderate-intensity intermittent training (MIIT) on PDE4 in the hippocampus of rats with D-galactose (D-gal)-induced cognitive impairment, and the possible mechanism of improving spatial learning and memory. (2) Methods: the aging rats were treated with D-Gal (150 mg/kg/day, for 6 weeks). The aging rats were treated with MIIT for exercise intervention (45 min/day, 5 days/week, for 8 weeks). The Morris water maze test was performed before and after MIIT to evaluate the spatial learning and memory ability, then to observe the synaptic ultrastructure of the hippocampus CA1 region, to detect the expression of synaptic-related protein synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), and to detect the expression of PDE4 subtypes, cAMP, and its signal pathway protein kinase A (PKA)/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF), and the PDE4 methylation level. (3) Results: we found that MIIT for 8 weeks alleviated the decline in spatial learning and memory ability, and improved the synaptic structure of the hippocampus and the expression of synaptic protein SYP and PSD95 in D-Gal aging rats. To elucidate the mechanism of MIIT, we analyzed the expression of PDE4 isoforms PDE4A/PDE4B/PDE4D, cAMP, and the signaling pathway PKA/CREB/BDNF, which play an important role in memory consolidation and maintenance. The results showed that 8 weeks of MIIT significantly up-regulated cAMP, PKA, p-CREB, and BDNF protein expression, and down-regulated PDE4D mRNA and protein expression. Methylation analysis of the PDE4D gene showed that several CG sites in the promoter and exon1 regions were significantly up-regulated. (4) Conclusions: MIIT can improve the synaptic structure of the hippocampus CA1 area and improve the spatial learning and memory ability of aging rats, which may be related to the specific regulation of the PDE4D gene methylation level and inhibition of PDE4D expression.
Collapse
|
28
|
Deng S, Shu S, Zhai L, Xia S, Cao X, Li H, Bao X, Liu P, Xu Y. Optogenetic Stimulation of mPFC Alleviates White Matter Injury-Related Cognitive Decline after Chronic Ischemia through Adaptive Myelination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202976. [PMID: 36529961 PMCID: PMC9929132 DOI: 10.1002/advs.202202976] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Indexed: 06/07/2023]
Abstract
White matter injury (WMI), which reflects myelin loss, contributes to cognitive decline or dementia caused by cerebral vascular diseases. However, because pharmacological agents specifically for WMI are lacking, novel therapeutic strategies need to be explored. It is recently found that adaptive myelination is required for homeostatic control of brain functions. In this study, adaptive myelination-related strategies are applied to explore the treatment for ischemic WMI-related cognitive dysfunction. Here, bilateral carotid artery stenosis (BCAS) is used to model ischemic WMI-related cognitive impairment and uncover that optogenetic and chemogenetic activation of glutamatergic neurons in the medial prefrontal cortex (mPFC) promote the differentiation of oligodendrocyte precursor cells (OPCs) in the corpus callosum, leading to improvements in myelin repair and working memory. Mechanistically, these neuromodulatory techniques exert a therapeutic effect by inducing the secretion of Wnt2 from activated neuronal axons, which acts on oligodendrocyte precursor cells and drives oligodendrogenesis and myelination. Thus, this study suggests that neuromodulation is a promising strategy for directing myelin repair and cognitive recovery through adaptive myelination in the context of ischemic WMI.
Collapse
Affiliation(s)
- Shiji Deng
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Shu Shu
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Lili Zhai
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Shengnan Xia
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Xiang Cao
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Huiya Li
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Xinyu Bao
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Pinyi Liu
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
| | - Yun Xu
- Department of NeurologyDrum Tower HospitalMedical School and The State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjing210008China
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjing210008China
- Jiangsu Provincial Key Discipline of NeurologyNanjing210008China
- Nanjing Neurology Medical CenterNanjing210008China
| |
Collapse
|
29
|
Liu J, Chen H, Lin X, Zhu X, Huang J, Xu W, Tan M, Su J. Melatonin Suppresses Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes Signaling and Delays the Development of Hearing Loss in the C57BL/6J Presbycusis Mouse Model. Neuroscience 2023; 517:84-95. [PMID: 36702373 DOI: 10.1016/j.neuroscience.2023.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Melatonin supplementation has been shown to delay age-related hearing loss (ARHL) progression. Previously, melatonin was found to inhibit neuronal mitochondrial DNA (mtDNA) release, as well as inhibit cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling, thereby delaying the onset of central nervous system diseases. Therefore, we hypothesized that melatonin may delay the progression of hearing loss in the C57BL/6J presbycusis mouse model by inhibiting cGAS-STING signaling in the auditory pathway. Oral melatonin at 10 mg/kg/d was administered to 3-month-old C57BL/6J mice until 12 months of age. The auditory brainstem response (ABR) threshold was used to assess their hearing ability. By real-time polymerase chain reaction and Western blot analysis, the levels of cytosolic mtDNA, cGAS/STING, and cytokines were examined in the mouse cochlea, inferior colliculus, and auditory cortex. We found that the 12-month-old control mice exhibited significant hearing loss, increased cytosolic mtDNA, increased expression of inflammatory factors TNF-α, IL-6, IFN-β, Cxcl10, and Ifit3, up-regulated cGAS and STING expression, and enhanced interferon regulatory factor 3 (IRF3) phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. Melatonin treatment significantly improved hearing, decreased cytosolic mtDNA, suppressed the expression of inflammatory cytokines TNF-α, IL-6, IFN-β, Ifit3, and Cxcl10, down-regulated cGAS and STING expression, and attenuated IRF3 phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. This study suggested that melatonin had a protective effect on auditory function in the C57BL/6J presbycusis mouse model, which may be mediated through reducing mtDNA release, inhibiting the cGAS-STING signaling pathway in the auditory pathway.
