1
|
Shi R, Brito LF, Li S, Han L, Guo G, Wen W, Yan Q, Chen S, Wang Y. Genomic prediction and validation strategies for reproductive traits in Holstein cattle across different Chinese regions and climatic conditions. J Dairy Sci 2025; 108:707-725. [PMID: 39477064 DOI: 10.3168/jds.2024-25121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/02/2024] [Indexed: 12/28/2024]
Abstract
Accurate genomic predictions of breeding values for traits included in the selection indexes are paramount for optimizing genetic progress in populations under selection. The size of the reference populations is a major factor influencing the accuracy of genomic predictions, which is even more important for lowly heritable traits, such as fertility and reproduction indicators. Combining data from different geographical regions or countries can be beneficial for genomic prediction of these lowly heritable traits. Therefore, the objectives of this study were to (1) evaluate the benefits of performing across-regional genomic evaluations for reproduction traits in Chinese Holstein cattle and (2) assess the feasibility of validating genomic predictions across environments based on reaction norm models (RNM) and the linear regression (LR) method after accounting for genotype-by-environment interactions. Phenotypic records from 194,574 cows collected across 47 farms located in 2 regions of China were used for this study. The reference and validation populations were defined based on birth year for applying the LR validation method. The traits evaluated included: interval from first to last insemination (IFL), conception rate at the first insemination (CR_f), and number of inseminations (NS) recorded in heifers and first-parity cows. The results indicated that combining data from different regions resulted in greater genomic prediction accuracies compared with using data from single regions, with increases ranging from 2.74% to 93.81%. This improvement was particularly notable for the region with the least amount of available data, where the increases ranged from 26.49% to 93.81%. Furthermore, the predictive abilities could be validated for all studied traits based on the LR method across different environments when fitting RNM. The prediction accuracies and bias of genomic breeding values based on RNM were better than regular single-trait animal models in extreme climatic conditions for IFL and NS, whereas limited increases in predictive abilities were observed for CR_f. Across-regional genomic prediction by RNM can account for genotype-by-environment interactions, potentially increase the accuracy of genomic prediction, and predict the performances of individuals in the environments with limited phenotypic data available.
Collapse
Affiliation(s)
- Rui Shi
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Animal Breeding and Genomics Group, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Shanshan Li
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liyun Han
- Ningxia State Farm Dairy Co. Ltd., Yinchuan 750021, China
| | - Gang Guo
- Beijing Sunlon Livestock Development Co. Ltd., Beijing 100176, China
| | - Wan Wen
- Ningxia Animal Husbandry and Veterinary Station, Yinchuan 750105, China
| | - Qingxia Yan
- Dairy Association of China, Beijing 100193, China
| | - Shaohu Chen
- Dairy Association of China, Beijing 100193, China
| | - Yachun Wang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Li Y, Li F, Shu J, Meng C, Zhang J, Zhang J, Qian Y, Wang H, Ding Q, Cao S. Acute heat stress regulates estradiol synthesis in ovine ovarian granulosa cells through the SREBPs/MVK-LHR pathway. Anim Reprod Sci 2025; 272:107649. [PMID: 39615443 DOI: 10.1016/j.anireprosci.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
The adverse effects of heat stress on reproductive performance of sheep are becoming increasingly severe. Previous research has revealed that heat stress decreases both cholesterol and estradiol content; however, regulation of estradiol by cholesterol and its regulatory mechanism under heat stress are unclear. Mevalonate kinase (MVK), a key cholesterol synthesis pathway enzyme, binds to the luteinizing hormone receptor (LHR; a key gene regulating hormone synthesis) mRNA. In this study, ovine ovarian granulosa cells (GCs) were used in an in vitro model. To elucidate the underlying molecular mechanism, immunofluorescence, quantitative reverse transcription polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, and an RNA electrophoretic mobility shift assay (REMSA) were used to investigate whether the decrease in cholesterol caused by acute heat stress resulted in a decrease in estradiol synthesis. Acute heat stress reduced the cholesterol content in ovine ovarian GCs, which transactivated the cholesterol synthesis pathway corresponding to the gene expression of sterol regulatory element-binding protein (SREBP-1A), SREBP-2, and MVK. Upregulated MVK increased the MVK-LHR mRNA complex, which caused LHR mRNA decay and downregulation, further leading to the downregulation of CYP19A1 and a decrease in estradiol. The cholesterol synthesis inhibitor, PF-429242, alleviated the decrease in estradiol synthesis caused by acute heat stress. Overall, acute heat stress caused a decrease in total cholesterol, which transactivated the expression of cholesterol synthesis genes, such as SREBP-1A, SREBP2, and MVK, increasing the MVK-LHR complex, downregulating LHR expression, and further decreasing estradiol.
Collapse
Affiliation(s)
- Yinxia Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Fan Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Jiaao Shu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Chunhua Meng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Jun Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Jianli Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Yong Qian
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Huili Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Qiang Ding
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shaoxian Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China.
| |
Collapse
|
3
|
Herrera-González JL, Rodríguez-Venegas R, Legarreta-González MA, Robles-Trillo PA, De-Santiago-Miramontes Á, Loya-González D, Rodríguez-Martínez R. Time series (ARIMA) as a tool to predict the temperature-humidity index in the dairy region of the northern desert of Mexico. PeerJ 2024; 12:e18744. [PMID: 39713132 PMCID: PMC11662903 DOI: 10.7717/peerj.18744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
The environment in which an animal is situated can have a profound impact on its health, welfare, and productivity. This phenomenon is particularly evident in the case of dairy cattle, then, in order to quantify the impact of ambient temperature (°C) and the relative humidity (%) on dairy cattle, the temperature-humidity index (THI) is employed as a metric. This indicator enables the practical estimation of the stress imposed on cattle by ambient temperature and humidity. A seasonal autoregressive integrated moving average (SARIMA) (4,1,0)(0,1,0)365 model was estimated using daily data from the maximum daily THI of 4 years (2016-2019) of the Comarca Lagunera, an arid region of central-northern Mexico. The resulting model indicated that the THI of any given day in the area can be estimated based on the THI values of the previous four days. Furthermore, the data demonstrate an annual increase in the number of days the THI indicates a risk of heat stress. It is essential to continue building predictive models to develop effective strategies to mitigate the adverse effects of heat stress in dairy cattle (and other species) in the region.
Collapse
Affiliation(s)
- José Luis Herrera-González
- Programa de Doctorado en Ciencias Agropecuarias, Universidad Autónoma Agraria Antonio Narro, Torreón, Coahuila, Mexico
| | - Rafael Rodríguez-Venegas
- Departamento de Ciencias Médico Veterinarias, Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Torreón, Coahuila, Mexico
| | | | - Pedro Antonio Robles-Trillo
- Departamento de Producción Animal, Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Torreón, Coahuila, Mexico
| | | | | | - Rafael Rodríguez-Martínez
- Departamento de Ciencias Médico Veterinarias, Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Torreón, Coahuila, Mexico
| |
Collapse
|
4
|
Ferrari C, Evangelista C, Basiricò L, Castellani S, Biffani S, Bernabucci U. Application of a Generalized Additive Mixed Model (GAMM) in Timeseries Study of Dairy Cows' Behavior Under Hot Summer Conditions. J Dairy Sci 2024:S0022-0302(24)01255-4. [PMID: 39694246 DOI: 10.3168/jds.2024-25001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/07/2024] [Indexed: 12/20/2024]
Abstract
This study aimed at investigating the pattern of 6 behavioral parameters in Holstein dairy cows under heat stress (HS) conditions using a Generalized Additive Mixed Model (GAMM) statistical approach, while also evaluating the effectiveness of a commercial electrolyte, osmolyte, and antioxidant blend in mitigating HS-induced adverse effects. The trial was conducted during a severe Italian summer on 84 multiparous dairy cows in the Central Italy, divided into 4 balanced groups (2 treated and 2 control) of 21 cows each. All animals received the same diet, and the treatment groups were supplemented with 3,150 g/d of the additive. Behavioral parameters, namely low activity (LA), medium activity (MA), high activity (HA), rumination time (RUM), eating time (EAT), and heavy breathing (OH), were monitored using neck collar sensors. GAMMs were utilized to analyze trajectory changes of these parameters over time and climatic conditions. Results indicated significant variations in only one activity parameter, with treated cows showing increased MA with rising temperature-humidity index (THI). Eating time declined with increasing HS, particularly in the treated group, suggesting potential HS relief. Rumination time decreased with increasing HS levels but increased also with milk yield and lactation stage. As expected, heavy breathing significantly increased with THI, especially beyond THI 80, and was influenced by milk yield and lactation stage but not by the treatment. The use of GAMM enhanced visualization and understanding of severe climatic conditions' effects on behavioral parameters.
Collapse
Affiliation(s)
- C Ferrari
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - C Evangelista
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - L Basiricò
- Department of Agricultural and Forest Sciences (DAFNE), Università Della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - S Castellani
- Department of Agricultural and Forest Sciences (DAFNE), Università Della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - S Biffani
- Institute of Agricultural Biology and Biotechnology (IBBA-CNR), National Research Council, Milano, 26900, Italy.
| | - U Bernabucci
- Department of Agricultural and Forest Sciences (DAFNE), Università Della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Ferag A, Gherissi DE, Khenenou T, Boughanem A, Moussa HH, Kechroud AA, Fares MA. Heat stress effect on fertility of two imported dairy cattle breeds from different Algerian agro-ecological areas. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2515-2529. [PMID: 39158719 DOI: 10.1007/s00484-024-02761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/13/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
The present study investigates the susceptibility of two imported dairy cattle breeds to Algerian local climatic conditions, with a primary focus on heat stress (HS) and its repercussions on fertility traits. The dataset comprises 20,926 artificial insemination records involving 6,191 Prim'Holstein and 5,279 Montbéliarde cows. The animals originated from three distinct agro-ecological regions: littoral (L), semi-arid (SA), and arid (Ar), characterized by average annual Temperature-Humidity Index (THI) values of 75.2, 69.53, and 74.75, respectively. Logistic and linear regression models were performed to analyze the relationship between the THI on the AI day, season, and agro-ecological origin of the animals with the Conception Rate at 1st Artificial Insemination (CR 1stAI), Conception Risk (CR), Services per Conception (SPC), and reproductive period (RP). The results demonstrated a significant negative impact (P < 0.001) of THI > 72 compared to THI ≤ 72 on CR1st AI and CR for both cattle breeds (Prim'Holstein: -49.7% and - 17%, respectively; Montbéliarde: -20.7% and - 15%, respectively). Seasonal effects revealed a notably higher CR1stAI in winter and spring (≈ 25%) for Prim'Holstein and Montbéliarde cows compared to summer (19.41%) and autumn (19.12%), respectively. Furthermore, a reduced likelihood of conception at 1stAI and subsequent AI was observed during summer (0.839) and autumn (0.818) compared to winter for the Montbéliarde cows. Taking into account the littoral region as a reference, the likelihood of 1stAI success increased for both breeds in the SA region and decreased for the Ar region (P < 0.001). SPC increased for both breeds in THI > 72 categories (Prim'Holstein: 6.3%, Montbéliarde: 7.1%, P < 0.01), in the Ar region (Prim'Holstein: 30.9%, Montbéliarde: 26%, P < 0.001), and in the SA region (4%, P < 0.05) compared to the L region No significant seasonal effect on SPC was observed for either breed (P > 0.05). The RP increased in the THI > 72 category (Prim'Holstein: 4.1%, Montbéliarde: 7.4%, P < 0.001) and in the Ar region (Prim'Holstein: 122%, Montbéliarde: 73.4%) for both breeds. RP decreased in autumn compared to winter (Prim'Holstein: 15.3%, Montbéliarde: 8.4%). This study underscores the adverse impact of mild to severe heat stress (HS) and related factors (season, region) on fertility of Prim'Holstein and Montbéliarde cows under Algerian conditions, emphasizing the necessity for heat stress mitigation strategies, especially in adverse littoral humid and Saharan-arid environmental conditions.
Collapse
Affiliation(s)
- Aziza Ferag
- Department of Veterinary Sciences, Institute of Agricultural and Veterinary Sciences, University of Souk-Ahras, Souk Ahras, 41000, Algeria
- Laboratory of Science and Techniques for Living, University of Souk-Ahras, Souk Ahras, 41000, Algeria
| | - Djalel Eddine Gherissi
- Department of Veterinary Sciences, Institute of Agricultural and Veterinary Sciences, University of Souk-Ahras, Souk Ahras, 41000, Algeria.
- Laboratory of Animal Production, Biotechnologies, and Health, University of Souk-Ahras, Souk Ahras, 41000, Algeria.
| | - Tarek Khenenou
- Department of Veterinary Sciences, Institute of Agricultural and Veterinary Sciences, University of Souk-Ahras, Souk Ahras, 41000, Algeria
- Laboratory of Science and Techniques for Living, University of Souk-Ahras, Souk Ahras, 41000, Algeria
| | - Amel Boughanem
- National Center for Artificial Insemination and Genetic Improvement (CNIAAG), Birtouta, 16045, Algeria
| | - Hafida Hadj Moussa
- National Center for Artificial Insemination and Genetic Improvement (CNIAAG), Birtouta, 16045, Algeria
| | - Ahmed Abdelouahed Kechroud
- Laboratory of Epidemio-Surveillance, Production and Reproduction, Cellular Experimentation and Therapy of Domestic and Wild Animals, Department of Veterinary Sciences, Chadli Bendjedid University, BP 73, Health, El-Tarf, 36000, Algeria
| | - Mohamed Amine Fares
- Department of Veterinary Sciences, Institute of Agricultural and Veterinary Sciences, University of Souk-Ahras, Souk Ahras, 41000, Algeria
- Laboratory of Science and Techniques for Living, University of Souk-Ahras, Souk Ahras, 41000, Algeria
| |
Collapse
|
6
|
Yu Z, Yong Y, Liu X, Ma X, Abd El-Aty AM, Li L, Zhong Z, Ye X, Ju X. Insights and implications for transcriptomic analysis of heat stress-induced intestinal inflammation in pigs. BMC Genomics 2024; 25:1110. [PMID: 39563245 PMCID: PMC11577645 DOI: 10.1186/s12864-024-10928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Heat stress (HS) can affect the physiology and metabolism of animals. HS-induced intestinal inflammation in pigs is a common disease, causing severe diarrhea, that can result in substantial economic losses to the pig industry, but the molecular mechanisms and pathogenicity of this disease are not fully understood. The objective of this study was to identify the differentially expressed genes (DEGs) and long noncoding RNAs (DELs) related to inflammation in the colon tissues of pigs under constant (1, 7, and 14 days) HS. RESULTS LncRNA and targeted gene interaction networks were constructed. GO annotation and KEGG pathway analyses were subsequently performed to determine the functions of the DEGs and DELs. The results revealed 57, 212, and 54 DEGs and 87, 79, and 55 DELs in the CON/H01, CON/H07, and CON/H14 groups, respectively. KRT85, CLDN1, S100A12, TM7SF2, CCN1, NR4A1, and several lncRNAs may be involved in regulating the development of intestinal inflammation. GO analysis indicated that the DEGs and DELs were enriched in a series of biological processes involved in the innate immune response, RAGE receptor binding, and positive regulation of the ERK1 and ERK2 cascades. KEGG pathways related to inflammation, such as the tight junction (TJ) and MAPK signaling pathways, were enriched in DEGs and DELs. CONCLUSIONS This study have expanded the knowledge about colon inflammation-related genes and lncRNA biology in pigs under HS; analyzed the the lncRNA‒mRNA interaction for HS-induced intestinal inflammation. These results may provide some references for our understanding of the molecular mechanism of the intestinal response to HS in pig.
