1
|
Chmur M, Bajguz A. Comparative Efficacy of Melatonin and Brassinolide in Mitigating the Adverse Effects of Cadmium on Wolffia arrhiza. Int J Mol Sci 2025; 26:692. [PMID: 39859406 PMCID: PMC11765764 DOI: 10.3390/ijms26020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Melatonin (MT) and brassinolide (BL) are phytohormones that regulate various physiological processes in plants. This study investigates their effects on Wolffia arrhiza when exposed to cadmium (Cd). Plant hormones were quantified using liquid chromatography-mass spectrometry, while photosynthetic pigments and phytochelatins (PCs) were analyzed through high-performance liquid chromatography. Protein, monosaccharide levels, and antioxidant activities were also spectrophotometrically measured. The findings reveal that MT and BL treatment decreased Cd accumulation in W. arrhiza compared to plants only exposed to Cd. MT was particularly effective in reversing Cd-induced growth inhibition and reducing stress markers more significantly than BL. It also enhanced antioxidant activity and maintained higher levels of photosynthetic pigments, proteins, and sugars. Although BL was less effective in these aspects, it promoted greater synthesis of glutathione and PCs in Cd-exposed duckweed. Overall, both MT and BL alleviate the negative impact of Cd on W. arrhiza, confirming their crucial role in supporting plant health under metal stress conditions.
Collapse
Affiliation(s)
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| |
Collapse
|
2
|
Babaei MJ, Ebrahimi A, Heidari P, Azadvari E, Gharanjik S, Chaghakaboodi Z. Titanium dioxide -mediated regulation of enzymatic and non-enzymatic antioxidants, pigments, and diosgenin content promotes cold stress tolerance in Trigonella foenum-graecum L. Sci Rep 2025; 15:1837. [PMID: 39805881 PMCID: PMC11730625 DOI: 10.1038/s41598-024-84472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions. This study explores the impact of titanium dioxide nanoparticles (TiO2 NPs) on cold-stress tolerance in fenugreek, as well as genes expression involved in the diosgenin biosynthesis pathway. Varied concentrations of TiO2 NPs (0, 2, 5, and 10 ppm) were sprayed on fenugreek plants subjected to cold stress at 10 °C during 6, 24, and 48 h. Our findings revealed that the utilization of 2 and 5 ppm of TiO2 NPs, positively influenced pigments biosynthesis and enzymatic and non-enzymatic antioxidant activities. It also effectively reduced electrolyte leakage and malondialdehyde content, mitigating the adverse effects of cold stress. The study also highlighted TiO2 NPs' affirmative impact on defense signaling pathways, including abscisic acid, nitric oxide, and auxin, in fenugreek. Moreover, TiO2 NPs significantly influenced the expression of genes related to diosgenin biosynthesis. Simultaneous exposure to cold stress and TiO2 NPs led to a substantial increase in diosgenin content, with the upregulation of SEP, SQS, CAS, and SSR genes compared to control conditions. This research indicated that TiO2 NPs application could effectively stimulate fenugreek biosynthesis of primary and secondary metabolites, consequently enhancing plant tolerance to cold stress. The study's outcomes hold promise for potential applications in the metabolic engineering of diosgenin in fenugreek.
Collapse
Affiliation(s)
- Mohamad Javad Babaei
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Parviz Heidari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Elham Azadvari
- Horticultural Sciences Department, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Shahrokh Gharanjik
- Department of Plant Breeding and Biotechnology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Zeinab Chaghakaboodi
- Plant Production Engineering and Genetics Department, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
3
|
Kolupaev YE, Yemets A, Yastreb TO, Blume Y. Functional interaction of melatonin with gasotransmitters and ROS in plant adaptation to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1505874. [PMID: 39726429 PMCID: PMC11669522 DOI: 10.3389/fpls.2024.1505874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Melatonin is considered a multifunctional stress metabolite and a novel plant hormone affecting seed germination, root architecture, circadian rhythms, leaf senescence, and fruit ripening. Melatonin functions related to plant adaptation to stress stimuli of various natures are considered especially important. One of the key components of melatonin's stress-protective action is its ability to neutralise reactive oxygen species (ROS) and reactive nitrogen species directly. However, many of its effects are related to its involvement in the signalling network of plant cells and its influence on the expression of a large number of genes important for adaptation to adverse factors. Insights into the functional relationships of melatonin with gasotransmitters (GT) - gaseous molecules performing signalling functions - are still emerging. This review has analysed and summarised the experimental data that testify to the participation of the main GTs - nitric oxide, hydrogen sulfide, and carbon monoxide - in the implementation of the protective effect of melatonin when plants are exposed to abiotic stimuli of various nature. In addition, modulation by melatonin of one of the most important components in the action of GTs and ROS - post-translational modifications of proteins and the influence of ROS and GTs on melatonin synthesis in plants under stress conditions and the specific physiological effects of exogenous melatonin and GTs have been reviewed. Finally, the prospects of the GTs' practical application to achieve synergistic stress-protective effects on plants have been considered.
Collapse
Affiliation(s)
- Yuriy E. Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana O. Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Han J, Lu Z, Qi Y, Liu T, Li Y, Han H, Zhao C, Ma X. Melatonin Attenuates PFOS-Induced Reproductive Toxicity of Pregnant Mice due to Placental Damage Via Antioxidant, Anti-Aging and Anti-Inflammatory Pathways. Birth Defects Res 2024; 116:e2423. [PMID: 39665241 PMCID: PMC11635750 DOI: 10.1002/bdr2.2423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Perfluorooctane sulfonate (PFOS), an industrially synthesized persistent organic pollutant (POP), is intricately intertwined with human production and daily life. It has been discovered that PFOS is related to an elevated incidence of birth defects in fetuses. In contrast, melatonin (MLT), a hormone secreted by the pineal gland, has been demonstrated to exert a protective effect on reproductive development. METHODS This paper investigates the protective effect of MLT against PFOS-induced reproductive toxicity by simultaneously orally administering MLT to pregnant mice exposed to PFOS. The therapeutic effect was evaluated through the monitoring of pregnancy outcomes, histological changes in the placenta, apoptosis and proliferation of placental spongiotrophoblast, as well as the expression of antioxidant enzyme genes, anti-aging genes, anti-inflammatory genes and other relevant genes. RESULTS The results of the study demonstrated that MLT treatment reversed the adverse pregnancy outcomes caused by toxic PFOS, including a low number of implanted fetuses, low neonatal fetal weight, and an increased number of resorbed fetuses. MLT treatment decreased the levels of MDA, an oxidation product generated by PFOS in the placenta of pregnant mice, and increased the levels of the antioxidant enzyme SOD. Additionally, MLT was able to maintain the normalization of placental structure, reduce apoptosis and sustain the proliferation of placental spongiotrophoblast by upregulating the expression of antioxidant genes (Nrf2, CAT) and anti-aging gene (Klotho), anti-inflammatory gene (Hsd11b2), thereby counteracting the oxidative stress caused by PFOS in the placenta, moreover, it also reduced the expression of inflammatory genes (Pycard) in the placenta. CONCLUSIONS The findings firmly establish the effectiveness of MLT in mitigating the harmful impacts of tainted PFOS on reproductive development during pregnancy. This provides a novel therapeutic approach for addressing PFOS-induced birth defects in fetuses.
Collapse
Affiliation(s)
- Jianqiu Han
- College of Ecological Technology and EngineeringShanghai Institute of TechnologyShanghaiChina
| | - Zhikai Lu
- College of Ecological Technology and EngineeringShanghai Institute of TechnologyShanghaiChina
| | - Yalei Qi
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Tengfei Liu
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yongmei Li
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Honghui Han
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Chen Zhao
- Molecular NeurogeneticsMax Planck Institute of PsychiatryMunichGermany
| | - Xueyun Ma
- Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
5
|
Liu Z, Sun H, Li Y, Bao Q, Huang Y. Metabolic regulation mechanism of melatonin for reducing cadmium accumulation and improving quality in rice. Food Chem 2024; 455:139857. [PMID: 38823141 DOI: 10.1016/j.foodchem.2024.139857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Melatonin acts as a potential regulator of cadmium (Cd) tolerance in rice. However, its practical value in rice production remains unclear. To validate the hypothesis that melatonin affects Cd accumulation and rice quality, a series of experiments were conducted. The results showed that exogenous melatonin application was associated with reduced Cd accumulation (23-43%) in brown rice. Fourier transform infrared spectroscopy (FTIR) analysis showed that exogenous melatonin affected the rice protein secondary structure and starch short-range structure. Metabolomics based on LC-MS/MS revealed that exogenous melatonin altered the brown rice metabolic profile, decreased fatty acid metabolite content, but increased amino acid metabolite, citric acid, melatonin biosynthetic metabolite, and plant hormone contents. These findings indicate that exogenous melatonin can effectively reduced Cd accumulation and improve rice quality through metabolic network regulation, serving as an effective treatment for rice cultivated in Cd-contaminated soil.
Collapse
Affiliation(s)
- Zewei Liu
- Innovation Team of Heavy Metal Ecotoxicology and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongyu Sun
- Innovation Team of Heavy Metal Ecotoxicology and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Li
- School of Energy and Environmental Sciences, Yunnan Normal University, Kunming 650500, China
| | - Qiongli Bao
- Innovation Team of Heavy Metal Ecotoxicology and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yizong Huang
- School of Energy and Environmental Sciences, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
6
|
Qin XL, Zhao YQ, Zhang DJ, Wang KY, Chen WH, Tang ZZ, Chen YE, Yuan S, Ye L, Yuan M. Three species of rape responded to cadmium and melatonin alleviating Cd-toxicity in species-specific strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124178. [PMID: 38763294 DOI: 10.1016/j.envpol.2024.124178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Cadmium (Cd) pollution has been a significant concern in heavy metal pollution, prompting plants to adopt various strategies to mitigate its damage. While the response of plants to Cd stress and the impact of exogenous melatonin has received considerable attention, there has been limited focus on the responses of closely related species to these factors. Consequently, our investigation aimed to explore the response of three different species of rape to Cd stress and examine the influence of exogenous melatonin in this scenario. The research findings revealed distinctive responses among the investigated rape species. B. campestris showed the resistance to Cd and exhibited lower Cd absorption and sustained its physiological activity under Cd stress. In contrast, B. juncea accumulated much Cd and increased the amount of anthocyanin to mitigate the Cd-damage. Furthermore, B. napus showed the tolerance to Cd and tended to accumulate Cd in vacuoles under Cd stress, thereby decreasing the Cd damage and leading to higher activity of antioxidant enzymes and photosynthesis. Moreover, the application of exogenous melatonin significantly elevated the melatonin level in plants and mitigated Cd toxicity by promoting the activity of antioxidant enzymes, reducing Cd absorption, enhancing the chelating capacity with Cd, decreasing Cd accumulation in organelles, and reducing its fluidity. Specifically, exogenous melatonin increased the FHAc content in B. campestris, elevated the phytochelatins (PCs) level in B. napus, and stimulated photosynthesis in B. juncea. In summary, the findings underscore the species-specific responses of the three species of rape to both Cd stress and exogenous melatonin, highlighting the potential for tailored mitigation strategies based on the unique characteristics of each species.