Collapse
Affiliation(s)
- Jinlan Liu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Huiying Chen
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyu Lin
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Zhu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialin Huang
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenfeng Xu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ming Tan
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
30
|
Duan H, Li J, Fan L. Agaricus bisporus Polysaccharides Ameliorates Behavioural Deficits in D-Galactose-Induced Aging Mice: Mediated by Gut Microbiota. Foods 2023; 12:424. [PMID: 36673515 PMCID: PMC9857696 DOI: 10.3390/foods12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
White button mushroom polysaccharide (WMP) has various health-promoting functions. However, whether these functions are mediated by gut microbiota has not been well explored. Therefore, this study evaluated the anti-aging capacity of WMP and its effects on the diversity and composition of gut microbiota in D-galactose-induced aging mice. WMP significantly improved locomotor activity and the spatial and recognition memory of the aging mice. It also alleviated oxidative stress and decreased the pro-inflammatory cytokine levels in the brain. Moreover, WMP increased α-diversity, the short-chain fatty acid (SCFA) level and the abundance of beneficial genera, such as Bacteroides and Parabacteroides. Moreover, its effect on Bacteroides at the species level was further determined, and the enrichments of B. acidifaciens, B. sartorii and B. stercorirosoris were found. A PICRUSt analysis revealed that WMP had a greater impact on the metabolism of carbon, fatty acid and amino acid, as well as the MAPK and PPAR signaling pathway. In addition, there was a strong correlation between the behavioral improvements and changes in SCFA levels and the abundance of Bacteroides, Parabacteroides, Mucispirillum and Desulfovibrio and Helicobacter. Therefore, WMP might be suitable as a functional foods to prevent or delay aging via the directed enrichment of specific species in Bacteroides.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
de Almeida GRL, Szczepanik JC, Selhorst I, Cunha MP, Dafre AL. The expanding impact of methylglyoxal on behavior-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110635. [PMID: 36103947 DOI: 10.1016/j.pnpbp.2022.110635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl compound formed as a byproduct of glycolysis. MGO is a major cell-permeant precursor of advanced glycation end products (AGEs), since it readily reacts with basic phospholipids and nucleotides, as well as amino acid residues of proteins, such as arginine, cysteine, and lysine. The AGEs production induced by MGO are widely associated with several pathologies, including neurodegenerative diseases. However, the impact of MGO metabolism and AGEs formation in the central nervous system (particularly in neurons, astrocytes and oligodendrocytes) on behavior and psychiatric diseases is not fully understood. Here, we briefly present background information on the biological activity of MGO in the central nervous system. It was gathered the available information on the role of MGO metabolism at the physiological processes, as well as at the neurobiology of psychiatry diseases, especially pain-related experiences, anxiety, depression, and cognition impairment-associated diseases. To clarify the role of MGO on behavior and associated diseases, we reviewed primarily the main findings at preclinical studies focusing on genetic and pharmacological approaches. Since monoamine neurotransmitter systems are implicated as pivotal targets on the pathophysiology and treatment of psychiatry and cognitive-related diseases, we also reviewed how MGO affects these neurotransmission systems and the implications of this phenomenon for nociception and pain; learning and cognition; and mood. In summary, this review highlights the pivotal role of glyoxalase 1 (Glo1) and MGO levels in modulating behavioral phenotypes, as well as related cellular and molecular signaling. Conclusively, this review signals dopamine as a new neurochemical MGO target, as well as highlights how MGO metabolism can modulate the pathophysiology and treatment of pain, psychiatric and cognitive-related diseases.
Collapse
Affiliation(s)
- Gudrian R L de Almeida
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Jozimar C Szczepanik
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Department of Basic Sciences of Life, Federal University of Juiz de Fora, 35010-177 Governador Valadares, MG, Brazil.
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
32
|
Beheshti F, Gholami M, Ghane Z, Nazari S E, Salari M, Shabab S, Hosseini M. PPARγ activation improved learning and memory and attenuated oxidative stress in the hippocampus and cortex of aged rats. Physiol Rep 2022; 10:e15538. [PMID: 36541251 PMCID: PMC9768666 DOI: 10.14814/phy2.15538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress has an important role in brain aging and its consequences include cognitive decline and physiological disorders. Peroxisome proliferator-activated receptor-γ (PPARγ) activation has been suggested to decrease oxidative stress. In the current research, the effect of PPARγ activation by pioglitazone(Pio) on learning, memory and oxidative stress was evaluated in aged rats. The rats were divided into five groups. In the Control group, vehicle (saline-diluted dimethyl sulfoxide (DMSO)) and saline were injected instead of Pio and scopolamine (Sco), respectively. In the Sco group, the vehicle was injected instead of Pio and the rats were injected by Sco 30 min before the behavioral tests. In the Sco-Pio 10, Sco-Pio 20, and Sco-Pio 30 groups, 10, 20, and 30 mg/kg Pio was injected and finally, the rats were injected with Sco 30 min before the behavioral tests. Morris water mater maze(MWM) and passive avoidance(PA) tests were carried out, and finally, the hippocampus and cortex were removed for biochemical assessments. The results showed that the highest dose of Pio decreased the traveling time and distance during 5 days of learning and increased the time and distance in the target area on the probe day of MWM. The highest dose of Pio also prolonged the delay time for entering the dark and total time spent in the light while decreasing the total time spent in and the number of entries into the dark in PA test. Pio especially, in the medium and highest doses, decreased MDA while increasing thiol, superoxide dismutase, and catalase in the hippocampus and cortex. It is concluded that PPARγ activation by Pio as an agonist improved learning and memory in aged rats probably by attenuating oxidative stress in the hippocampus and cortex.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research CenterTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
