1
|
Lee K, Back K. Functional Characterization of the Ciliate Stylonychia lemnae Serotonin N-Acetyltransferase, a Pivotal Enzyme in Melatonin Biosynthesis and Its Overexpression Leads to Peroxidizing Herbicide Tolerance in Rice. Antioxidants (Basel) 2024; 13:1177. [PMID: 39456431 PMCID: PMC11505474 DOI: 10.3390/antiox13101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Serotonin N-acetyltransferase (SNAT) is a pivotal enzyme for melatonin biosynthesis in all living organisms. It catalyzes the conversion of serotonin to N-acetylserotonin (NAS) or 5-methoxytrypytamine (5-MT) to melatonin. In contrast to animal- and plant-specific SNAT genes, a novel clade of archaeal SNAT genes has recently been reported. In this study, we identified homologues of archaeal SNAT genes in ciliates and dinoflagellates, but no animal- or plant-specific SNAT homologues. Archaeal SNAT homologue from the ciliate Stylonychia lemnae was annotated as a putative N-acetyltransferase. To determine whether the putative S. lemnae SNAT (SlSNAT) exhibits SNAT enzyme activity, we chemically synthesized and expressed the full-length SlSNAT coding sequence (CDS) in Escherichia coli, from which the recombinant SlSNAT protein was purified by Ni2+ affinity column chromatography. The recombinant SlSNAT exhibited SNAT enzyme activity toward serotonin (Km = 776 µM) and 5-MT (Km = 246 µM) as substrates. Furthermore, SlSNAT-overexpressing (SlSNAT-OE) transgenic rice plants showed higher levels of melatonin synthesis than wild-type controls. The SlSNAT-OE rice plants exhibited delayed leaf senescence and tolerance against treatment with the reactive oxygen species (ROS)-inducing herbicide butafenacil by decreasing hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, suggesting that melatonin alleviates ROS production in vivo.
Collapse
Affiliation(s)
| | - Kyoungwhan Back
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| |
Collapse
|
2
|
Frings S, Schmidt-Schippers R, Lee WK. Epigenetic alterations in bioaccumulators of cadmium: Lessons from mammalian kidneys and plants. ENVIRONMENT INTERNATIONAL 2024; 191:109000. [PMID: 39278047 DOI: 10.1016/j.envint.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Faced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure. Even in small amounts, cadmium brings about alterations at the molecular and cellular levels in eukaryotes through mutagenicity, molecular mimicry at metal binding sites and oxidative stress. The epigenome dictates expression of a gene's output through a number of regulatory steps involving chromatin remodeling, nucleosome unwinding, DNA accessibility, or nucleic acid modifications that ultimately impact the transcriptional and translational machinery. Several epigenetic enzymes exhibit zinc-dependence as zinc metalloenzymes and zinc finger proteins thus making them susceptible to deregulation through displacement by cadmium. In this review, we summarize the literature on cadmium-induced epigenetic mechanisms in mammalian kidneys and plants, compare similarities in the epigenetic defense between these bioaccumulators, and explore how future studies could advance our understanding of the cadmium-induced stress response and disruption to biological health.
Collapse
Affiliation(s)
- Stephanie Frings
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
3
|
Gu Q, Xie C, Zhang S, Zhou T, Li N, Xu C, Zhou Z, Wang C, Chen Z. Transcriptomic analysis provides insights into the molecular mechanism of melatonin-mediated cadmium tolerance in Medicago sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116411. [PMID: 38714085 DOI: 10.1016/j.ecoenv.2024.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/09/2024]
Abstract
Cadmium (Cd), a toxic element, often makes a serious threat to plant growth and development. Previous studies found that melatonin (Mel) reduced Cd accumulation and reestablished the redox balance to alleviate Cd stress in Medicago sativa L., however, the complex molecular mechanisms are still elusive. Here, comparative transcriptome analysis and biochemical experiments were conducted to explore the molecular mechanisms of Mel in enhancing Cd tolerance. Results showed that 7237 differentially expressed genes (DEGs) were regulated by Mel pretreatment to Cd stress compared to the control condition in roots of Medicago sativa L. Besides, in comparison with Cd stress alone, Mel upregulated 1081 DEGs, and downregulated 1085 DEGs. These DEGs were mainly involved in the transcription and translation of genes and folding, sorting and degradation of proteins, carbohydrate metabolism, and hormone signal network. Application of Mel regulated the expression of several genes encoding ribosomal protein and E3 ubiquitin-protein ligase involved in folding, sorting and degradation of proteins. Moreover, transcriptomic analyse suggested that Mel might regulate the expression of genes encoding pectin lyase, UDP-glucose dehydrogenase, sucrose-phosphate synthase, hexokinase-1, and protein phosphorylation in the sugar metabolism. Therefore, these could promote sucrose accumulation and subsequently alleviate the Cd damage. In conclusion, above findings provided the mining of important genes and molecular basis of Mel in mitigating Cd tolerance and genetic cultivation of Medicago sativa L.
Collapse
Affiliation(s)
- Quan Gu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
| | - Chenyang Xie
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Song Zhang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Tingyan Zhou
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Na Li
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China; School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Congshan Xu
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
| | - Zhou Zhou
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China
| | - Chuyan Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China.
| | - Ziping Chen
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, China; Anhui Province Product Quality Supervision and Inspection Institute, Hefei 230000, China.
| |
Collapse
|
4
|
Qiu CW, Richmond M, Ma Y, Zhang S, Liu W, Feng X, Ahmed IM, Wu F. Melatonin enhances cadmium tolerance in rice via long non-coding RNA-mediated modulation of cell wall and photosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133251. [PMID: 38141306 DOI: 10.1016/j.jhazmat.2023.133251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
In plants, melatonin (MLT) is a versatile signaling molecule involved in promoting plant development and mitigating the damage caused by heavy metal exposure. Long non-coding RNAs (lncRNAs) are essential components in the plant's response to various abiotic stress, functioning within the gene regulatory network. Here, a hydroponic experiment was performed to explore the involvement of lncRNAs in MLT-mediated amelioration of cadmium (Cd) toxicity in rice plants. The results demonstrated that applying 250 mg L-1 MLT in a solution containing 10 μM Cd leads to an effective reduction of 30.0% in shoot Cd concentration. Remarkably, the treatment resulted in a 21.2% improvement in potassium and calcium uptake, a 164.5% enhancement in net photosynthetic rate, and a 33.2% decrease in malondialdehyde accumulation, resulting increases in plant height, root length, and biomass accumulation. Moreover, a transcriptome analysis revealed 2510 differentially expressed transcripts, including the Cd transporters (-3.82-fold downregulated) and the Cd tolerance-associated genes (1.24-fold upregulated). Notably, regulatory network prediction uncovered 6 differentially expressed lncRNAs that act as competitive endogenous RNA or in RNA complex interactions. These key lncRNAs regulate the expression of target genes that are involved in pectin and cellulose metabolism, scavenging of reactive oxygen species, salicylic acid-mediated defense response, and biosynthesis of brassinosteroids, which ultimately modify the cell wall for Cd adsorption, safeguard photosynthesis, and control hormone signaling to reduce Cd toxicity. Our results unveiled a crucial lncRNA-mediated mechanism underlying MLT's role in Cd detoxification in rice plants, providing potential applications in agricultural practices and environmental remediation.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Marvin Richmond
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Imrul Mosaddek Ahmed
- Plant Biotechnology Laboratory, Center for Viticulture & Small Fruit Research, Florida A&M University, FL 32317, USA
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Miao R, Li Z, Yuan Y, Yan X, Pang Q, Zhang A. Endogenous melatonin involved in plant salt response by impacting auxin signaling. PLANT CELL REPORTS 2024; 43:33. [PMID: 38200226 DOI: 10.1007/s00299-023-03097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/05/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE The study on melatonin biosynthesis mutant snat1snat2 revealed that endogenous melatonin plays an important role in salt responsiveness by mediating auxin signaling. Melatonin is a pleiotropic signaling molecule, which, besides being involved in multiple growth and developmental processes, also mediates environmental stress responses. However, whether and how endogenous melatonin is involved in salt response has not been determined. In this study, we elucidated the involvement of endogenous melatonin in salt response by investigatiing the impact of salt stress on a double mutant of Arabidopsis (snat1snat2) defective in melatonin biosynthesis genes SNAT1 and SNAT2. This mutant was found to exhibit salt sensitivity, manifested by unhealthy growth, ion imbalance and ROS accumulation under salt stress. Transcriptomic profiles of snat1snat2 revealed that the expression of a large number of salt-responsive genes was affected by SNAT defect, and these genes were closely related to the synthesis of auxin and several signaling pathways. In addition, the salt-sensitive growth phenotype of snat1snat2 was alleviated by the application of exogenous auxin. Our results show that endogenous melatonin may be essential for plant salt tolerance, a function that could be correlated with diverse activity in mediating auxin signaling.
Collapse
Affiliation(s)
- Rongqing Miao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiqi Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Yue Yuan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xiufeng Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Aiqin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Shamloo-Dashtpagerdi R, Lindlöf A, Nouripour-Sisakht J. Unraveling the regulatory role of MYC2 on ASMT gene expression in wheat: Implications for melatonin biosynthesis and drought tolerance. PHYSIOLOGIA PLANTARUM 2023; 175:e14015. [PMID: 37882265 DOI: 10.1111/ppl.14015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 10/27/2023]
Abstract
Recognized for its multifaceted functions, melatonin is a hormone found in both animals and plants. In the plant kingdom, it plays diverse roles, regulating growth, development, and stress responses. Notably, melatonin demonstrates its significance by mitigating the effects of abiotic stresses like drought. However, understanding the precise regulatory mechanisms controlling melatonin biosynthesis genes, especially during monocots' response to stresses, requires further exploration. Seeking to understand the molecular basis of drought stress tolerance in wheat, we analyzed RNA-Seq libraries of wheat exposed to drought stress using bioinformatics methods. In light of our findings, we identified that the Myelocytomatosis oncogenes 2 (MYC2) transcription factor is a hub gene upstream of a main melatonin biosynthesis gene, N-acetylserotonin methyltransferase (ASMT), in the wheat drought response-gene network. Promoter analysis of the ASMT gene suggested that it might be a target gene of MYC2. We conducted a set of molecular and physiochemical assays along with robust machine learning approaches to elevate those findings further. MYC2 and ASMT were co-regulated under Jasmonate, drought, and a combination of them in the leaf tissues of wheat was detected. A meaningful correlation was observed among gene expression profiles, melatonin contents, photosynthetic activities, antioxidant enzyme activities, H2 O2 levels, and plasma membrane damage. The results indicated an evident relationship between jasmonic acid and the melatonin biosynthesis pathway. Moreover, it seems that the MYC2-ASMT module might contribute to wheat drought tolerance by regulating melatonin contents.