Collapse
Affiliation(s)
- Zhichao Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxi Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xingbin Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Leling Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ziyuan Zhong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xingyi Ye
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
7
|
Jiang B, Yang D, Peng H. Environmental toxins and reproductive health: unraveling the effects on Sertoli cells and the blood-testis barrier in animals†. Biol Reprod 2024; 111:977-986. [PMID: 39180724 DOI: 10.1093/biolre/ioae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental pollution is an inevitable ecological issue accompanying the process of socialization, with increasing attention to its impacts on individual organisms and ecological chains. The reproductive system, responsible for transmitting genetic material in animals, is one of the most sensitive systems to environmental toxins. Research reveals that Sertoli cells are the primary target cells for the action of environmental toxins. Different environmental toxins mostly affect the blood-testis barrier and lead to male reproductive disorders by disrupting Sertoli cells. Therefore, this article provides an in-depth exploration of the toxic mechanisms of various types of environmental toxins on the male testes. It reveals the dynamic processes of tight junctions in the blood-testis barrier affected by environmental toxins and their specific roles in the reconstruction process.
Collapse
Affiliation(s)
- Biao Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| |
Collapse
|
8
|
Vanselow J, Wesenauer C, Eggert A, Sharma A, Becker F. Summer heat during spermatogenesis reduces in vitro blastocyst rates and affects sperm quality of next generation bulls. Andrology 2024; 12:1897-1906. [PMID: 38478954 DOI: 10.1111/andr.13627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Due to global warming seasonal heat stress is an increasing problem in temperate zones. Heat stress not only decreases fertility in females, but can also be detrimental to male fertility. OBJECTIVES We studied the effects of natural summer heat stress during spermatogenesis in Holstein bulls on semen quality parameters and on fertilization performance in vitro and possible intergenerational transmission of effects on the next male generation. MATERIALS AND METHODS Semen samples from young Holstein breeding bulls, referred to as F0 founders during this study, were collected during summer (F0 "summer" semen) and the following winter (F0 "winter" semen). Parameters such as ejaculate volume, sperm density, motility, thermoresistance, and in vitro blastocyst rates from these F0 semen samples were determined. In addition, after generation of offspring by artificial insemination, semen samples from F1 male offspring were collected and tested for the same quality and performance parameters to capture intergenerational effects. F1 bulls were raised together under identical conditions and semen was collected at about 1 year after birth. RESULTS The data showed that in vitro blastocyst rates of F0 "summer" semen samples were lower compared with "winter" semen, whereas blastocyst rates of F1 semen samples did not show significant differences. However, whereas F0 semen samples did not indicate significantly different quality parameters we found that motility of F1 semen samples showed significant differences with higher values when collected from bulls generated with F0 "winter" semen. DISCUSSION AND CONCLUSION From our data, we conclude that (i) natural summer heat stress during spermatogenesis can affect in vitro fertility parameters and (ii) the observed effects on sperm motility of F1 semen samples suggest intergenerational paternal transmission.
Collapse
Affiliation(s)
- Jens Vanselow
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Anja Eggert
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Arpna Sharma
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frank Becker
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
9
|
Kamieniarz R, Szymański M, Woźna-Wysocka M, Jaśkowski BM, Dyderski MK, Pers-Kamczyc E, Skorupski M. Roe Deer Reproduction in Western Poland: The Late Autumn Rut Phenomenon. Animals (Basel) 2024; 14:3078. [PMID: 39518800 PMCID: PMC11544897 DOI: 10.3390/ani14213078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Roe deer (Capreolus capreolus L.) populations in Poland are characterized by low productivity, which is why their reproductive potential was investigated. The presence of corpora lutea (CL) on the ovaries of females hunted in autumn and winter in the years 2015 and 2016 was assessed. Most animals were post-rut and most often had multiple ovulations. However, in early autumn 2015, 60% of the females had no CL. Therefore, they did not participate in mating at the turn of July/August. Those that did ovulate were found to have one CL. In late autumn, 97% of the females were post-rut, mostly with twin ovulations. This confirmed the occurrence of a late autumn rut. This phenomenon had been suggested in studies but not confirmed. In contrast, almost 100% of roe deer ovulated in summer in 2016. It was hypothesized that the reason for the low mating activity of roe deer in the summer of 2015 was heat stress and limited food resources. The summer was exceptionally hot, with many days in July and August when temperatures exceeded 30 °C. The heat combined with low rainfall led to extreme drought. Meanwhile, July and August are the months of mating activity for roe deer. The late autumn rut allowed the roe deer-a monoestrous species-to limit the consequences of a decrease in mating activity or fertility during the hot summer. Global warming may affect roe deer reproduction, so climatic conditions should be considered in population studies, not only in terms of food availability.
Collapse
Affiliation(s)
- Robert Kamieniarz
- Department of Game Management and Forest Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland;
| | - Michał Szymański
- Forest District Łopuchówko, Łopuchowko 1, 62-095 Murowana Goslina, Poland;
| | - Magdalena Woźna-Wysocka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Bartłomiej M. Jaśkowski
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 49, 50-366 Wroclaw, Poland;
| | - Marcin K. Dyderski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland; (M.K.D.); (E.P.-K.)
| | - Emilia Pers-Kamczyc
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland; (M.K.D.); (E.P.-K.)
| | - Maciej Skorupski
- Department of Game Management and Forest Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland;
| |
Collapse
|
10
|
Carbonari A, Burgio M, Frattina L, Cicirelli V, Rizzo A. Repeat Breeder Syndrome Therapies in Dairy Cows: A Review. Reprod Domest Anim 2024; 59:e14732. [PMID: 39392176 DOI: 10.1111/rda.14732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Repeat breeder (RB) cows are clinically healthy animals with regular oestrous cycles that do not become pregnant after three or more services. This syndrome has an incidence ranging between 10.1% and 24%. Repeat breeder syndrome (RBS) in dairy cows leads to economic losses to dairy farmers by increasing the calving interval and consequently reducing milk and calf production. RBS has a complex oetiopathogenesis as many factors are involved in its onset. The causes can be grouped into two categories: causes leading to fertilisation failure and factors leading to early embryonic death. Accurate identification of the cause and early diagnosis of RBS is essential to minimise the problems that this issue brings to the farm, but is not always possible. Hypothesising the underlying aetiology of the syndrome is also crucial for targeted therapy, whether pharmacological or managerial. The aim of this review is to report the different therapies, proposed in the literature, for the treatment of RBS in cattle, based on the knowledge of possible aetiological causes.
Collapse
Affiliation(s)
- Alice Carbonari
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Matteo Burgio
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Lorenza Frattina
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Vincenzo Cicirelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Annalisa Rizzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| |
Collapse
|
11
|
Lee J, Lee S, Ryu G, Kim D, Baek HU, Kim J, Lee K, Kim S, Kim S, Dang CG, Choi T, Choi I. A retrospective analysis of conception per embryo transfer in dairy cattle in South Korea. Theriogenology 2024; 226:363-368. [PMID: 38968679 DOI: 10.1016/j.theriogenology.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The bovine embryo production industry has seen significant growth over the past two decades, particularly in the production of in vitro produced embryos. This growth, driven by advancements in cryopreservation, in vitro culture mediums, ovum pick-up (OPU) procedures, ultrasonography devices, and embryo transfer (ET) has been notable. Particularly, ET is crucial for disseminating high genetic merit and amplifying foreign breeds by importing frozen embryos. This retrospective study aimed to assess factors affecting conception per embryo transfer (CPET) in Holstein-Friesian cattle in South Korea from October 2008 to July 2022. We evaluated type of embryo breed, type of embryo production (fresh and frozen; in vitro and in vivo production), recipient conditions including estrus type, corpus luteum quality, parity (nulliparous heifers, primiparous, and multiparous cows), and the daily mean temperature-humidity index (THI) as an index for heat stress. Type of embryo breed and estrus had no significant impact on CPET. However, we observed higher CPET in recipients with good quality corpus luteum, nulliparous heifers, and surrogates receiving fresh in vitro and frozen in vivo embryos. Importantly, CPET was not adversely affected by mild heat stress conditions (up to daily mean THI 76), indicating that using frozen in vivo embryos produced by multiple ovulation embryo transfer and fresh in vitro embryos by OPU-ET can help alleviate the subfertility issues in dairy cattle caused by global warming in Korea.
Collapse
Affiliation(s)
- Jihwan Lee
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, 31000, Republic of Korea.
| | - Songjeon Lee
- Dairy Biotechnology R&D Center, Seoul Milk Cooperation, Yangpyeong-gun, 12528, Republic of Korea
| | - Gyeonglim Ryu
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, 31000, Republic of Korea
| | - Doosan Kim
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, 31000, Republic of Korea
| | - Hyeong-Uk Baek
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, 31000, Republic of Korea
| | - Joohwan Kim
- Dairy Biotechnology R&D Center, Seoul Milk Cooperation, Yangpyeong-gun, 12528, Republic of Korea
| | - Kyungsuk Lee
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, 31000, Republic of Korea
| | - Sunkyu Kim
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, 31000, Republic of Korea
| | - Sangbum Kim
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, 31000, Republic of Korea
| | - Chang-Gwon Dang
- Animal Breeding and Genetics Division, National Institute of Animal Science, RDA, Cheon-an, 31000, Republic of Korea
| | - Taejeong Choi
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, 31000, Republic of Korea.
| | - Inchul Choi
- Division of Animal and Dairy Sciences, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
12
|
Oliveira CS, Dias HRS, Camargo AJDR, Mourão A, Feuchard VLDS, Muller MD, Brandão FZ, Nogueira LAG, Verneque RDS, Saraiva NZ, Camargo LSDA. Livestock-Forest integrated system attenuates deleterious heat stress effects in bovine oocytes. Anim Reprod Sci 2024; 268:107568. [PMID: 39106562 DOI: 10.1016/j.anireprosci.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Global warming poses significant challenges to the fertility of tropical dairy cattle. One promising approach to mitigate heat stress effects on reproductive function and reduce the carbon footprint is the use of integrated livestock-forest (ILF) systems. The aim of this study was to investigate the effects of two different systems, namely Full Sun (FS) and ILF, on maternal hyperthermia and oocyte quality of Holstein and Girolando heifers during the tropical summer season. The temperature-humidity index (THI) data revealed intense heat stress during the experiment. Both the system (P<0.01) and the breed (P<0.01) factors had a significant impact on vaginal temperature, being hyperthermia more pronounced in the FS system and in the Holstein breed. Over the five time points collected at a 33-day interval, we observed distinct patterns for ILF (P=0.65) and FS (P<0.001) systems, suggesting an adaptive response in animals kept in FS systems. Furthermore, oocyte quality assessment revealed an effect of the system for oocyte diameter (P<0.001) and levels of IGFBP2 (P<0.001), and caspase 3 levels showed a decrease in ILF compared to FS for both Holstein (P<0.001) and Girolando (P<0.001) breeds. Collectively, these parameters indicate that oocyte quality during the summer months was superior in animals maintained in the ILF system. In conclusion, the ILF system demonstrated promising results in attenuating maternal hyperthermia and mitigating its effects on oocyte quality. Additionally, our observations suggest that animals in the FS system may exhibit an adaptive response to heat stress.