- Department of Physiology, School of Paramedical SciencesTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
| | - Masoumeh Gholami
- Department of Physiology, Faculty of MedicineArak University of Medical SciencesArakIran
| | - Zahra Ghane
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Seyedeh Elnaz Nazari
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Maryam Salari
- Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
| | - Sadegh Shabab
- Department of Physiology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
33
|
Atlante A, Amadoro G, Latina V, Valenti D. Therapeutic Potential of Targeting Mitochondria for Alzheimer's Disease Treatment. J Clin Med 2022; 11:6742. [PMID: 36431219 PMCID: PMC9697019 DOI: 10.3390/jcm11226742] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by memory and cognitive impairment and by the accumulation in the brain of abnormal proteins, more precisely beta-amyloid (β-amyloid or Aβ) and Tau proteins. Studies aimed at researching pharmacological treatments against AD have focused precisely on molecules capable, in one way or another, of preventing/eliminating the accumulations of the aforementioned proteins. Unfortunately, more than 100 years after the discovery of the disease, there is still no effective therapy in modifying the biology behind AD and nipping the disease in the bud. This state of affairs has made neuroscientists suspicious, so much so that for several years the idea has gained ground that AD is not a direct neuropathological consequence taking place downstream of the deposition of the two toxic proteins, but rather a multifactorial disease, including mitochondrial dysfunction as an early event in the pathogenesis of AD, occurring even before clinical symptoms. This is the reason why the search for pharmacological agents capable of normalizing the functioning of these subcellular organelles of vital importance for nerve cells is certainly to be considered a promising approach to the design of effective neuroprotective drugs aimed at preserving this organelle to arrest or delay the progression of the disease. Here, our intent is to provide an updated overview of the mitochondrial alterations related to this disorder and of the therapeutic strategies (both natural and synthetic) targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| |
Collapse
|
34
|
Neuroprotective Effects of Nicotinamide against MPTP-Induced Parkinson's Disease in Mice: Impact on Oxidative Stress, Neuroinflammation, Nrf2/HO-1 and TLR4 Signaling Pathways. Biomedicines 2022; 10:biomedicines10112929. [PMID: 36428497 PMCID: PMC9687839 DOI: 10.3390/biomedicines10112929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Nicotinamide (NAM) is the amide form of niacin and an important precursor of nicotinamide adenine dinucleotide (NAD), which is needed for energy metabolism and cellular functions. Additionally, it has shown neuroprotective properties in several neurodegenerative diseases. Herein, we sought to investigate the potential protective mechanisms of NAM in an intraperitoneal (i.p) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model (wild-type mice (C57BL/6N), eight weeks old, average body weight 25-30 g). The study had four groups (n = 10 per group): control, MPTP (30 mg/kg i.p. for 5 days), MPTP treated with NAM (500 mg/kg, i.p for 10 days) and control treated with NAM. Our study showed that MPTP increased the expression of α-synuclein 2.5-fold, decreased tyrosine hydroxylase (TH) 0.5-fold and dopamine transporters (DAT) levels up to 0.5-fold in the striatum and substantia nigra pars compacta (SNpc), and impaired motor function. However, NAM treatment significantly reversed these PD-like pathologies. Furthermore, NAM treatment reduced oxidative stress by increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) between 0.5- and 1.0-fold. Lastly, NAM treatment regulated neuroinflammation by reducing Toll-like receptor 4 (TLR-4), phosphorylated nuclear factor-κB, tumor (p-NFκB), and cyclooxygenase-2 (COX-2) levels by 0.5- to 2-fold in the PD mouse brain. Overall, these findings suggest that NAM exhibits neuroprotective properties and may be an effective therapeutic agent for PD.
Collapse
|
35
|
Su W, Lv C, Huang L, Zheng X, Yang S. Glucosamine delays the progression of osteoporosis in senile mice by promoting osteoblast autophagy. Nutr Metab (Lond) 2022; 19:75. [DOI: 10.1186/s12986-022-00688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Senile osteoporosis (SOP) is one of the most prevalent diseases that afflict the elderly population, which characterized by decreased osteogenic ability. Glucosamine (GlcN) is an over-the-counter dietary supplement. Our previous study reported that GlcN promotes osteoblast proliferation by activating autophagy in vitro. The purpose of this study is to determine the effects and mechanisms of GlcN on senile osteoporosis and osteogenic differentiation in vivo.
Methods
Aging was induced by subcutaneous injection of d-Galactose (d-Gal), and treated with GlcN or vehicle. The anti-senile-osteoporosis effect of GlcN was explored by examining changes in micro-CT, serum indicators, body weight, protein and gene expression of aging and apoptosis. Additionally, the effects of GlcN on protein and gene expression of osteogenesis and autophagy were observed by inhibiting autophagy with 3-methyladenine (3-MA).
Results
GlcN significantly improved bone mineral density (BMD) and bone micro-architecture, decreased skeletal senescence and apoptosis and increased osteogenesis in d-Gal induced osteoporotic mice. While all effect was reversed with 3-MA.
Conclusion
GlcN effectively delayed the progression of osteoporosis in senile osteoporotic mice by promoting osteoblast autophagy. This study suggested that GlcN may be a prospective candidate drug for the treatment of SOP.