Collapse
Affiliation(s)
- Xiao-Long Qin
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yu-Qing Zhao
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - De-Jun Zhang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Ke-Yu Wang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Wen-Hui Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Zi-Zhong Tang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, 611130, Chengdu, China
| | - Lin Ye
- College of Animal Science and Technology, Sichuan Agricultural University, 611100, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
7
|
Khan M, Hussain A, Yun BW, Mun BG. Melatonin: The Multifaceted Molecule in Plant Growth and Defense. Int J Mol Sci 2024; 25:6799. [PMID: 38928504 PMCID: PMC11203645 DOI: 10.3390/ijms25126799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Melatonin (MEL), a hormone primarily known for its role in regulating sleep and circadian rhythms in animals, has emerged as a multifaceted molecule in plants. Recent research has shed light on its diverse functions in plant growth and defense mechanisms. This review explores the intricate roles of MEL in plant growth and defense responses. MEL is involved in plant growth owing to its influence on hormone regulation. MEL promotes root elongation and lateral root formation and enhances photosynthesis, thereby promoting overall plant growth and productivity. Additionally, MEL is implicated in regulating the circadian rhythm of plants, affecting key physiological processes that influence plant growth patterns. MEL also exhibits antioxidant properties and scavenges reactive oxygen species, thereby mitigating oxidative stress. Furthermore, it activates defense pathways against various biotic stressors. MEL also enhances the production of secondary metabolites that contribute to plant resistance against environmental changes. MEL's ability to modulate plant response to abiotic stresses has also been extensively studied. It regulates stomatal closure, conserves water, and enhances stress tolerance by activating stress-responsive genes and modulating signaling pathways. Moreover, MEL and nitric oxide cooperate in stress responses, antioxidant defense, and plant growth. Understanding the mechanisms underlying MEL's actions in plants will provide new insights into the development of innovative strategies for enhancing crop productivity, improving stress tolerance, and combating plant diseases. Further research in this area will deepen our knowledge of MEL's intricate functions and its potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Adil Hussain
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
8
|
Xie D, Yan J, Zhang H, Zhang H, Nie G, Zhu X, Li X. Cadmium exacerbates liver injury by remodeling ceramide metabolism: Multiomics and laboratory evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171405. [PMID: 38432385 DOI: 10.1016/j.scitotenv.2024.171405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that primarily targets the liver. Cd exposure disrupts specific lipid metabolic pathways; however, the underlying mechanisms remain unclear. This study aimed to investigate the lipidomic characteristics of rat livers after Cd exposure as well as the potential mechanisms of Cd-induced liver injury. Our analysis of established Cd-exposed rat and cell models showed that Cd exposure resulted in liver lipid deposition and hepatocyte damage. Lipidomic detection, transcriptome sequencing, and experimental analyses revealed that Cd mainly affects the sphingolipid metabolic pathway and that the changes in ceramide metabolism are the most significant. In vitro experiments revealed that the inhibition of ceramide synthetase activity or activation of ceramide decomposing enzymes ameliorated the proapoptotic and pro-oxidative stress effects of Cd, thereby alleviating liver injury. In contrast, the exogenous addition of ceramide aggravated liver injury. In summary, Cd increased ceramide levels by remodeling ceramide synthesis and catabolism, thereby promoting hepatocyte apoptosis and oxidative stress and ultimately aggravating liver injury. Reducing ceramide levels can serve as a potential protective strategy to mitigate the liver toxicity of Cd. This study provides new evidence for understanding Cd-induced liver injury at the lipidomic level and insights into the health risks and toxicological mechanisms associated with Cd.
Collapse
Affiliation(s)
- Danna Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Jun Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Honglong Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Haijun Zhang
- Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Guole Nie
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Xingwang Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730000, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China; Center for Cancer Prevention and Treatment, School of Medicine, Lanzhou University, Lanzhou 730000, China; Gansu Provincial Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou 730000, China.
| |
Collapse
|
9
|
Adhikari A, Aneefi AG, Sisuvanh H, Singkham S, Pius MV, Akter F, Kwon EH, Kang SM, Woo YJ, Yun BW, Lee IJ. Dynamics of Humic Acid, Silicon, and Biochar under Heavy Metal, Drought, and Salinity with Special Reference to Phytohormones, Antioxidants, and Melatonin Synthesis in Rice. Int J Mol Sci 2023; 24:17369. [PMID: 38139197 PMCID: PMC10743973 DOI: 10.3390/ijms242417369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to develop a biostimulant formulation using humic acid (HA), silicon, and biochar alone or in combination to alleviate the lethality induced by combined heavy metals (HM-C; As, Cd, and Pb), drought stress (DS; 30-40% soil moisture), and salt stress (SS; 150 mM NaCl) in rice. The results showed that HA, Si, and biochar application alone or in combination improved plant growth under normal, DS, and SS conditions significantly. However, HA increased the lethality of rice by increasing the As, Cd, and Pb uptake significantly, thereby elevating lipid peroxidation. Co-application reduced abscisic acid, elevated salicylic acid, and optimized the Ca2+ and Si uptake. This subsequently elevated the K+/Na+ influx and efflux by regulating the metal ion regulators (Si: Lsi1 and Lsi2; K+/Na+: OsNHX1) and increased the expressions of the stress-response genes OsMTP1 and OsNramp in the rice shoots. Melatonin synthesis was significantly elevated by HM-C (130%), which was reduced by 50% with the HA + Si + biochar treatment. However, in the SS- and DS-induced crops, the melatonin content showed only minor differences. These findings suggest that the biostimulant formulation could be used to mitigate SS and DS, and precautions should be taken when using HA for heavy metal detoxification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (A.A.); (A.G.A.); (H.S.); (S.S.); (M.V.P.); (F.A.); (E.-H.K.); (S.-M.K.); (Y.-J.W.); (B.-W.Y.)
| |
Collapse
|
10
|
Khan MSS, Ahmed S, Ikram AU, Hannan F, Yasin MU, Wang J, Zhao B, Islam F, Chen J. Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses. Redox Biol 2023; 64:102805. [PMID: 37406579 PMCID: PMC10363481 DOI: 10.1016/j.redox.2023.102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Plants being sessile in nature, are exposed to unwarranted threats as a result of constantly changing environmental conditions. These adverse factors can have negative impacts on their growth, development, and yield. Hormones are key signaling molecules enabling cells to respond rapidly to different external and internal stimuli. In plants, melatonin (MT) plays a critical role in the integration of various environmental signals and activation of stress-response networks to develop defense mechanisms and plant resilience. Additionally, melatonin can tackle the stress-induced alteration of cellular redox equilibrium by regulating the expression of redox hemostasis-related genes and proteins. The purpose of this article is to compile and summarize the scientific research pertaining to MT's effects on plants' resilience to biotic and abiotic stresses. Here, we have summarized that MT exerts a synergistic effect with other phytohormones, for instance, ethylene, jasmonic acid, and salicylic acid, and activates plant defense-related genes against phytopathogens. Furthermore, MT interacts with secondary messengers like Ca2+, nitric oxide, and reactive oxygen species to regulate the redox network. This interaction triggers different transcription factors to alleviate stress-related responses in plants. Hence, the critical synergic role of MT with diverse plant hormones and secondary messengers demonstrates phytomelatonin's importance in influencing multiple mechanisms to contribute to plant resilience against harsh environmental factors.
Collapse
Affiliation(s)
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Fakhir Hannan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Dehvari-Nagan P, Abbaspour H, Asare MH, Saadatmand S. Melatonin Confers NaCl Tolerance in Withaniacoagulans L. by Maintaining Na +/K + Homeostasis, Strengthening the Antioxidant Defense System and Modulating Withanolides Synthesis-Related Genes. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY: A COMPREHENSIVE RUSSIAN JOURNAL ON MODERN PHYTOPHYSIOLOGY 2023; 70:52. [PMID: 37250622 PMCID: PMC10204015 DOI: 10.1134/s1021443723600125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 05/31/2023]
Abstract
As a multifunctional signaling molecule, melatonin (ML) is widely considered to induce the defense mechanism and increase the accumulation of secondary metabolites under abiotic stresses. Here, the effects of different concentrations of ML (100 and 200 µM) on the biochemical and molecular responses of Withania coagulans L. in hydroponic conditions under 200 mM NaCl treatment were evaluated. The results showed that NaCl treatment impaired photosynthetic function and reduced plant growth by decreasing photosynthetic pigments and gas exchange parameters. NaCl stress also induced oxidative stress and membrane lipid damage, disrupting Na+/K+ homeostasis and increasing hydrogen peroxide levels. NaCl toxicity decreased nitrogen (N) assimilation activity in leaves by reducing the activity of enzymes associated with N metabolism. However, adding ML to NaCl-stressed plants improved gas exchange parameters and increased photosynthesis efficiency, resulting in improved plant growth. By enhancing the activity of antioxidant enzymes and reducing hydrogen peroxide levels, ML ameliorated NaCl-induced oxidative stress. By improving N metabolism and restoring Na+/K+ homeostasis in NaCl-stressed plants, ML improved N uptake and plant adaptation to salinity. ML increased the expression of genes responsible for the biosynthesis of withanolides (FPPS, SQS, HMGR, DXS, DXR, and CYP51G1) and, as a result, increased the accumulation of withanolides A and withaferin A in leaves under NaCl stress. Overall, our results indicate the potential of ML to improve plant adaptation under NaCl stress through fundamental changes in plant metabolism. Supplementary Information The online version contains supplementary material available at 10.1134/S1021443723600125.