Collapse
Affiliation(s)
- Clara Slade Oliveira
- Embrapa Dairy Cattle, 610 Eugenio do Nascimento Ave., Juiz de Fora, MG 36038-330, Brazil
| | - Hugo Rocha Sabença Dias
- Embrapa Dairy Cattle, 610 Eugenio do Nascimento Ave., Juiz de Fora, MG 36038-330, Brazil; Universidade Federal Fluminense - UFF, Faculdade de Veterinária, Rua Vital Brazil Filho, 64, Santa Rosa, Niterói, RJ 24230-340, Brazil
| | - Agostinho Jorge Dos Reis Camargo
- Agricultural Research Company of the Rio de Janeiro State (PESAGRO RIO), São Boa Ventura Av., 770, Fonseca, Niterói, Rio de Janeiro 24120-19, Brazil
| | - Anderson Mourão
- Agricultural Research Company of the Rio de Janeiro State (PESAGRO RIO), São Boa Ventura Av., 770, Fonseca, Niterói, Rio de Janeiro 24120-19, Brazil
| | | | - Marcelo Dias Muller
- Embrapa Dairy Cattle, 610 Eugenio do Nascimento Ave., Juiz de Fora, MG 36038-330, Brazil
| | - Felipe Zandonadi Brandão
- Universidade Federal Fluminense - UFF, Faculdade de Veterinária, Rua Vital Brazil Filho, 64, Santa Rosa, Niterói, RJ 24230-340, Brazil
| | - Luiz Altamiro Garcia Nogueira
- Universidade Federal Fluminense - UFF, Faculdade de Veterinária, Rua Vital Brazil Filho, 64, Santa Rosa, Niterói, RJ 24230-340, Brazil
| | - Rui da Silva Verneque
- Embrapa Dairy Cattle, 610 Eugenio do Nascimento Ave., Juiz de Fora, MG 36038-330, Brazil
| | - Naiara Zoccal Saraiva
- Embrapa Dairy Cattle, 610 Eugenio do Nascimento Ave., Juiz de Fora, MG 36038-330, Brazil
| | | |
Collapse
|
13
|
Abulaiti A, Ahsan U, Naseer Z, Ahmed Z, Liu W, Ruan C, Pang X, Wang S. Effect of dietary Chinese herbal preparation on dry matter intake, milk yield and milk composition, serum biochemistry, hematological profile, and reproductive efficiency of Holstein dairy cows in early postpartum period. Front Vet Sci 2024; 11:1434548. [PMID: 39100764 PMCID: PMC11294110 DOI: 10.3389/fvets.2024.1434548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
The present study investigated the effects of various inclusion levels of dietary Chinese herbal medicine (CHM) preparation on feed consumption, milk yield and milk composition, serum biochemistry, hematological profile, and reproductive efficiency of Holstein dairy cows. A total of 117 lactating Holstein cows were randomly divided into four groups as control (n = 27; without CHM supplementation) and treatment groups CHM-0.5 (n = 31), CHM-0.75 (n = 29), and CHM-1 (n = 30) fed diet supplemented with 0.5, 0.75, and 1 kg/cow/d for 30 days, respectively. The study began at d 20 postpartum (d 0 of the study). At d 50 postpartum, the cows in all groups were subjected to estrus synchronization using a modified Ovsynch protocol (GPGMH) and observed for reproductive variables. Feed intake, milk yield and milk composition, serum biochemistry and hematological profile, and reproductive efficiency were measured. A significantly higher milk yield with improved milk lactose, milk protein and milk fat were found in the CHM-0.75 group compared to the other groups (p < 0.05). Besides, the estrus response, ovulation rate, ovulatory follicle diameter, and pregnancy rate increased in CHM-0.75 compared to CHM-0 or CHM-0.5 group (p < 0.05). The serum metabolites (glucose, AST, arginine, BUN, and NO) showed variations among the treatment groups at different time points (synchronization, AI, or post-AI). In conclusion, CHM supplementation improves the milk yield, milk composition, and serum metabolites in dairy cows. Daily supplementation of 0.75 kg CHM before the GPGMH protocol application enhances the reproductive traits in dairy cows under summer conditions.
Collapse
Affiliation(s)
- Adili Abulaiti
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, Anhui, China
| | - Umair Ahsan
- Department of Plant and Animal Production, Burdur Vocational School of Food, Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, İstiklal Yerleşkesi, Burdur, Türkiye
- Center for Agriculture, Livestock and Food Research, Burdur Mehmet Akif Ersoy University, İstiklal Yerleşkesi, Burdur, Türkiye
| | - Zahid Naseer
- Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Wenju Liu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Chongmei Ruan
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Xunsheng Pang
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, Anhui, China
| |
Collapse
|
14
|
Shen W, Gao P, Zhou K, Li J, Bo T, Xu D. The Impact of High-Temperature Stress on Gut Microbiota and Reproduction in Siberian Hamsters ( Phodopus sungorus). Microorganisms 2024; 12:1426. [PMID: 39065194 PMCID: PMC11278997 DOI: 10.3390/microorganisms12071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Global warming has induced alterations in the grassland ecosystem, such as elevated temperatures and decreased precipitation, which disturb the equilibrium of these ecosystems and impact various physiological processes of grassland rodents, encompassing growth, development, and reproduction. As global warming intensifies, the repercussions of high-temperature stress on small mammals are garnering increased attention. Recently, research has highlighted that the composition and ratio of gut microbiota are not only shaped by environmental factors and the host itself but also reciprocally influence an array of physiological functions and energy metabolism in animals. In this research, we combined 16S rRNA high-throughput sequencing with conventional physiological assessments, to elucidate the consequences of high-temperature stress on the gut microbiota structure and reproductive capacity of Siberian hamsters (Phodopus sungorus). The results were as follows: 1. The growth and development of male and female hamsters in the high-temperature group were delayed, with lower body weight and reduced food intake. 2. High temperature inhibits the development of reproductive organs in both female and male hamsters. 3. High temperature changes the composition and proportion of gut microbiota, reducing bacteria that promote reproduction, such as Pseudobutyricoccus, Ruminiclostridium-E, Sporofaciens, UMGS1071, and CAG_353. Consequently, our study elucidates the specific impacts of high-temperature stress on the gut microbiota dynamics and reproductive health of Siberian hamsters, thereby furnishing insights for managing rodent populations amidst global climatic shifts. It also offers a valuable framework for understanding seasonal variations in mammalian reproductive strategies, contributing to the broader discourse on conservation and adaptation under changing environmental conditions.
Collapse
Affiliation(s)
- Wenjing Shen
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Peng Gao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Kunying Zhou
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| | - Jin Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| | - Tingbei Bo
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Deli Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| |
Collapse
|
15
|
Chavarría I, Alvarado AS, Macías-Cruz U, Avendaño-Reyes L, Ángel-García O, Contreras V, Carrillo DI, Mellado M. Unmasking seasonal cycles in a high-input dairy herd in a hot environment: How climate shapes dynamics of milk yield, reproduction, and productive status. J Therm Biol 2024; 123:103944. [PMID: 39137568 DOI: 10.1016/j.jtherbio.2024.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to predict the annual herd milk yield, lactation, and reproductive cycle stages in a high-input dairy herd in a zone with prolonged thermal stress. Also, the impact of climatic conditions on milk yield and productive and reproductive status was assessed. An autoregressive integrated moving average (ARIMA) model was used in data fitting to predict future monthly herd milk yield and reproductive status using data from 2014 to 2020. Based on the annual total milk output, the highest predicted percentage of milk yield based on the yearly milk production was in February (9.1%; 95% CI = 8.3-9.9) and the lowest in August (6.9%; 95% CI = 6.0-7.9). The predicted highest percentage of pregnant cows for 2021 was in May (61.8; 95% CI = 53.0-70.5) and the lowest for November (33.2%; 95% CI = 19.9-46.5). The monthly percentage of dry cows in this study showed a steady trend across years; the predicted highest percentage was in September (20.1%; CI = 16.4-23.7) and the lowest in March (7.5%; 4.0-11.0). The predicted days in milk (DIM) were lower in September (158; CI = 103-213) and highest in May (220; 95% CI = 181-259). Percentage of calvings was seasonal, with the predicted maximum percentage of calvings occurring in September (10.3%; CI = 8.0-12.5) and the minimum in April (3.2%; CI = 1.0-5.5). The highest predicted culling rate for the year ensuing the present data occurred in November (4.3%; 95% CI = 3.2-5.4) and the lowest in April (2.5%; 95% CI = 1.4-3.5). It was concluded that meteorological factors strongly influenced rhythms of monthly milk yield and reproductive status. Also, ARIMA models robustly estimated and forecasted productive and reproductive events in a dairy herd in a hot environment.
Collapse
Affiliation(s)
- I Chavarría
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - A S Alvarado
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - U Macías-Cruz
- Institute of Agricultural Sciences, Autonomous University of Baja California, Mexicali, Mexico.
| | - L Avendaño-Reyes
- Institute of Agricultural Sciences, Autonomous University of Baja California, Mexicali, Mexico.
| | - O Ángel-García
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - V Contreras
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - D I Carrillo
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - M Mellado
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Coah, Mexico.
| |
Collapse
|
16
|
Changtes T, Sanchez J, Arunvipas P, Patanasatienkul T, Thammahakin P, Jareonsawat J, Hall D, Heider L, Rukkwamsuk T. Performance and Cost-Efficiency of Single Hormonal Treatment Protocols in Tropical Anestrous Dairy Cows. Animals (Basel) 2024; 14:1564. [PMID: 38891611 PMCID: PMC11171056 DOI: 10.3390/ani14111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
This retrospective study aimed to evaluate the performance of hormone treatment protocols, determine the factors associated with pregnancy success after hormone treatment, and compare the cost-efficiencies of two types of hormone treatment among cyclic and noncyclic anestrous dairy cows. The clinical records of 279 anestrous cows that received hormone treatment for artificial insemination (AI) from 64 herds in the western region of Thailand were obtained from Kasetsart University Veterinary Teaching Hospital from January to August 2017. The performance of the hormone treatment protocols, fixed-time AI (TAI) and estrus detection before AI (EAI), showed that the pregnancy risk for the TAI protocol was higher than that for the EAI protocol, but pregnancy per AI did not differ significantly between the two protocols in cyclic and noncyclic cows. Multivariate logistic regression analysis showed that cows receiving the TAI protocol were more likely to be pregnant compared to those treated with the EAI protocol. Cows with a 3.00 body condition score (BCS) < 3.75 after treatment and loose-housed cows were more likely to become pregnant. Treatment during winter showed higher pregnancy success than that in the summer and rainy seasons. The cost-efficiency analysis showed that the TAI protocol was the most cost-efficient option for noncyclic cows, whereas the EAI protocol was the most cost-efficient option for cyclic cows.
Collapse
Affiliation(s)
- Thitiwich Changtes
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Nakhon Pathom 73140, Thailand; (T.C.); (P.A.); (P.T.)
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (J.S.); (T.P.); (L.H.)
| | - Javier Sanchez
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (J.S.); (T.P.); (L.H.)
| | - Pipat Arunvipas
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Nakhon Pathom 73140, Thailand; (T.C.); (P.A.); (P.T.)
| | - Thitiwan Patanasatienkul
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (J.S.); (T.P.); (L.H.)
| | - Passawat Thammahakin
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Nakhon Pathom 73140, Thailand; (T.C.); (P.A.); (P.T.)
| | - Jiranij Jareonsawat
- Kasetsart University Veterinary Teaching Hospital, Nong Pho, Ratchaburi 70120, Thailand;
| | - David Hall
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Luke Heider
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (J.S.); (T.P.); (L.H.)
| | - Theera Rukkwamsuk
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Nakhon Pathom 73140, Thailand; (T.C.); (P.A.); (P.T.)
| |
Collapse
|
17
|
He G, Zhang B, Yi K, Chen T, Shen C, Cao M, Wang N, Zong J, Wang Y, Liu K, Chang F, Chen X, Chen L, Luo Y, Meng Y, Li C, Zhou X. Heat stress-induced dysbiosis of the gut microbiota impairs spermatogenesis by regulating secondary bile acid metabolism in the gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173305. [PMID: 38777056 DOI: 10.1016/j.scitotenv.2024.173305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Heat stress (HS) poses a substantial challenge to livestock. Studies have demonstrated that HS reduces fertility and leads to gut microbiota dysbiosis in bulls. However, the impact of the gut microbiota on fertility in bulls during HS is still unclear. Our research revealed that HS exposure decreased semen quality in bulls, and fecal microbiota transplantation (FMT) from heat-stressed bulls to recipient mice resulted in a significant decrease in number of testicular germ cells and epididymal sperm. Untargeted metabolomics methodology and 16S rDNA sequencing conjoint analysis revealed that Akkermansia muciniphila (A. muciniphila) seemed to be a key bacterial regulator of spermatogenesis after HS exposure. Moreover, the research indicated that A. muciniphila regulated secondary bile acid metabolism by promoting the colonization of bile salt hydrolase (BSH)-metabolizing bacteria, leading to increase of retinol absorption in the host gut and subsequently elevation of testicular retinoic acid level, thereby improving spermatogenesis. This study sheds light on the relationship between HS-induced microbiota dysbiosis and spermatogenesis, offering a potential therapeutic approach for addressing bull spermatogenic dysfunction triggered by HS exposure.
Collapse
Affiliation(s)
- Guitian He
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Kangle Yi
- Grassland and Herbivore Research Laboratory, Hunan Animal Husbandry and Veterinary Research Institute, Changsha, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Caomeihui Shen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Nan Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jinxin Zong
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yueying Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Kening Liu
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Fuqiang Chang
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Xue Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuxin Luo
- College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yang Meng
- Jilin Province Product Quality Supervision and Inspection Institute, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
18
|
Rodríguez-Godina IJ, García JE, Morales JL, Contreras V, Véliz FG, Macías-Cruz U, Avendaño-Reyes L, Mellado M. Effect of heat stress during the dry period on milk yield and reproductive performance of Holstein cows. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:883-890. [PMID: 38308728 DOI: 10.1007/s00484-024-02633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
This study aimed to determine the influence of heat stress during the dry period on milk yield and reproductive performance of Holstein cows in a hot environment. Breeding and milk production records of cows, as well as meteorological data between 2017 and 2020 from a commercial dairy herd (n = 12,102 lactations), were used to determine the relationship between climatic conditions during the dry period (average of the temperature-humidity index (THI) at the beginning, middle, and end of the dry period) and reproductive efficiency and milk yield traits. THI was divided into < 70 (no heat stress), 70-80 (moderate heat stress), and > 80 (severe heat stress). First-service pregnancy rate of cows decreased (P < 0.01) with increasing hyperthermia during the dry period (9.5, 7.3, and 3.4% for THI < 70, 70-80, and > 80, respectively). All-service pregnancy rate was highest (P < 0.01) for cows not undergoing heat stress during the dry period (60.2%) and lowest (42.6%) for cows with severe heat stress during the dry period. Cows not experiencing heat stress during the dry period required a mean ± SD of 5.6 ± 3.8 services per pregnancy compared with 6.5 ± 3.6 (P < 0.01) for cows subjected to THI > 80 during the dry period. Cows not suffering heat stress during the dry period produced more (P < 0.01) 305-day milk (10,926 ± 1206 kg) than cows subjected to moderate (10,799 ± 1254 kg) or severe (10,691 ± 1297 kg) heat stress during the dry period. Total milk yield did not differ (P > 0.10) between cows not undergoing heat stress (13,337 ± 3346 kg) and cows subjected to severe heat stress during the dry period (13,911 ± 4018 kg). It was concluded that environmental management of dry cows during hot months is warranted to maximize reproductive performance and milk yield in the following lactation.