Collapse
|
36
|
Lee HJ, Choe K, Park JS, Khan A, Kim MW, Park TJ, Kim MO. O-Cyclic Phytosphingosine-1-Phosphate Protects against Motor Dysfunctions and Glial Cell Mediated Neuroinflammation in the Parkinson's Disease Mouse Models. Antioxidants (Basel) 2022; 11:2107. [PMID: 36358479 PMCID: PMC9686509 DOI: 10.3390/antiox11112107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 10/29/2023] Open
Abstract
O-cyclic phytosphingosine-1-phosphate (cPS1P) is a novel and chemically synthesized sphingosine metabolite derived from phytosphingosine-1-phosphate (S1P). This study was undertaken to unveil the potential neuroprotective effects of cPS1P on two different mouse models of Parkinson's disease (PD). The study used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and neuron specific enolase promoter human alpha-synuclein (NSE-hαSyn) Korl transgenic mice. MPTP was injected for five consecutive days and cPS1P was injected for alternate days for six weeks intraperitoneally. We performed behavioral tests and analyzed the immunohistochemistry and immunofluorescence staining in the substantia nigra pars compacta (SNpc) and the striatum. The behavior tests showed a significant reduction in the motor functions in the PD models, which was reversed with the administration of cPS1P. In addition, both PD-models showed reduced expression of the sphingosine-1-phosphate receptor 1 (S1PR1), and α-Syn which was restored with cPS1P treatment. In addition, administration of cPS1P restored dopamine-related proteins such as tyrosine hydroxylase (TH), vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT). Lastly, neuroinflammatory related markers such as glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter protein-1 (Iba-1), c-Jun N-terminal kinases (JNK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), tumor necrosis factor-alpha (TNF-α), and interleukin 1 beta (IL-1β) were all reduced after cPS1P administration. The overall findings supported the notion that cPS1P protects against dopamine depletion, neuroinflammation, and PD-associated symptoms.
Collapse
Affiliation(s)
- Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229ER Maastricht, The Netherlands
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Amjad Khan
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Min Woo Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Tae Ju Park
- Haemato-oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, UK
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
- Alz-Dementia Korea Co., Jinju 52828, Korea
| |
Collapse
|
37
|
Melatonin treatment improves cognitive deficits by altering inflammatory and neurotrophic factors in the hippocampus of obese mice. Physiol Behav 2022; 254:113919. [PMID: 35858673 DOI: 10.1016/j.physbeh.2022.113919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
Overweight and obesity are associated with an increased risk of developing dementia and cognitive deficits. Neuroinflammation is one of the most important mechanisms behind cognitive impairment in obese patients. In recent years, the neuroendocrine hormone melatonin has been suggested to have therapeutic effects for memory decline in several neuropsychiatric and neurological conditions. However, the effects of melatonin on cognitive function under obesity conditions still need to be clarified. The purpose of this study was to determine whether melatonin treatment can improve cognitive impairment in obese mice. To this end, male C57BL6 mice were treated with a high-fat diet (HFD) for 20 weeks to induce obesity. The animal received melatonin for 8 weeks. Cognitive functions were evaluated using the Y maze, object recognition test, and the Morris water maze. We measured inflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-17A, and brain-derived neurotrophic factor (BDNF) in the hippocampus of obese mice. Our results show that HFD-induced obesity significantly impaired working, spatial and recognition memory by increasing IFN-γ and IL-17A and decreasing BDNF levels in the hippocampus of mice. On the other hand, melatonin treatment effectively improved all cognitive impairments and reduced TNF-α, IFN-γ, and IL-17A and elevated BDNF levels in the hippocampus of obese mice. Taken together, this study suggests that melatonin treatment could have a beneficial role in the treatment of cognitive impairment in obesity.
Collapse
|
38
|
Sundram S, Malviya R, Awasthi R. Genetic Causes of Alzheimer's Disease and the Neuroprotective Role of Melatonin in its Management. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126085. [PMID: 36056839 DOI: 10.2174/1871527321666220901125730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Dementia is a global health concern owing to its complexity, which also poses a great challenge to pharmaceutical scientists and neuroscientists. The global dementia prevalence is approximately 47 million, which may increase by three times by 2050. Alzheimer's disease (AD) is the most common cause of dementia. AD is a severe age-related neurodegenerative disorder characterized by short-term memory loss, aphasia, mood imbalance, and executive function. The etiology of AD is still unknown, and the exact origin of the disease is still under investigation. Aggregation of Amyloid β (Aβ) plaques or neurotoxic Aβo oligomers outside the neuron is the most common cause of AD development. Amyloid precursor protein (APP) processing by β secretase and γ secretase produces abnormal Aβ monomers. This aggregation of Aβ and NFT is promoted by various genes like BACE1, ADAM10, PIN1, GSK-3, APOE, PPARα, etc. Identification of these genes can discover several therapeutic targets that can be useful in studying pathogenesis and underlying treatments. Melatonin modulates the activities of these genes, thereby reducing Aβ production and increasing its clearance. Melatonin also reduces the expression of APP by attenuating cAMP, thereby enhancing the non-amyloidogenic process. Present communication explored and discussed the neuroprotective role of melatonin against Aβ-dependent AD pathogenesis. The manuscript also discussed potential molecular and genetic mechanisms of melatonin in the production and clearance of Aβ that could ameliorate neurotoxicity.
Collapse
Affiliation(s)
- Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Science and Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, Bidholi, Via-Prem Nagar, Dehradun - 248 007, Uttarakhand, India
| |
Collapse
|
39
|
Li LB, Fan YG, Wu WX, Bai CY, Jia MY, Hu JP, Gao HL, Wang T, Zhong ML, Huang XS, Guo C. Novel melatonin-trientine conjugate as potential therapeutic agents for Alzheimer's disease. Bioorg Chem 2022; 128:106100. [PMID: 35988518 DOI: 10.1016/j.bioorg.2022.106100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022]
Abstract
Researchers continue to explore drug targets to treat the characteristic pathologies of Alzheimer's disease (AD). Some drugs relieve the pathological processes of AD to some extent, but the failed clinical trials indicate that multifunctional agents seem more likely to achieve the therapy goals for this neurodegenerative disease. Herein, a novel compound named melatonin-trientine (TM) has been covalently synthesized with the natural antioxidant compounds melatonin and the metal ion chelator trientine. After toxicological and pharmacokinetic verification, we elucidated the effects of intraperitoneal administration of TM on AD-like pathology in 6-month-old mice that express both the β-amyloid (Aβ) precursor protein and presenilin-1 (APP/PS1). We found that TM significantly decreased Aβ deposition and neuronal degeneration in the brains of the APP/PS1 double transgenic mice. This result may be due to the upregulation of iron regulatory protein-2 (IRP2), insulin degrading enzyme (IDE), and low density lipoprotein receptor related protein 1 (LRP1), which leads to decreases in APP and Aβ levels. Additionally, TM may promote APP non-amyloidogenic processing by activating the melatonin receptor-2 (MT2)-dependent signaling pathways, but not MT1. In addition, TM plays an important role in blocking γ-secretase, tau hyperphosphorylation, neuroinflammation, oxidative stress, and metal ion dyshomeostasis. Our results suggest that TM may effectively maximize the therapeutic efficacy of targeting multiple mechanisms associated with AD pathology.