Collapse
Affiliation(s)
- P. Dehvari-Nagan
- Department of Biology, Faculty of Biological Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - H. Abbaspour
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M. H. Asare
- Research Institute of Forests and Rangelands, Tehran, Iran
| | - S. Saadatmand
- Department of Biology, Faculty of Biological Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Wei H, Wang J, Wang Q, He W, Liao S, Huang J, Hu W, Tang M, Chen H. Role of melatonin in enhancing arbuscular mycorrhizal symbiosis and mitigating cold stress in perennial ryegrass ( Lolium perenne L.). Front Microbiol 2023; 14:1123632. [PMID: 37283923 PMCID: PMC10239815 DOI: 10.3389/fmicb.2023.1123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Melatonin is a biomolecule that affects plant development and is involved in protecting plants from environmental stress. However, the mechanisms of melatonin's impact on arbuscular mycorrhizal (AM) symbiosis and cold tolerance in plants are still unclear. In this research, AM fungi inoculation and exogenous melatonin (MT) were applied to perennial ryegrass (Lolium perenne L.) seedlings alone or in combination to investigate their effect on cold tolerance. The study was conducted in two parts. The initial trial examined two variables, AM inoculation, and cold stress, to investigate the involvement of the AM fungus Rhizophagus irregularis in endogenous melatonin accumulation and the transcriptional levels of its synthesis genes in the root system of perennial ryegrass under cold stress. The subsequent trial was designed as a three-factor analysis, encompassing AM inoculation, cold stress, and melatonin application, to explore the effects of exogenous melatonin application on plant growth, AM symbiosis, antioxidant activity, and protective molecules in perennial ryegrass subjected to cold stress. The results of the study showed that compared to non-mycorrhizal (NM) plants, cold stress promoted an increase in the accumulation of melatonin in the AM-colonized counterparts. Acetylserotonin methyltransferase (ASMT) catalyzed the final enzymatic reaction in melatonin production. Melatonin accumulation was associated with the level of expression of the genes, LpASMT1 and LpASMT3. Treatment with melatonin can improve the colonization of AM fungi in plants. Simultaneous utilization of AM inoculation and melatonin treatment enhanced the growth, antioxidant activity, and phenylalanine ammonia-lyase (PAL) activity, while simultaneously reducing polyphenol oxidase (PPO) activity and altering osmotic regulation in the roots. These effects are expected to aid in the mitigation of cold stress in Lolium perenne. Overall, melatonin treatment would help Lolium perenne to improve growth by promoting AM symbiosis, improving the accumulation of protective molecules, and triggering in antioxidant activity under cold stress.
Collapse
|
13
|
Calabrese EJ, Agathokleous E. Nitric oxide, hormesis and plant biology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161299. [PMID: 36596420 DOI: 10.1016/j.scitotenv.2022.161299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The present paper provides the first integrative assessment of the occurrence of nitric oxide (NO) induced hormetic effects in plant biology. Hormetic dose responses were commonly reported for NO donors on numerous plant species of agricultural and other commercial value. The NO donors were also shown to protect plants from a wide range of chemical (i.e., multiple toxic metals) and physical stressors (i.e., heat, drought) in preconditioning (aka priming) experimental protocols showing hormetic dose responses. Practical approaches for the use of NO donors to enhance plant growth using optimized dose response frameworks were also assessed. Considerable mechanistic findings indicate that NO donors have the capacity to enhance a broad range of adaptive responses, including highly integrated antioxidant activities. The integration of the hormesis concept with NO donors is likely to become a valuable practical general strategy to enhance plant productivity across a wide range of valuable plant species facing environmental pollution and climate changes.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, United States of America.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
14
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
15
|
Xu F, Liu W, Wang H, Alam P, Zheng W, Faizan M. Genome Identification of the Tea Plant ( Camellia sinensis) ASMT Gene Family and Its Expression Analysis under Abiotic Stress. Genes (Basel) 2023; 14:409. [PMID: 36833335 PMCID: PMC9957374 DOI: 10.3390/genes14020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The tea plant (Camellia sinensis (L.) O. Ktze) is an important cash crop grown worldwide. It is often subjected to environmental stresses that influence the quality and yield of its leaves. Acetylserotonin-O-methyltransferase (ASMT) is a key enzyme in melatonin biosynthesis, and it plays a critical role in plant stress responses. In this paper, a total of 20 ASMT genes were identified in tea plants and classified into three subfamilies based on a phylogenetic clustering analysis. The genes were unevenly distributed on seven chromosomes; two pairs of genes showed fragment duplication. A gene sequence analysis showed that the structures of the ASMT genes in the tea plants were highly conserved and that the gene structures and motif distributions slightly differed among the different subfamily members. A transcriptome analysis showed that most CsASMT genes did not respond to drought and cold stresses, and a qRT-PCR analysis showed that CsASMT08, CsASMT09, CsASMT10, and CsASMT20 significantly responded to drought and low-temperature stresses; in particular, CsASMT08 and CsASMT10 were highly expressed under low-temperature stress and negatively regulated in response to drought stress. A combined analysis revealed that CsASMT08 and CsASMT10 were highly expressed and that their expressions differed before and after treatment, which indicates that they are potential regulators of abiotic stress resistance in the tea plant. Our results can facilitate further studies on the functional properties of CsASMT genes in melatonin synthesis and abiotic stress in the tea plant.
Collapse
Affiliation(s)
- Fangfang Xu
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Wenxiang Liu
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Hui Wang
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Wei Zheng
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| |
Collapse
|
16
|
Chmur M, Bajguz A. Melatonin Involved in Protective Effects against Cadmium Stress in Wolffia arrhiza. Int J Mol Sci 2023; 24:ijms24021178. [PMID: 36674694 PMCID: PMC9867261 DOI: 10.3390/ijms24021178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Melatonin (MT) is a new plant hormone that protects against adverse environmental conditions. In the present study, the responses of Wolffia arrhiza exposed to cadmium (Cd) and MT were analyzed. Quantitative analysis of MT and precursors of its biosynthesis was performed using LC-MS-MS. The photosynthetic pigments and phytochelatins (PCs) contents were determined using HPLC, while protein and monosaccharides, stress markers, and antioxidant levels were determined using spectrophotometric methods. Interestingly, the endogenous level of MT and its substrates in W. arrhiza exposed to 1-100 µM Cd was significantly higher compared to the control. Additionally, the application of 25 µM MT and Cd intensified the biosynthesis of these compounds. The most stimulatory effect on the growth and content of pigments, protein, and sugars was observed in plants treated with 25 µM MT. In contrast, Cd treatment caused a decrease in plant weight and level of these compounds, while the application of 25 µM MT mitigated the inhibitory effect of Cd. Additionally, Cd enhanced the level of stress markers; simultaneously, MT reduced their content in duckweed exposed to Cd. In plants treated with Cd, PC levels were increased by Cd treatment and by 25 µM MT. These results confirmed that MT mitigated the adverse effect of Cd. Furthermore, MT presence was reported for the first time in W. arrhiza. In summary, MT is an essential phytohormone for plant growth and development, especially during heavy metal stress.
Collapse
|
17
|
Liu G, Hu Q, Zhang X, Jiang J, Zhang Y, Zhang Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5818-5827. [PMID: 35522986 DOI: 10.1093/jxb/erac196] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Melatonin, the most widely distributed hormone in nature, plays important roles in plants. Many physiological processes in plants are linked to melatonin, including seed germination, anisotropic cell growth, and senescence. Compared with animals, different plants possess diverse melatonin biosynthetic pathways and regulatory networks. Whereas melatonin biosynthesis in animals is known to be regulated by ambient signals, little is known about how melatonin biosynthesis in plants responds to environmental signals. Plants are affected by numerous environmental factors, such as light, temperature, moisture, carbon dioxide, soil conditions, and nutrient availability at all stages of development and in different tissues. Melatonin content exhibits dynamic changes that affect plant growth and development. Melatonin plays various species-specific roles in plant responses to different environmental conditions. However, much remains to be learned, as not all environmental factors have been studied, and little is known about the mechanisms by which these factors influence melatonin biosynthesis. In this review, we provide a detailed, systematic description of melatonin biosynthesis and signaling and of the roles of melatonin in plant responses to different environmental factors, providing a reference for in-depth research on this important issue.
Collapse
Affiliation(s)
- Gaofeng Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center (NASC), Chengdu, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zixin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Wang K, Xing Q, Ahammed GJ, Zhou J. Functions and prospects of melatonin in plant growth, yield, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5928-5946. [PMID: 35640564 DOI: 10.1093/jxb/erac233] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indole molecule widely found in animals and plants. It is well known that melatonin improves plant resistance to various biotic and abiotic stresses due to its potent free radical scavenging ability while being able to modulate plant signaling and response pathways through mostly unknown mechanisms. In recent years, an increasing number of studies have shown that melatonin plays a crucial role in improving crop quality and yield by participating in the regulation of various aspects of plant growth and development. Here, we review the effects of melatonin on plant vegetative growth and reproductive development, and systematically summarize its molecular regulatory network. Moreover, the effective concentrations of exogenously applied melatonin in different crops or at different growth stages of the same crop are analysed. In addition, we compare endogenous phytomelatonin concentrations in various crops and different organs, and evaluate a potential function of phytomelatonin in plant circadian rhythms. The prospects of different approaches in regulating crop yield and quality through exogenous application of appropriate concentrations of melatonin, endogenous modification of phytomelatonin metabolism-related genes, and the use of nanomaterials and other technologies to improve melatonin utilization efficiency are also discussed.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qufan Xing
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, China
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
19
|
Melatonin-Induced Inhibition of Shiraia Hypocrellin A Biosynthesis Is Mediated by Hydrogen Peroxide and Nitric Oxide. J Fungi (Basel) 2022; 8:jof8080836. [PMID: 36012825 PMCID: PMC9410495 DOI: 10.3390/jof8080836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Melatonin (MLT), an evolutionarily conserved pleiotropic molecule, is implicated in numerous physiological processes in plants and animals. However, the effects of MLT on microbes have seldom been reported. In this study, we examined the influence of exogenous MLT on the growth and hypocrellin biosynthesis of bambusicolous fungus Shiraia sp. S9. Hypocrellin A (HA) is a photoactivated and photoinduced perylenequinone (PQ) toxin in Shiraia. Exogenous MLT at 100.00 μM not only decreased fungal conidiation and spore germination but inhibited HA contents significantly in fungal cultures under a light/dark (24 h:24 h) shift. MLT treatment was associated with higher activity of antioxidant enzymes (superoxide dismutase, catalase and peroxidase) and a marked decline in reactive oxygen species (ROS) production in the mycelia. Moreover, MLT induced endogenous nitric oxide (NO) production during the culture. The NO donor sodium nitroprusside (SNP) potentiated MLT-induced inhibition of O2− production, but NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) enhanced O2− production, whereas MLT-induced NO level was increased by the ROS scavenger vitamin C (Vc). The changes in NO and H2O2 were proved to be involved in the MLT-induced downregulation of the expressions of HA biosynthetic genes, leading to the suppression of HA production. This study provides new insight into the regulatory roles of MLT on fungal secondary metabolism activities and a basis for understanding self-resistance in phototoxin-producing fungi.