Collapse
Affiliation(s)
- Iris J Rodríguez-Godina
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Mexico
| | - José E García
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Mexico
| | - Juan L Morales
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, 27054, Torreon, Mexico
| | - Viridiana Contreras
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, 27054, Torreon, Mexico
| | - Francisco G Véliz
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, 27054, Torreon, Mexico
| | - Ulises Macías-Cruz
- Institute of Agriculture Science, Autonomous University of Baja California, 21705, Mexicali, Mexico
| | - Leonel Avendaño-Reyes
- Institute of Agriculture Science, Autonomous University of Baja California, 21705, Mexicali, Mexico
| | - Miguel Mellado
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Mexico.
| |
Collapse
|
19
|
Li Y, Pan M, Meng S, Xu W, Wang S, Dou M, Zhang C. The Effects of Zinc Oxide Nanoparticles on Antioxidation, Inflammation, Tight Junction Integrity, and Apoptosis in Heat-Stressed Bovine Intestinal Epithelial Cells In Vitro. Biol Trace Elem Res 2024; 202:2042-2051. [PMID: 37648935 DOI: 10.1007/s12011-023-03826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Zinc oxide nanoparticles (nano-ZnO) have diverse applications in numerous biomedical processes. The present study explored the effects of these nanoparticles on antioxidation, inflammation, tight junction integrity, and apoptosis in heat-stressed bovine intestinal epithelial cells (BIECs). Primary BIECs that were isolated and cultured from calves either were subjected to heat stress alone (42°C for 6 h) or were simultaneously heat-stressed and treated with nano-ZnO (0.8 μg/mL). Cell viability, apoptosis, and expression of genes involved in antioxidation (Nrf2, HO-1, SOD1, and GCLM), inflammation-related genes (TLR4, NF-κB, TNF-α, IL-6, IL-8, and IL-10), intestinal barrier genes (Claudin, Occludin, and ZO-1), and apoptosis-related genes (Cyt-c, Caspase-3, and Caspase-9) were assessed to evaluate the effect of nano-ZnO on heat-stressed BIECs. The nanoparticles significantly increased cell viability and decreased the rate of apoptosis of BIECs induced by heat stress. In addition, nano-ZnO promoted the expression of antioxidant-related genes HO-1 and GCLM and anti-inflammatory cytokine gene IL-10, and inhibited the pro-inflammatory cytokine-related genes IL-6 and IL-8. The nanoparticles also enhanced expression of the Claudin and ZO-1 genes, and decreased expression of the apoptosis-related genes Cyt-c and Caspase-3. These results reveal that nano-ZnO improve the antioxidant and immune capacity of BIECs and mitigate apoptosis of intestinal epithelial cells induced by heat stress. Thus, nano-ZnO have potential for detrimental the adverse effects of heat stress in dairy cows.
Collapse
Affiliation(s)
- Yuanxiao Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengying Pan
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Wenhao Xu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China.
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
20
|
Chopra K, Hodges HR, Barker ZE, Vázquez Diosdado JA, Amory JR, Cameron TC, Croft DP, Bell NJ, Thurman A, Bartlett D, Codling EA. Bunching behavior in housed dairy cows at higher ambient temperatures. J Dairy Sci 2024; 107:2406-2425. [PMID: 37923206 PMCID: PMC10982438 DOI: 10.3168/jds.2023-23931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Bunching behavior in cattle may occur for several reasons including enabling social interactions, a response to stress or danger, or due to shared interest in resources such as feeding or watering areas. There is evidence in pasture grazed cattle that bunching may occur more frequently at higher ambient temperatures, possibly due to sharing of fly-load or to seek shade from the direct sun under heat stress conditions. Here we demonstrate how bunching behavior is associated with higher ambient temperatures in a barn-housed UK dairy herd. A real-time local positioning system was used, as part of a precision livestock farming (PLF) approach, to track the spatial position and activity of a commercial dairy herd (∼100 cows) in a freestall barn continuously at high temporal resolution for 4 mo between August and November 2014. Bunching was determined using 4 different spatial measures determined on an hourly basis: herd full and core range size, mean herd intercow distance (ICD), and mean herd nearest-neighbor distance (NND). For hourly mean ambient temperatures above 20°C, the herd showed higher bunching behavior with increasing ambient temperature (i.e., reduced full and core range size, ICD, and NND). Aggregated space-use intensity was found to positively correlate with localized variations in temperature across the barn (as measured by animal-mounted sensors), but the level of correlation decreased at higher ambient barn temperatures. Bunching behavior may increase localized temperatures experienced by individuals and hence may be a maladaptive behavioral response in housed dairy cattle, which are known to suffer heat stress at higher temperatures. Our study is the first to use high-resolution positional data to provide evidence of associations between bunching behavior and higher ambient temperatures for a barn-housed dairy herd in a temperate region (UK). Further studies are needed to explore the exact mechanisms for this response to inform both welfare and production management.
Collapse
Affiliation(s)
- Kareemah Chopra
- Department of Mathematical Sciences, University of Essex, Colchester, Essex, CO4 3SQ, United Kingdom.
| | - Holly R Hodges
- Writtle University College, Chelmsford, Essex, CM1 3RR, United Kingdom
| | - Zoe E Barker
- Writtle University College, Chelmsford, Essex, CM1 3RR, United Kingdom
| | - Jorge A Vázquez Diosdado
- Department of Mathematical Sciences, University of Essex, Colchester, Essex, CO4 3SQ, United Kingdom
| | - Jonathan R Amory
- Writtle University College, Chelmsford, Essex, CM1 3RR, United Kingdom
| | - Tom C Cameron
- School of Life Sciences, University of Essex, Colchester, Essex, CO4 3SQ, United Kingdom
| | - Darren P Croft
- Centre for Research in Animal Behaviour, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, EX4 4QG, United Kingdom
| | - Nick J Bell
- Royal Veterinary College, Hatfield, Hertfordshire, AL9 7TA, United Kingdom
| | - Andy Thurman
- Omnisense Limited, St. Neots, Cambridgeshire, PE19 6WL, United Kingdom
| | - David Bartlett
- Omnisense Limited, St. Neots, Cambridgeshire, PE19 6WL, United Kingdom
| | - Edward A Codling
- Department of Mathematical Sciences, University of Essex, Colchester, Essex, CO4 3SQ, United Kingdom
| |
Collapse
|
21
|
Tamminen LM, Båge R, Åkerlind M, Olmos Antillón G. Farmers´ sense of the biological impact of extreme heat and seasonality on Swedish high-yielding dairy cows - A mixed methods approach. Prev Vet Med 2024; 224:106131. [PMID: 38277818 DOI: 10.1016/j.prevetmed.2024.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Supporting dairy farmers in becoming resilient towards extreme weather requires a broad understanding of the experiences and perceived risks associated with these events from those who undergo them. We used a mixed methods approach to explore national trends of biological consequences on dairy cow udder health and fertility, combined with in-depth farmer conversations around extreme weather events, focusing on heat. The aim is to provide a comprehensive picture of how dairy farmer perceptions, priorities and decision-making are related to the season and extreme weather to identify preventive pathways that can reduce biological costs of heat stress on Swedish dairy cattle during summer. Data collected monthly at cow and farm level between 2016-2019 as part of the Swedish milk and disease recording system confirm seasonal trends and show increased somatic cell counts (SCC) and negatively impacted fertility during summers. In addition, transcriptions of 18 interviews with dairy farmers across the country and seasonal variations of SCC and fertility were thematically analysed. The results suggest that farmers have a broad definition of extreme weather and are aware of the negative impacts. Yet handling of extreme weather events can mainly be classified as reactive. Nevertheless, there are long-term effects on the farm economy, health and herd dynamics. Swedish dairy farmers are currently showing resilience, albeit a fragile one. The capability to ensure sufficient feed production in extreme weather is critical for farm self-perceived resilience. However, acknowledging the long-term biological costs related to fertility, currently not perceived by farmers, has the potential to support proactive planning and improve farm resilience and profitability.
Collapse
Affiliation(s)
- Lena-Mari Tamminen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | - Renée Båge
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | | | - Gabriela Olmos Antillón
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| |
Collapse
|
22
|
Contreras-Méndez LA, Medrano JF, Thomas MG, Enns RM, Speidel SE, Luna-Nevárez G, López-Castro PA, Rivera-Acuña F, Luna-Nevárez P. The Anti-Müllerian Hormone as Endocrine and Molecular Marker Associated with Reproductive Performance in Holstein Dairy Cows Exposed to Heat Stress. Animals (Basel) 2024; 14:213. [PMID: 38254382 PMCID: PMC10812537 DOI: 10.3390/ani14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is proposed as a biomarker for fertility in cattle, yet this associative relationship appears to be influenced by heat stress (HS). The objective was to test serum AMH and AMH-related single nucleotide polymorphisms (SNPs) as markers potentially predictive of reproductive traits in dairy cows experiencing HS. The study included 300 Holstein cows that were genotyped using BovineSNP50 (54,000 SNP). A genome-wide association study was then executed. Nine intragenic SNPs within the pathways that influence the AMH gene were found important with multiple comparisons adjustment tests (p < 1.09 × 10-6). A further validation study was performed in an independent Holstein cattle population, which was divided into moderate (MH; n = 152) and severe heat-stressed (SH; n = 128) groups and then subjected to a summer reproductive management program. Serum AMH was confirmed as a predictor of fertility measures (p < 0.05) in MH but not in the SH group. Cows were genotyped, which revealed four SNPs as predictive markers for serum AMH (p < 0.01), reproductive traits (p < 0.01), and additional physiological variables (p < 0.05). These SNPs were in the genes AMH, IGFBP1, LGR5, and TLR4. In conclusion, serum AMH concentrations and AMH polymorphisms are proposed as predictive markers that can be used in conjunction with genomic breeding value approaches to improve reproductive performance in Holstein cows exposed to summer HS conditions.
Collapse
Affiliation(s)
- Luis A. Contreras-Méndez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Juan F. Medrano
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | - R. Mark Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott E. Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pedro A. López-Castro
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Fernando Rivera-Acuña
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
23
|
Leandro MA, Stock J, Bennewitz J, Chagunda MGG. Is heat stress a growing problem for dairy cattle husbandry in the temperate regions? A case study of Baden-Württemberg in Germany. J Anim Sci 2024; 102:skae287. [PMID: 39311692 PMCID: PMC11639173 DOI: 10.1093/jas/skae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Heat stress with measurable effects in dairy cattle is a growing concern in temperate regions. Heat stress in temperate regions differs between environments with different geophysical characteristics. Microclimates specific to each environment were found to greatly impact at what level heat stress occurs and will occur in the future. The landlocked state of Baden-Württemberg, Germany, provides several different environments, hence, a good case-study. Temperature-Humidity Index (THI) from 17 weather stations for the years 2003 to 2022 was calculated and milking yields from 22 farms for the years 2017 to 2022 were collected. The occurrences and evolving patterns of heat stress were analyzed with the use of a THI, and the effect of heat stress on milk yield was analyzed based on milking records from Automated Milking Systems. Daily average THI was calculated using hourly readings of relative humidity and ambient temperature, disregarding solar radiation and wind, as all animals were permanently stabled. Based on studies conducted in Baden-Württemberg and neighboring regions, cited ahead in the section of THI, THI = 60 was the threshold for heat stress occurrence. Findings show that the heat stress period varied between stations from 64 to 120 d with THI ≥ 60 in a year. This aligns with yearly and summer averages, also steadily increasing from May to September. The length of the heat stress period was found to increase 1 extra day every year. Extreme weather events such as heat waves did not increase the heat stress period of that year in length but increased the average THI. Milk yield was found to be significantly (α = 0.05) different between counties grouped into different zones according to heat stress severity and rate of increase in daily average THI. Future attempts at managing heat stress on dairy cattle farms in the temperate regions should account for microclimate, as geographical proximity does not mean that the increase in heat stress severity will be the same in the 2 neighboring areas.
Collapse
Affiliation(s)
- Miguel António Leandro
- University of Hohenheim, Department of Animal Breeding and Husbandry in the Tropics and Subtropics, Stuttgart, Germany
| | - Joana Stock
- University of Hohenheim, Department of Animal Breeding and Husbandry in the Tropics and Subtropics, Stuttgart, Germany
| | - Jörn Bennewitz
- University of Hohenheim, Department of Animal Breeding and Genetics, Stuttgart, Germany
| | - Mizeck G G Chagunda
- University of Hohenheim, Department of Animal Breeding and Husbandry in the Tropics and Subtropics, Stuttgart, Germany
- Centre for Tropical Livestock Genetics and Health (CTLGH), The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
24
|
Gubó E, Plutzer J, Molnár T, Pordán-Háber D, Szabó L, Szalai Z, Gubó R, Szakál P, Szakál T, Környei L, Bede-Fazekas Á, Kalocsai R. A 4-year study of bovine reproductive hormones that are induced by pharmaceuticals and appear as steroid estrogenic pollutants in the resulting slurry, using in vitro and instrumental analytical methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125596-125608. [PMID: 38006481 PMCID: PMC10754748 DOI: 10.1007/s11356-023-31126-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
The main objective of the research was to study the environmental "price" of the large-scale, milk production from a rarely known perspective, from the mapping of the estrogenic footprint (the amount of oestrus-inducer hormonal products, and the generated endoestrogens) in the resulting slurry in a dairy cow farm. These micropollutants are endocrine-disrupting chemicals (EDCs) and can be dangerous to the normal reproductive functions even at ng/kg concentration. One of them, 17ß-estradiol, has a 20,000 times stronger estrogenic effect than bisphenol-A, a widely known EDC of industrial origin. While most studies on EDCs are short-term and/or laboratory based, this study is longitudinal and field-based. We sampled the slurry pool on a quarterly basis between 2017 and 2020. Our purpose was testing the estrogenic effects using a dual approach. As an effect-based, holistic method, we developed and used the YES (yeast estrogen screen) test employing the genetically modified Saccharomyces cerevisiae BJ3505 strain which contains human estrogenic receptor. For testing exact molecules, UHPLC-FLD was used. Our study points out that slurry contains a growing amount of EDCs with the risk of penetrating into the soil, crops and the food chain. Considering the Green Chemistry concept, the most benign ways to prevent of the pollution of the slurry is choosing appropriate oestrus-inducing veterinary pharmaceuticals (OIVPs) and the separation of the solid and liquid parts with adequate treatment methods. To our knowledge, this is the first paper on the adaptation of the YES test for medicine and slurry samples, extending its applicability. The adapted YES test turned out to be a sensitive, robust and reliable method for testing samples with potential estrogenic effect. Our dual approach was successful in evaluating the estrogenic effect of the slurry samples.
Collapse
Affiliation(s)
- Eduárd Gubó
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary.