Collapse
Affiliation(s)
| | | | - Javad Nouripour-Sisakht
- Department of Plant Production and Genetics, College of Agricultural Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
7
|
Sahoo B, Nayak I, Parameswaran C, Kesawat MS, Sahoo KK, Subudhi HN, Balasubramaniasai C, Prabhukarthikeyan SR, Katara JL, Dash SK, Chung SM, Siddiqui MH, Alamri S, Samantaray S. A Comprehensive Genome-Wide Investigation of the Cytochrome 71 ( OsCYP71) Gene Family: Revealing the Impact of Promoter and Gene Variants (Ser33Leu) of OsCYP71P6 on Yield-Related Traits in Indica Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3035. [PMID: 37687282 PMCID: PMC10490456 DOI: 10.3390/plants12173035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The cytochrome P450 (CYP450) gene family plays a critical role in plant growth and developmental processes, nutrition, and detoxification of xenobiotics in plants. In the present research, a comprehensive set of 105 OsCYP71 family genes was pinpointed within the genome of indica rice. These genes were categorized into twelve distinct subfamilies, where members within the same subgroup exhibited comparable gene structures and conserved motifs. In addition, 105 OsCYP71 genes were distributed across 11 chromosomes, and 36 pairs of OsCYP71 involved in gene duplication events. Within the promoter region of OsCYP71, there exists an extensive array of cis-elements that are associated with light responsiveness, hormonal regulation, and stress-related signaling. Further, transcriptome profiling revealed that a majority of the genes exhibited responsiveness to hormones and were activated across diverse tissues and developmental stages in rice. The OsCYP71P6 gene is involved in insect resistance, senescence, and yield-related traits in rice. Hence, understanding the association between OsCYP71P6 genetic variants and yield-related traits in rice varieties could provide novel insights for rice improvement. Through the utilization of linear regression models, a total of eight promoters were identified, and a specific gene variant (Ser33Leu) within OsCYP71P6 was found to be linked to spikelet fertility. Additionally, different alleles of the OsCYP71P6 gene identified through in/dels polymorphism in 131 rice varieties were validated for their allelic effects on yield-related traits. Furthermore, the single-plant yield, spikelet number, panicle length, panicle weight, and unfilled grain per panicle for the OsCYP71P6-1 promoter insertion variant were found to contribute 20.19%, 13.65%, 5.637%, 8.79%, and 36.86% more than the deletion variant, respectively. These findings establish a robust groundwork for delving deeper into the functions of OsCYP71-family genes across a range of biological processes. Moreover, these findings provide evidence that allelic variation in the promoter and amino acid substitution of Ser33Leu in the OsCYP71P6 gene could potentially impact traits related to rice yield. Therefore, the identified promoter variants in the OsCYP71P6 gene could be harnessed to amplify rice yields.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
- Department of Botany, Ravenshaw University, Cuttack 753006, India;
| | - Itishree Nayak
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
- Department of Botany, Utkal University, Bhubaneswar 751004, India
| | - C. Parameswaran
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri University, Cuttack 754006, India
| | | | - H. N. Subudhi
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Cayalvizhi Balasubramaniasai
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | | | - Jawahar Lal Katara
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Sushanta Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Sang-Min Chung
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea;
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Sanghamitra Samantaray
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| |
Collapse
|
8
|
Chen J, Zhang Y, Yin H, Liu W, Hu X, Li D, Lan C, Gao L, He Z, Cui F, Fernie AR, Chen W. The pathway of melatonin biosynthesis in common wheat (Triticum aestivum). J Pineal Res 2023; 74:e12841. [PMID: 36396897 PMCID: PMC10078269 DOI: 10.1111/jpi.12841] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/25/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Melatonin (Mel) is a multifunctional biomolecule found in both animals and plants. In plants, the biosynthesis of Mel from tryptophan (Trp) has been delineated to comprise of four consecutive reactions. However, while the genes encoding these enzymes in rice are well characterized no systematic evaluation of the overall pathway has, as yet, been published for wheat. In the current study, the relative contents of six Mel-pathway-intermediates including Trp, tryptamine (Trm), serotonin (Ser), 5-methoxy tryptamine (5M-Trm), N-acetyl serotonin (NAS) and Mel, were determined in 24 independent tissues spanning the lifetime of wheat. These studies indicated that Trp was the most abundant among the six metabolites, followed by Trm and Ser. Next, the candidate genes expressing key enzymes involved in the Mel pathway were explored by means of metabolite-based genome-wide association study (mGWAS), wherein two TDC genes, a T5H gene and one SNAT gene were identified as being important for the accumulation of Mel pathway metabolites. Moreover, a 463-bp insertion within the T5H gene was discovered that may be responsible for variation in Ser content. Finally, a ASMT gene was found via sequence alignment against its rice homolog. Validations of these candidate genes were performed by in vitro enzymatic reactions using proteins purified following recombinant expression in Escherichia coli, transient gene expression in tobacco, and transgenic approaches in wheat. Our results thus provide the first comprehensive investigation into the Mel pathway metabolites, and a swift candidate gene identification via forward-genetics strategies, in common wheat.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yueqi Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fa Cui
- Wheat Molecular Breeding Innovation Research Group, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
9
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
10
|
Lee K, Back K. Human Naa50 Shows Serotonin N-Acetyltransferase Activity, and Its Overexpression Enhances Melatonin Biosynthesis, Resulting in Osmotic Stress Tolerance in Rice. Antioxidants (Basel) 2023; 12:antiox12020319. [PMID: 36829878 PMCID: PMC9952165 DOI: 10.3390/antiox12020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
A new clade of serotonin N-acetyltransferase (SNAT), the penultimate enzyme in the melatonin biosynthetic pathway, has been reported in the archaeon Thermoplasma volcanium. The closest homolog of archaea SNAT in human was an N-alpha-acetyltransferase50 (Naa50). To determine whether human Naa50 (hNaa50) shows SNAT enzyme activity, we chemically synthesized and expressed the hNaa50 gene in Escherichia coli, followed by Ni2+ affinity purification. Purified recombinant hNaa50 showed SNAT activity (Km and Vmax values of 986 μM and 1800 pmol/min/mg protein, respectively). To assess its in vivo function, hNaa50 was overexpressed in rice (hNaa50-OE). The transgenic rice plants produced more melatonin than nontransgenic wild-type rice, indicating that hNaa50 is functionally coupled with melatonin biosynthesis. Due to its overproduction of melatonin, hNaa50-OE had a higher tolerance against osmotic stress than the wild type. Enhanced expression of the chaperone genes BIP1 and CNX in hNaa50-OE plants was responsible for the increased tolerance. It is concluded that hNaa50 harbors serotonin N-acetyltransferase enzyme activity in addition to its initial N-alpha-acetyltransferase, suggesting the bifunctionality of the hNaa50 enzyme toward serotonin and protein substrates. Consequently, ectopic overexpression of hNaa50 in rice enhanced melatonin synthesis, indicating that hNaa50 is in fact involved in melatonin biosynthesis.
Collapse
|
11
|
Tan DX, Reiter RJ, Zimmerman S, Hardeland R. Melatonin: Both a Messenger of Darkness and a Participant in the Cellular Actions of Non-Visible Solar Radiation of Near Infrared Light. BIOLOGY 2023; 12:89. [PMID: 36671781 PMCID: PMC9855654 DOI: 10.3390/biology12010089] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Throughout the history of melatonin research, almost exclusive focus has been on nocturnally-generated pineal melatonin production, which accounts for its circadian rhythm in the blood and cerebrospinal fluid; these light/dark melatonin cycles drive the daily and seasonal photoperiodic alterations in organismal physiology. Because pineal melatonin is produced and secreted primarily at night, it is referred to as the chemical expression of darkness. The importance of the other sources of melatonin has almost been ignored. Based on current evidence, there are at least four sources of melatonin in vertebrates that contribute to the whole-body melatonin pool. These include melatonin produced by (1) the pineal gland; (2) extrapineal cells, tissues, and organs; (3) the microbiota of the skin, mouth, nose, digestive tract, and vagina as well as (4) melatonin present in the diet. These multiple sources of melatonin exhibit differentially regulated mechanisms for its synthesis. Visible light striking the retina or an intense physical stimulus can suppress nocturnal pineal melatonin levels; in contrast, there are examples where extrapineal melatonin levels are increased during heavy exercise in daylight, which contains the whole range of NIR radiation. The cumulative impact of all cells producing augmented extrapineal melatonin is sufficient to elevate sweat concentrations, and potentially, if the exposure is sustained, to also increasing the circulating values. The transient increases in sweat and plasma melatonin support the premise that extrapineal melatonin has a production capacity that exceeds by far what can be produced by the pineal gland, and is used to maintain intercellular homeostasis and responds to rapid changes in ROS density. The potential regulatory mechanisms of near infrared light (NIR) on melatonin synthesis are discussed in detail herein. Combined with the discovery of high levels of melanopsin in most fat cells and their response to light further calls into question pineal centric theories. While the regulatory processes related to microbiota-derived melatonin are currently unknown, there does seem to be crosstalk between melatonin derived from the host and that originating from microbiota.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | | | - Ruediger Hardeland
- Johann Friedric Blumenbach Institute of Zoology and Anthropology, University of Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
12
|
Chandran AKN, Sandhu J, Irvin L, Paul P, Dhatt BK, Hussain W, Gao T, Staswick P, Yu H, Morota G, Walia H. Rice Chalky Grain 5 regulates natural variation for grain quality under heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1026472. [PMID: 36304400 PMCID: PMC9593041 DOI: 10.3389/fpls.2022.1026472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Heat stress occurring during rice (Oryza sativa) grain development reduces grain quality, which often manifests as increased grain chalkiness. Although the impact of heat stress on grain yield is well-studied, the genetic basis of rice grain quality under heat stress is less explored as quantifying grain quality is less tractable than grain yield. To address this, we used an image-based colorimetric assay (Red, R; and Green, G) for genome-wide association analysis to identify genetic loci underlying the phenotypic variation in rice grains exposed to heat stress. We found the R to G pixel ratio (RG) derived from mature grain images to be effective in distinguishing chalky grains from translucent grains derived from control (28/24°C) and heat stressed (36/32°C) plants. Our analysis yielded a novel gene, rice Chalky Grain 5 (OsCG5) that regulates natural variation for grain chalkiness under heat stress. OsCG5 encodes a grain-specific, expressed protein of unknown function. Accessions with lower transcript abundance of OsCG5 exhibit higher chalkiness, which correlates with higher RG values under stress. These findings are supported by increased chalkiness of OsCG5 knock-out (KO) mutants relative to wildtype (WT) under heat stress. Grains from plants overexpressing OsCG5 are less chalky than KOs but comparable to WT under heat stress. Compared to WT and OE, KO mutants exhibit greater heat sensitivity for grain size and weight relative to controls. Collectively, these results show that the natural variation at OsCG5 may contribute towards rice grain quality under heat stress.
