1
|
Belevich TA, Demidov AB, Vorob'eva OV, Polukhin AA, Shchuka SA, Eremeeva EV, Flint MV. Photoautotrophic picoplankton of the Kara Sea in the middle of summer: Effect of first-year ice retreat on carbon and chlorophyll biomass and primary production. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106809. [PMID: 39461187 DOI: 10.1016/j.marenvres.2024.106809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
The Arctic warming leads to a decline in sea-ice extent and thickness, rapid warming and freshening of the sea surface which impact the distribution of phytoplankton size composition. Picophytoplankton is an ecologically important component of Arctic pelagic marine ecosystems, and its role may be altered by global warming. In this study, the abundance and biomass, the chlorophyll a (Chl-a) and primary production (PP) of picophytoplankton, and its spatial and temporal distribution were investigated in the Kara Sea during the ice-melt season in July 2019. Picophytoplankton played a major role in the surface PP in the southern and western areas of the Kara Sea. In the surface layer, the contribution of picophytoplankton to total Chl-a increased insignificantly, and the contribution of picophytoplankton to total PP decreased significantly with the time of sea ice retreat. In the euphotic zone, the Chl-a concentration of picophytoplankton and its contribution to total Chl-a decreased with the time of sea ice retreat. The average picophytoplankton biomass determined in the present study (2.72 ± 5.10 mg C m-3) corresponded to the biomass estimates in the Arctic. The picophytoplankton community was strongly dominated by eukaryotes, cyanobacteria were only detected at 3 out of 11 stations, with maximum abundances (0.07 × 109 cells m-3) observed at depths below 15 m. The obtained results contribute significantly to the study of the picophytoplankton dynamics during the ice-melting season in the hard-to-reach Kara Sea.
Collapse
Affiliation(s)
| | - Andrey B Demidov
- Shirshov Institute of Oceanology Russian Academy of Science, Moscow, Russia.
| | - Olga V Vorob'eva
- Shirshov Institute of Oceanology Russian Academy of Science, Moscow, Russia
| | | | - Sergey A Shchuka
- Shirshov Institute of Oceanology Russian Academy of Science, Moscow, Russia
| | - Elena V Eremeeva
- Shirshov Institute of Oceanology Russian Academy of Science, Moscow, Russia
| | - Michail V Flint
- Shirshov Institute of Oceanology Russian Academy of Science, Moscow, Russia
| |
Collapse
|
2
|
Oldenburg E, Popa O, Wietz M, von Appen WJ, Torres-Valdes S, Bienhold C, Ebenhöh O, Metfies K. Sea-ice melt determines seasonal phytoplankton dynamics and delimits the habitat of temperate Atlantic taxa as the Arctic Ocean atlantifies. ISME COMMUNICATIONS 2024; 4:ycae027. [PMID: 38515865 PMCID: PMC10955684 DOI: 10.1093/ismeco/ycae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
The Arctic Ocean is one of the regions where anthropogenic environmental change is progressing most rapidly and drastically. The impact of rising temperatures and decreasing sea ice on Arctic marine microbial communities is yet not well understood. Microbes form the basis of food webs in the Arctic Ocean, providing energy for larger organisms. Previous studies have shown that Atlantic taxa associated with low light are robust to more polar conditions. We compared to which extent sea ice melt influences light-associated phytoplankton dynamics and biodiversity over two years at two mooring locations in the Fram Strait. One mooring is deployed in pure Atlantic water, and the second in the intermittently ice-covered Marginal Ice Zone. Time-series analysis of amplicon sequence variants abundance over a 2-year period, allowed us to identify communities of co-occurring taxa that exhibit similar patterns throughout the annual cycle. We then examined how alterations in environmental conditions affect the prevalence of species. During high abundance periods of diatoms, polar phytoplankton populations dominated, while temperate taxa were weakly represented. Furthermore, we found that polar pelagic and ice-associated taxa, such as Fragilariopsis cylindrus and Melosira arctica, were more common in Atlantic conditions, while temperate taxa, such as Odontella aurita and Proboscia alata, were less abundant under polar conditions. This suggests that sea ice melt may act as a barrier to the northward expansion of temperate phytoplankton, preventing their dominance in regions still strongly influenced by polar conditions. Our findings highlight the complex interactions between sea ice melt, phytoplankton dynamics, and biodiversity in the Arctic.
Collapse
Affiliation(s)
- Ellen Oldenburg
- Institute of Quantitative and Theoretical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Ovidiu Popa
- Institute of Quantitative and Theoretical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Matthias Wietz
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1 D-28359 Bremen, Germany
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12 D-27570 Bremerhaven, Germany
| | - Wilken-Jon von Appen
- Physical Oceanography of the Polar Seas, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12 D-27570 Bremerhaven, Germany
| | - Sinhue Torres-Valdes
- Physical Oceanography of the Polar Seas, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12 D-27570 Bremerhaven, Germany
| | - Christina Bienhold
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1 D-28359 Bremen, Germany
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12 D-27570 Bremerhaven, Germany
| | - Oliver Ebenhöh
- Institute of Quantitative and Theoretical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Katja Metfies
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12 D-27570 Bremerhaven, Germany
| |
Collapse
|
3
|
Dorrell RG, Kuo A, Füssy Z, Richardson EH, Salamov A, Zarevski N, Freyria NJ, Ibarbalz FM, Jenkins J, Pierella Karlusich JJ, Stecca Steindorff A, Edgar RE, Handley L, Lail K, Lipzen A, Lombard V, McFarlane J, Nef C, Novák Vanclová AM, Peng Y, Plott C, Potvin M, Vieira FRJ, Barry K, de Vargas C, Henrissat B, Pelletier E, Schmutz J, Wincker P, Dacks JB, Bowler C, Grigoriev IV, Lovejoy C. Convergent evolution and horizontal gene transfer in Arctic Ocean microalgae. Life Sci Alliance 2023; 6:6/3/e202201833. [PMID: 36522135 PMCID: PMC9756366 DOI: 10.26508/lsa.202201833] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.