- reAgro Research and Development Ltd., Győrújbarát, Hungary.
| | - Judit Plutzer
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
| | - Tibor Molnár
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
| | - Dóra Pordán-Háber
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
- reAgro Research and Development Ltd., Győrújbarát, Hungary
| | - Lili Szabó
- Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Geographical Institute, Budapest, Hungary
| | - Zoltán Szalai
- Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Geographical Institute, Budapest, Hungary
| | - Richard Gubó
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou District, Beijing, 101407, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing, 101400, China
| | - Pál Szakál
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
| | - Tamás Szakál
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
| | - László Környei
- Department of Mathematics and Computational Sciences, Széchenyi István University, Győr, Hungary
| | - Ákos Bede-Fazekas
- Department of Environmental and Landscape Geography, Eötvös Lóránd University, Budapest, Hungary
| | - Renátó Kalocsai
- Albert Kázmér Faculty, Széchenyi István University, Vár Tér 2, 9200, Mosonmagyaróvár, Hungary
| |
Collapse
|
25
|
Samir H, Swelum AA, Abdelnaby EA, El-Sherbiny HR. Incorporation of L-Carnitine in the OvSynch protocol enhances the morphometrical and hemodynamic parameters of the ovarian structures and uterus in ewes under summer climatic conditions. BMC Vet Res 2023; 19:246. [PMID: 37996926 PMCID: PMC10668402 DOI: 10.1186/s12917-023-03814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Heat stress negatively impacts the reproductive performance of sheep including the efficiency of estrous synchronization regimens. This study aimed to investigate the potential effects of L-Carnitine (LC) administration on the efficacy of the OvSynch protocol in ewes under summer climatic conditions. Ewes were synchronized for estrus using the OvSynch protocol and a dose of LC (20 mg/kg body weight) was intravenously (IV) administered on the same day of PGF2α injection to one group (n = 8; LC group), while other ewes (n = 8; control group) received the same protocol without LC. Ultrasonographic evaluation (including B-mode, color, and pulsed Doppler) was used to assess the morphometrical and hemodynamic parameters of ovarian structures [number, size, and blood flow of follicles (GFs) and corpora lutea (CLs)] and uterus during the estrous phase (Day 0), and on Day 8 post ovulation (luteal phase). Uterine artery blood flow (MUA) was assessed by measuring the resistive index (RI) and pulsatility index (PI) at both stages. The serum samples were collected to measure the concentrations of estradiol (E2), progesterone (P4), and total antioxidant capacity (TAC) using commercial kits. Results revealed a significant (P<0.05) increase in the colored pixel area of GFs and uterus in the LC group (392.84 ± 31.86 and 712.50 ± 46.88, respectively) compared to the control one (226.25 ± 17.74 and 322 ± 18.78, respectively) during Day 0. Circulating E2 and TAC levels were significantly (P<0.05) higher in the LC-treated ewes (31.45 ± 1.53 pg/ml and 1.80 ± 0.13 mM/L, respectively) compared to those in the control ewes (21.20 ± 1.30 pg/ml and 0.98 ± 0.09 mM/L, respectively) during Day 0. Moreover, LC improved the colored pixel area of CLs (2038.14 ± 102.94 versus 1098 ± 82.39) and uterus (256.38 ± 39.28 versus 121.75 ± 11.36) and circulating P4 (2.99 ± 0.26 ng/ml versus1.67 ± 0.15 ng/ml) on Day 8. Values of RI of MUA were significantly lower in the LC group compared to the control one on Day 0 and Day 8 (0.48 ± 0.03 versus 0.72 ± 0.03 and 0.58 ± 0.03 versus 0.78 ± 0.02, respectively). In conclusion, LC incorporation in the OvSynch protocol enhanced the morphometrical and hemodynamic parameters of the ovarian structures and the uterus concomitantly with improvements in the TAC, E2, and P4 concentrations in ewes under hot summer conditions.
Collapse
Affiliation(s)
- Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Elshymaa A Abdelnaby
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hossam R El-Sherbiny
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
26
|
Choupani M, Riasi A, Alikhani M, Samadian MR. Effect of sustained release bolus oral administration on body condition change, blood parameters, and uterine health in primiparous cows under heat stress. Trop Anim Health Prod 2023; 55:412. [PMID: 37991556 DOI: 10.1007/s11250-023-03827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
The transition period is very stressful for primiparous cows due to their first calving experience and will be more challenging if it occurs under heat stress conditions. Heat stress reduces the feed intake of dairy cows. Therefore, it reduces the consumption of minerals and vitamins. Oral administration of boluses through the provision of mineral-vitamin compounds can reduce metabolic abnormalities after calving. The present study aimed to evaluate effect of sustained-release bolus on body condition score (BCS) change, serum metabolites, uterine health, and reproductive status in primiparous cows. Heifers were selected at the beginning of the close-up period (n = 60, BCS = 3.35 ± 0.12). There were 2 experimental treatments at the time of calving: (1) heifers without bolus oral administration (H - Bo, n = 30); (2) heifers with bolus oral administration (H + Bo, n = 30). The results showed that although the rate of BCS loss was lower in the group receiving bolus, the effect of bolus was not significant. The effect of bolus on blood level of glucose, non-esterified fatty acids (NEFA), and beta-hydroxybutyrate (BHBA) was not significant; however, the highest concentration of albumin (P = 0.05) was observed in the H + Bo group on day 42 after calving. The concentration of aspartate transaminase (AST) tended to increase (P = 0.06) on day 14 after calving and entire the study. Total antioxidant capacity (TAC) was affected (P < 0.05) by bolus throughout the period of study, and the highest (P < 0.05) concentration of glutathione peroxidase (GPX) and superoxide dismutase (SOD) was observed in H + Bo group on day 42 after calving. The H + Bo group had the lowest (P < 0.05) vaginal discharge score (VDS). In general, oral administration of the sustained-release bolus in heifers significantly affected the antioxidant factors and uterine health, as well as had positive effects on liver function, body condition, and reproduction status.
Collapse
Affiliation(s)
- Mohammad Choupani
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Ahmad Riasi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Masoud Alikhani
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mohammad Reza Samadian
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
27
|
Giannone C, Bovo M, Ceccarelli M, Torreggiani D, Tassinari P. Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals (Basel) 2023; 13:3451. [PMID: 38003069 PMCID: PMC10668733 DOI: 10.3390/ani13223451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
In the dairy cattle sector, the evaluation of the effects induced by heat stress is still one of the most impactful and investigated aspects as it is strongly connected to both sustainability of the production and animal welfare. On the other hand, more recently, the possibility of collecting a large dataset made available by the increasing technology diffusion is paving the way for the application of advanced numerical techniques based on machine learning or big data approaches. In this scenario, driven by rapid change, there could be the risk of dispersing the relevant information represented by the physiological animal component, which should maintain the central role in the development of numerical models and tools. In light of this, the present literature review aims to consolidate and synthesize existing research on the physiological consequences of heat stress in dairy cattle. The present review provides, in a single document, an overview, as complete as possible, of the heat stress-induced responses in dairy cattle with the intent of filling the existing research gap for extracting the veterinary knowledge present in the literature and make it available for future applications also in different research fields.
Collapse
Affiliation(s)
| | - Marco Bovo
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum University of Bologna, Viale Fanin 48, 40127 Bologna, Italy; (C.G.); (M.C.); (D.T.); (P.T.)
| | | | | | | |
Collapse
|
28
|
Morales-Cruz JL, Calderon-Leyva G, Angel-García O, Guillen-Muñoz JM, Santos-Jimenez Z, Mellado M, Pessoa LG, Guerrero-Gallego HZ. The Effect of Month of Harvesting and Temperature-Humidity Index on the Number and Quality of Oocytes and In Vitro Embryo Production in Holstein Cows and Heifers. BIOLOGY 2023; 12:1174. [PMID: 37759574 PMCID: PMC10525241 DOI: 10.3390/biology12091174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
The aim of this study was to evaluate the effect of the month of oocyte harvesting and the temperature-humidity index on oocyte number and quality harvested from Holstein cows and heifers, oocyte developmental competence, and total embryos produced in an area of intense ambient temperature for most of the year. A total of 5064 multiparous lactating cows and 2988 nulliparous heifers were used as oocyte donors and distributed across the months of the year. Overall, total oocytes per collection did not differ (p > 0.05) between cows (16.6 ± 2.7) and heifers (15.1 ± 1.8), but oocyte developmental competence was lower (p < 0.05) in cows (21.3 ± 5.4) than heifers (25.5 ± 4.0). For cows, the total number of oocytes harvested was two-fold higher (p < 0.05) in November than in May. For heifers, the total number of oocytes harvested was highest in April (17.19 ± 0.53) and lowest in May (10.94 ± 0.32; p < 0.05). For cows, total embryos were highest in November (2.58 ± 0.42) and lowest in August (1.28 ± 0.10; p < 0.05). Thus, taken together, these results indicate that severe heat stress impaired the number and quality of oocytes harvested from donor Holstein multiparous cows and heifers, oocyte developmental competence, and total embryos produced in this area of intense ambient temperature for most of the year.
Collapse
Affiliation(s)
- Juan L. Morales-Cruz
- Departamento de Ciencias Veterinarias, Universidad Autónoma Agraria Antonio Narro-Unidad Laguna, Torreón 25315, Mexico; (J.L.M.-C.); (G.C.-L.); (O.A.-G.); (J.M.G.-M.); (Z.S.-J.)
| | - Guadalupe Calderon-Leyva
- Departamento de Ciencias Veterinarias, Universidad Autónoma Agraria Antonio Narro-Unidad Laguna, Torreón 25315, Mexico; (J.L.M.-C.); (G.C.-L.); (O.A.-G.); (J.M.G.-M.); (Z.S.-J.)
| | - Oscar Angel-García
- Departamento de Ciencias Veterinarias, Universidad Autónoma Agraria Antonio Narro-Unidad Laguna, Torreón 25315, Mexico; (J.L.M.-C.); (G.C.-L.); (O.A.-G.); (J.M.G.-M.); (Z.S.-J.)
| | - Juan M. Guillen-Muñoz
- Departamento de Ciencias Veterinarias, Universidad Autónoma Agraria Antonio Narro-Unidad Laguna, Torreón 25315, Mexico; (J.L.M.-C.); (G.C.-L.); (O.A.-G.); (J.M.G.-M.); (Z.S.-J.)
| | - Zurisaday Santos-Jimenez
- Departamento de Ciencias Veterinarias, Universidad Autónoma Agraria Antonio Narro-Unidad Laguna, Torreón 25315, Mexico; (J.L.M.-C.); (G.C.-L.); (O.A.-G.); (J.M.G.-M.); (Z.S.-J.)
| | - Miguel Mellado
- Departamento de Nutrición Animal, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico;
| | | | - Hugo Z. Guerrero-Gallego
- Departamento de Ciencias Veterinarias, Universidad Autónoma Agraria Antonio Narro-Unidad Laguna, Torreón 25315, Mexico; (J.L.M.-C.); (G.C.-L.); (O.A.-G.); (J.M.G.-M.); (Z.S.-J.)
| |
Collapse
|
29
|
Du M, Zhang J, Wei Z, Li L, Liu X, Liu M, Wang X, Guan Y. Season and temperature do not affect cumulative live birth rate and time to live birth in in vitro fertilization. Front Endocrinol (Lausanne) 2023; 14:1156299. [PMID: 37424872 PMCID: PMC10325717 DOI: 10.3389/fendo.2023.1156299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/01/2023] [Indexed: 07/11/2023] Open
Abstract
Objective To explore whether season and temperature on oocyte retrieval day affect the cumulative live birth rate and time to live birth. Methods This was a retrospective cohort study. A total of 14420 oocyte retrieval cycles from October 2015 to September 2019. According to the date of oocyte retrieval, the patients were divided into four groups (Spring(n=3634);Summer(n=4414); Autumn(n=3706); Winter(n=2666)). The primary outcome measures were cumulative live birth rate and time to live birth. The secondary outcome measures included the number of oocytes retrieved, number of 2PN, number of available embryos and number of high-quality embryos. Results The number of oocytes retrieved was similar among the groups. Other outcomes, including the number of 2PN (P=0.02), number of available embryos (p=0.04), and number of high-quality embryos (p<0.01) were different among the groups. The quality of embryos in summer was relatively poor. There were no differences between the four groups in terms of cumulative live birth rate (P=0.17) or time to live birth (P=0.08). After adjusting for confounding factors by binary logistic regression, temperature (P=0.80), season (P=0.47) and duration of sunshine(P=0.46) had no effect on cumulative live births. Only maternal age (P<0.01) and basal FSH (P<0.01) had an effect on cumulative live births. Cox regression analysis suggested no effect of season(P=0.18) and temperature(P=0.89) on time to live birth. Maternal age did have an effect on time to live birth (P<0.01). Conclusion Although season has an effect on the embryo, there was no evidence that season or temperature affect the cumulative live birth rate or time to live birth. It is not necessary to select a specific season when preparing for IVF.
Collapse
|
30
|
Dovolou E, Giannoulis T, Nanas I, Amiridis GS. Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows. Animals (Basel) 2023; 13:1846. [PMID: 37889768 PMCID: PMC10252019 DOI: 10.3390/ani13111846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Global warming is a significant threat to the sustainability and profitability of the dairy sector, not only in tropical or subtropical regions but also in temperate zones where extreme summer temperatures have become a new and challenging reality. Prolonged exposure of dairy cows to high temperatures compromises animal welfare, increases morbidity, and suppresses fertility, resulting in devastating economic losses for farmers. To counteract the deleterious effects of heat stress, cattl e employ various adaptive thermoregulatory mechanisms including molecular, endocrine, physiological, and behavioral responses. These adaptations involve the immediate secretion of heat shock proteins and cortisol, followed by a complex network of disrupted secretion of metabolic and reproductive hormones such as prolactin, ghrelin, ovarian steroid, and pituitary gonadotrophins. While the strategic heat stress mitigation measures can restore milk production through modifications of the microclimate and nutritional interventions, the summer fertility records remain at low levels compared to those of the thermoneutral periods of the year. This is because sustainment of high fertility is a multifaceted process that requires appropriate energy balance, undisrupted mode of various hormones secretion to sustain the maturation and fertilizing competence of the oocyte, the normal development of the early embryo and unhampered maternal-embryo crosstalk. In this review, we summarize the major molecular and endocrine responses to elevated temperatures in dairy cows, as well as the impacts on maturing oocytes and early embryos, and discuss the consequences that heat stress brings about in dairy cattle fertility.