Collapse
Affiliation(s)
| | - Jaspreet Sandhu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Larissa Irvin
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Balpreet K. Dhatt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Waseem Hussain
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
| | - Tian Gao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hongfeng Yu
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
13
|
Wang K, Xing Q, Ahammed GJ, Zhou J. Functions and prospects of melatonin in plant growth, yield, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5928-5946. [PMID: 35640564 DOI: 10.1093/jxb/erac233] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indole molecule widely found in animals and plants. It is well known that melatonin improves plant resistance to various biotic and abiotic stresses due to its potent free radical scavenging ability while being able to modulate plant signaling and response pathways through mostly unknown mechanisms. In recent years, an increasing number of studies have shown that melatonin plays a crucial role in improving crop quality and yield by participating in the regulation of various aspects of plant growth and development. Here, we review the effects of melatonin on plant vegetative growth and reproductive development, and systematically summarize its molecular regulatory network. Moreover, the effective concentrations of exogenously applied melatonin in different crops or at different growth stages of the same crop are analysed. In addition, we compare endogenous phytomelatonin concentrations in various crops and different organs, and evaluate a potential function of phytomelatonin in plant circadian rhythms. The prospects of different approaches in regulating crop yield and quality through exogenous application of appropriate concentrations of melatonin, endogenous modification of phytomelatonin metabolism-related genes, and the use of nanomaterials and other technologies to improve melatonin utilization efficiency are also discussed.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qufan Xing
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, China
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
14
|
Genome-wide identification, characterization of Serotonin N-acetyltransferase and deciphering its importance under development, biotic and abiotic stress in soybean. Int J Biol Macromol 2022; 220:942-953. [PMID: 35998857 DOI: 10.1016/j.ijbiomac.2022.08.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme involved in plant melatonin biosynthesis. Identifying its expression under development and stress will reveal the regulatory role in the soybean. To identify and characterize SNAT, we employed genome-wide analysis, gene structure, cis-acting elements, expression, and enzyme activity. We identified seven putative genes by genome-wide analysis and found chloroplast signal peptides in three GmSNATs. To elucidate GmSNATs role, expression datasets of more than a hundred samples related to circadian rhythm, developmental stages, and stress conditions were analysed. Notably, the expression of GmSNAT1 did not show significant expression during biotic and abiotic stress. The GmSNAT1 sequence showed 67.8 and 72.2 % similarities with OsSNAT and AtSNAT, respectively. The Km and Vmax of the purified recombinant GmSNAT1 were 657 μM and 3780 pmol/min/mg, respectively. To further understand the GmSNAT1 role, we supplemented different concentrations of serotonin and melatonin to in-vitro cultures and seed priming. These studies revealed that the GmSNAT1 expression was significantly up-regulated at higher concentrations of serotonin and down-regulated at higher melatonin concentrations. We speculate that a high concentration of melatonin during abiotic, biotic stress, and in-vitro cultures are responsible for regulating GmSNAT1 expression, which may regulate them at the enzyme level during stress in soybean.
Collapse
|
15
|
Hwang OJ, Back K. Functional Characterization of Arylalkylamine N-Acetyltransferase, a Pivotal Gene in Antioxidant Melatonin Biosynthesis from Chlamydomonas reinhardtii. Antioxidants (Basel) 2022; 11:antiox11081531. [PMID: 36009250 PMCID: PMC9405056 DOI: 10.3390/antiox11081531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Arylalkylamine N-acetyltransferase (AANAT) is a pivotal enzyme in melatonin biosynthesis that catalyzes the conversion of serotonin to N-acetylserotonin. Homologs of animal AANAT genes are present in animals, but not in plants. An AANAT homolog was found in Chlamydomonas reinhardtii, but not other green algae. The characteristics of C. reinhardtii AANAT (CrAANAT) are unclear. Here, full-length CrAANAT was chemically synthesized and expressed in Escherichia coli. Recombinant CrAANAT exhibited AANAT activity with a Km of 247 μM and Vmax of 325 pmol/min/mg protein with serotonin as the substrate. CrAANAT was localized to the cytoplasm in tobacco leaf cells. Transgenic rice plants overexpressing CrAANAT (CrAANAT-OE) exhibited increased melatonin production. CrAANAT-OE plants showed a longer seed length and larger second leaf angle than wild-type plants, indicative of the involvement of brassinosteroids (BRs). As expected, BR biosynthesis- and signaling-related genes such as D2, DWARF4, DWARF11, and BZR1 were upregulated in CrAANAT-OE plants. Therefore, an increased endogenous melatonin level by ectopic overexpression of CrAANAT seems to be closely associated with BR biosynthesis, thereby influencing seed size.
Collapse
|
16
|
Malik A, Kumar A, Ellur RK, Krishnan S G, Dixit D, Bollinedi H, Vinod KK, Nagarajan M, Bhowmick PK, Singh NK, Singh AK. Molecular mapping of QTLs for grain dimension traits in Basmati rice. Front Genet 2022; 13:932166. [PMID: 35983411 PMCID: PMC9379801 DOI: 10.3389/fgene.2022.932166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Basmati rice is known for its extra-long slender grains, exceptional kernel dimensions after cooking, high volume expansion, and strong aroma. Developing high yielding Basmati rice varieties with good cooking quality is a gigantic task. Therefore, identifying the genomic regions governing the grain and cooked kernel dimension traits is of utmost importance for its use in marker-assisted breeding. Although several QTLs governing grain dimension traits have been reported, limited attempts have been made to map QTLs for grain and cooked kernel dimension traits of Basmati rice. In the current study, a population of recombinant inbred lines (RIL) was generated from a cross of Sonasal and Pusa Basmati 1121 (PB1121). In the RIL population, there was a significant positive correlation among the length (RRL: rough rice length, MRL: milled rice length, CKL: cooked kernel length) and breadth (RRB: rough rice breadth, MRB: milled rice breadth and CKB: cooked kernel breadth) of the related traits, while there was significant negative correlation between them. QTL mapping has led to the identification of four major genomic regions governing MRL and CKL. Two QTLs co-localize with the earlier reported major gene GS3 and a QTL qGRL7.1, while the remaining two QTLs viz., qCKL3.2 (qMRL3.2) and qCKL4.1 (qMRL4.1) were novel. The QTL qCKL3.2 has been bracketed to a genomic region of 0.78 Mb between the markers RM15247 and RM15281. Annotation of this region identified 18 gene models, of which the genes predicted to encode pentatricopeptides and brassinosteroid insensitive 1-associated receptor kinase 1 precursor may be the putative candidate genes. Furthermore, we identified a novel QTL qKER2.1 governing kernel elongation ratio (KER) in Basmati rice.
Collapse
Affiliation(s)
- Ankit Malik
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Aruna Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Ranjith Kumar Ellur
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Gopala Krishnan S
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Deepshikha Dixit
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Haritha Bollinedi
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - KK Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - M Nagarajan
- Rice Breeding and Genetics Research Centre, ICAR-IARI, Aduthurai, India
| | - PK Bhowmick
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - NK Singh
- ICAR-National Institute for Plant Biotechnology, IARI, New Delhi, India
| | - AK Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
- *Correspondence: AK Singh,
| |
Collapse
|
17
|
Lee HY, Back K. The Antioxidant Cyclic 3-Hydroxymelatonin Promotes the Growth and Flowering of Arabidopsis thaliana. Antioxidants (Basel) 2022; 11:antiox11061157. [PMID: 35740053 PMCID: PMC9219689 DOI: 10.3390/antiox11061157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
In plants, melatonin is metabolized into several compounds, including the potent antioxidant cyclic 3-hydroxymelatonin (3-OHM). Melatonin 3-hydroxylase (M3H), a member of the 2-oxo-glutarate-dependent enzyme family, is responsible for 3-OHM biosynthesis. Although rice M3H has been cloned, its roles are unclear, and no homologs in other plant species have been characterized. Here, we cloned and characterized Arabidopsis thaliana M3H (AtM3H). The purified recombinant AtM3H exhibited Km and Vmax values of 100 μM and 20.7 nmol/min/mg protein, respectively. M3H was localized to the cytoplasm, and its expression peaked at night. Based on a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, 3-OHM exhibited 15-fold higher antioxidant activity than melatonin. An Arabidopsis M3H knockout mutant (m3h) produced less 3-OHM than the wildtype (WT), thus reducing antioxidant activity and biomass and delaying flowering. These defects were caused by reduced expression of FLOWERING LOCUS T (FT) and gibberellin-related genes, which are responsible for flowering and growth. Exogenous 3-OHM, but not exogenous melatonin, induced FT expression. The peak of M3H expression at night matched the FT expression pattern. The WT and m3h exhibited similar responses to salt stress and pathogens. Collectively, our findings indicate that 3-OHM promotes growth and flowering in Arabidopsis.
Collapse
|
18
|
Hassan MU, Mahmood A, Awan MI, Maqbool R, Aamer M, Alhaithloul HAS, Huang G, Skalicky M, Brestic M, Pandey S, El Sabagh A, Qari SH. Melatonin-Induced Protection Against Plant Abiotic Stress: Mechanisms and Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:902694. [PMID: 35755707 PMCID: PMC9218792 DOI: 10.3389/fpls.2022.902694] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 05/23/2023]
Abstract
Global warming in this century increases incidences of various abiotic stresses restricting plant growth and productivity and posing a severe threat to global food production and security. The plant produces different osmolytes and hormones to combat the harmful effects of these abiotic stresses. Melatonin (MT) is a plant hormone that possesses excellent properties to improve plant performance under different abiotic stresses. It is associated with improved physiological and molecular processes linked with seed germination, growth and development, photosynthesis, carbon fixation, and plant defence against other abiotic stresses. In parallel, MT also increased the accumulation of multiple osmolytes, sugars and endogenous hormones (auxin, gibberellic acid, and cytokinins) to mediate resistance to stress. Stress condition in plants often produces reactive oxygen species. MT has excellent antioxidant properties and substantially scavenges reactive oxygen species by increasing the activity of enzymatic and non-enzymatic antioxidants under stress conditions. Moreover, the upregulation of stress-responsive and antioxidant enzyme genes makes it an excellent stress-inducing molecule. However, MT produced in plants is not sufficient to induce stress tolerance. Therefore, the development of transgenic plants with improved MT biosynthesis could be a promising approach to enhancing stress tolerance. This review, therefore, focuses on the possible role of MT in the induction of various abiotic stresses in plants. We further discussed MT biosynthesis and the critical role of MT as a potential antioxidant for improving abiotic stress tolerance. In addition, we also addressed MT biosynthesis and shed light on future research directions. Therefore, this review would help readers learn more about MT in a changing environment and provide new suggestions on how this knowledge could be used to develop stress tolerance.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Masood Iqbal Awan
- Department of Agronomy, Sub-Campus Depalpur, Okara, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Rizwan Maqbool
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- Department of Agronomy, Sub-Campus Depalpur, Okara, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
19
|
Huangfu L, Chen R, Lu Y, Zhang E, Miao J, Zuo Z, Zhao Y, Zhu M, Zhang Z, Li P, Xu Y, Yao Y, Liang G, Xu C, Zhou Y, Yang Z. OsCOMT, encoding a caffeic acid O-methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1122-1139. [PMID: 35189026 PMCID: PMC9129082 DOI: 10.1111/pbi.13794] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/15/2022] [Indexed: 05/15/2023]
Abstract
Melatonin, a natural phytohormone in plants, plays multiple critical roles in plant growth and stress responses. Although melatonin biosynthesis-related genes have been suggested to possess diverse biological functions, their roles and functional mechanisms in regulating rice grain yield remain largely unexplored. Here, we uncovered the roles of a caffeic acid O-methyltransferase (OsCOMT) gene in mediating rice grain yield through dual regulation of leaf senescence and vascular development. In vitro and in vivo evidence revealed that OsCOMT is involved in melatonin biosynthesis. Transgenic assays suggested that OsCOMT significantly delays leaf senescence at the grain filling stage by inhibiting degradation of chlorophyll and chloroplast, which, in turn, improves photosynthesis efficiency. In addition, the number and size of vascular bundles in the culms and leaves were significantly increased in the OsCOMT-overexpressing plants, while decreased in the knockout plants, suggesting that OsCOMT plays a positive role in vascular development of rice. Further evidence indicated that OsCOMT-mediated vascular development might owe to the crosstalk between melatonin and cytokinin. More importantly, we found that OsCOMT is a positive regulator of grain yield, and overexpression of OsCOMT increase grain yield per plant even in a high-yield variety background, suggesting that OsCOMT can be used as an important target for enhancing rice yield. Our findings shed novel insights into melatonin-mediated leaf senescence and vascular development and provide a possible strategy for genetic improvement of rice grain yield.