Collapse
|
20
|
Li Y, Sun Y, Cui H, Li M, Yang G, Wang Z, Zhang K. Carex rigescens caffeic acid O-methyltransferase gene CrCOMT confer melatonin-mediated drought tolerance in transgenic tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:971431. [PMID: 36035693 PMCID: PMC9399801 DOI: 10.3389/fpls.2022.971431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/22/2022] [Indexed: 05/27/2023]
Abstract
Melatonin is an important, multifunctional protective agent against a variety of abiotic and biotic stressors in plants. Caffeic acid O-methyltransferase (COMT) catalyzes the last step of melatonin synthesis in plants and reportedly participates in the regulation of stress response and tolerance. However, few studies have reported its function in melatonin-mediated drought resistance. In this study, CrCOMT was identified and was strongly induced by drought stress in Carex rigescens. CrCOMT overexpression in transgenic tobacco increased tolerance to drought stress with high levels of seed germination, relative water content, and survival rates. CrCOMT overexpression in tobacco improved membrane stability, and plants exhibited lower relative electrolytic leakage and malondialdehyde content, as well as higher photochemical efficiency than the wildtype (WT) under drought stress. The transgenic plants also had higher levels of proline accumulation and antioxidant enzyme activity, which decreased oxidative stress damage due to reactive oxygen species (ROS) hyperaccumulation under drought stress. The transcription of drought stress response and ROS scavenging genes was significantly higher in the CrCOMT overexpression plants than in the WT plants. In addition, CrCOMT transgenic tobacco plants exhibited higher melatonin content under drought stress conditions. Exogenous melatonin was applied to C. rigescens under drought stress to confirm the function of melatonin in mediating drought tolerance; the relative water content and proline content were higher, and the relative electrolytic leakage was lower in melatonin-treated C. rigescens than in the untreated plants. In summary, these results show that CrCOMT plays a positive role in plant drought stress tolerance by regulating endogenous melatonin content.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guofeng Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zengyu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Kun Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
21
|
Hwang OJ, Back K. Functional Characterization of Arylalkylamine N-Acetyltransferase, a Pivotal Gene in Antioxidant Melatonin Biosynthesis from Chlamydomonas reinhardtii. Antioxidants (Basel) 2022; 11:antiox11081531. [PMID: 36009250 PMCID: PMC9405056 DOI: 10.3390/antiox11081531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Arylalkylamine N-acetyltransferase (AANAT) is a pivotal enzyme in melatonin biosynthesis that catalyzes the conversion of serotonin to N-acetylserotonin. Homologs of animal AANAT genes are present in animals, but not in plants. An AANAT homolog was found in Chlamydomonas reinhardtii, but not other green algae. The characteristics of C. reinhardtii AANAT (CrAANAT) are unclear. Here, full-length CrAANAT was chemically synthesized and expressed in Escherichia coli. Recombinant CrAANAT exhibited AANAT activity with a Km of 247 μM and Vmax of 325 pmol/min/mg protein with serotonin as the substrate. CrAANAT was localized to the cytoplasm in tobacco leaf cells. Transgenic rice plants overexpressing CrAANAT (CrAANAT-OE) exhibited increased melatonin production. CrAANAT-OE plants showed a longer seed length and larger second leaf angle than wild-type plants, indicative of the involvement of brassinosteroids (BRs). As expected, BR biosynthesis- and signaling-related genes such as D2, DWARF4, DWARF11, and BZR1 were upregulated in CrAANAT-OE plants. Therefore, an increased endogenous melatonin level by ectopic overexpression of CrAANAT seems to be closely associated with BR biosynthesis, thereby influencing seed size.
Collapse
|
22
|
Meng Y, Jing H, Huang J, Shen R, Zhu X. The Role of Nitric Oxide Signaling in Plant Responses to Cadmium Stress. Int J Mol Sci 2022; 23:ijms23136901. [PMID: 35805908 PMCID: PMC9266721 DOI: 10.3390/ijms23136901] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Nitric oxide (NO) is a widely distributed gaseous signaling molecule in plants that can be synthesized through enzymatic and non-enzymatic pathways and plays an important role in plant growth and development, signal transduction, and response to biotic and abiotic stresses. Cadmium (Cd) is a heavy metal pollutant widely found in the environment, which not only inhibits plant growth but also enters humans through the food chain and endangers human health. To reduce or avoid the adverse effects of Cd stress, plants have evolved a range of coping mechanisms. Many studies have shown that NO is also involved in the plant response to Cd stress and plays an important role in regulating the resistance of plants to Cd stress. However, until now, the mechanisms by which Cd stress regulates the level of endogenous NO accumulation in plant cells remained unclear, and the role of exogenous NO in plant responses to Cd stress is controversial. This review describes the pathways of NO production in plants, the changes in endogenous NO levels in plants under Cd stress, and the effects of exogenous NO on regulating plant resistance to Cd stress.
Collapse
Affiliation(s)
- Yuting Meng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.M.); (H.J.); (J.H.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaikang Jing
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.M.); (H.J.); (J.H.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.M.); (H.J.); (J.H.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.M.); (H.J.); (J.H.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.M.); (H.J.); (J.H.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-25-8688-1008 or +86-25-8688-1000
| |
Collapse
|
23
|
Lee HY, Back K. The Antioxidant Cyclic 3-Hydroxymelatonin Promotes the Growth and Flowering of Arabidopsis thaliana. Antioxidants (Basel) 2022; 11:antiox11061157. [PMID: 35740053 PMCID: PMC9219689 DOI: 10.3390/antiox11061157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
In plants, melatonin is metabolized into several compounds, including the potent antioxidant cyclic 3-hydroxymelatonin (3-OHM). Melatonin 3-hydroxylase (M3H), a member of the 2-oxo-glutarate-dependent enzyme family, is responsible for 3-OHM biosynthesis. Although rice M3H has been cloned, its roles are unclear, and no homologs in other plant species have been characterized. Here, we cloned and characterized Arabidopsis thaliana M3H (AtM3H). The purified recombinant AtM3H exhibited Km and Vmax values of 100 μM and 20.7 nmol/min/mg protein, respectively. M3H was localized to the cytoplasm, and its expression peaked at night. Based on a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, 3-OHM exhibited 15-fold higher antioxidant activity than melatonin. An Arabidopsis M3H knockout mutant (m3h) produced less 3-OHM than the wildtype (WT), thus reducing antioxidant activity and biomass and delaying flowering. These defects were caused by reduced expression of FLOWERING LOCUS T (FT) and gibberellin-related genes, which are responsible for flowering and growth. Exogenous 3-OHM, but not exogenous melatonin, induced FT expression. The peak of M3H expression at night matched the FT expression pattern. The WT and m3h exhibited similar responses to salt stress and pathogens. Collectively, our findings indicate that 3-OHM promotes growth and flowering in Arabidopsis.
Collapse
|
24
|
Vega A, Delgado N, Handford M. Increasing Heavy Metal Tolerance by the Exogenous Application of Organic Acids. Int J Mol Sci 2022; 23:5438. [PMID: 35628249 PMCID: PMC9141679 DOI: 10.3390/ijms23105438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Several metals belong to a group of non-biodegradable inorganic constituents that, at low concentrations, play fundamental roles as essential micronutrients for the growth and development of plants. However, in high concentrations they can have toxic and/or mutagenic effects, which can be counteracted by natural chemical compounds called chelators. Chelators have a diversity of chemical structures; many are organic acids, including carboxylic acids and cyclic phenolic acids. The exogenous application of such compounds is a non-genetic approach, which is proving to be a successful strategy to reduce damage caused by heavy metal toxicity. In this review, we will present the latest literature on the exogenous addition of both carboxylic acids, including the Kreb's Cycle intermediates citric and malic acid, as well as oxalic acid, lipoic acid, and phenolic acids (gallic and caffeic acid). The use of two non-traditional organic acids, the phytohormones jasmonic and salicylic acids, is also discussed. We place particular emphasis on physiological and molecular responses, and their impact in increasing heavy metal tolerance, especially in crop species.