Collapse
Affiliation(s)
- Eleni Dovolou
- Laboratory of Reproduction, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Themistoklis Giannoulis
- Laboratory of Genetics, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
| | - Ioannis Nanas
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Georgios S. Amiridis
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| |
Collapse
|
31
|
Xu J, Wang XL, Zeng HF, Han ZY. Methionine alleviates heat stress-induced ferroptosis in bovine mammary epithelial cells through the Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114889. [PMID: 37079940 DOI: 10.1016/j.ecoenv.2023.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Heat stress (HS) triggers mammary gland degradation, accompanied by apoptosis and autophagy in bovine mammary epithelial cells, negatively affecting milk performance and mammary gland health. Ferroptosis is iron-mediated regulated cell death caused by over production of lipid peroxides, however, the relationship between ferroptosis and HS in bovine mammary epithelial cells has not been clarified. Methionine (Met) plays a notable role in alleviating HS affecting the mammary glands in dairy cows, but the underlying mechanisms require further exploration. Therefore, we evaluated the regulatory effect and mechanism of Met in alleviating HS-induced ferroptosis by using bovine mammary epithelial cell line (MAC-T) as an in vitro model. The results showed that Met improved cell vitality, restored mitochondrial function; reduced the content of various reactive oxygen species (ROS), especially hydrogen peroxide (H2O2) and superoxide anion (O2·-); had positive effects on antioxidant enzyme activity, namely glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). More importantly, Met reduced labile iron protein (LIP) levels; increased iron storage and simultaneously decreased the levels of lipid reactive oxygen species (lipid ROS) and malondialdehyde (MDA), which all caused by HS in MAC-T. Mechanistically, Met increased the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7, member 11 (SLC7A11) and ferritin heavy chain 1 (FTH1) by activating nuclear factor E2-related factor 2 (Nrf2) expression. Additionally, the protection effect of Met was cut off in MAC-T cells after interference with Nrf2, manifesting in decresing the protein expression levels of GPX4, SLC7A11 and FTH1,and increasing the levels of LIP and lipid ROS. Our findings indicate that Met eases HS-induced ferroptosis in MAC-T through the Nrf2 pathway, revealing that Met produces a marked effect on easing HS-induced bovine mammary gland injury in dairy cows.
Collapse
Affiliation(s)
- Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ling Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Han-Fang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao-Yu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
da Silva WC, da Silva JAR, Camargo-Júnior RNC, da Silva ÉBR, dos Santos MRP, Viana RB, Silva AGME, da Silva CMG, Lourenço-Júnior JDB. Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Front Vet Sci 2023; 10:1083469. [PMID: 37065229 PMCID: PMC10102491 DOI: 10.3389/fvets.2023.1083469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
Thermal stress causes severe effects on the wellbeing and reproduction of cattle, including changes in oogenesis and spermatogenesis, generating great concerns, which last for decades. In cattle, the occurrence of thermal stress is associated with a reduction in the production of spermatozoids and ovarian follicles, in addition to the increase of major and minor defects in gametes or in their intermediate stages. In bovine females able to reproduce, a reduction in the rate of estrus manifestation and an increase in embryonic mortality has been observed. Therefore, keeping animals on good welfare conditions, with water supply and in shaded areas can favor the improvement of different reproductive parameters. For all this, the present study aimed to gather, synthesize and argue recent studies related to animal welfare, focusing on the effects of thermal stress on the reproduction of cattle, aiming to support possible strategies to mitigate the harmful effects of thermal stress in this species.
Collapse
Affiliation(s)
- Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), UFRA, Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
- *Correspondence: Welligton Conceição da Silva
| | | | - Raimundo Nonato Colares Camargo-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), UFRA, Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
| | | | | | - Rinaldo Batista Viana
- Federal Rural University of the Amazon (UFRA), Institute of Animal Health and Production, Belém, Brazil
| | - André Guimarães Maciel e Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), UFRA, Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
| | - Cleidson Manoel Gomes da Silva
- Federal University of the South and Southeast of Pará (UNIFESSPA), Institute of Veterinary Medicine, Xinguara, Pará, Brazil
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), UFRA, Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
| |
Collapse
|
33
|
Li H, Sun N, Xiao Y, Yang H, Guo Z, Lin Y, Wang X, Wu Q, Zhou Y, Yang L, Hua G. Benefits of Using Double-Ovsynch Versus Presynch-Ovsynch are Affected by Environmental Heat in Primiparous Holstein Lactating Cows. Anim Reprod Sci 2023; 251:107224. [PMID: 37003063 DOI: 10.1016/j.anireprosci.2023.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Optimized reproduction management enhances fertility of dairy cows, and thus improves their milk production efficiency. Comparing different synchronization protocols under variable ambient conditions would be conducive to protocol selection and production efficiency improvement. Here, 9538 primiparous Holstein lactating cows were enrolled to either Double-Ovsynch (DO) or Presynch-Ovsynch (PO) to determine the outcomes under different ambiences. We found that averaged THI of 21-days before the first service (THI-b) was the best indicators in a total of 12 environmental indexes to explain changes in conception rate. And the conception rate decreased linearly in DO treated cows when THI-b was over 73, whereas the threshold was 64 in cows subjected to PO. Compared with PO treated cows, DO increased conception rate by 6%, 13% and 19%, when THI-b was lower than 64, from 64 to 73, and over 73, respectively. Furthermore, employing treatment of PO would lead greater risk for cows staying open compared with DO when THI-b below 64 (hazard ratio, 1.3) and over 73 (hazard ratio, 1.4). Most importantly, calving intervals were 15 days shorter in DO treated cows compared PO when THI-b over 73, while no difference was detected when THI-b below 64. In conclusion, our results supported that, fertility of primiparous Holstein cows could be improved by employing DO, especially in hot weather (THI-b ≥ 73), and the benefits of DO protocol were abated under cool conditions (THI-b < 64). Considering the impacts of environmental heat load is necessary to determine reproductive protocols for commercial dairy farm.
Collapse
Affiliation(s)
- Huazhao Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Nan Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Hongzhen Yang
- Wuhan Anscitech Farming Technology Co., Ltd., Wuhan, Hubei 430070, China
| | - Zhigang Guo
- Modern Farming (Group) Co., Ltd., Maanshan, Anhui 243000, China
| | - Yuxin Lin
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaojie Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qipeng Wu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, Hubei 430070, China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, Hubei 430070, China.
| |
Collapse
|
34
|
Abduch NG, Pires BV, Souza LL, Vicentini RR, Zadra LEF, Fragomeni BO, Silva RMO, Baldi F, Paz CCP, Stafuzza NB. Effect of Thermal Stress on Thermoregulation, Hematological and Hormonal Characteristics of Caracu Beef Cattle. Animals (Basel) 2022; 12:ani12243473. [PMID: 36552393 PMCID: PMC9774310 DOI: 10.3390/ani12243473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
This study evaluated the influence of environmental temperature on thermoregulation, hormonal, and hematological characteristics in Caracu cattle. Blood samples, hair length, coat and muzzle colors, rectal (RT), and surface temperatures were collected from 48 males and 43 females before (morning) and after sun exposure for eight hours (afternoon). Infrared thermography (IRT) was used to identify superficial temperature that exhibits a high correlation with RT. Hematological parameters, hormone concentrations, RT, and the superficial temperature obtained by IRT that exhibited the highest correlation with RT were evaluated by variance analysis. Regarding IRT, the lower left side of the body (LS) showed the highest correlation with the RT. Interaction between period and sex was observed for LS, cortisol, and eosinophils. Cortisone, progesterone, and RT were influenced by period and sex. Neutrophils and segmented neutrophils were influenced by the period, which showed the highest concentrations after sun exposure. Platelets, leukocytes, lymphocytes, and monocytes were influenced by sex. Heat stress changes several physiological characteristics where males and females exhibited differences in their responses to heat stress. Furthermore, most characteristics evaluated remained within the regular values observed for taurine Creole breeds, showing that Caracu is adapted to tropical climates.
Collapse
Affiliation(s)
- Natalya G Abduch
- Centro Avançado de Pesquisa e Desenvolvimento em Bovinos de Corte, Instituto de Zootecnia (IZ), Sertãozinho 14174-000, SP, Brazil
| | - Bianca V Pires
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Luana L Souza
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Rogerio R Vicentini
- Departamento de Zoologia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil
| | - Lenira El Faro Zadra
- Centro Avançado de Pesquisa e Desenvolvimento em Bovinos de Corte, Instituto de Zootecnia (IZ), Sertãozinho 14174-000, SP, Brazil
| | - Breno O Fragomeni
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | | | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Claudia C P Paz
- Centro Avançado de Pesquisa e Desenvolvimento em Bovinos de Corte, Instituto de Zootecnia (IZ), Sertãozinho 14174-000, SP, Brazil
| | - Nedenia B Stafuzza
- Centro Avançado de Pesquisa e Desenvolvimento em Bovinos de Corte, Instituto de Zootecnia (IZ), Sertãozinho 14174-000, SP, Brazil
| |
Collapse
|
35
|
Identification of Novel mRNA Isoforms Associated with Acute Heat Stress Response Using RNA Sequencing Data in Sprague Dawley Rats. BIOLOGY 2022; 11:biology11121740. [PMID: 36552250 PMCID: PMC9774719 DOI: 10.3390/biology11121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
The molecular mechanisms underlying heat stress tolerance in animals to high temperatures remain unclear. This study identified the differentially expressed mRNA isoforms which narrowed down the most reliable DEG markers and molecular pathways that underlie the mechanisms of thermoregulation. This experiment was performed on Sprague Dawley rats housed at 22 °C (control group; CT), and three acute heat-stressed groups housed at 42 °C for 30 min (H30), 60 min (H60), and 120 min (H120). Earlier, we demonstrated that acute heat stress increased the rectal temperature of rats, caused abnormal changes in the blood biochemical parameters, as well as induced dramatic changes in the expression levels of genes through epigenetics and post-transcriptional regulation. Transcriptomic analysis using RNA-Sequencing (RNA-Seq) data obtained previously from blood (CT and H120), liver (CT, H30, H60, and H120), and adrenal glands (CT, H30, H60, and H120) was performed. The differentially expressed mRNA isoforms (DEIs) were identified and annotated by the CLC Genomics Workbench. Biological process and metabolic pathway analyses were performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A total of 225, 5764, and 4988 DEIs in the blood, liver, and adrenal glands were observed. Furthermore, the number of novel differentially expressed transcript lengths with annotated genes and novel differentially expressed transcript with non-annotated genes were 136 and 8 in blood, 3549 and 120 in the liver, as well as 3078 and 220 in adrenal glands, respectively. About 35 genes were involved in the heat stress response, out of which, Dnaja1, LOC680121, Chordc1, AABR07011951.1, Hsp90aa1, Hspa1b, Cdkn1a, Hmox1, Bag3, and Dnaja4 were commonly identified in the liver and adrenal glands, suggesting that these genes may regulate heat stress response through interactions between the liver and adrenal glands. In conclusion, this study would enhance our understanding of the complex underlying mechanisms of acute heat stress, and the identified mRNA isoforms and genes can be used as potential candidates for thermotolerance selection in mammals.
Collapse
|
36
|
Effects of short-term in vitro heat stress on bovine preantral follicles. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Transcriptome Analyses Reveal Essential Roles of Alternative Splicing Regulation in Heat-Stressed Holstein Cows. Int J Mol Sci 2022; 23:ijms231810664. [PMID: 36142577 PMCID: PMC9505234 DOI: 10.3390/ijms231810664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Heat stress (HS) severely impacts the productivity and welfare of dairy cows. Investigating the biological mechanisms underlying HS response is crucial for developing effective mitigation and breeding strategies. Therefore, we evaluated the changes in milk yield, physiological indicators, blood biochemical parameters, and alternative splicing (AS) patterns of lactating Holstein cows during thermoneutral (TN, N = 19) and heat-stress (HS, N = 17) conditions. There was a significant (p < 0.05) decline in milk yield as physiological indicators increased after exposure to natural HS conditions. The levels of eight out of 13 biochemical parameters of HS were also significantly altered in the presence of HS (p < 0.05). These results demonstrate that HS negatively influences various biological processes of Holstein cows. Furthermore, we investigated AS events based on the RNA-seq data from blood samples. With HS, five common types of AS events were generally increased by 6.7−38.9%. A total of 3470 AS events corresponding to 3143 unique genes were differentially alternatively spliced (DSGs) (p-adjusted < 0.05) between TN and HS groups. The functional annotation results show that the majority of DSGs are involved in mRNA splicing and spliceosomal complex, followed by enrichment in immune and metabolic processes. Eighty-seven out of 645 differentially expressed genes (DEGs) (fold change ≥ 1.5 and false discovery rate < 0.05) overlapped with DSGs. Further analyses showed that 20 of these genes were significantly enriched for the RNA splicing, RNA binding, and RNA transport. Among them, two genes (RBM25 and LUC7L3) had strong interrelation and co-expression pattern with other genes and were identified as candidate genes potentially associated with HS responses in dairy cows. In summary, AS plays a crucial role in changing the transcriptome diversity of heat-stress-related genes in multiple biological pathways and provides a different regulation mechanism from DEGs.
Collapse
|
38
|
Segal TR, Giudice LC. Systematic review of climate change effects on reproductive health. Fertil Steril 2022; 118:215-223. [PMID: 35878942 DOI: 10.1016/j.fertnstert.2022.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 12/26/2022]
Abstract
Climate change is a major risk factor for overall health, including reproductive health, and well-being. Increasing temperatures, due mostly to increased greenhouse gases trapping excess heat in the atmosphere, result in erratic weather patterns, wildfires, displacement of large communities, and stagnant water resulting in vector-borne diseases that, together, have set the stage for new and devastating health threats across the globe. These conditions disproportionately affect disadvantaged and vulnerable populations, including women, pregnant persons, young children, the elderly, and the disabled. This review reports on the evidence for the adverse impacts of air pollution, wildfires, heat stress, floods, toxic chemicals, and vector-borne diseases on male and female fertility, the developing fetus, and obstetric outcomes. Reproductive health care providers are uniquely positioned and have an unprecedented opportunity to educate patients and policy makers about mitigating the impact of climate change to assure reproductive health in this and future generations.