Collapse
Affiliation(s)
- Liexiang Huangfu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Rujia Chen
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Enying Zhang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Agricultural CollegeQingdao Agricultural UniversityQingdaoChina
| | - Jun Miao
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Zhihao Zuo
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yu Zhao
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Minyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Zihui Zhang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| |
Collapse
|
20
|
Molecular Regulation of Antioxidant Melatonin Biosynthesis by Brassinosteroid Acting as an Endogenous Elicitor of Melatonin Induction in Rice Seedlings. Antioxidants (Basel) 2022; 11:antiox11050918. [PMID: 35624782 PMCID: PMC9137740 DOI: 10.3390/antiox11050918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Gibberellic acid (GA) was recently shown to induce melatonin synthesis in rice. Here, we examined whether brassinosteroids (BRs) also induce melatonin synthesis because BRs and GA show redundancy in many functions. Among several plant hormones, exogenous BR treatment induced melatonin synthesis by twofold compared to control treatment, whereas ethylene, 6-benzylaminopurine (BA), and indole-3-acetic acid (IAA) showed negligible effects on melatonin synthesis. Correspondingly, BR treatment also induced a number of melatonin biosynthetic genes in conjunction with the suppression of melatonin catabolic gene expression. Several transgenic rice plants with downregulated BR biosynthesis-related genes, such as DWARF4, DWARF11, and RAV-Like1 (RAVL1), were generated and exhibited decreased melatonin synthesis, indicating that BRs act as endogenous elicitors of melatonin synthesis. Notably, treatment with either GA or BR fully restored melatonin synthesis in the presence of paclobutrazol, a GA biosynthesis inhibitor. Moreover, exogenous BR treatment partially restored melatonin synthesis in both RAVL1 and Gα RNAi transgenic rice plants, whereas GA treatment fully restored melatonin synthesis comparable to wild type in RAVL1 RNAi plants. Taken together, our results highlight a role of BR as an endogenous elicitor of melatonin synthesis in a GA-independent manner in rice plants.
Collapse
|
21
|
Menhas S, Yang X, Hayat K, Aftab T, Bundschuh J, Arnao MB, Zhou Y, Zhou P. Exogenous Melatonin Enhances Cd Tolerance and Phytoremediation Efficiency by Ameliorating Cd-Induced Stress in Oilseed Crops: A Review. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:922-935. [PMID: 0 DOI: 10.1007/s00344-021-10349-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 05/20/2023]
|
22
|
Lee HY, Back K. 2-Hydroxymelatonin Promotes Seed Germination by Increasing Reactive Oxygen Species Production and Gibberellin Synthesis in Arabidopsis thaliana. Antioxidants (Basel) 2022; 11:antiox11040737. [PMID: 35453427 PMCID: PMC9028592 DOI: 10.3390/antiox11040737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
It was recently reported that 2-hydroxymelatonin (2-OHM) is responsible for inducing reactive oxygen species (ROS) in plants. ROS are crucial molecules that promote germination through interaction with hormones such as gibberellic acid (GA). In this study, to confirm the pro-oxidant role of 2-OHM, we investigated its effect on seed germination in Arabidopsis thaliana (L.) Heynh. Columbia-0. We found that 2-OHM treatment stimulated seed germination by 90% and 330% in non-dormant and dormant seeds, respectively, whereas melatonin marginally increased germination (~13%) in both seed types compared to untreated control seeds. The germination promotion effects of exogenous 2-OHM treatment were due to increased ROS production followed by the induction of GA synthesis and expression of responsive genes. Accordingly, melatonin 2-hydroxylase (M2H), the gene responsible for 2-OHM synthesis, was strictly expressed only during the germination process. Further molecular genetic analyses using m2h knockout mutant and M2H overexpression clearly supported an increase in ROS triggered by 2-OHM, followed by increased expression of GA-related genes, which shortened the time to germination. Notably, 2-OHM application to m2h knockout mutant seeds fully recovered germination to levels comparable to that of the wild type, whereas melatonin treatment failed to increase germination. Together, these results indicate that 2-OHM is a pivotal molecule that triggers increased ROS production during seed germination, thereby enhancing germination via the GA pathway in Arabidopsis thaliana.
Collapse
|
23
|
Functional Characterization of Serotonin N-Acetyltransferase in Archaeon Thermoplasma volcanium. Antioxidants (Basel) 2022; 11:antiox11030596. [PMID: 35326246 PMCID: PMC8945778 DOI: 10.3390/antiox11030596] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Serotonin N-acetyltransferase is the penultimate enzyme in the melatonin biosynthetic pathway that catalyzes serotonin into N-acetylserotonin. Many SNAT genes have been cloned and characterized from organisms ranging from bacteria to plants and mammals. However, to date, no SNAT gene has been identified from Archaea. In this study, three archaeal SNAT candidate genes were synthesized and expressed in Escherichia coli, and SNAT enzyme activity was measured using their purified recombinant proteins. Two SNAT candidate genes, from Methanoregulaceae (Archaea) and Pyrococcus furiosus, showed no SNAT enzyme activity, whereas a SNAT candidate gene from Thermoplasma volcanium previously named TvArd1 exhibited SNAT enzyme activity. The substrate affinity and the maximum reaction rate of TvSNAT toward serotonin were 621 μM and 416 pmol/min/mg protein, respectively. The highest amine substrate was tyramine, followed by tryptamine, serotonin, and 5-methoxytryptamine, which were similar to those of plant SNAT enzymes. Homologs of TvSNAT were found in many Archaea families. Ectopic overexpression of TvSNAT in rice resulted in increased melatonin content, antioxidant activity, and seed size in conjunction with the enhanced expression of seed size-related gene. This study is the first to report the discovery of SNAT gene in Archaea. Future research avenues include the cloning of TvSNAT orthologs in different phyla, and identification of their regulation and functions related to melatonin biosynthesis in living organisms.
Collapse
|
24
|
Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU, Farooq N, Naveed M, Kucerik J, Brtnicky M, Mustafa A. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2022; 13:773815. [PMID: 35371142 PMCID: PMC8965506 DOI: 10.3389/fpls.2022.773815] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/02/2022] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Wenting Jiang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Nauman Ali
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Naila Farooq
- Department of Soil and Environmental Science, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
25
|
Zhang Y, Rui C, Fan Y, Xu N, Zhang H, Wang J, Sun L, Dai M, Ni K, Chen X, Lu X, Wang D, Wang J, Wang S, Guo L, Zhao L, Feng X, Chen C, Ye W. Identification of SNAT Family Genes Suggests GhSNAT3D Functional Reponse to Melatonin Synthesis Under Salinity Stress in Cotton. Front Mol Biosci 2022; 9:843814. [PMID: 35223998 PMCID: PMC8867073 DOI: 10.3389/fmolb.2022.843814] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Serotonin N-acetyltransferase (SNAT) is a key enzyme in the biosynthesis of melatonin, and plays an important role in the regulation of melatonin synthesis. The study of SNAT is of great significance to understand the function of melatonin. In this study, we analyzed the structural characteristics, phylogenetic relationship, gene structure, expression pattern, evolutionary relationship and stress response of the members of the SNAT gene family in upland cotton through bioinformatics. A putative Serotonin n-acetyltransferase gene GhSNAT3D was identified, and preliminarily function of GhSNAT3D was verified by virus-induced gene silencing. We identified a total of 52 SNAT genes in the whole genome of G. hirsutum, and part of the GhSNATs were regulated by exogenous melatonin. The content of melatonin, antioxidant enzyme activity and Ca2+ content of GhSNAT3D gene silenced plants decreased, and the salt tolerance of GhSNAT3D gene silenced plants was reduced. Exogenous melatonin supplementation restored the salt tolerance of GhSNAT3D gene silenced plants. GhSNAT3D may interact with GhSNAT25D and ASMT to regulate melatonin synthesis. This study provided an important basis for further study on the regulation of melatonin in cotton against abiotic stress.
Collapse
|
26
|
Ali S, Gill RA, Shafique MS, Ahmar S, Kamran M, Zhang N, Riaz M, Nawaz M, Fang R, Ali B, Zhou W. Role of phytomelatonin responsive to metal stresses: An omics perspective and future scenario. FRONTIERS IN PLANT SCIENCE 2022; 13:936747. [PMID: 36147242 PMCID: PMC9486320 DOI: 10.3389/fpls.2022.936747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 05/03/2023]
Abstract
A pervasive melatonin (N-acetyl-5-methoxytryptamine) reveals a crucial role in stress tolerance and plant development. Melatonin (MT) is a unique molecule with multiple phenotypic expressions and numerous actions within the plants. It has been extensively studied in crop plants under different abiotic stresses such as drought, salinity, heat, cold, and heavy metals. Mainly, MT role is appraised as an antioxidant molecule that deals with oxidative stress by scavenging reactive oxygen species (ROS) and modulating stress related genes. It improves the contents of different antioxidant enzyme activities and thus, regulates the redox hemostasis in crop plants. In this comprehensive review, regulatory effects of melatonin in plants as melatonin biosynthesis, signaling pathway, modulation of stress related genes and physiological role of melatonin under different heavy metal stress have been reviewed in detail. Further, this review has discussed how MT regulates different genes/enzymes to mediate defense responses and overviewed the context of transcriptomics and phenomics followed by the metabolomics pathways in crop plants.