Collapse
Affiliation(s)
| | | | - Michael Handford
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800024, Chile; (A.V.); (N.D.)
| |
Collapse
|
25
|
Tryptophan Levels as a Marker of Auxins and Nitric Oxide Signaling. PLANTS 2022; 11:plants11101304. [PMID: 35631729 PMCID: PMC9144324 DOI: 10.3390/plants11101304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
The aromatic amino acid tryptophan is the main precursor for indole-3-acetic acid (IAA), which involves various parallel routes in plants, with indole-3-acetaldoxime (IAOx) being one of the most common intermediates. Auxin signaling is well known to interact with free radical nitric oxide (NO) to perform a more complex effect, including the regulation of root organogenesis and nitrogen nutrition. To fathom the link between IAA and NO, we use a metabolomic approach to analyze the contents of low-molecular-mass molecules in cultured cells of Arabidopsis thaliana after the application of S-nitrosoglutathione (GSNO), an NO donor or IAOx. We separated the crude extracts of the plant cells through ion-exchange columns, and subsequent fractions were analyzed by gas chromatography-mass spectrometry (GC-MS), thus identifying 26 compounds. A principal component analysis (PCA) was performed on N-metabolism-related compounds, as classified by the Kyoto Encyclopedia of Genes and Genomes (KEGG). The differences observed between controls and treatments are mainly explained by the differences in Trp contents, which are much higher in controls. Thus, the Trp is a shared response in both auxin- and NO-mediated signaling, evidencing some common signaling mechanism to both GSNO and IAOx. The differences in the low-molecular-mass-identified compounds between GSNO- and IAOx-treated cells are mainly explained by their concentrations in benzenepropanoic acid, which is highly associated with IAA levels, and salicylic acid, which is related to glutathione. These results show that the contents in Trp can be a marker for the study of auxin and NO signaling.
Collapse
|
26
|
Menhas S, Yang X, Hayat K, Aftab T, Bundschuh J, Arnao MB, Zhou Y, Zhou P. Exogenous Melatonin Enhances Cd Tolerance and Phytoremediation Efficiency by Ameliorating Cd-Induced Stress in Oilseed Crops: A Review. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:922-935. [PMID: 0 DOI: 10.1007/s00344-021-10349-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 05/20/2023]
|
27
|
Qari SH, Hassan MU, Chattha MU, Mahmood A, Naqve M, Nawaz M, Barbanti L, Alahdal MA, Aljabri M. Melatonin Induced Cold Tolerance in Plants: Physiological and Molecular Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:843071. [PMID: 35371159 PMCID: PMC8967244 DOI: 10.3389/fpls.2022.843071] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 05/24/2023]
Abstract
Cold stress is one of the most limiting factors for plant growth and development. Cold stress adversely affects plant physiology, molecular and biochemical processes by determining oxidative stress, poor nutrient and water uptake, disorganization of cellular membranes and reduced photosynthetic efficiency. Therefore, to recover impaired plant functions under cold stress, the application of bio-stimulants can be considered a suitable approach. Melatonin (MT) is a critical bio-stimulant that has often shown to enhance plant performance under cold stress. Melatonin application improved plant growth and tolerance to cold stress by maintaining membrane integrity, plant water content, stomatal opening, photosynthetic efficiency, nutrient and water uptake, redox homeostasis, accumulation of osmolytes, hormones and secondary metabolites, and the scavenging of reactive oxygen species (ROS) through improved antioxidant activities and increase in expression of stress-responsive genes. Thus, it is essential to understand the mechanisms of MT induced cold tolerance and identify the diverse research gaps necessitating to be addressed in future research programs. This review discusses MT involvement in the control of various physiological and molecular responses for inducing cold tolerance. We also shed light on engineering MT biosynthesis for improving the cold tolerance in plants. Moreover, we highlighted areas where future research is needed to make MT a vital antioxidant conferring cold tolerance to plants.
Collapse
Affiliation(s)
- Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Athar Mahmood
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Maria Naqve
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Maryam A. Alahdal
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maha Aljabri
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Biology, Research Laboratories Centre, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
28
|
Exogenous Gibberellin Treatment Enhances Melatonin Synthesis for Melatonin-Enriched Rice Production. Biomolecules 2022; 12:biom12020198. [PMID: 35204699 PMCID: PMC8961596 DOI: 10.3390/biom12020198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Melatonin production is induced by many abiotic and biotic stressors; it modulates the levels of many plant hormones and their signaling pathways. This study investigated the effects of plant hormones on melatonin synthesis. Melatonin synthesis in rice seedlings was significantly induced upon exogenous gibberellin 3 (GA3) treatment, while it was severely decreased by GA synthesis inhibitor paclobutrazol. In contrast, abscisic acid (ABA) strongly inhibited melatonin synthesis, whereas its inhibitor norflurazon (NF) induced melatonin synthesis. The observed GA-mediated increase in melatonin was closely associated with elevated expression levels of melatonin biosynthetic genes such as TDC3, T5H, and ASMT1; it was also associated with reduced expression levels of catabolic genes ASDAC and M2H. In a paddy field, the treatment of immature rice seeds with exogenous GA led to enhanced melatonin production in rice seeds; various transgenic rice plants downregulating a GA biosynthesis gene (GA3ox2) and a signaling gene (Gα) showed severely decreased melatonin levels, providing in vivo genetic evidence that GA has a positive effect on melatonin synthesis. This is the first study to report that GA is positively involved in melatonin synthesis in plants; GA treatment can be used to produce melatonin-rich seeds, vegetables, and fruits, which are beneficial for human health.
Collapse
|
29
|
Mohamadi Esboei M, Ebrahimi A, Amerian MR, Alipour H. Melatonin confers fenugreek tolerance to salinity stress by stimulating the biosynthesis processes of enzymatic, non-enzymatic antioxidants, and diosgenin content. FRONTIERS IN PLANT SCIENCE 2022; 13:890613. [PMID: 36003823 PMCID: PMC9394454 DOI: 10.3389/fpls.2022.890613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/28/2022] [Indexed: 05/10/2023]
Abstract
Salinity-induced stress is widely considered a main plant-growth-limiting factor. The positive effects of melatonin in modulating abiotic stresses have led this hormone to be referred to as a growth regulator in plants. This study aims to show how melatonin protects fenugreek against the negative effects of salt stress. Different amounts of melatonin (30, 60, and 90 ppm), salinity stress (150 mM and 300 mM), and the use of both salinity and melatonin were used as treatments. The results showed that applying different melatonin levels to salinity-treated fenugreek plants effectively prevented the degradation of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid contents compared with salinity treatment without melatonin application. Besides, melatonin increases the biosynthesis of enzymatic and non-enzymatic antioxidants, thereby adjusting the content of reactive oxygen species, free radicals, electrolyte leakage, and malondialdehyde content. It was observed that applying melatonin increased the activity of potassium-carrying channels leading to the maintenance of ionic homeostasis and increased intracellular water content under salinity stress. The results revealed that melatonin activates the defense signaling pathways in fenugreek through the nitric oxide, auxin, and abscisic acid-dependent pathways. Melatonin, in a similar vein, increased the expression of genes involved in the biosynthesis pathway of diosgenin, a highly important steroidal sapogenin in medical and food industries, and hence the diosgenin content. When 150 mM salinity stress and 60 ppm melatonin were coupled, the diosgenin concentration rose by more than 5.5 times compared to the control condition. In conclusion, our findings demonstrate the potential of melatonin to enhance the plant tolerance to salinity stress by stimulating biochemical and physiological changes.
Collapse
Affiliation(s)
- Maryam Mohamadi Esboei
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
- *Correspondence: Amin Ebrahimi,
| | - Mohamad Reza Amerian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
30
|
Melatonin Confers Plant Cadmium Tolerance: An Update. Int J Mol Sci 2021; 22:ijms222111704. [PMID: 34769134 PMCID: PMC8583868 DOI: 10.3390/ijms222111704] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd) is one of the most injurious heavy metals, affecting plant growth and development. Melatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995, and it is since known to act as a multifunctional molecule to alleviate abiotic and biotic stresses, especially Cd stress. Endogenously triggered or exogenously applied melatonin re-establishes the redox homeostasis by the improvement of the antioxidant defense system. It can also affect the Cd transportation and sequestration by regulating the transcripts of genes related to the major metal transport system, as well as the increase in glutathione (GSH) and phytochelatins (PCs). Melatonin activates several downstream signals, such as nitric oxide (NO), hydrogen peroxide (H2O2), and salicylic acid (SA), which are required for plant Cd tolerance. Similar to the physiological functions of NO, hydrogen sulfide (H2S) is also involved in the abiotic stress-related processes in plants. Moreover, exogenous melatonin induces H2S generation in plants under salinity or heat stress. However, the involvement of H2S action in melatonin-induced Cd tolerance is still largely unknown. In this review, we summarize the progresses in various physiological and molecular mechanisms regulated by melatonin in plants under Cd stress. The complex interactions between melatonin and H2S in acquisition of Cd stress tolerance are also discussed.
Collapse
|
31
|
Inhibition of Rice Serotonin N-Acetyltransferases by MG149 Decreased Melatonin Synthesis in Rice Seedlings. Biomolecules 2021; 11:biom11050658. [PMID: 33946959 PMCID: PMC8145546 DOI: 10.3390/biom11050658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
We examined the effects of two histone acetyltransferase (HAT) inhibitors on the activity of rice serotonin N-acetyltransferases (SNAT). Two rice recombinant SNAT isoenzymes (SNAT1 and SNAT2) were incubated in the presence of either MG149 or MB3, HAT inhibitors. MG149 significantly inhibited the SNAT enzymes in a dose-dependent manner, especially SNAT1, while SNAT2 was moderately inhibited. By contrast, MB3 had no effect on SNAT1 or SNAT2. The application of 100 μM MG149 to rice seedlings decreased melatonin by 1.6-fold compared to the control, whereas MB3 treatment did not alter the melatonin level. MG149 significantly decreased both melatonin and N-acetylserotonin when rice seedlings were challenged with cadmium, a potent elicitor of melatonin synthesis in rice. Although MG149 inhibited melatonin synthesis in rice seedlings, no melatonin deficiency-induced lamina angle decrease was observed due to the insufficient suppression of SNAT2, which is responsible for the lamina angle decrease in rice.