Collapse
Affiliation(s)
- Thalia R Segal
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
39
|
Masroor S, Aalam MT, Khan O, Tanuj GN, Gandham RK, Dhara SK, Gupta PK, Mishra BP, Dutt T, Singh G, Sajjanar BK. Effect of acute heat shock on stress gene expression and DNA methylation in zebu (Bos indicus) and crossbred (Bos indicus × Bos taurus) dairy cattle. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1797-1809. [PMID: 35796826 DOI: 10.1007/s00484-022-02320-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 05/19/2023]
Abstract
Environmental temperature is one of the major factors to affect health and productivity of dairy cattle. Gene expression networks within the cells and tissues coordinate stress response, metabolism, and milk production in dairy cattle. Epigenetic DNA methylations were found to mediate the effect of environment by regulating gene expression patterns. In the present study, we compared three Indian native zebu cattle, Bos indicus (Sahiwal, Tharparkar, and Hariana) and one crossbred Bos indicus × Bos taurus (Vrindavani) for stress gene expression and differences in the DNA methylation patterns. The results indicated acute heat shock to cultured PBMC affected their proliferation, stress gene expression, and DNA methylation. Interestingly, expressions of HSP70, HSP90, and STIP1 were found more pronounced in zebu cattle than the crossbred cattle. However, no significant changes were observed in global DNA methylation due to acute heat shock, even though variations were observed in the expression patterns of DNA methyltransferases (DNMT1, DNMT3a) and demethylases (TET1, TET2, and TET3) genes. The treatment 5-AzaC (5-azacitidine) that inhibit DNA methylation in proliferating PBMC caused significant increase in heat shock-induced HSP70 and STIP1 expression indicating that hypomethylation facilitated stress gene expression. Further targeted analysis DNA methylation in the promoter regions revealed no significant differences for HSP70, HSP90, and STIP1. However, there was a significant hypomethylation for BDNF in both zebu and crossbred cattle. Similarly, NR3C1 promoter region showed hypomethylation alone in crossbred cattle. Overall, the results indicated that tropically adapted zebu cattle had comparatively higher expression of stress genes than the crossbred cattle. Furthermore, DNA methylation may play a role in regulating expression of certain genes involved in stress response pathways.
Collapse
Affiliation(s)
- Sana Masroor
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Mohd Tanzeel Aalam
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Owais Khan
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Gunturu Narasimha Tanuj
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Ravi Kumar Gandham
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Sujoy K Dhara
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Praveen K Gupta
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Bishnu Prasad Mishra
- ICAR-National Bureau of Animal Genetic Resources, Haryana, Karnal, 132001, India
| | - Triveni Dutt
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Gynendra Singh
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, Uttar Pradesh, India
| | - Basavaraj K Sajjanar
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India.
| |
Collapse
|
40
|
Ding C, Ma J, Yan H, Meng Y, Qi X, Qu K, Li F, Zhang J, Zhuzha B, Quji S, Chen N, Huang B, Lei C. Distribution of a missense mutation (rs525805167) within the SLC45A2 gene associated with climatic conditions in Chinese cattle. Gene X 2022; 835:146643. [PMID: 35710082 DOI: 10.1016/j.gene.2022.146643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
SLC45A2 is involved in the synthesis of melanin transporters. We investigated the association between single nucleotide polymorphisms (SNPs) of the SLC45A2 gene and humidity and hot conditions in indigenous cattle habitat. According to the Bovine Genome Variation Database and Selective Signatures (BGVD), we explored the frequency distribution of a missense mutation (NC_037347.1: c.1543A > G, p.ser515gly) in the SLC45A2 gene in Chinese indigenous cattle. This variation from serine to glycine caused a significant change in the protein modeling structure. PCR and partial DNA sequencing were used to genotype 541 individuals, including 28 Chinese indigenous cattle breeds as well as Angus and zebu. From our results, the mutant allele frequency of this SNP in Chinese native cattle increases gradually from north to south, which is consistent with the distribution of climatic conditions in China. In addition, according to association analysis of a missense mutation (NC_037347.1: c.1543A > G) (rs525805167) in Chinese cattle, it is closely related to the annual average temperature (T), relative humidity (RH), temperature and humidity index (THI) and solar radiation time (P < 0.01). Based on the statistical analysis of the data, we assumed that rs525805167 was associated with heat tolerance traits. Simple Summary: The characteristics of Chinese indigenous cattle are closely related to their climatic environment. In China, Bos taurus is mainly distributed in the northern regions; Bos indicus is mainly distributed in southern China. In addition, the average temperature is higher in the south than in the north, and there are many mixed ancestry breeds of B. taurus and B. indicus in the middle area. The SLC45A2 gene is related to melanin synthesis, which may be closely related to heat tolerance in cattle. The purpose of our study was to investigate whether the SLC45A2 gene is related to heat tolerance in Chinese indigenous cattle.
Collapse
Affiliation(s)
- Cong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junlin Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huixuan Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yizhu Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinglei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, Yunnan 675000, China
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd., Lianyuan, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Basang Zhuzha
- Institute of Animal Husbandry and Veterinary Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Suolang Quji
- Institute of Animal Husbandry and Veterinary Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
41
|
Sammad A, Luo H, Hu L, Zhao S, Gong J, Umer S, Khan A, Zhu H, Wang Y. Joint Transcriptome and Metabolome Analysis Prevails the Biological Mechanisms Underlying the Pro-Survival Fight in In Vitro Heat-Stressed Granulosa Cells. BIOLOGY 2022; 11:839. [PMID: 35741360 PMCID: PMC9220676 DOI: 10.3390/biology11060839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Previous studies reported the physical, transcriptome, and metabolome changes in in vitro acute heat-stressed (38 °C versus 43 °C for 2 h) bovine granulosa cells. Granulosa cells exhibited transient proliferation senescence, oxidative stress, an increased rate of apoptosis, and a decline in steroidogenic activity. In this study, we performed a joint integration and network analysis of metabolomic and transcriptomic data to further narrow down and elucidate the role of differentially expressed genes, important metabolites, and relevant cellular and metabolic pathways in acute heat-stressed granulosa cells. Among the significant (raw p-value < 0.05) metabolic pathways where metabolites and genes converged, this study found vitamin B6 metabolism, glycine, serine and threonine metabolism, phenylalanine metabolism, arginine biosynthesis, tryptophan metabolism, arginine and proline metabolism, histidine metabolism, and glyoxylate and dicarboxylate metabolism. Important significant convergent biological pathways included ABC transporters and protein digestion and absorption, while functional signaling pathways included cAMP, mTOR, and AMPK signaling pathways together with the ovarian steroidogenesis pathway. Among the cancer pathways, the most important pathway was the central carbon metabolism in cancer. Through multiple analysis queries, progesterone, serotonin, citric acid, pyridoxal, L-lysine, succinic acid, L-glutamine, L-leucine, L-threonine, L-tyrosine, vitamin B6, choline, and CYP1B1, MAOB, VEGFA, WNT11, AOX1, ADCY2, ICAM1, PYGM, SLC2A4, SLC16A3, HSD11B2, and NOS2 appeared to be important enriched metabolites and genes, respectively. These genes, metabolites, and metabolic, cellular, and cell signaling pathways comprehensively elucidate the mechanisms underlying the intricate fight between death and survival in acute heat-stressed bovine granulosa cells and essentially help further our understanding (and will help the future quest) of research in this direction.
Collapse
Affiliation(s)
- Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (H.L.); (L.H.); (A.K.)
| | - Hanpeng Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (H.L.); (L.H.); (A.K.)
| | - Lirong Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (H.L.); (L.H.); (A.K.)
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (J.G.)
| | - Jianfei Gong
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (J.G.)
| | - Saqib Umer
- Department of Theriogenology, Faculty of Veterinary Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Adnan Khan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (H.L.); (L.H.); (A.K.)
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (J.G.)
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (H.L.); (L.H.); (A.K.)
| |
Collapse
|
42
|
Sammad A, Luo H, Hu L, Zhu H, Wang Y. Transcriptome Reveals Granulosa Cells Coping through Redox, Inflammatory and Metabolic Mechanisms under Acute Heat Stress. Cells 2022; 11:1443. [PMID: 35563749 PMCID: PMC9105522 DOI: 10.3390/cells11091443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Heat stress affects granulosa cells (GCs) and the ovarian follicular microenvironment, causing poor oocyte developmental competence and fertility. This study aimed to investigate the physical responses and global transcriptomic changes in bovine GCs to acute heat stress (43 °C for 2 h) in vitro. Heat-stressed GCs exhibited transient proliferation senescence and resumed proliferation at 48 h post-stress, while post-stress immediate culture-media change had a relatively positive effect on proliferation resumption. Increased accumulation of reactive oxygen species and apoptosis was observed in the heat-stress group. In spite of the upregulation of inflammatory (CYCS, TLR2, TLR4, IL6, etc.), pro-apoptotic (BAD, BAX, TNFSF9, MAP3K7, TNFRSF6B, FADD, TRADD, RIPK3, etc.) and caspase executioner genes (CASP3, CASP8, CASP9), antioxidants and anti-apoptotic genes (HMOX1, NOS2, CAT, SOD, BCL2L1, GPX4, etc.) were also upregulated in heat-stressed GCs. Progesterone and estrogen hormones, along with steroidogenic gene expression, declined significantly, in spite of the upregulation of genes involved in cholesterol synthesis. Out of 12,385 differentially expressed genes (DEGs), 330 significant DEGs (75 upregulated, 225 downregulated) were subjected to KEGG functional pathway annotation, gene ontology enrichment, STRING network analyses and manual querying of DEGs for meaningful molecular mechanisms. High inflammatory response was found to be responsible for oxidative-stress-mediated apoptosis of GCs and nodes towards the involvement of the NF-κB pathway and repression of the Nrf2 pathway. Downregulation of MDM4, TP53, PIDD1, PARP3, MAPK14 and MYC, and upregulation of STK26, STK33, TGFB2, CDKN1A and CDKN2A, at the interface of the MAPK and p53 signaling pathway, can be attributed to transient cellular senescence and apoptosis in GCs. The background working of the AMPK pathway through upregulation of AKT1, AMPK, SIRT1, PYGM, SLC2A4 and SERBP1 genes, and downregulation of PPARGCIA, IGF2, PPARA, SLC27A3, SLC16A3, TSC1/2, KCNJ2, KCNJ16, etc., evidence the repression of cellular transcriptional activity and energetic homeostasis modifications in response to heat stress. This study presents detailed responses of acute-heat-stressed GCs at physical, transcriptional and pathway levels and presents interesting insights into future studies regarding GC adaptation and their interaction with oocytes and the reproductive system at the ovarian level.
Collapse
Affiliation(s)
- Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Hanpeng Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Lirong Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
43
|
Sammad A, Hu L, Luo H, Abbas Z, Umer S, Zhao S, Xu Q, Khan A, Wang Y, Zhu H, Wang Y. Investigation of Metabolome Underlying the Biological Mechanisms of Acute Heat Stressed Granulosa Cells. Int J Mol Sci 2022; 23:2146. [PMID: 35216260 PMCID: PMC8879866 DOI: 10.3390/ijms23042146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 01/02/2023] Open
Abstract
Heat stress affects granulosa cells and the ovarian follicular microenvironment, ultimately resulting in poor oocyte developmental competence. This study aims to investigate the metabo-lomics response of bovine granulosa cells (bGCs) to in vitro acute heat stress of 43 °C. Heat stress triggers oxidative stress-mediated apoptosis in cultured bGCs. Heat-stressed bGCs exhibited a time-dependent recovery of proliferation potential by 48 h. A total of 119 metabolites were identified through LC-MS/MS-based metabolomics of the spent culture media, out of which, 37 metabolites were determined as differentially involved in metabolic pathways related to bioenergetics support mechanisms and the physical adaptations of bGCs. Multiple analyses of metabolome data identified choline, citric acid, 3-hydroxy-3-methylglutaric acid, glutamine, and glycocyamine as being upregulated, while galactosamine, AICAR, ciliatine, 16-hydroxyhexadecanoic acid, lysine, succinic acid, uridine, xanthine, and uraconic acid were the important downregulated metabolites in acute heat stress. These differential metabolites were implicated in various important metabolic pathways directed towards bioenergetics support mechanisms including glycerophospholipid metabolism, the citrate cycle (TCA cycle), glyoxylate and dicarboxylate metabolism, and serine, threonine, and tyrosine metabolism. Our study presents important metabolites and metabolic pathways involved in the adaptation of bGCs to acute heat stress in vitro.
Collapse
Affiliation(s)
- Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (L.H.); (H.L.); (Z.A.); (A.K.); (Y.W.)
| | - Lirong Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (L.H.); (H.L.); (Z.A.); (A.K.); (Y.W.)
| | - Hanpeng Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (L.H.); (H.L.); (Z.A.); (A.K.); (Y.W.)
| | - Zaheer Abbas
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (L.H.); (H.L.); (Z.A.); (A.K.); (Y.W.)
| | - Saqib Umer
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (S.Z.)
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (S.Z.)
| | - Qing Xu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China;
| | - Adnan Khan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (L.H.); (H.L.); (Z.A.); (A.K.); (Y.W.)
| | - Yajing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (L.H.); (H.L.); (Z.A.); (A.K.); (Y.W.)
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (S.Z.)
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (L.H.); (H.L.); (Z.A.); (A.K.); (Y.W.)
| |
Collapse
|
44
|
Major Nutritional Metabolic Alterations Influencing the Reproductive System of Postpartum Dairy Cows. Metabolites 2022; 12:metabo12010060. [PMID: 35050182 PMCID: PMC8781654 DOI: 10.3390/metabo12010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/25/2022] Open
Abstract
Early successful conception of postpartum dairy cows is crucial in determining the optimum reproductive efficiency and profitability in modern dairy farming. Due to the inherent high production potential of modern dairy cows, the extra stress burden of peri-parturient events, and associated endocrine and metabolic changes causes negative energy balance (NEBAL) in postpartum cows. The occurrence of NEBAL is associated with excessive fat mobilization in the form of non-esterified fatty acids (NEFAs). The phenomenon of NEFA mobilization furthers with occurrence of ketosis and fatty liver in postpartum dairy cows. High NEFAs and ketones are negatively associated with health and reproductive processes. An additional burden of hypocalcemia, ruminal acidosis, and high protein metabolism in postpartum cows presents further consequences for health and reproductive performance of postpartum dairy cows. This review intends to comprehend these major nutritional metabolic alterations, their mechanisms of influence on the reproduction process, and relevant mitigation strategies.