Collapse
Affiliation(s)
- Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Sunny Ahmar
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Na Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Muhammad Riaz
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Rouyi Fang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- Basharat Ali,
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- *Correspondence: Weijun Zhou,
| |
Collapse
|
27
|
Zhou W, Yang S, Zhang Q, Xiao R, Li B, Wang D, Niu J, Wang S, Wang Z. Functional Characterization of Serotonin N-Acetyltransferase Genes ( SNAT1/ 2) in Melatonin Biosynthesis of Hypericum perforatum. FRONTIERS IN PLANT SCIENCE 2021; 12:781717. [PMID: 34950170 PMCID: PMC8688956 DOI: 10.3389/fpls.2021.781717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Hypericum perforatum is a traditional medicinal plant that contains various secondary metabolites. As an active component in H. perforatum, melatonin plays important role in plant antioxidation, growth, and photoperiod regulation. Serotonin N-acetyltransferase (SNAT) is the key enzyme involved in the last or penultimate step of phytomelatonin biosynthesis. A total of 48 members of SNAT family were screened and analyzed based on the whole genome data of H. perforatum, and two SNAT genes (HpSNAT1 and HpSNAT2) were functionally verified to be involved in the biosynthesis of melatonin. It was found that HpSNAT1 and HpSNAT2 were highly expressed in the leaves and showed obvious responses to high salt and drought treatment. Subcellular localization analysis indicated that these two proteins were both localized in the chloroplasts by the Arabidopsis protoplasts transient transfection. Overexpression of HpSNAT1 and HpSNAT2 in Arabidopsis (SNAT) and H. perforatum (wild-type) resulted in melatonin content 1.9-2.2-fold and 2.5-4.2-fold higher than that in control groups, respectively. Meanwhile, SNAT-overexpressing Arabidopsis plants showed a stronger ability of root growth and scavenging endogenous reactive oxygen species. In this study, the complete transgenic plants of H. perforatum were obtained through Agrobacterium-mediated genetic transformation for the first time, which laid a significant foundation for further research on the function of key genes in H. perforatum.
Collapse
Affiliation(s)
- Wen Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Shu Yang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
| | - Qian Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Ruyi Xiao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Bin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Junfeng Niu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Shiqiang Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
28
|
Bhowal B, Bhattacharjee A, Goswami K, Sanan-Mishra N, Singla-Pareek SL, Kaur C, Sopory S. Serotonin and Melatonin Biosynthesis in Plants: Genome-Wide Identification of the Genes and Their Expression Reveal a Conserved Role in Stress and Development. Int J Mol Sci 2021; 22:ijms222011034. [PMID: 34681693 PMCID: PMC8538589 DOI: 10.3390/ijms222011034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
Serotonin (Ser) and melatonin (Mel) serve as master regulators of plant growth and development by influencing diverse cellular processes. The enzymes namely, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) catalyse the formation of Ser from tryptophan. Subsequently, serotonin N-acetyl transferase (SNAT) and acetyl-serotonin methyltransferase (ASMT) form Mel from Ser. Plant genomes harbour multiple genes for each of these four enzymes, all of which have not been identified. Therefore, to delineate information regarding these four gene families, we carried out a genome-wide analysis of the genes involved in Ser and Mel biosynthesis in Arabidopsis, tomato, rice and sorghum. Phylogenetic analysis unravelled distinct evolutionary relationships among these genes from different plants. Interestingly, no gene family except ASMTs showed monocot- or dicot-specific clustering of respective proteins. Further, we observed tissue-specific, developmental and stress/hormone-mediated variations in the expression of the four gene families. The light/dark cycle also affected their expression in agreement with our quantitative reverse transcriptase-PCR (qRT-PCR) analysis. Importantly, we found that miRNAs (miR6249a and miR-1846e) regulated the expression of Ser and Mel biosynthesis under light and stress by influencing the expression of OsTDC5 and OsASMT18, respectively. Thus, this study may provide opportunities for functional characterization of suitable target genes of the Ser and Mel pathway to decipher their exact roles in plant physiology.
Collapse
Affiliation(s)
- Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Annapurna Bhattacharjee
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi 110016, India
| | - Kavita Goswami
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Neeti Sanan-Mishra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Sneh L. Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Charanpreet Kaur
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Correspondence: (C.K.); (S.S.)
| | - Sudhir Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Correspondence: (C.K.); (S.S.)
| |
Collapse
|
29
|
Chen W, Zhang J, Zheng S, Wang Z, Xu C, Zhang Q, Wu J, Lou H. Metabolite profiling and transcriptome analyses reveal novel regulatory mechanisms of melatonin biosynthesis in hickory. HORTICULTURE RESEARCH 2021; 8:196. [PMID: 34465767 PMCID: PMC8408178 DOI: 10.1038/s41438-021-00631-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 06/06/2021] [Indexed: 05/08/2023]
Abstract
Studies have shown that melatonin regulates the expression of various elements in the biosynthesis and catabolism of plant hormones. In contrast, the effects of these different plant hormones on the biosynthesis and metabolism of melatonin and their underlying molecular mechanisms are still unclear. In this study, the melatonin biosynthesis pathway was proposed from constructed metabolomic and transcriptomic libraries from hickory (Carya cathayensis Sarg.) nuts. The candidate pathway genes were further identified by phylogenetic analysis, amino-acid sequence alignment, and subcellular localization. Notably, most of the transcription factor-related genes coexpressed with melatonin pathway genes were hormone-responsive genes. Furthermore, dual-luciferase and yeast one-hybrid assays revealed that CcEIN3 (response to ethylene) and CcAZF2 (response to abscisic acid) could activate melatonin biosynthesis pathway genes, a tryptophan decarboxylase coding gene (CcTDC1) and an N-acetylserotonin methyltransferase coding gene (CcASMT1), by directly binding to their promoters, respectively. Our results provide a molecular basis for the characterization of novel melatonin biosynthesis regulatory mechanisms and demonstrate for the first time that abscisic acid and ethylene can regulate melatonin biosynthesis.
Collapse
Affiliation(s)
- Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Jiaqi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, 313000, Huzhou, China
| | - Chuanmei Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Qixiang Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Agathokleous E, Zhou B, Xu J, Ioannou A, Feng Z, Saitanis CJ, Frei M, Calabrese EJ, Fotopoulos V. Exogenous application of melatonin to plants, algae, and harvested products to sustain agricultural productivity and enhance nutritional and nutraceutical value: A meta-analysis. ENVIRONMENTAL RESEARCH 2021; 200:111746. [PMID: 34302829 DOI: 10.1016/j.envres.2021.111746] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 05/27/2023]
Abstract
Melatonin is produced by plants, algae, and animals. Worldwide studies show diverse positive effects of exogenous melatonin on plants, edible plant products, and algae, but the potential of melatonin to enhance food and feed systems through these positive effects remains largely unexplored. Through a meta-analysis of about 25,000 observations, we show for the first time that exogenous application of melatonin significantly increases crop productivity and yields, and enhances the nutritional and nutraceutical value of edible plant products and algae by regulating diverse biological functions. We demonstrate that melatonin can improve plants, edible plant products, and algae under various current climate change scenarios, environmental pollution factors, and other stresses by about 7% to nearly 30%, on average, depending on the stressor. We also analyze various technical/methodological factors influencing the desired outcomes and identify conditions that offer optimal enhancement. We show that the positive effect of melatonin on plants and edible plant products varies among species, genera, and families, and strongly depends on the concentration of melatonin and treatment duration. The effect of melatonin is slightly lower on the monocot clade Commelinids than on the eudicot clades Asterids and Rosids. We also show that its stimulatory effect on plants depends on cultivation system, with a larger effect obtained in hydroponic systems. However, it does not depend on application stage (seed or vegetative), application route (foliage, roots, or seed), and whether the cultivation system is ex vivo or in vivo. This is the first meta-analysis examining the effects of melatonin on plants, edible plant products, and algae, and offers a scientific and technical roadmap facilitating sustainable food and feed production through the application of exogenous melatonin.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| | - Boya Zhou
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China
| | - Jianing Xu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China
| | - Andreas Ioannou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, 3603, Cyprus
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Michael Frei
- Institute of Agronomy and Crop Physiology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, 3603, Cyprus
| |
Collapse
|
31
|
Wu Y, Fan X, Zhang Y, Jiang J, Sun L, Rahman FU, Liu C. VvSNAT1 overexpression enhances melatonin production and salt tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:485-494. [PMID: 34166975 DOI: 10.1016/j.plaphy.2021.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 05/23/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in the regulation of development and the response to biotic and abiotic stresses in plants. Serotonin-N-acetyltransferase (SNAT) functions as a key catalytic enzyme involved in melatonin biosynthesis. In this study, the candidate gene VvSNAT1 (SNAT isogene) was isolated from grape (Vitis vinifera L. cv. Merlot). Tissue-specific expression and external treatment revealed that VvSNAT1 is a salt-inducible gene that is highly expressed in leaves. Subcellular localisation results revealed that VvSNAT1 was located in the chloroplasts, which is similar to other plant SNAT proteins. Ectopic overexpression of VvSNAT1 in Arabidopsis resulted in increased melatonin production and salt tolerance. Transgenic Arabidopsis overexpressing VvSNAT1 exhibited enhanced growth and physiological performance, including a lower degree of leaf wilting, higher germination rate, higher fresh weight, and longer root length under salt stress. Moreover, overexpression of VvSNAT1 in Arabidopsis protected cells from oxidative damage by reducing the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2). These results indicate that VvSNAT1 positively responds to salt stress. Our results provide a novel perspective for VvSNAT1 to improve salt tolerance, mediated by melatonin accumulation, plant growth promotion and oxidative damage reduction.
Collapse
Affiliation(s)
- Yandi Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Faiz Ur Rahman
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, China.
| |
Collapse
|
32
|
Samanta S, Banerjee A, Roychoudhury A. Exogenous melatonin regulates endogenous phytohormone homeostasis and thiol-mediated detoxification in two indica rice cultivars under arsenic stress. PLANT CELL REPORTS 2021; 40:1585-1602. [PMID: 34003317 DOI: 10.1007/s00299-021-02711-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/30/2021] [Indexed: 05/02/2023]
Abstract
Melatonin enhanced arsenic (As) tolerance by inhibiting As bioaccumulation, modulating the expression of As transporters and phytohormone homeostasis, leading to efficient utilization of thiol machinery for sequestration and detoxification of this toxic metalloid. The present study was aimed at investigating the influence of exogenous melatonin on the regulation of endogenous plant growth regulators and their cumulative effects on metal(loid)-binding ligands in two contrasting indica rice cultivars, viz., Khitish (arsenic sensitive) and Muktashri (arsenic tolerant) under arsenic stress. Melatonin supplementation ameliorated arsenic-induced perturbations by triggering endogenous levels of gibberellic acid and melatonin, via up-regulating the expression of key biosynthetic genes like GA3ox, TDC, SNAT and ASMT. The endogenous abscisic acid content was also enhanced upon melatonin treatment by induced expression of the key anabolic gene, NCED3 and concomitant suppression of ABA8ox1. Enhanced melatonin content induced accumulation of higher polyamines (spermidine and spermine), together with up-regulation of SPDS and SPMS in Khitish, thereby modulating stress condition. On the contrary, melatonin escalated putrescine and spermidine levels in Muktashri, via enhanced expression of ADC and SAMDC. The role of melatonin appeared to be more prominent in Khitish, as evident from better utilization of thiol components like cysteine, GSH, non-protein thiols and phytochelatins, with higher GSH/GSSG ratio, despite down-regulated expression of corresponding thiol-metabolic genes (OsMT2 and OsPCS1) to deal with arsenic toxicity. The extent of arsenic bioaccumulation, which was magnified several folds, particularly in Khitish, was decreased upon melatonin application. Overall, our observation highlighted the fact that melatonin enhanced arsenic tolerance by inhibiting arsenic bioaccumulation, via modulating the expression levels of selected arsenic transporters (OsNramp1, OsPT2, OsPT8, OsLsi1) and controlling endogenous phytohormone homeostasis, leading to efficient utilization of thiol machinery for sequestration and detoxification of this toxic metalloid.