Collapse
|
32
|
Suppression of Rice Cryptochrome 1b Decreases Both Melatonin and Expression of Brassinosteroid Biosynthetic Genes Resulting in Salt Tolerance. Molecules 2021; 26:molecules26041075. [PMID: 33670642 PMCID: PMC7922549 DOI: 10.3390/molecules26041075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
We investigated the relationship between the blue-light photoreceptor cryptochrome (CRY) and melatonin biosynthesis by generating RNA interference (RNAi) transgenic rice plants that suppress the cryptochrome 1b gene (CRY1b). The resulting CRY1b RNAi rice lines expressed less CRY1b mRNA, but not CRY1a or CRY2 mRNA, suggesting that the suppression is specific to CRY1b. The growth of CRY1b RNAi rice seedlings was enhanced under blue light compared to wild-type growth, providing phenotypic evidence for impaired CRY function. When these CRY1b RNAi rice plants were challenged with cadmium to induce melatonin, wild-type plants produced 100 ng/g fresh weight (FW) melatonin, whereas CRY1b RNAi lines produced 60 ng/g FW melatonin on average, indicating that melatonin biosynthesis requires the CRY photoreceptor. Due to possible feedback regulation, the expression of melatonin biosynthesis genes such as T5H, SNAT1, SNAT2, and COMT was elevated in the CRY1b RNAi lines compared to the wild-type plants. In addition, laminar angles decreased in the CRY1b RNAi lines via the suppression of brassinosteroid (BR) biosynthesis genes such as DWARF. The main cause of the BR decrease in the CRY1b RNAi lines seems to be the suppression of CRY rather than decreased melatonin because the melatonin decrease suppressed DWARF4 rather than DWARF.
Collapse
|
33
|
Yu Y, Teng Z, Mou Z, Lv Y, Li T, Chen S, Zhao D, Zhao Z. Melatonin confers heavy metal-induced tolerance by alleviating oxidative stress and reducing the heavy metal accumulation in Exophiala pisciphila, a dark septate endophyte (DSE). BMC Microbiol 2021; 21:40. [PMID: 33546601 PMCID: PMC7863494 DOI: 10.1186/s12866-021-02098-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Background Melatonin (MT), ubiquitous in almost all organisms, functions as a free radical scavenger. Despite several reports on its role as an antioxidant in animals, plants, and some microorganisms, extensive studies in filamentous fungi are limited. Based upon the role of melatonin as an antioxidant, we investigated its role in heavy metal-induced stress tolerance in Exophiala pisciphila, a dark septate endophyte (DSE), by studying the underlying mechanisms in alleviating oxidative stress and reducing heavy metal accumulation. Results A significant decrease in malondialdehyde (MDA) and oxygen free radical (OFR) in E. pisciphila was recorded under Cd, Zn, and Pb stresses as compared to the control. Pretreatment of E. pisciphila with 200.0 μM exogenous melatonin significantly increased the activity of superoxide dismutase (SOD) under Zn and Pb stresses. Pretreatment with 200.0 μM melatonin also lowered Cd, Zn, and Pb concentrations significantly. Melatonin production was enhanced by Cd, Cu, and Zn after 2 d, and melatonin biosynthetic enzyme genes, E. pisciphila tryptophan decarboxylase (EpTDC1) and serotonin N-acetyltransferase (EpSNAT1), were transcriptionally upregulated. The overexpression of EpTDC1 and N-acetylserotonin O-methyltransferase (EpASMT1) in Escherichia coli and Arabidopsis thaliana enhanced its heavy metal-induced stress tolerance. The overexpression of EpTDC1 and EpASMT1 reduced the Cd accumulation in the whole A. thaliana plants, especially in the roots. Conclusions Melatonin conferred heavy metal-induced stress tolerance by alleviating oxidative stress, activating antioxidant enzyme SOD, and reducing heavy metal accumulation in E. pisciphila. Melatonin biosynthetic enzyme genes of E. pisciphila also played key roles in limiting excessive heavy metal accumulation in A. thaliana. These findings can be extended to understand the role of melatonin in other DSEs associated with economically important plants and help develop new strategies in sustainable agriculture practice where plants can grow in soils contaminated with heavy metals. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02098-1.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Zhaowei Teng
- Department of Orthopedics, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China.,Department of Orthopedics, The First people's Hospital of Yunnan Province, Kunming, China
| | - Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China.,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yan Lv
- Department of Orthopedics, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China.,Department of Orthopedics, The First people's Hospital of Yunnan Province, Kunming, China
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China.,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China. .,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China. .,School of Ecology and Environmental Science, Yunnan University, Kunming, China.
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
34
|
Key Genes in the Melatonin Biosynthesis Pathway with Circadian Rhythm Are Associated with Various Abiotic Stresses. PLANTS 2021; 10:plants10010129. [PMID: 33435489 PMCID: PMC7827461 DOI: 10.3390/plants10010129] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/04/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is involved in several biological processes including circadian rhythm and the regulation of abiotic stress. A systematic understanding of the circadian regulation of melatonin biosynthesis-related genes has not been achieved in rice. In this study, key genes for all of the enzymes in the melatonin biosynthetic pathway that showed a peak of expression at night were identified by microarray data analysis and confirmed by qRT–PCR analysis. We further examined the expression patterns of the four genes under drought, salt, and cold stresses. The results showed that abiotic stresses, such as drought, salt, and cold, affected the expression patterns of melatonin biosynthetic genes. In addition, the circadian expression patterns of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), and serotonin N-acetyltransferase (SNAT) genes in wild-type (WT) plants was damaged by the drought treatment under light and dark conditions. Conversely, N-acetylserotonin O-methyltransferase (ASMT) retained the circadian rhythm. The expression of ASMT was down-regulated by the rice gigantea (OsGI) mutation, suggesting the involvement of the melatonin biosynthetic pathway in the OsGI-mediated circadian regulation pathway. Taken together, our results provide clues to explain the relationship between circadian rhythms and abiotic stresses in the process of melatonin biosynthesis in rice.
Collapse
|
35
|
Murch SJ, Erland LAE. A Systematic Review of Melatonin in Plants: An Example of Evolution of Literature. FRONTIERS IN PLANT SCIENCE 2021; 12:683047. [PMID: 34249052 PMCID: PMC8270005 DOI: 10.3389/fpls.2021.683047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 05/06/2023]
Abstract
Melatonin (N-acetyl-5-methoxy-tryptamine) is a mammalian neurohormone, antioxidant and signaling molecule that was first discovered in plants in 1995. The first studies investigated plant melatonin from a human perspective quantifying melatonin in foods and medicinal plants and questioning whether its presence could explain the activity of some plants as medicines. Starting with these first handful of studies in the late 1990s, plant melatonin research has blossomed into a vibrant and active area of investigation and melatonin has been found to play critical roles in mediating plant responses and development at every stage of the plant life cycle from pollen and embryo development through seed germination, vegetative growth and stress response. Here we have utilized a systematic approach in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocols to reduce bias in our assessment of the literature and provide an overview of the current state of melatonin research in plants, covering 1995-2021. This review provides an overview of the biosynthesis and metabolism of melatonin as well as identifying key themes including: abiotic stress responses, root development, light responses, interkingdom communication, phytohormone and plant signaling. Additionally, potential biases in the literature are investigated and a birefringence in the literature between researchers from plant and medical based which has helped to shape the current state of melatonin research. Several exciting new opportunities for future areas of melatonin research are also identified including investigation of non-crop and non-medicinal species as well as characterization of melatonin signaling networks in plants.
Collapse
|
36
|
Sun C, Liu L, Wang L, Li B, Jin C, Lin X. Melatonin: A master regulator of plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:126-145. [PMID: 32678945 DOI: 10.1111/jipb.12993] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/16/2020] [Indexed: 05/18/2023]
Abstract
Melatonin is a pleiotropic molecule with multiple functions in plants. Since the discovery of melatonin in plants, numerous studies have provided insight into the biosynthesis, catabolism, and physiological and biochemical functions of this important molecule. Here, we describe the biosynthesis of melatonin from tryptophan, as well as its various degradation pathways in plants. The identification of a putative melatonin receptor in plants has led to the hypothesis that melatonin is a hormone involved in regulating plant growth, aerial organ development, root morphology, and the floral transition. The universal antioxidant activity of melatonin and its role in preserving chlorophyll might explain its anti-senescence capacity in aging leaves. An impressive amount of research has focused on the role of melatonin in modulating postharvest fruit ripening by regulating the expression of ethylene-related genes. Recent evidence also indicated that melatonin functions in the plant's response to biotic stress, cooperating with other phytohormones and well-known molecules such as reactive oxygen species and nitric oxide. Finally, great progress has been made towards understanding how melatonin alleviates the effects of various abiotic stresses, including salt, drought, extreme temperature, and heavy metal stress. Given its diverse roles, we propose that melatonin is a master regulator in plants.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Luxuan Wang
- Department of Agriculture and Environment, McGill University, Montreal, Quebec, H9X 3V9, Canada
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
37
|
Back K. Melatonin metabolism, signaling and possible roles in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:376-391. [PMID: 32645752 DOI: 10.1111/tpj.14915] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 05/20/2023]
Abstract
Melatonin is a multifunctional biomolecule found in both animals and plants. In this review, the biosynthesis, levels, signaling, and possible roles of melatonin and its metabolites in plants is summarized. Tryptamine 5-hydroxylase (T5H), which catalyzes the conversion of tryptamine into serotonin, has been proposed as a target to create a melatonin knockout mutant presenting a lesion-mimic phenotype in rice. With a reduced anabolic capacity for melatonin biosynthesis and an increased catabolic capacity for melatonin metabolism, all plants generally maintain low melatonin levels. Some plants, including Arabidopsis and Nicotiana tabacum (tobacco), do not possess tryptophan decarboxylase (TDC), the first committed step enzyme required for melatonin biosynthesis. Major melatonin metabolites include cyclic 3-hydroxymelatonin (3-OHM) and 2-hydroxymelatonin (2-OHM). Other melatonin metabolites such as N1 -acetyl-N2 -formyl-5-methoxykynuramine (AFMK), N-acetyl-5-methoxykynuramine (AMK) and 5-methoxytryptamine (5-MT) are also produced when melatonin is applied to Oryza sativa (rice). The signaling pathways of melatonin and its metabolites act via the mitogen-activated protein kinase (MAPK) cascade, possibly with Cand2 acting as a melatonin receptor, although the integrity of Cand2 remains controversial. Melatonin mediates many important functions in growth stimulation and stress tolerance through its potent antioxidant activity and function in activating the MAPK cascade. The concentration distribution of melatonin metabolites appears to be species specific because corresponding enzymes such as M2H, M3H, catalases, indoleamine 2,3-dioxygenase (IDO) and N-acetylserotonin deacetylase (ASDAC) are differentially expressed among plant species and even among different tissues within species. Differential levels of melatonin and its metabolites can lead to differential physiological effects among plants when melatonin is either applied exogenously or overproduced through ectopic overexpression.