Collapse
Affiliation(s)
- Lin-Bo Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Gang Fan
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wen-Xi Wu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Chen-Yang Bai
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Meng-Yu Jia
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jiang-Ping Hu
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Hui-Ling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Man-Li Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
40
|
Wang G, Wang X, Zheng X, Sun S, Zhao J, Long Y, Mao Y. Acidic oligosaccharide sugar chain combined with hyperbaric oxygen delays D-galactose-induced brain senescence in mice via attenuating oxidative stress and neuroinflammation. Neurosci Res 2022; 185:40-48. [PMID: 35970311 DOI: 10.1016/j.neures.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Aging is fundamental to neurodegeneration and dementia. Preventing oxidative stress and neuroinflammation are potential methods of delaying the onset of aging-associated neurodegenerative diseases. The acidic oligosaccharide sugar chain (AOSC) and hyperbaric oxygen (HBO) can increase the expression of antioxidants and have a neuroprotective function. In this study, we investigate the ability of AOSC, HBO, and AOSC + HBO to prevent D-gal-induced brain senescence. The Morris water maze and Y-maze test results showed that all three therapies significantly attenuated D-gal-induced memory disorders. A potential mechanism of this action was decreasing elevated levels of oxidative stress and neuroinflammation. The western blot and morphological results showed that all three therapies decreased D-gal-induced neuroinflammation and downregulated inflammatory mediators including the nuclear factor κ-light-chain-enhancer of activated B cells, cyclooxygenase-2, interleukin-1β, and tumor necrosis factor alpha. Taken together, our results indicated that AOSC, HBO, and AOSC + HBO therapies attenuated D-gal-induced brain aging in mice by repressing RAGE/NF-KB-induced inflammation, the activation of astrocytes and microglia, and a decrease in neuronal degeneration. These could be useful therapies for treating age-related neurodegenerative diseases such as Alzheimer's disease. Furthermore, HBO combined with AOSC had a better effect than HBO or AOSC alone.
Collapse
Affiliation(s)
- Guimei Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaolin Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaoyue Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shuqin Sun
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jing Zhao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ying Long
- Department of Hyperbaric Oxygen, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
41
|
Wang W, Xu C, Zhou X, Zhang L, Gu L, Liu Z, Ma J, Hou J, Jiang Z. Lactobacillus plantarum Combined with Galactooligosaccharides Supplement: A Neuroprotective Regimen Against Neurodegeneration and Memory Impairment by Regulating Short-Chain Fatty Acids and the c-Jun N-Terminal Kinase Signaling Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8619-8630. [PMID: 35816280 DOI: 10.1021/acs.jafc.2c01950] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Probiotics and prebiotics have received attention in alleviating neurodegenerative diseases. Lactobacillus plantarum (L. plantarum) 69-2 was combined with galactooligosaccharides (GOS) and supplemented in a d-galactose (d-gal)-induced neurodegeneration and memory impairment mice model to explore its effects on the brain and the regulation of short-chain fatty acids. The results showed that the L. plantarum-GOS supplementation inhibited d-gal-induced oxidative stress and increased the brain's nuclear factor erythroid 2-related factor 2 (Nrf2) levels. Butyrate, a metabolite of the gut microbiota regulated by L. plantarum combined with GOS, inhibits p-JNK expression, downregulates pro-apoptotic proteins expression and the activation of inflammatory mediators, and upregulates synaptic protein expression. This might be a potential mechanism for L. plantarum 69-2 combined with GOS supplementation to alleviate d-gal-induced neurodegeneration and memory impairment. This study sheds new light on the development of aging-related neuroprotective dietary supplements based on the gut-brain axis.
Collapse
Affiliation(s)
- Wan Wang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xuan Zhou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Le Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liya Gu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhijing Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jiage Ma
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Juncai Hou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
42
|
Antioxidative potential of Lactobacillus sp. in ameliorating D-galactose-induced aging. Appl Microbiol Biotechnol 2022; 106:4831-4843. [PMID: 35781838 PMCID: PMC9329405 DOI: 10.1007/s00253-022-12041-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
Abstract
Aging is a progressive, unalterable physiological degradation process of living organisms, which leads to deterioration of biological function and eventually to senescence. The most prevalent factor responsible for aging is the accumulation of damages resulting from oxidative stress and dysbiosis. D-galactose-induced aging has become a hot topic, and extensive research is being conducted in this area. Published literature has reported that the continuous administration of D-galactose leads to the deterioration of motor and cognitive skills, resembling symptoms of aging. Hence, this procedure is employed as a model for accelerated aging. This review aims to emphasize the effect of D-galactose on various bodily organs and underline the role of the Lactobacillus sp. in the aging process, along with its anti-oxidative potential. A critical consideration to the literature describing animal models that have used the Lactobacillus sp. in amending D-galactose-induced aging is also given. KEY POINTS: • D-Galactose induces the aging process via decreasing the respiratory chain enzyme activity as well as ATP synthesis, mitochondrial dysfunction, and increased ROS production. • D-Galactose induced aging primarily affects the brain, heart, lung, liver, kidney, and skin. • The anti-oxidative potential of Lactobacillus sp. in improving D-galactose-induced aging in animal models via direct feeding and feeding of Lactobacillus-fermented food.