Collapse
Affiliation(s)
- Santanu Samanta
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India.
| |
Collapse
|
33
|
Negri S, Commisso M, Avesani L, Guzzo F. The case of tryptamine and serotonin in plants: a mysterious precursor for an illustrious metabolite. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5336-5355. [PMID: 34009335 DOI: 10.1093/jxb/erab220] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Indolamines are tryptophan-derived specialized metabolites belonging to the huge and ubiquitous indole alkaloids group. Serotonin and melatonin are the best-characterized members of this family, given their many hormonal and physiological roles in animals. Following their discovery in plants, the study of plant indolamines has flourished and their involvement in important processes, including stress responses, growth and development, and reproduction, has been proposed, leading to their classification as a new category of phytohormones. However, the complex indolamine puzzle is far from resolved, particularly the biological roles of tryptamine, the early serotonin precursor representing the central hub of many downstream indole alkaloids. Tryptophan decarboxylase, which catalyzes the synthesis of tryptamine, strictly regulates the flux of carbon and nitrogen from the tryptophan pool into the indolamine pathway. Furthermore, tryptamine accumulates to high levels in the reproductive organs of many plant species and therefore cannot be classed as a mere intermediate but rather as an end product with potentially important functions in fruits and seeds. This review summarizes current knowledge on the role of tryptamine and its close relative serotonin, emphasizing the need for a clear understanding of the functions of, and mutual relations between, these indolamines and their biosynthesis pathways in plants.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| |
Collapse
|
34
|
Niekerk LA, Carelse MF, Bakare OO, Mavumengwana V, Keyster M, Gokul A. The Relationship between Cadmium Toxicity and the Modulation of Epigenetic Traits in Plants. Int J Mol Sci 2021; 22:ijms22137046. [PMID: 34209014 PMCID: PMC8268939 DOI: 10.3390/ijms22137046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/17/2023] Open
Abstract
Elevated concentrations of heavy metals such as cadmium (Cd) have a negative impact on staple crop production due to their ability to elicit cytotoxic and genotoxic effects on plants. In order to understand the relationship between Cd stress and plants in an effort to improve Cd tolerance, studies have identified genetic mechanisms which could be important for conferring stress tolerance. In recent years epigenetic studies have garnered much attention and hold great potential in both improving the understanding of Cd stress in plants as well as revealing candidate mechanisms for future work. This review describes some of the main epigenetic mechanisms involved in Cd stress responses. We summarize recent literature and data pertaining to chromatin remodeling, DNA methylation, histone acetylation and miRNAs in order to understand the role these epigenetic traits play in cadmium tolerance. The review aims to provide the framework for future studies where these epigenetic traits may be used in plant breeding and molecular studies in order to improve Cd tolerance.
Collapse
Affiliation(s)
- Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
| | - Mogamat Fahiem Carelse
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
| | - Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
| | - Vuyo Mavumengwana
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Tygerberg Campus, Stellenbosch University, Cape Town 7505, South Africa;
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.F.C.); (O.O.B.)
- Correspondence: (M.K.); (A.G.); Tel.: +27-587185392 (M.K. & A.G.)
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
- Correspondence: (M.K.); (A.G.); Tel.: +27-587185392 (M.K. & A.G.)
| |
Collapse
|
35
|
Altaf MA, Shahid R, Ren MX, Mora-Poblete F, Arnao MB, Naz S, Anwar M, Altaf MM, Shahid S, Shakoor A, Sohail H, Ahmar S, Kamran M, Chen JT. Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses. PHYSIOLOGIA PLANTARUM 2021; 172:820-846. [PMID: 33159319 DOI: 10.1111/ppl.13262] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 05/06/2023]
Abstract
Recently, melatonin has gained significant importance in plant research. The presence of melatonin in the plant kingdom has been known since 1995. It is a molecule that is conserved in a wide array of evolutionary distant organisms. Its functions and characteristics have been found to be similar in both plants and animals. The review focuses on the role of melatonin pertaining to physiological functions in higher plants. Melatonin regulates physiological functions regarding auxin activity, root, shoot, and explant growth, activates germination of seeds, promotes rhizogenesis (growth of adventitious and lateral roots), and holds up impelled leaf senescence. Melatonin is a natural bio-stimulant that creates resistance in field crops against various abiotic stress, including heat, chemical pollutants, cold, drought, salinity, and harmful ultra-violet radiation. The full potential of melatonin in regulating physiological functions in higher plants still needs to be explored by further research.
Collapse
Affiliation(s)
| | - Rabia Shahid
- School of Economics, Hainan University, Haikou, China
| | - Ming-Xun Ren
- Center for Terrestrial Biodiversity of the South China Sea, College of Ecology and Environment, Hainan University, Haikou, China
| | | | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Safina Naz
- Department of Horticulture, Faculty of Agricultural Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Anwar
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | | | - Sidra Shahid
- Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Lleida, Spain
| | - Hamza Sohail
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Liao L, Zhou Y, Xu Y, Zhang Y, Liu X, Liu B, Chen X, Guo Y, Zeng Z, Zhao Y. Structural and Molecular Dynamics Analysis of Plant Serotonin N-Acetyltransferase Reveal an Acid/Base-Assisted Catalysis in Melatonin Biosynthesis. Angew Chem Int Ed Engl 2021; 60:12020-12026. [PMID: 33682300 DOI: 10.1002/anie.202100992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Indexed: 01/12/2023]
Abstract
Serotonin N-acetyltransferase (SNAT) is the key rate-limiting enzyme in melatonin biosynthesis. It mediates melatonin biosynthesis in plants by using serotonin and 5-methoxytryptamine (5-MT), but little is known of its underlying mechanisms. Herein, we present a detailed reaction mechanism of a SNAT from Oryza sativa through combined structural and molecular dynamics (MD) analysis. We report the crystal structures of plant SNAT in the apo and binary/ternary complex forms with acetyl-CoA (AcCoA), serotonin, and 5-MT. OsSNAT exhibits a unique enzymatically active dimeric fold not found in the known structures of arylalkylamine N-acetyltransferase (AANAT) family. The key residues W188, D189, D226, N220, and Y233 located around the active pocket are important in catalysis, confirmed by site-directed mutagenesis. Combined with MD simulations, we hypothesize a novel plausible catalytic mechanism in which D226 and Y233 function as catalytic base and acid during the acetyl-transfer reaction.
Collapse
Affiliation(s)
- Lijing Liao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yuanze Zhou
- Shandong Provincial Key Laboratory of Microbial Engineering, College of Bioengineering, Qilu University of Technology, Jinan, 250353, Shandong, China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Youdong Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yuhao Zhang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Xikai Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Biao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xinxin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yan Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhixiong Zeng
- Shandong Provincial Key Laboratory of Microbial Engineering, College of Bioengineering, Qilu University of Technology, Jinan, 250353, Shandong, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
37
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10. [PMID: 34068211 DOI: 10.20944/preprints202104.0637.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/20/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
Affiliation(s)
- Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - María López-Delacalle
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - José Manuel Martí-Guillen
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Sara E Martínez-Lorente
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Rosa M Rivero
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
38
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10:antiox10050775. [PMID: 34068211 PMCID: PMC8153167 DOI: 10.3390/antiox10050775] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
|
39
|
Inhibition of Rice Serotonin N-Acetyltransferases by MG149 Decreased Melatonin Synthesis in Rice Seedlings. Biomolecules 2021; 11:biom11050658. [PMID: 33946959 PMCID: PMC8145546 DOI: 10.3390/biom11050658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
We examined the effects of two histone acetyltransferase (HAT) inhibitors on the activity of rice serotonin N-acetyltransferases (SNAT). Two rice recombinant SNAT isoenzymes (SNAT1 and SNAT2) were incubated in the presence of either MG149 or MB3, HAT inhibitors. MG149 significantly inhibited the SNAT enzymes in a dose-dependent manner, especially SNAT1, while SNAT2 was moderately inhibited. By contrast, MB3 had no effect on SNAT1 or SNAT2. The application of 100 μM MG149 to rice seedlings decreased melatonin by 1.6-fold compared to the control, whereas MB3 treatment did not alter the melatonin level. MG149 significantly decreased both melatonin and N-acetylserotonin when rice seedlings were challenged with cadmium, a potent elicitor of melatonin synthesis in rice. Although MG149 inhibited melatonin synthesis in rice seedlings, no melatonin deficiency-induced lamina angle decrease was observed due to the insufficient suppression of SNAT2, which is responsible for the lamina angle decrease in rice.