Collapse
Affiliation(s)
- Kyoungwhan Back
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
38
|
He H, He LF. Crosstalk between melatonin and nitric oxide in plant development and stress responses. PHYSIOLOGIA PLANTARUM 2020; 170:218-226. [PMID: 32479663 DOI: 10.1111/ppl.13143] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 05/23/2023]
Abstract
Melatonin is widely involved in plant growth and stress responses as a master regulator. Melatonin treatment alters the levels of endogenous nitric oxide (NO) and NO affects endogenous melatonin content. Melatonin and NO may induce various plant physiological behavior through interaction mechanism. However, the interactions between melatonin and NO in plants are largely unknown. The review presented the metabolism of endogenous melatonin and NO and their relationship in plants. The interactions between melatonin and NO in plant growth and development and responses to environmental stress were summarized. The molecular mechanisms of interaction between melatonin and NO in plants were also proposed.
Collapse
Affiliation(s)
- Huyi He
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Long-Fei He
- College of Agronomy, Guangxi University, Nanning, 530004, China
| |
Collapse
|
39
|
He J, Zhuang X, Zhou J, Sun L, Wan H, Li H, Lyu D. Exogenous melatonin alleviates cadmium uptake and toxicity in apple rootstocks. TREE PHYSIOLOGY 2020; 40:746-761. [PMID: 32159805 PMCID: PMC7107249 DOI: 10.1093/treephys/tpaa024] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/17/2023]
Abstract
To examine the potential roles of melatonin in cadmium (Cd) uptake, accumulation and detoxification in Malus plants, we exposed two different apple rootstocks varying greatly in Cd uptake and accumulation to either 0 or 30 μM Cd together with 0 or 100 μM melatonin. Cadmium stress stimulated endogenous melatonin production to a greater extent in the Cd-tolerant Malus baccata Borkh. than in the Cd-susceptible Malus micromalus 'qingzhoulinqin'. Melatonin application attenuated Cd-induced reductions in growth, photosynthesis and enzyme activity, as well as reactive oxygen species (ROS) and malondialdehyde accumulation. Melatonin treatment more effectively restored photosynthesis, photosynthetic pigments and biomass in Cd-challenged M. micromalus 'qingzhoulinqin' than in Cd-stressed M. baccata. Exogenous melatonin lowered root Cd2+ uptake, reduced leaf Cd accumulation, decreased Cd translocation factors and increased root, stem and leaf melatonin contents in both Cd-exposed rootstocks. Melatonin application increased both antioxidant concentrations and enzyme activities to scavenge Cd-induced ROS. Exogenous melatonin treatment altered the mRNA levels of several genes regulating Cd uptake, transport and detoxification including HA7, NRAMP1, NRAMP3, HMA4, PCR2, NAS1, MT2, ABCC1 and MHX. Taken together, these results suggest that exogenous melatonin reduced aerial parts Cd accumulation and mitigated Cd toxicity in Malus plants, probably due to the melatonin-mediated Cd allocation in tissues, and induction of antioxidant defense system and transcriptionally regulated key genes involved in detoxification.
Collapse
Affiliation(s)
- Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People’s Republic of China
| | - Xiaolei Zhuang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People’s Republic of China
| | - Jiangtao Zhou
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, 125100, People’s Republic of China
| | - Luyang Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People’s Republic of China
| | - Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People’s Republic of China
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, 271000, People’s Republic of China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People’s Republic of China
- Corresponding author. Name: Deguo Lyu, Telephone: 0086-24-88487219, E-mail: Deguo Lyu ()
| |
Collapse
|
40
|
Zhang X, Zhang H, Zhang H, Tang M. Exogenous Melatonin Application Enhances Rhizophagus irregularis Symbiosis and Induces the Antioxidant Response of Medicago truncatula Under Lead Stress. Front Microbiol 2020; 11:516. [PMID: 32351459 PMCID: PMC7174712 DOI: 10.3389/fmicb.2020.00516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Melatonin is a new kind of plant growth regulator. The aim of this study was to figure out the effect of melatonin on arbuscular mycorrhizal (AM) symbiosis and heavy metal tolerance. A three-factor experiment was conducted to determine the effect of melatonin application on the growth, AM symbiosis, and stress tolerance of Medicago truncatula. A two-factor (AM inoculation and Pb stress) experiment was conducted to determine the effect of AM fungus on melatonin accumulation under Pb stress. AM plants under Pb stress had a higher melatonin accumulation than non-mycorrhizal (NM) plants under Pb stress. Acetylserotonin methyltransferase (ASMT) is the enzymatic reaction of the last step in melatonin synthesis. The accumulation of melatonin may be related to the expression of MtASMT. Melatonin application increased the relative expression of MtPT4 and AM colonization in AM plants. Melatonin application decreased Pb uptake with and without AM inoculation. Both melatonin application and AM inoculation improved M. truncatula growth and increased antioxidant response with Pb stress. These results indicated that melatonin application has positive effects on AM symbiosis and Pb stress tolerance under Pb stress. AM inoculation improve melatonin synthesis capacity under Pb stress. Melatonin application may improve AM plant growth by enhancing AM symbiosis, stimulating antioxidant response, and inhibiting Pb uptake.
Collapse
Affiliation(s)
- Xiangyu Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
| | - Huijuan Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
| | - Haoqiang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
| | - Ming Tang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
41
|
Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W. Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitrosylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113943. [PMID: 32023797 DOI: 10.1016/j.envpol.2020.113943] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Heavy metal (HM) stress is a major hazard, which significantly affects plant growth and development. In order to confront HM stress, plants directly or indirectly regulate the levels of endogenous nitric oxide (NO), a redox-related signaling molecule involved in wide range of plant growth and development as well as in response to HM stress. In addition, there is now compelling experimental evidence that NO usually mediates signaling processes through interactions with different biomolecules like phytohormones to regulate HM tolerance. Apart from phytohormones, NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation in response to HM stress. Recently, the roles of S-nitrosylation as a regulator of plant responses to HM stress and S-nitrosylated candidates have also been established and detected. Here, we describe the roles of NO in confronting HM phytotoxicity in plants with a particular focus on the presentation and discussion of recent data obtained in this field, which involves in the function of various phytohormones and S-nitrosylation during plant responses to HM stress. Additionally, both importance and challenges of future work are outlined in order to further elucidate the specific mechanisms underlying the roles of NO in plant responses to HM stress.
Collapse
Affiliation(s)
- Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, PR China
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China.
| |
Collapse
|
42
|
Effects of Light Quality and Phytochrome Form on Melatonin Biosynthesis in Rice. Biomolecules 2020; 10:biom10040523. [PMID: 32235549 PMCID: PMC7226006 DOI: 10.3390/biom10040523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 12/26/2022] Open
Abstract
Light is an important factor influencing melatonin synthesis in response to cadmium treatment in rice. However, the effects of light quality on, and the involvement of phytochrome light receptors in, melatonin production have not been explored. In this study, we used light-emitting diodes (LEDs) to investigate the effect of light wavelength on melatonin synthesis, and the role of phytochromes in light-dependent melatonin induction in rice. Upon cadmium treatment, peak melatonin production was observed under combined red and blue (R + B) light, followed by red (R) and blue light (B). However, both far-red (FR) LED light and dark treatment (D) failed to induce melatonin production. Similarly, rice seedlings grown under the R + B treatment showed the highest melatonin synthesis, followed by those grown under B and R. These findings were consistent with the results of our cadmium treatment experiment. To further confirm the effects of light quality on melatonin synthesis, we employed rice photoreceptor mutants lacking functional phytochrome genes. Melatonin induction was most inhibited in the phytochrome A mutant (phyA) followed by the phyB mutant under R + B treatment, whereas phyB produced the least amount of melatonin under R treatment. These results indicate that PhyB is an R light receptor. Expression analyses of genes involved in melatonin biosynthesis clearly demonstrated that tryptophan decarboxylase (TDC) played a key role in phytochrome-mediated melatonin induction when rice seedlings were challenged with cadmium.
Collapse
|
43
|
Nabaei M, Amooaghaie R. Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in Catharanthus roseus (L.) G. Don. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6981-6994. [PMID: 31883077 DOI: 10.1007/s11356-019-07283-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, a pot experiment was performed to evaluate the effects of foliar spray with sodium nitroprusside (200 μM SNP) and melatonin (100 μM) singly and in combination on tolerance and accumulation of cadmium (Cd) in Catharanthus roseus (L.) G. Don plants exposed to different levels of cadmium (0, 50, 100, and 200 mg Cd kg-1 soil). The results showed that 50 mg kg-1 Cd had no significant effect on the fresh and dry weight of roots and shoots and content of chlorophyll (Chl) a and b, but the higher levels of Cd (100 and 200 mg kg-1) significantly reduced these attributes and induced an increase in the level of leaf electrolyte leakage and disrupted nutrient homeostasis. The activities of catalase (CAT) and peroxidase (POD) in leaves were increased under lower Cd concentrations (50 and 100 mg kg-1) but decreased under 200 mg kg-1 Cd. However, foliar spray with melatonin and/or SNP increased shoot biomass and the content of Chl a and b, augmented activities of POD and CAT, lowered electrolyte leakage (EL), and improved essential cations homeostasis in leaves. Cadmium content in shoots of C. roseus was less than roots and TF (transfer factor) was < 1. Interestingly, foliar spray with SNP and/or melatonin increased Cd accumulation and bioconcentration factor (BCF) in both roots and shoots and elevated the Cd transport from roots to shoot, as TF values increased in these treatments. The co-application of melatonin and SNP further than their separate usage augmented Cd tolerance through increasing activities of antioxidant enzymes and regulating mineral homeostasis in C. roseus. Furthermore, co-treatment of SNP and melatonin increased Cd phytoremediation efficiency in C. roseus through increasing biomass and elevating uptake and translocation of Cd from root to shoot.