Collapse
|
43
|
Rahman MA, Shuvo AA, Bepari AK, Hasan Apu M, Shill MC, Hossain M, Uddin M, Islam MR, Bakshi MK, Hasan J, Rahman A, Rahman GMS, Reza HM. Curcumin improves D-galactose and normal-aging associated memory impairment in mice: In vivo and in silico-based studies. PLoS One 2022; 17:e0270123. [PMID: 35767571 PMCID: PMC9242463 DOI: 10.1371/journal.pone.0270123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Aging-induced memory impairment is closely associated with oxidative stress. D-Galactose (D-gal) evokes severe oxidative stress and mimics normal aging in animals. Curcumin, a natural flavonoid, has potent antioxidant and anti-aging properties. There are several proteins like glutathione S-transferase A1 (GSTA1), glutathione S-transferase omega-1 (GSTO1), kelch-like ECH-associated protein 1 (KEAP1), beta-secretase 1 (BACE1), and amine oxidase [flavin-containing] A (MAOA) are commonly involved in oxidative stress and aging. This study aimed to investigate the interaction of curcumin to these proteins and their subsequent effect on aging-associated memory impairment in two robust animal models: D-Gal and normal aged (NA) mice. The aging mice model was developed by administering D-gal intraperitoneally (i.p). Mice (n = 64) were divided into the eight groups (8 mice in each group): Vehicle, Curcumin-Control, D-gal (100mg/kg; i.p), Curcumin + D-gal, Astaxanthin (Ast) + D-gal, Normal Aged (NA), Curcumin (30mg/kg Orally) + NA, Ast (20mg/kg Orally) + NA. Retention and freezing memories were assessed by passive avoidance (PA) and contextual fear conditioning (CFC). Molecular docking was performed to predict curcumin binding with potential molecular targets. Curcumin significantly increased retention time (p < 0.05) and freezing response (p < 0.05) in PA and CFC, respectively. Curcumin profoundly ameliorated the levels of glutathione, superoxide dismutase, catalase, advanced oxidation protein products, nitric oxide, and lipid peroxidation in mice hippocampi. In silico studies revealed favorable binding energies of curcumin with GSTA1, GSTO1, KEAP1, BACE1, and MAOA. Curcumin improves retention and freezing memory in D-gal and nature-induced aging mice. Curcumin ameliorates the levels of oxidative stress biomarkers in mice. Anti-aging effects of curcumin could be attributed to, at least partially, the upregulation of antioxidant enzymes through binding with GSTA1, GSTO1, KEAP1, and inhibition of oxidative damage through binding with BACE1 and MAOA.
Collapse
Affiliation(s)
- Md. Ashrafur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Science Center (TTUHSC), Amarillo, TX, United States of America
- * E-mail: (MAR); (HMR)
| | - Arif Anzum Shuvo
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mehedi Hasan Apu
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - Md. Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Monjurul Kader Bakshi
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Javed Hasan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Atiqur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | | | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
- * E-mail: (MAR); (HMR)
| |
Collapse
|
44
|
Chen S, Hu N, Wang H, Li G. The major anthocyanin of Lycium ruthenicum Murr. relieves cognitive deficits, oxidative stress, neuroinflammation, and hippocampal metabolome alterations in aging rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
45
|
Liu B, Chen B, Yi J, Long H, Wen H, Tian F, Liu Y, Xiao L, Li L. Liuwei Dihuang Decoction Alleviates Cognitive Dysfunction in Mice With D-Galactose-Induced Aging by Regulating Lipid Metabolism and Oxidative Stress via the Microbiota-Gut-Brain Axis. Front Neurosci 2022; 16:949298. [PMID: 35844229 PMCID: PMC9283918 DOI: 10.3389/fnins.2022.949298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Aging is an important cause of cognitive dysfunction. Liuwei Dihuang decoction (LW), a commonly applied Chinese medicine formula, is widely used for the treatment of aging-related diseases in China. Previously, LW was confirmed to be effective in prolonging life span and reducing oxidative stress in aged mice. Unfortunately, the underlying mechanism of LW remains unclear. The aim of this study was to interpret the mechanism by which LW alleviates cognitive dysfunction related to aging from the perspective of the microbiota-gut-brain axis. Method All C57BL/6 mice (n = 60) were randomly divided into five groups: the control, model, vitamin E (positive control group), low-dose LW and high-dose LW groups (n = 12 in each group). Except for those in the control group, D-galactose was subcutaneously injected into mice in the other groups to induce the aging model. The antiaging effect of LW was evaluated by the water maze test, electron microscopy, 16S rRNA sequencing, combined LC–MS and GC–MS metabolomics, and ELISA. Results Liuwei Dihuang decoction ameliorated cognitive dysfunction and hippocampal synaptic ultrastructure damage in aging mice. Moreover, LW decreased Proteobacteria abundance and increased gut microbiota diversity in aging mice. Metabolomic analysis showed that LW treatment was associated with the significantly differential abundance of 14 metabolites, which were mainly enriched in apelin signaling, sphingolipid metabolism, glycerophospholipid and other metabolic pathways. Additionally, LW affected lipid metabolism and oxidative stress in aging mice. Finally, we also found that LW-regulated microbial species such as Proteobacteria and Fibrobacterota had potential relationships with lipid metabolism, oxidative stress and hippocampal metabolites. Conclusion In brief, LW improved cognitive function in aging mice by regulating lipid metabolism and oxidative stress through restoration of the homeostasis of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Baiyan Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Baiyan Liu,
| | - Bowei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
| | - Hongping Long
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Huiqiao Wen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Fengming Tian
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Yingfei Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Lan Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lisong Li
- College of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
46
|