Collapse
|
40
|
Liao L, Zhou Y, Xu Y, Zhang Y, Liu X, Liu B, Chen X, Guo Y, Zeng Z, Zhao Y. Structural and Molecular Dynamics Analysis of Plant Serotonin
N
‐Acetyltransferase Reveal an Acid/Base‐Assisted Catalysis in Melatonin Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lijing Liao
- School of Pharmacy China Pharmaceutical University Nanjing 210009 Jiangsu China
| | - Yuanze Zhou
- Shandong Provincial Key Laboratory of Microbial Engineering College of Bioengineering Qilu University of Technology Jinan 250353 Shandong China
- National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan 430070 Hubei China
| | - Youdong Xu
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 Sichuan China
| | - Yuhao Zhang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing 210009 Jiangsu China
| | - Xikai Liu
- National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan 430070 Hubei China
| | - Biao Liu
- National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan 430070 Hubei China
| | - Xinxin Chen
- National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan 430070 Hubei China
| | - Yan Guo
- National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan 430070 Hubei China
| | - Zhixiong Zeng
- Shandong Provincial Key Laboratory of Microbial Engineering College of Bioengineering Qilu University of Technology Jinan 250353 Shandong China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing 210009 Jiangsu China
| |
Collapse
|
41
|
Huang X, Zhang H, Wang Q, Guo R, Wei L, Song H, Kuang W, Liao J, Huang Y, Wang Z. Genome-wide identification and characterization of long non-coding RNAs involved in flag leaf senescence of rice. PLANT MOLECULAR BIOLOGY 2021; 105:655-684. [PMID: 33569692 PMCID: PMC7985109 DOI: 10.1007/s11103-021-01121-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/17/2021] [Indexed: 05/30/2023]
Abstract
KEY MESSAGE This study showed the systematic identification of long non-coding RNAs (lncRNAs) involving in flag leaf senescence of rice, providing the possible lncRNA-mRNA regulatory relationships and lncRNA-miRNA-mRNA ceRNA networks during leaf senescence. LncRNAs have been reported to play crucial roles in diverse biological processes. However, no systematic identification of lncRNAs associated with leaf senescence in plants has been studied. In this study, a genome-wide high throughput sequencing analysis was performed using rice flag leaves developing from normal to senescence. A total of 3953 lncRNAs and 38757 mRNAs were identified, of which 343 lncRNAs and 9412 mRNAs were differentially expressed. Through weighted gene co-expression network analysis (WGCNA), 22 continuously down-expressed lncRNAs targeting 812 co-expressed mRNAs and 48 continuously up-expressed lncRNAs targeting 1209 co-expressed mRNAs were considered to be significantly associated with flag leaf senescence. Gene Ontology results suggested that the senescence-associated lncRNAs targeted mRNAs involving in many biological processes, including transcription, hormone response, oxidation-reduction process and substance metabolism. Additionally, 43 senescence-associated lncRNAs were predicted to target 111 co-expressed transcription factors. Interestingly, 8 down-expressed lncRNAs and 29 up-expressed lncRNAs were found to separately target 12 and 20 well-studied senescence-associated genes (SAGs). Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 6 down-expressed lncRNAs possibly regulated 51 co-expressed mRNAs through 15 miRNAs, and 14 up-expressed lncRNAs possibly regulated 117 co-expressed mRNAs through 21 miRNAs. Importantly, by expression validation, a conserved miR164-NAC regulatory pathway was found to be possibly involved in leaf senescence, where lncRNA MSTRG.62092.1 may serve as a ceRNA binding with miR164a and miR164e to regulate three transcription factors. And two key lncRNAs MSTRG.31014.21 and MSTRG.31014.36 also could regulate the abscisic-acid biosynthetic gene BGIOSGA025169 (OsNCED4) and BGIOSGA016313 (NAC family) through osa-miR5809. The possible regulation networks of lncRNAs involving in leaf senescence were discussed, and several candidate lncRNAs were recommended for prior transgenic analysis. These findings will extend the understanding on the regulatory roles of lncRNAs in leaf senescence, and lay a foundation for functional research on candidate lncRNAs.
Collapse
Affiliation(s)
- Xiaoping Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, 330045, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang City, 330045, Jiangxi Province, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, 330045, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang City, 330045, Jiangxi Province, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, 330045, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang City, 330045, Jiangxi Province, China
| | - Rong Guo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, 330045, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang City, 330045, Jiangxi Province, China
| | - Lingxia Wei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, 330045, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang City, 330045, Jiangxi Province, China
| | - Haiyan Song
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, 330045, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang City, 330045, Jiangxi Province, China
| | - Weigang Kuang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, 330045, Jiangxi Province, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, 330045, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang City, 330045, Jiangxi Province, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, Hunan Province, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, 330045, Jiangxi Province, China.
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang City, 330045, Jiangxi Province, China.
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, Hunan Province, China.
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, 330045, Jiangxi Province, China.
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang City, 330045, Jiangxi Province, China.
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, Hunan Province, China.
| |
Collapse
|
42
|
Nehela Y, Killiny N. Diaphorina citri Genome Possesses a Complete Melatonin Biosynthesis Pathway Differentially Expressed under the Influence of the Phytopathogenic Bacterium, Candidatus Liberibacter asiaticus. INSECTS 2021; 12:317. [PMID: 33916117 PMCID: PMC8065666 DOI: 10.3390/insects12040317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Melatonin is synthesized from the amino acid L-tryptophan via the shikimic acid pathway and ubiquitously distributed in both prokaryotes and eukaryotes. Although most of melatonin biosynthesis genes were characterized in several plants and animal species including the insect model, Drosophila melanogaster, none of these enzymes have been identified from the Asian citrus psyllid, Diaphorina citri. We used comprehensive in silico analysis and gene expression techniques to identify the melatonin biosynthesis-related genes of D. citri and to evaluate the expression patterns of these genes within the adults of D. citri with gradient infection rates (0, 28, 34, 50, 58, and 70%) of the phytopathogenic bacterium Candidatus Liberibacter asiaticus and after the treatment with exogenous melatonin. We showed that the D. citri genome possesses six putative melatonin biosynthesis-related genes including two putative tryptophan 5-hydroxylase (DcT5H-1 and DcT5H-2), a putative aromatic amino acid decarboxylase (DcAADC), two putative arylalkylamine N-acetyltransferase (DcAANAT-1 and DcAANAT-2), and putative N-acetylserotonin O-methyltransferase (DcASMT). The infection with Ca. L. asiaticus decreased the transcript levels of all predicted genes in the adults of D. citri. Moreover, melatonin supplementation induced their expression levels in both healthy and Ca. L. asiaticus-infected psyllids. These findings confirm the association of these genes with the melatonin biosynthesis pathway.
Collapse
Affiliation(s)
- Yasser Nehela
- Citrus Research and Education Center, Department of Plant Pathology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| | - Nabil Killiny
- Citrus Research and Education Center, Department of Plant Pathology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
| |
Collapse
|
43
|
Lee HY, Back K. Melatonin Regulates Chloroplast Protein Quality Control via a Mitogen-Activated Protein Kinase Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10040511. [PMID: 33806011 PMCID: PMC8064490 DOI: 10.3390/antiox10040511] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Serotonin N-acetyltransferase 1 (SNAT1), the penultimate enzyme for melatonin biosynthesis has shown N-acetyltransferase activity toward multiple substrates, including histones, serotonin, and plastid proteins. Under two different light conditions such as 50 or 100 μmol m−2 s−1, a SNAT1-knockout (snat1) mutant of Arabidopsis thaliana ecotype Columbia (Col-0) exhibited small size phenotypes relative over wild-type (WT) Arabidopsis Col-0. Of note, the small phenotype is stronger when growing at the 50 μmol m−2 s−1, exhibiting a dwarfism phenotype and delayed flowering. The snat1 Arabidopsis Col-0 accumulated less starch than the WT Col-0. Moreover, snat1 exhibited lower Lhcb1, Lhcb4, and RBCL protein levels, compared with the WT Col-0, but no changes in the corresponding transcripts, suggesting the involvement of melatonin in chloroplast protein quality control (CPQC). Accordingly, caseinolytic protease (Clp) and chloroplast heat shock proteins (CpHSPs), two key proteins involved in CPQC, as well as ROS defense were suppressed in snat1. In contrast, exogenous melatonin treatment induced expression of Clp, CpHSP, APX1, and GST, but not other growth-related genes such as DWF4, KS, and IAA1. Finally, the induction of ClpR1, APX1, and GST1 in response to melatonin was inhibited in the mitogen-activated protein kinase (MAPK) knockdown Arabidopsis (mpk3/6), suggesting that melatonin-mediated CPQC was mediated, in part, by the MAPK signaling cascade. These results suggest that melatonin is involved in CPQC, which plays a pivotal role in starch synthesis in plants.
Collapse
|
44
|
Yu Y, Teng Z, Mou Z, Lv Y, Li T, Chen S, Zhao D, Zhao Z. Melatonin confers heavy metal-induced tolerance by alleviating oxidative stress and reducing the heavy metal accumulation in Exophiala pisciphila, a dark septate endophyte (DSE). BMC Microbiol 2021; 21:40. [PMID: 33546601 PMCID: PMC7863494 DOI: 10.1186/s12866-021-02098-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Background Melatonin (MT), ubiquitous in almost all organisms, functions as a free radical scavenger. Despite several reports on its role as an antioxidant in animals, plants, and some microorganisms, extensive studies in filamentous fungi are limited. Based upon the role of melatonin as an antioxidant, we investigated its role in heavy metal-induced stress tolerance in Exophiala pisciphila, a dark septate endophyte (DSE), by studying the underlying mechanisms in alleviating oxidative stress and reducing heavy metal accumulation. Results A significant decrease in malondialdehyde (MDA) and oxygen free radical (OFR) in E. pisciphila was recorded under Cd, Zn, and Pb stresses as compared to the control. Pretreatment of E. pisciphila with 200.0 μM exogenous melatonin significantly increased the activity of superoxide dismutase (SOD) under Zn and Pb stresses. Pretreatment with 200.0 μM melatonin also lowered Cd, Zn, and Pb concentrations significantly. Melatonin production was enhanced by Cd, Cu, and Zn after 2 d, and melatonin biosynthetic enzyme genes, E. pisciphila tryptophan decarboxylase (EpTDC1) and serotonin N-acetyltransferase (EpSNAT1), were transcriptionally upregulated. The overexpression of EpTDC1 and N-acetylserotonin O-methyltransferase (EpASMT1) in Escherichia coli and Arabidopsis thaliana enhanced its heavy metal-induced stress tolerance. The overexpression of EpTDC1 and EpASMT1 reduced the Cd accumulation in the whole A. thaliana plants, especially in the roots. Conclusions Melatonin conferred heavy metal-induced stress tolerance by alleviating oxidative stress, activating antioxidant enzyme SOD, and reducing heavy metal accumulation in E. pisciphila. Melatonin biosynthetic enzyme genes of E. pisciphila also played key roles in limiting excessive heavy metal accumulation in A. thaliana. These findings can be extended to understand the role of melatonin in other DSEs associated with economically important plants and help develop new strategies in sustainable agriculture practice where plants can grow in soils contaminated with heavy metals. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02098-1.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Zhaowei Teng
- Department of Orthopedics, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China.,Department of Orthopedics, The First people's Hospital of Yunnan Province, Kunming, China
| | - Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China.,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yan Lv
- Department of Orthopedics, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China.,Department of Orthopedics, The First people's Hospital of Yunnan Province, Kunming, China
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China.,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China. .,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China. .,School of Ecology and Environmental Science, Yunnan University, Kunming, China.
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
45
|
Huang X, Zhang H, Guo R, Wang Q, Liu X, Kuang W, Song H, Liao J, Huang Y, Wang Z. Systematic identification and characterization of circular RNAs involved in flag leaf senescence of rice. PLANTA 2021; 253:26. [PMID: 33410920 PMCID: PMC7790769 DOI: 10.1007/s00425-020-03544-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/19/2020] [Indexed: 05/30/2023]
Abstract
Circular RNAs (circRNAs) identification, expression profiles, and construction of circRNA-parental gene relationships and circRNA-miRNA-mRNA ceRNA networks indicate that circRNAs are involved in flag leaf senescence of rice. Circular RNAs (circRNAs) are a class of 3'-5' head-to-tail covalently closed non-coding RNAs which have been proved to play important roles in various biological processes. However, no systematic identification of circRNAs associated with leaf senescence in rice has been studied. In this study, a genome-wide high-throughput sequencing analysis was performed using rice flag leaves developing from normal to senescence. Here, a total of 6612 circRNAs were identified, among which, 113 circRNAs were differentially expressed (DE) during the leaf senescence process. Moreover, 4601 (69.59%) circRNAs were derived from the exons or introns of their parental genes, while 2110 (71%) of the parental genes produced only one circRNA. The sequence alignment analysis showed that hundreds of rice circRNAs were conserved among different plant species. Gene Ontology (GO) enrichment analysis revealed that parental genes of DE circRNAs were enriched in many biological processes closely related to leaf senescence. Through weighted gene co-expression network analysis (WGCNA), six continuously down-expressed circRNAs, 18 continuously up-expressed circRNAs and 15 turn-point high-expressed circRNAs were considered to be highly associated with leaf senescence. Additionally, a total of 17 senescence-associated circRNAs were predicted to have parental genes, in which, regulations of three circRNAs to their parental genes were validated by qRT-PCR. The competing endogenous RNA (ceRNA) networks were also constructed. And a total of 11 senescence-associated circRNAs were predicted to act as miRNA sponges to regulate mRNAs, in which, regulation of two circRNAs to eight mRNAs was validated by qRT-PCR. It is discussed that senescence-associated circRNAs were involved in flag leaf senescence probably through mediating their parental genes and ceRNA networks, to participate in several well-studied senescence-associated processes, mainly including the processes of transcription, translation, and posttranslational modification (especially protein glycosylation), oxidation-reduction process, involvement of senescence-associated genes, hormone signaling pathway, proteolysis, and DNA damage repair. This study not only showed the systematic identification of circRNAs involved in leaf senescence of rice, but also laid a foundation for functional research on candidate circRNAs.