Collapse
Affiliation(s)
- Masoomeh Nabaei
- Plant Sciences Department, Science Faculty, Shahrekord University, Shahrekord, Iran.
| | - Rayhaneh Amooaghaie
- Plant Sciences Department, Science Faculty, Shahrekord University, Shahrekord, Iran
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
44
|
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is of particular importance as a chronobiological hormone in mammals, acting as a signal of darkness that provides information to the brain and peripheral organs. It is an endogenous synchronizer for both endocrine (i.e., via neurotransmitter release) and other physiological rhythms. In this work we will try to add to the series of scientific events and discoveries made in plants that, surprisingly, confirm the great similarity of action of melatonin in animals and plants. The most relevant milestones on the 25 years of phytomelatonin studies are presented, from its discovery in 1995 to the discovery of its receptor in plants in 2018, suggesting it should be regarded as a new plant hormone.
Collapse
|
45
|
Zhu Y, Gao H, Lu M, Hao C, Pu Z, Guo M, Hou D, Chen LY, Huang X. Melatonin-Nitric Oxide Crosstalk and Their Roles in the Redox Network in Plants. Int J Mol Sci 2019; 20:E6200. [PMID: 31818042 PMCID: PMC6941097 DOI: 10.3390/ijms20246200] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/28/2023] Open
Abstract
Melatonin, an amine hormone highly conserved during evolution, has a wide range of physiological functions in animals and plants. It is involved in plant growth, development, maturation, and aging, and also helps ameliorate various types of abiotic and biotic stresses, including salt, drought, heavy metals, and pathogens. Melatonin-related growth and defense responses of plants are complex, and involve many signaling molecules. Among these, the most important one is nitric oxide (NO), a freely diffusing amphiphilic biomolecule that can easily cross the cell membrane, produce rapid signal responses, and participate in a wide variety of physiological reactions. NO-induced S-nitrosylation is also involved in plant defense responses. NO interacts with melatonin as a long-range signaling molecule, and helps regulate plant growth and maintain oxidative homeostasis. Exposure of plants to abiotic stresses causes the increase of endogenous melatonin levels, with the consequent up-regulation of melatonin synthesis genes, and further increase of melatonin content. The application of exogenous melatonin causes an increase in endogenous NO and up-regulation of defense-related transcription factors, resulting in enhanced stress resistance. When plants are infected by pathogenic bacteria, NO acts as a downstream signal to lead to increased melatonin levels, which in turn induces the mitogen-activated protein kinase (MAPK) cascade and associated defense responses. The application of exogenous melatonin can also promote sugar and glycerol production, leading to increased levels of salicylic acid and NO. Melatonin and NO in plants can function cooperatively to promote lateral root growth, delay aging, and ameliorate iron deficiency. Further studies are needed to clarify certain aspects of the melatonin/NO relationship in plant physiology.
Collapse
Affiliation(s)
- Ying Zhu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Hang Gao
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Mengxin Lu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Chengying Hao
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Zuoqian Pu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Miaojie Guo
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Dairu Hou
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| | - Li-Yu Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Huang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (Y.Z.); (H.G.); (M.L.); (C.H.); (Z.P.); (M.G.); (D.H.)
| |
Collapse
|
46
|
Zhang K, Cui H, Cao S, Yan L, Li M, Sun Y. Overexpression of CrCOMT from Carex rigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana. PLANT CELL REPORTS 2019; 38:1501-1514. [PMID: 31473792 DOI: 10.1007/s00299-019-02461-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 05/27/2023]
Abstract
CrCOMT, a COMT gene in Carex rigescens, was verified to enhance salt stress tolerance in transgenic Arabidopsis. High salinity severely restricts plant growth and development while melatonin can alleviate salt damage. Caffeic acid O-methyltransferase (COMT) plays an important role in regulating plant growth, development, and stress responses. COMT could also participate in melatonin biosynthesis. The objective of this study was to identify CrCOMT from Carex rigescens (Franch.) V. Krecz, a stress-tolerant grass species with a widespread distribution in north China, and to determine its physiological functions and regulatory mechanisms that impart tolerance to salt stress. The results showed that the transcription of CrCOMT exhibited different expression patterns under salt, drought, and ABA treatments. Transgenic Arabidopsis with the overexpression of CrCOMT exhibited improved growth and physiological performance under salt stress, such as higher lateral root numbers, proline level, and chlorophyll content, than in the wild type (WT). Overexpression of CrCOMT also increased dehydration tolerance in Arabidopsis. The transcription of salt response genes was more highly activated in transgenic plants than in the WT under salt stress conditions. In addition, the melatonin content in transgenic plants was higher than that in the WT after stress treatment. Taken together, our results indicated that CrCOMT may positively regulate stress responses and melatonin synthesis under salt stress.
Collapse
Affiliation(s)
- Kun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shihao Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Li Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mingna Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
47
|
Melatonin Deficiency Confers Tolerance to Multiple Abiotic Stresses in Rice via Decreased Brassinosteroid Levels. Int J Mol Sci 2019; 20:ijms20205173. [PMID: 31635310 PMCID: PMC6834310 DOI: 10.3390/ijms20205173] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/08/2023] Open
Abstract
Melatonin has long been recognized as a positive signaling molecule and potent antioxidant in plants, which alleviates damage caused by adverse conditions such as salt, cold, and heat stress. In this study, we found a paradoxical role for melatonin in abiotic stress responses. Suppression of the serotonin N-acetyltransferase 2 (snat2) gene encoding the penultimate enzyme in melatonin biosynthesis led to simultaneous decreases in both melatonin and brassinosteroid (BR) levels, causing a semi-dwarf with erect leaf phenotype, typical of BR deficiency. Here, we further characterized snat2 rice in terms of grain morphology and abiotic stress tolerance, to determine whether snat2 rice exhibited characteristics similar to those of BR-deficient rice. As expected, the snat2 rice exhibited tolerance to multiple stress conditions including cadmium, salt, cold, and heat, as evidenced by decreased malondialdehyde (MDA) levels and increased chlorophyll levels, in contrast with SNAT2 overexpression lines, which were less tolerant to stress than wild type plants. In addition, the length and width of grain from snat2 plants were reduced relative to the wild type, which is reminiscent of BR deficiency in rice. Other melatonin-deficient mutant rice lines with suppressed BR synthesis (i.e., comt and t5h) also showed tolerance to salt and heat stress, whereas melatonin-deficient rice seedlings without decreased BR levels (i.e., tdc) failed to exhibit increased stress tolerance, suggesting that stress tolerance was increased not by melatonin deficiency alone, but by a melatonin deficiency-mediated decrease in BR.
Collapse
|
48
|
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front Endocrinol (Lausanne) 2019; 10:249. [PMID: 31057485 PMCID: PMC6481276 DOI: 10.3389/fendo.2019.00249] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qin Liu
- School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| |
Collapse
|
49
|
Lee K, Back K. Melatonin-deficient rice plants show a common semidwarf phenotype either dependent or independent of brassinosteroid biosynthesis. J Pineal Res 2019; 66:e12537. [PMID: 30403303 DOI: 10.1111/jpi.12537] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
Melatonin-deficient rice with a semidwarf erect-leaf phenotype was created by suppressing serotonin N-acetyltransferase 2 (SNAT2). We generated an RNAi transgenic rice that suppressed tryptophan decarboxylase (TDC), which encodes the first TDC enzyme committed step for melatonin biosynthesis in plants catalyzing the conversion of tryptophan into tryptamine, to determine whether other transgenic rice with downregulated melatonin biosynthetic genes exhibited the same erect-leaf phenotype as the snat2 RNAi rice. The TDC RNAi rice produced significantly less melatonin than the wild type and exhibited a semidwarf phenotype, but no erect-leaf phenotype was observed. In contrast, tryptamine 5-hydroxylase (T5H) knockout Sekiguchi rice and caffeic acid O-methyltransferase (COMT) RNAi rice seedlings were semidwarf phenotypes with erect leaves, as was the snat2 RNAi rice due to a melatonin deficiency. All RNAi rice plants showing erect-leaf phenotypes had lower expression levels of the DWARF4 gene, which is a key enzyme for brassinosteroid (BR) biosynthesis, leading to lower BR levels than their respective wild types. Suppressing melatonin synthesis did not alter the contents of indole 3-acetic acid (IAA), suggesting the irrelevance of melatonin deficiency to IAA biosynthesis. These data indicate that a semidwarf seedling is a common rice phenotype by the lack of melatonin synthesis with or without BR suppression in a melatonin biosynthetic gene-specific manner.
Collapse
Affiliation(s)
- Kyungjin Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
50
|
Wan J, Zhang P, Wang R, Sun L, Ju Q, Xu J. Comparative physiological responses and transcriptome analysis reveal the roles of melatonin and serotonin in regulating growth and metabolism in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:362. [PMID: 30563469 PMCID: PMC6299670 DOI: 10.1186/s12870-018-1548-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/20/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Melatonin and serotonin are well-known signaling molecules that mediate multiple physiological activities in plants, including stress defense, growth, development, and morphogenesis, but their underlying mechanisms have not yet been thoroughly elucidated. In this study, we investigated the roles of melatonin and serotonin in modulating plant growth and defense by integrating physiological and transcriptome analyses in Arabidopsis. RESULTS Moderate concentrations of melatonin and serotonin did not affect primary root (PR) growth but markedly induced lateral root (LR) formation. Both melatonin and serotonin locally induced the expression of the cell-wall-remodeling-related genes LBD16 and XTR6, thereby inducing LR development. Our data support the idea that melatonin and serotonin lack any auxin-like activity. Treatment with 50 μM serotonin significantly improved PSII activity, and the transcriptome data supported this result. Melatonin and serotonin slightly affected glycolysis and the TCA cycle; however, they markedly regulated the catabolism of several key amino acids, thereby affecting carbon metabolism and energy metabolism. Melatonin and serotonin improved iron (Fe) deficiency tolerance by inducing Fe-responsive gene expression. CONCLUSIONS Overall, our results from the physiological and transcriptome analyses reveal the roles of melatonin and serotonin in modulating plant growth and stress responses and provide insight into novel crop production strategies using these two phytoneurotransmitters.
Collapse
Affiliation(s)
- Jinpeng Wan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruling Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Liangliang Sun
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Qiong Ju
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Jin Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| |
Collapse
|