Wang Q, Xi Y, Chen B, Zhao H, Yu W, Xie D, Liu W, He F, Xu C, Cheng J. Receptor of Advanced Glycation End Products Deficiency Attenuates Cisplatin-Induced Acute Nephrotoxicity by Inhibiting Apoptosis, Inflammation and Restoring Fatty Acid Oxidation. Front Pharmacol 2022; 13:907133. [PMID: 35712715 PMCID: PMC9196246 DOI: 10.3389/fphar.2022.907133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is a widely used and potent anti-neoplastic agent, but severe and inescapable side effects in multiple normal tissues and organs limit its application, especially nephrotoxicity. Molecular mechanisms of cisplatin nephrotoxicity involve mitochondrial damage, oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis, necroptosis, etc. Receptor of advanced glycation end products (RAGE) is a multiligand pattern recognition receptor, engaged in inflammatory signaling and mitochondrial homeostasis. Whether inhibition of RAGE alleviates cisplatin-induced nephropathy has not been investigated. Here, we revealed that RAGE deficiency attenuates cisplatin-induced acute nephrotoxicity, as evidenced by reduced apoptosis, inflammation, lipid accumulation, restored mitochondrial homeostasis and fatty acid oxidation in renal tubular epithelial cells (TECs). In vitro studies showed that, the RAGE-specific inhibitor FPS-ZM1 attenuated the cisplatin-induced decrease of cell viability and fatty acid oxidation in the normal rat renal TEC line NRK-52E cells. Taken together, RAGE knockout mitigated cisplatin-induced acute nephrotoxicity by inhibiting apoptosis, inflammation, and restoring fatty acid oxidation in TECs, suggesting that RAGE inhibition could be a therapeutic option for cisplatin-induced acute nephrotoxicity.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Yuemei Xi
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Hairong Zhao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Wei Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Weidong Liu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Chenxi Xu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| |
Collapse
|
47
|
Naz S, Al Kury LT, Nadeem H, Shah FA, Ullah A, Paracha RZ, Imran M, Li S. Synthesis, In Silico and Pharmacological Evaluation of New Thiazolidine-4-Carboxylic Acid Derivatives Against Ethanol-Induced Neurodegeneration and Memory Impairment. J Inflamm Res 2022; 15:3643-3660. [PMID: 35783245 PMCID: PMC9241999 DOI: 10.2147/jir.s357082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Several studies revealed that alcohol utilization impairs memory in adults; however, the underlying mechanism is still unclear. The production of inflammatory markers and reactive oxygen species (ROS) plays a major role in neurodegeneration, which leads to memory impairment. Therefore, targeting neuroinflammation and oxidative distress could be a useful strategy for abrogating the hallmarks of ethanol-induced neurodegeneration. Moreover, several studies have demonstrated multiple biological activities of thiazolidine derivatives including neuroprotection. Methods In the current study, we synthesized ten (10) new thiazolidine-4-carboxylic acid derivatives (P1-P10), characterized their synthetic properties using proton nuclear magnetic resonance (1H-NMR) and carbon-13 NMR, and further investigated the neuroprotective potential of these compounds in an ethanol-induced neuroinflammation model. Results Our results suggested altered levels of antioxidant enzymes associated with an elevated level of tumor necrosis factor-alpha (TNF-α), nuclear factor-κB (p-NF-κB), pyrin domain-containing protein 3 (NLRP3), and cyclooxygenase-2 (COX-2) in ethanol-treated animals. Ethanol treatment also led to memory impairment in rats, as assessed by behavioral tests. To further support our notion, we performed molecular docking studies, and all synthetic compounds exhibited a good binding affinity with a fair bond formation with selected targets (NF-κB, TLR4, NLRP3, and COX-2). Discussion Overall, our results revealed that these derivatives may be beneficial in reducing neuroinflammation by acting on different stages of inflammation. Moreover, P8 and P9 treatment attenuated the neuroinflammation, oxidative stress, and memory impairment caused by ethanol.
Collapse
Affiliation(s)
- Shagufta Naz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People’s Republic of China
| | - Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, 49153, United Arab Emirates
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
- Correspondence: Humaira Nadeem, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan, Tel +92 51-2891835, Fax +92 51-8350180, Email
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Aman Ullah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling & Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Imran
- Department of Pharmacy, IQRA University, Islamabad, 44000, Pakistan
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People’s Republic of China
- Shupeng Li, State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People’s Republic of China, Email
| |
Collapse
|
48
|
Faruk EM, Fouad H, Hasan RAA, Taha NM, El-Shazly AM. Inhibition of gene expression and production of iNOS and TNF-α in experimental model of neurodegenerative disorders stimulated microglia by Soy nano-isoflavone/stem cell-exosomes. Tissue Cell 2022; 76:101758. [PMID: 35182987 DOI: 10.1016/j.tice.2022.101758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022]
Abstract
The present study evaluated the therapeutic potential of soybean nano-isoflavone extract versus bone marrow mesenchymal stem cells derived extracellular exosomes (BMSCs-EXs) in experimentally induced neurodegenerative diseases in rats (ND). In this study, 36 albino male rats were divided into four groups: Group I (control rats); Group II (induced neurodegenerative disease in rats by intraperitoneal injection of d-galactose (120 mg/kg/day for 2 months); Group III (ND-induced rats treated with nano-isoflavone in doses of 10 mg/kg by oral gavage for 3 months); and Group IV (ND-induced rats treated with a single dose injection of BMSCs-EXs. The effect of BMSCs-EXs was evaluated by cerebral oxidant/antioxidant biomarkers, and mRNA gene expression quantitation for cerebral tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (i-NOS) and GAPDH pathway-encoding genes by real time reverse transcription polymerase chain reaction (RT-PCR) techniques. Then, histopathological examination of the cerebral cortical tissues. Our results showed that BMSC-EXs were successfully isolated and characterized. d-galactose produced a significant rise in the number of damaged neurons, decreased cerebral superoxide dismutase and catalase activities, increased cerebral malondialdehyde levels, downregulated the cerebral TNF-α, and i-NOS pathway-encoding genes. Furthermore, BMSC-EXs and nano-isoflavone treatments repaired damaged cerebral tissue and recovered its function greatly following induction of neurodegenerative disease. Treatment with either MSCs-EXs or nano-isoflavones led to significant improvement in the histological findings, reversed the degenerative effect of d-galactose, and had a favorable therapeutic utility against d- galactose-induced neurodegenerative disease.