Collapse
|
45
|
Khan RIN, Sahu AR, Malla WA, Praharaj MR, Hosamani N, Kumar S, Gupta S, Sharma S, Saxena A, Varshney A, Singh P, Verma V, Kumar P, Singh G, Pandey A, Saxena S, Gandham RK, Tiwari AK. Systems biology under heat stress in Indian cattle. Gene 2021; 805:145908. [PMID: 34411649 DOI: 10.1016/j.gene.2021.145908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022]
Abstract
Transcriptome profiling of Vrindavani and Tharparkar cattle (n = 5 each) revealed that more numbers of genes were dysregulated in Vrindavani than in Tharparkar. A contrast in gene expression was observed with 18.9 % of upregulated genes in Vrindavani downregulated in Tharparkar and 17.8% upregulated genes in Tharparkar downregulated in Vrindavani. Functional annotation of genes differentially expressed in Tharparkar and Vrindavani revealed that the systems biology in Tharparkar is moving towards counteracting the effects due to heat stress. Unlike Vrindavani, Tharparkar is not only endowed with higher expression of the scavengers (UBE2G1, UBE2S, and UBE2H) of misfolded proteins but also with protectors (VCP, Serp1, and CALR) of naïve unfolded proteins. Further, higher expression of the antioxidants in Tharparkar enables it to cope up with higher levels of free radicals generated as a result of heat stress. In this study, we found relevant genes dysregulated in Tharparkar in the direction that can counter heat stress.
Collapse
Affiliation(s)
- Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Manas Ranjan Praharaj
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Neelima Hosamani
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Shakti Kumar
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India
| | - Smita Gupta
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Shweta Sharma
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Archana Saxena
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Anshul Varshney
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Pragya Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Vinay Verma
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Puneet Kumar
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Gyanendra Singh
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Bareilly, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| | - Ravi Kumar Gandham
- Computational Biology and Genomics, National Institute of Animal Biotechnology, Hyderabad, India.
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, Indian Veterinary Research Institute, Bareilly, India.
| |
Collapse
|
46
|
Mota-Rojas D, Pereira AMF, Wang D, Martínez-Burnes J, Ghezzi M, Hernández-Avalos I, Lendez P, Mora-Medina P, Casas A, Olmos-Hernández A, Domínguez A, Bertoni A, Geraldo ADM. Clinical Applications and Factors Involved in Validating Thermal Windows Used in Infrared Thermography in Cattle and River Buffalo to Assess Health and Productivity. Animals (Basel) 2021; 11:2247. [PMID: 34438705 PMCID: PMC8388381 DOI: 10.3390/ani11082247] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 02/04/2023] Open
Abstract
Infrared thermography (IRT) is a non-ionizing, non-invasive technique that permits evaluating the comfort levels of animals, a topic of concern due to the growing interest in determining the state of health and welfare of production animals. The operating principle of IRT is detecting the heat irradiated in anatomical regions characterized by a high density of near-surface blood vessels that can regulate temperature gain or loss from/to the environment by modifying blood flow. This is essential for understanding the various vascular thermoregulation mechanisms of different species, such as rodents and ruminants' tails. The usefulness of ocular, nasal, and vulvar thermal windows in the orbital (regio orbitalis), nasal (regio nasalis), and urogenital (regio urogenitalis) regions, respectively, has been demonstrated in cattle. However, recent evidence for the river buffalo has detected discrepancies in the data gathered from distinct thermal regions in these large ruminants, suggesting a limited sensitivity and specificity when used with this species due to various factors: the presence of hair, ambient temperature, and anatomical features, such as skin thickness and variations in blood supplies to different regions. In this review, a literature search was conducted in Scopus, Web of Science, ScienceDirect, and PubMed, using keyword combinations that included "infrared thermography", "water buffalo", "river buffalo" "thermoregulation", "microvascular changes", "lacrimal caruncle", "udder", "mastitis", and "nostril". We discuss recent findings on four thermal windows-the orbital and nasal regions, mammary gland in the udder region (regio uberis), and vulvar in the urogenital region (regio urogenitalis)-to elucidate the factors that modulate and intervene in validating thermal windows and interpreting the information they provide, as it relates to the clinical usefulness of IRT for cattle (Bos) and the river buffalo (Bubalus bubalis).
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.C.); (A.D.); (A.B.)
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Marcelo Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires 7000, Argentina; (M.G.); (P.L.)
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico; (I.H.-A.); (P.M.-M.)
| | - Pamela Lendez
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires 7000, Argentina; (M.G.); (P.L.)
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico; (I.H.-A.); (P.M.-M.)
| | - Alejandro Casas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.C.); (A.D.); (A.B.)
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico;
| | - Adriana Domínguez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.C.); (A.D.); (A.B.)
| | - Aldo Bertoni
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.C.); (A.D.); (A.B.)
| | - Ana de Mira Geraldo
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| |
Collapse
|
47
|
Yang M, Kuang M, Wang G, Ali I, Tang Y, Yang C, Li Y, Li L. Choline attenuates heat stress-induced oxidative injury and apoptosis in bovine mammary epithelial cells by modulating PERK/Nrf-2 signaling pathway. Mol Immunol 2021; 135:388-397. [PMID: 34022514 DOI: 10.1016/j.molimm.2021.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Heat stress-induced decline in milk production and mammary glands dysfunction are economically important challenges facing the dairy industry, especially in summer. Choline is an organic water-soluble compound that can regulate a series of vital biological process, including cellular structural integrity and oxidative stress. However, it is unclear whether choline plays an anti-apoptosis and antioxidant effect in heat stress-induced mammary epithelial cells. This study aimed to determine the antioxidant effect of choline on heat stress-induced apoptosis and oxidative stress and its underlying molecular mechanism in bovine mammary epithelial cells (MAC-T cells). The MAC-T cells were divided into four treatment groups: control (37℃), choline (37℃), heat stress (HS, 42℃), and HS + choline. The results showed that heat stress up-regulated the HSP70 and HSP90 expression both in mRNA and protein, enhanced ROS accumulation, increased malondialdehyde (MDA) content, reduced the superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, significantly increased the expression of caspase-3 and upregulated the ratio of Bax/Bcl-2 and ultimately lead to oxidative stress and apoptosis in MAC-T cells. However, choline pretreatment reversed the above phenomenon compared with the HS group. The HS + choline group inhibited heat stress-induced phosphorylation of PERK, nuclear translocation of Nrf-2 and the protein expression of GRP78. In addition, the ratio of Bax/Bcl-2 and the expression of caspase-3 were significantly reduced in HS + choline group, thereby reduced the HS-induced oxidative stress and apoptosis in MAC-T cells. In conclusion, choline attenuates heat stress-induced oxidative stress and apoptosis of MAC-T cells by modulating PERK/Nrf-2 pathway.
Collapse
Affiliation(s)
- Min Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meiqian Kuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujie Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Caixia Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
48
|
Shi R, Brito LF, Liu A, Luo H, Chen Z, Liu L, Guo G, Mulder H, Ducro B, van der Linden A, Wang Y. Genotype-by-environment interaction in Holstein heifer fertility traits using single-step genomic reaction norm models. BMC Genomics 2021; 22:193. [PMID: 33731012 PMCID: PMC7968333 DOI: 10.1186/s12864-021-07496-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 01/07/2023] Open
Abstract
Background The effect of heat stress on livestock production is a worldwide issue. Animal performance is influenced by exposure to harsh environmental conditions potentially causing genotype-by-environment interactions (G × E), especially in highproducing animals. In this context, the main objectives of this study were to (1) detect the time periods in which heifer fertility traits are more sensitive to the exposure to high environmental temperature and/or humidity, (2) investigate G × E due to heat stress in heifer fertility traits, and, (3) identify genomic regions associated with heifer fertility and heat tolerance in Holstein cattle. Results Phenotypic records for three heifer fertility traits (i.e., age at first calving, interval from first to last service, and conception rate at the first service) were collected, from 2005 to 2018, for 56,998 Holstein heifers raised in 15 herds in the Beijing area (China). By integrating environmental data, including hourly air temperature and relative humidity, the critical periods in which the heifers are more sensitive to heat stress were located in more than 30 days before the first service for age at first calving and interval from first to last service, or 10 days before and less than 60 days after the first service for conception rate. Using reaction norm models, significant G × E was detected for all three traits regarding both environmental gradients, proportion of days exceeding heat threshold, and minimum temperature-humidity index. Through single-step genome-wide association studies, PLAG1, AMHR2, SP1, KRT8, KRT18, MLH1, and EOMES were suggested as candidate genes for heifer fertility. The genes HCRTR1, AGRP, PC, and GUCY1B1 are strong candidates for association with heat tolerance. Conclusions The critical periods in which the reproductive performance of heifers is more sensitive to heat stress are trait-dependent. Thus, detailed analysis should be conducted to determine this particular period for other fertility traits. The considerable magnitude of G × E and sire re-ranking indicates the necessity to consider G × E in dairy cattle breeding schemes. This will enable selection of more heat-tolerant animals with high reproductive efficiency under harsh climatic conditions. Lastly, the candidate genes identified to be linked with response to heat stress provide a better understanding of the underlying biological mechanisms of heat tolerance in dairy cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07496-3.
Collapse
Affiliation(s)
- Rui Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Animal Breeding and Genomics Group, Wageningen University & Research, P.O. Box 338, Wageningen, AH, 6700, the Netherlands.,Animal Production System Group, Wageningen University & Research, P.O. Box 338, Wageningen, AH, 6700, the Netherlands
| | - Luiz Fernando Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Aoxing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ziwei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Gang Guo
- Beijing Sunlon Livestock Development Co. Ltd, Beijing, 100176, China.
| | - Herman Mulder
- Animal Breeding and Genomics Group, Wageningen University & Research, P.O. Box 338, Wageningen, AH, 6700, the Netherlands.
| | - Bart Ducro
- Animal Breeding and Genomics Group, Wageningen University & Research, P.O. Box 338, Wageningen, AH, 6700, the Netherlands
| | - Aart van der Linden
- Animal Production System Group, Wageningen University & Research, P.O. Box 338, Wageningen, AH, 6700, the Netherlands.,Cooperation CRV, Arnhem, AL, 6800, the Netherlands
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
49
|
Li Y, Fang L, Xue F, Mao S, Xiong B, Ma Z, Jiang L. Effects of bamboo leaf extract on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows. Anim Biosci 2021; 34:1784-1793. [PMID: 33561328 PMCID: PMC8563258 DOI: 10.5713/ab.20.0527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/12/2021] [Indexed: 11/27/2022] Open
Abstract
Objective An experiment was conducted to evaluate the effects of bamboo leaf extract (BLE) on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows. Methods The experiment comprised a 14-day adaptation period and a 21-day experimental period and was conducted in a high-temperature and humidity environment (daily mean ambient temperature = 33.5°C±1.3°C; daily mean relative humidity = 64.9%±0.8%, daily mean temperature-humidity index = 86.2±0.4). Twelve Holstein dairy cows were randomly allocated into two groups. A total mixed ration supplemented with BLE at 0 (CON) and 1.3 g/kg dry matter (DM) were fed, respectively. Feed intake and milk yield were recorded daily. Milk samples were collected on 1, 11, and 21 d of the experimental period to analyze milk performance. Rumen fluid samples were collected on 21 d of the experimental period to analyze rumen fermentation parameters and rumen bacterial communities. Results Compared with the control group, supplementation of BLE increased milk yield (p<0.01), milk fat yield (p = 0.04), 4% fat-corrected milk (p<0.01) and milk fat content (p<0.01); reduced somatic cell count (p<0.01). No differences in DM intake and milk protein or lactose content were observed between two groups. Supplementation of BLE also increased the rumen total volatile fatty acid (p<0.01), acetate (p<0.01), butyrate (p<0.01), and valerate (p = 0.05) concentrations. However, no significant effects were observed on rumen pH, ammonia nitrogen, propionate, acetate/propionate ratio, isobutyrate, or isovalerate. Furthermore, BLE increased the rumen bacterial abundance and the diversity of the rumen bacterial community. The BLE reduced the Firmicutes/Bacteroidetes abundance ratio and increased the abundances of Butyrivibrio_2 (p<0.01) and Ruminococcus_2 (p<0.01). Conclusion The BLE supplementation at 1.3 g/kg DM could improve production performance and rumen fermentation in dairy cows during heat stress.
Collapse
Affiliation(s)
- Yi Li
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| | - Luoyun Fang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| | - Fuguang Xue
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Shengyong Mao
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing, 100085, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
50
|
Association Analysis of Polymorphisms in the 5' Flanking Region of the HSP70 Gene with Blood Biochemical Parameters of Lactating Holstein Cows under Heat and Cold Stress. Animals (Basel) 2020; 10:ani10112016. [PMID: 33147724 PMCID: PMC7693732 DOI: 10.3390/ani10112016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022] Open
Abstract
Thermal stress (heat and cold) has large economic and welfare implications for the worldwide dairy industry. Therefore, it is paramount to understand the genetic background of coping mechanism related to thermal stress for the implementation of effective genetic selection schemes in dairy cattle. We performed an association study between 11 single nucleotide polymorphisms having minor allelic frequency (MAF > 0.05) in the HSP70 gene with blood biochemical parameters. The concentrations of growth hormone (GH), lactate (LA), prolactin (PRL), and superoxide dismutase (SOD) in blood were significantly higher (p < 0.05), while the concentrations of blood urea nitrogen (BUN), c-reactive protein (CRP), potassium (K+), lactate dehydrogenase (LDH), lipid peroxide (LPO), and norepinephrine (NE) were significantly lower (p < 0.05) in heat-stressed animals as compared to the control group. A significant (p < 0.05) increase in the concentrations of cortisol (COR), corticosterone (CORT), and potassium (K+) was observed (p < 0.05), while the concentrations of adrenocorticotrophic hormone (ACTH), dopamine (DA), GH, LDH, NE, PRL, and SOD were significantly lower in cold-stressed animals as compared to the control group (p < 0.05). Furthermore, SNP A-12G and C181T were significantly associated with LA (p < 0.05), while A72G was linked with LPO (p < 0.05) in heat-stressed animals. Moreover, the SNPs A-12G and SNP C131G were significantly associated (p < 0.05) with DA and SOD under cold stress condition, respectively. These SNPs markers significantly associated with fluctuations in blood biochemical parameters under thermal stress provide a better insight into the genetic mechanisms underlying climatic resilience in Holstein cattle.
Collapse
|