Collapse
Affiliation(s)
- Xiaoping Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Rong Guo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Xuanzhi Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Weigang Kuang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Haiyan Song
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| |
Collapse
|
46
|
Yao JW, Ma Z, Ma YQ, Zhu Y, Lei MQ, Hao CY, Chen LY, Xu ZQ, Huang X. Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2021; 44:114-129. [PMID: 32860452 DOI: 10.1111/pce.13879] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 05/18/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in plant defences against a variety of biotic and abiotic stresses, including UV-B stress. Molecular mechanisms underlying functions of melatonin in plant UV-B responses are poorly understood. Here, we show that melatonin effect on molecular signalling pathways, physiological changes and UV-B stress resistance in Arabidopsis. Both exogenous and endogenous melatonin affected expression of UV-B signal transduction pathway genes. Experiments using UV-B signalling component mutants cop1-4 and hy5-215 revealed that melatonin not only acts as an antioxidant to promote UV-B stress resistance, but also regulates expression of several key components of UV-B signalling pathway, including ubiquitin-degrading enzyme (COP1), transcription factors (HY5, HYH) and RUP1/2. Our findings indicate that melatonin delays and subsequently enhances expression of COP1, HY5, HYH and RUP1/2, which act as central effectors in UV-B signalling pathway, thus regulating their effects on antioxidant systems to protect the plant from UV-B stress.
Collapse
Affiliation(s)
- Jing-Wen Yao
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zheng Ma
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yan-Qin Ma
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Ying Zhu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Meng-Qi Lei
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Cheng-Ying Hao
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Li-Yu Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-Qin Xu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xuan Huang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
47
|
Zhang J, Yao Z, Zhang R, Mou Z, Yin H, Xu T, Zhao D, Chen S. Genome-Wide Identification and Expression Profile of the SNAT Gene Family in Tobacco ( Nicotiana tabacum). Front Genet 2020; 11:591984. [PMID: 33193735 PMCID: PMC7652900 DOI: 10.3389/fgene.2020.591984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Melatonin plays key roles in development and confers stress tolerance to plants. Serotonin N-acetyltransferase (SNAT) is either the enzyme involved in the last step or the penultimate enzyme of phytomelatonin biosynthesis. To date, SNAT genes have not been characterized in tobacco (Nicotiana tabacum), an economically important plant species. The sequence of the Acetyltransf_7 conserved domain was used as a query sequence, and 12 NtSNAT candidate genes were in turn identified in the genome of tobacco. These NtSNATs could be divided into two groups based on the phylogenetic tree. NtSNAT1 and NtSNAT2 clustered together with the other typical SNATs, but the other 10 NtSNATs separately clustered outside of the typical SNATs. These 10 NtSNATs have only motif 1, whereas representative SNATs, such as NtSNAT1 and NtSNAT2 or a SNAT from cyanobacteria, have five motifs. In addition, NtSNAT1 and NtSNAT2 are highly homologous to the characterized OsSNAT1, 62.95 and 71.36%, respectively; however, the homology between the other 10 NtSNAT genes and OsSNAT1 is low. Concomitantly, it is hypothesized that NtSNAT1 and NtSNAT2 are the homolog of SNATs, whereas the other 10 candidates could be considered NtSNAT-like genes. Furthermore, both Nicotiana tomentosiformis and Nicotiana sylvestris, two diploid ancestor species of N. tabacum, have two SNAT candidates; therefore, it is speculated that gene rearrangement or deletion during the process of genomic stabilization after whole-genome duplication or polyploidization led to the preservation of NtSNAT1 and NtSNAT2 during the evolution of tobacco from the ancestral diploid to the allotetraploid. NtSNAT and NtSNAT-like genes were differentially expressed in all organs under different stress conditions, indicating that these genes potentially associated with plant growth and development and stress resistance. Under different stress conditions, the expression of NtSNAT1 was significantly upregulated upon high-temperature and cadmium stresses, while the expression of NtSNAT2 did not significantly increase under any of the tested stress treatments. These results provide valuable information for elucidating the evolutionary relationship of SNAT genes in tobacco and genetic resources for improving tobacco production in the future.
Collapse
Affiliation(s)
- Jiemei Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Zhengping Yao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Renjun Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Honghui Yin
- Wenshan Branch of Yunnan Tobacco Company, Wenshan, China
| | - Tianyang Xu
- Wenshan Branch of Yunnan Tobacco Company, Wenshan, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
48
|
Tan DX, Reiter RJ. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4677-4689. [PMID: 32413108 DOI: 10.1093/jxb/eraa235] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/07/2020] [Indexed: 05/22/2023]
Abstract
Plant melatonin research is a rapidly developing field. A variety of isoforms of melatonin's biosynthetic enzymes are present in different plants. Due to the different origins, they exhibit independent responses to the variable environmental stimuli. The locations for melatonin biosynthesis in plants are chloroplasts and mitochondria. These organelles have inherited their melatonin biosynthetic capacities from their bacterial ancestors. Under ideal conditions, chloroplasts are the main sites of melatonin biosynthesis. If the chloroplast pathway is blocked for any reason, the mitochondrial pathway will be activated for melatonin biosynthesis to maintain its production. Melatonin metabolism in plants is a less studied field; its metabolism is quite different from that of animals even though they share similar metabolites. Several new enzymes for melatonin metabolism in plants have been cloned and these enzymes are absent in animals. It seems that the 2-hydroxymelatonin is a major metabolite of melatonin in plants and its level is ~400-fold higher than that of melatonin. In the current article, from an evolutionary point of view, we update the information on plant melatonin biosynthesis and metabolism. This review will help the reader to understand the complexity of these processes and promote research enthusiasm in these fields.
Collapse
Affiliation(s)
| | - Russel J Reiter
- Department of Anatomy and Cell System, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
49
|
Xu L, Zhang F, Tang M, Wang Y, Dong J, Ying J, Chen Y, Hu B, Li C, Liu L. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. J Pineal Res 2020; 69:e12659. [PMID: 32323337 DOI: 10.1111/jpi.12659] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is an environmental pollutant that causes health hazard to living organisms. Melatonin (MT) has emerged as a ubiquitous pleiotropic molecule capable of coordinating heavy metal (HM) stresses in plants. However, it remains unclear how melatonin mediates Cd homeostasis and detoxification at transcriptional and/or post-transcriptional levels in radish. Herein, the activities of five key antioxidant enzymes were increased, while root and shoot Cd contents were dramatically decreased by melatonin. A combined small RNA and transcriptome sequencing analysis showed that 14 differentially expressed microRNAs (DEMs) and 966 differentially expressed genes (DEGs) were shared between the Cd and Cd + MT conditions. In all, 23 and ten correlated miRNA-DEG pairs were identified in Con vs. Cd and Con vs. Cd + MT comparisons, respectively. Several DEGs encoding yellow stripe 1-like (YSL), heavy metal ATPases (HMA), and ATP-binding cassette (ABC) transporters were involved in Cd transportation and sequestration in radish. Root exposure to Cd2+ induced several specific signaling molecules, which consequently trigger some HM chelators, transporters, and antioxidants to achieve reactive oxygen species (ROS) scavenging and detoxification and eliminate Cd toxicity in radish plants. Notably, transgenic analysis revealed that overexpression of the RsMT1 (Metallothionein 1) gene could enhance Cd tolerance of tobacco plants, indicating that the exogenous melatonin confers Cd tolerance, which might be attributable to melatonin-mediated upregulation of RsMT1 gene in radish plants. These results could contribute to dissecting the molecular basis governing melatonin-mediated Cd stress response in plants and pave the way for high-efficient genetically engineering low-Cd-content cultivars in radish breeding programs.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yinglong Chen
- School of Agriculture and Environment, The UWA's Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Bing Hu
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
50
|
Sami A, Shah FA, Abdullah M, Zhou X, Yan Y, Zhu Z, Zhou K. Melatonin mitigates cadmium and aluminium toxicity through modulation of antioxidant potential in Brassica napus L. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:679-690. [PMID: 32003103 DOI: 10.1111/plb.13093] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/21/2020] [Indexed: 05/03/2023]
Abstract
Melatonin has emerged as an essential molecule in plants, due to its role in defence against metal toxicity. Aluminium (Al) and cadmium (Cd) toxicity inhibit rapeseed seedling growth. In this study, we applied different doses of melatonin (50 and 100 µm) to alleviate Al (25 µm) and Cd (25 µm) stress in rapeseed seedlings. Results show that Al and Cd caused toxicity in rapeseed seedling, as evidenced by a decrease in height, biomass and antioxidant enzyme activity. Melatonin increased the expression of melatonin biosynthesis-related Brassica napus genes for caffeic acid O-methyl transferase (BnCOMT) under Al and Cd stress. The genes BnCOMT-1, BnCOMT-5 and BnCOMT-8 showed up-regulated expression, while BnCOMT-4 and BnCOMT-6 were down-regulated during incubation in water. Melatonin application increased the germination rate, shoot length, root length, fresh and dry weight of seedlings. Melatonin supplementation under Al and Cd stress increased superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, proline, chlorophyll and anthocyanin content, as well as photosynthesis rate. Both Cd and Al treatments significantly increased hydrogen peroxide and malondialdehyde levels in rapeseed seedlings, which were strictly counterbalanced by melatonin. Analysis of Cd and Al in different subcellular compartments showed that melatonin enhanced cell wall and soluble fractions, but reduced the vacuolar and organelle fractions in Al- and Cd-treated seedlings. These results suggest that melatonin-induced improvements in antioxidant potential, biomass, photosynthesis rate and successive Cd and Al sequestration play a pivotal role in plant tolerance to Al and Cd stress. This mechanism may have potential implications in safe food production.
Collapse
Affiliation(s)
- A Sami
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - F A Shah
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - M Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - X Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Y Yan
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Z Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - K Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|