Collapse
Affiliation(s)
- Eman Mohamed Faruk
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Histology & Cell Biology, Faculty of Medicine, Benha University, Egypt.
| | - Hanan Fouad
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Cairo University, Egypt; Galala University, Faculty of medicine, Suez Governorate, Egypt
| | - Rehab Abd Allah Hasan
- Department of Histology & Cell Biology, Faculty of Medicine for Girls; AFMG, Al-Azhar University Egypt
| | | | | |
Collapse
|
49
|
Cao F, Liu S, Li Z, Meng L, Sang M, Shan B. Activation of circ_0072088/miR-1261/PIK3CA pathway accelerates lung adenocarcinoma progression. Thorac Cancer 2022; 13:1548-1557. [PMID: 35474604 PMCID: PMC9161339 DOI: 10.1111/1759-7714.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are involved in the tumorigenesis and progression of lung adenocarcinoma (LUAD). This study aimed to determine the role of circ_0072088 in LUAD. METHODS The existence and expression of circ_0072088 in human LUAD tissues and cell lines were determined through Sanger sequencing, quantitative reverse transcription-polymerase chain reaction, and fluorescence in situ hybridization (FISH). Subsequently, the biological role of circ_0072088 was examined using loss-of-function assays in H1299 cells. Moreover, circ_0072088/miR-1261/PIK3CA pathway-mediated biological effects in H1299 were verified using bioinformatic prediction and experiments, including interaction analysis (FISH, luciferase reporter, and RNA-pulldown assays), and tumor biological function test (CCK8 and colony formation, wound healing, and transwell assays). Finally, miR-1261 and PIK3CA expression and LUAD patient survival were further analyzed using FISH, immunohistochemical staining, and the Kaplan-Meier plotter database, respectively. RESULTS First, an increase in circ_0072088 was confirmed in human LUAD tissues. Thereafter, it was mainly localized in the cytoplasm and was found to enhance cell proliferation, migration, and invasion of H1299 cells. Mechanistically, circ_0072088 directly downregulated miR-1261 expression, whereas increased PIK3CA gene expression was associated with poor overall survival of LUAD patients. The activation of the circ_0072088/miR-1261/PIK3CA regulatory pathway may play a significant role in the tumorigenesis and progression of LUAD. CONCLUSIONS Circ_0072088-dependent regulation of miR-1261/PIK3CA is important for cell proliferation, migration, and invasion during the tumorigenesis and progression of LUAD, warranting the need to consider the circ_0072088/miR-1261/PIK3CA regulatory pathway as a potential therapeutic target in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Feng Cao
- Department of Radiation Oncologythe Fourth Hospital of HebeiMedical UniversityShijiazhuangChina
| | - Sihua Liu
- Research Center, the Fourth Hospital of HebeiMedical UniversityShijiazhuangChina
| | - Ziyi Li
- Research Center, the Fourth Hospital of HebeiMedical UniversityShijiazhuangChina
| | - Lingjiao Meng
- Research Center, the Fourth Hospital of HebeiMedical UniversityShijiazhuangChina
| | - Meixiang Sang
- Research Center, the Fourth Hospital of HebeiMedical UniversityShijiazhuangChina
| | - Baoen Shan
- Research Center, the Fourth Hospital of HebeiMedical UniversityShijiazhuangChina
| |
Collapse
|
50
|
Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms23116086. [PMID: 35682768 PMCID: PMC9181489 DOI: 10.3390/ijms23116086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) signifies a major cause of death and disability. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Astrocytes and microglia, cells of the CNS, are considered the key players in initiating an inflammatory response after injury. Several evidence suggests that activation of astrocytes/microglia and ROS/LPO have the potential to cause more harmful effects in the pathological processes following traumatic brain injury (TBI). Previous studies have established that lupeol provides neuroprotection through modulation of inflammation, oxidative stress, and apoptosis in Aβ and LPS model and neurodegenerative disease. However, the effects of lupeol on apoptosis caused by inflammation and oxidative stress in TBI have not yet been investigated. Therefore, we explored the role of Lupeol on antiapoptosis, anti-inflammatory, and antioxidative stress and its potential mechanism following TBI. In these experiments, adult male mice were randomly divided into four groups: control, TBI, TBI+ Lupeol, and Sham group. Western blotting, immunofluorescence staining, and ROS/LPO assays were performed to investigate the role of lupeol against neuroinflammation, oxidative stress, and apoptosis. Lupeol treatment reversed TBI-induced behavioral and memory disturbances. Lupeol attenuated TBI-induced generation of reactive oxygen species/lipid per oxidation (ROS/LPO) and improved the antioxidant protein level, such as nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1) in the mouse brain. Similarly, our results indicated that lupeol treatment inhibited glial cell activation, p-NF-κB, and downstream signaling molecules, such as TNF-α, COX-2, and IL-1β, in the mouse cortex and hippocampus. Moreover, lupeol treatment also inhibited mitochondrial apoptotic signaling molecules, such as caspase-3, Bax, cytochrome-C, and reversed deregulated Bcl2 in TBI-treated mice. Overall, our study demonstrated that lupeol inhibits the activation of astrocytes/microglia and ROS/LPO that lead to oxidative stress, neuroinflammation, and apoptosis followed by TBI.
Collapse
|