Collapse
Affiliation(s)
- Richard G Dorrell
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zoltan Füssy
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic
| | - Elisabeth H Richardson
- Division of Infectious Diseases, Department of Medicine, University of Alberta and Department of Biological Sciences, and University of Alberta, Edmonton, Canada
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikola Zarevski
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Nastasia J Freyria
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| | - Federico M Ibarbalz
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Jerry Jenkins
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Juan Jose Pierella Karlusich
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Andrei Stecca Steindorff
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robyn E Edgar
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| | - Lori Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kathleen Lail
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vincent Lombard
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - John McFarlane
- Division of Infectious Diseases, Department of Medicine, University of Alberta and Department of Biological Sciences, and University of Alberta, Edmonton, Canada
| | - Charlotte Nef
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Anna Mg Novák Vanclová
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Yi Peng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Marianne Potvin
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| | - Fabio Rocha Jimenez Vieira
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Colomban de Vargas
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, Roscoff, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eric Pelletier
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Patrick Wincker
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta and Department of Biological Sciences, and University of Alberta, Edmonton, Canada
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Connie Lovejoy
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| |
Collapse
|
4
|
Seasonal Variability of Photosynthetic Microbial Eukaryotes (<3 µm) in the Kara Sea Revealed by 18S rDNA Metabarcoding of Sediment Trap Fluxes. PLANTS 2021; 10:plants10112394. [PMID: 34834757 PMCID: PMC8618269 DOI: 10.3390/plants10112394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023]
Abstract
This survey is the first to explore the seasonal cycle of microbial eukaryote diversity (<3 µm) using the NGS method and a 10-month sediment trap (2018–2019). The long-term trap was deployed from September to June in the northwestern part of the Kara Sea. A water sample collected before the sediment trap was deployed and also analyzed. The taxonomic composition of microbial eukaryotes in the water sample significantly differed from sediment trap samples, characterized by a high abundance of Ciliophora reads and low abundance of Fungi while trap samples contained an order of magnitude less Ciliophora sequences and high contribution of Fungi. Photosynthetic eukaryotes (PEs) accounting for about 34% of total protists reads were assigned to five major divisions: Chlorophyta, Cryptophyta, Dinoflagellata, Haptophyta, and Ochrophyta. The domination of phototrophic algae was revealed in late autumn. Mamiellophyceae and Trebouxiophyceae were the predominant PEs in mostly all of the studied seasons. Micromonas polaris was constantly present throughout the September–June period in the PE community. The obtained results determine the seasonal dynamics of picoplankton in order to improve our understanding of their role in polar ecosystems.
Collapse
|
5
|
Freyria NJ, Joli N, Lovejoy C. A decadal perspective on north water microbial eukaryotes as Arctic Ocean sentinels. Sci Rep 2021; 11:8413. [PMID: 33863972 PMCID: PMC8052464 DOI: 10.1038/s41598-021-87906-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
The North Water region, between Greenland and Ellesmere Island, with high populations of marine birds and mammals, is an Arctic icon. Due to climate related changes, seasonal patterns in water column primary production are changing but the implications for the planktonic microbial eukaryote communities that support the ecosystem are unknown. Here we report microbial community phenology in samples collected over 12 years (2005–2018) from July to October and analysed using high throughput 18S rRNA V4 amplicon sequencing. Community composition was tied to seasonality with summer communities more variable than distinct October communities. In summer, sentinel pan-Arctic species, including a diatom in the Chaetoceros socialis-gelidus complex and the picochlorophyte Micromonas polaris dominated phytoplankton and were summer specialists. In autumn, uncultured undescribed open water dinoflagellates were favored, and their ubiquity suggests they are sentinels of arctic autumn conditions. Despite the input of nutrients into surface waters, autumn chlorophyll concentrations remained low, refuting projected scenarios that longer ice-free seasons are synonymous with high autumn production and a diatom dominated bloom. Overall, the summer sentinel microbial taxa are persisting, and a subset oceanic dinoflagellate should be monitored for possible ecosystem shifts as later autumn ice formation becomes prevalent elsewhere.
Collapse
Affiliation(s)
- Nastasia J Freyria
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada. .,Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, G1R1V6, Canada.
| | - Nathalie Joli
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada.,Institut de Biologie de L'École Normale Supérieure (IBENS), 75005, Paris, France
| | - Connie Lovejoy
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada. .,Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, G1R1V6, Canada.
| |
Collapse
|
6
|
Liu Q, Zhao Q, McMinn A, Yang EJ, Jiang Y. Planktonic microbial eukaryotes in polar surface waters: recent advances in high-throughput sequencing. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:94-102. [PMID: 37073396 PMCID: PMC10064379 DOI: 10.1007/s42995-020-00062-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Marine microbial eukaryotes are important primary producers and play critical roles in key biogeochemical cycles. Recent advances in sequencing technology have focused attention on the extent of microbial biodiversity, revealing a huge, previously underestimated phylogenetic diversity with many new lineages. This technology has now become the most important tool to understand the ecological significance of this huge and novel diversity in polar oceans. In particular, high-throughput sequencing technologies have been successfully applied to enumerate and compare marine microbial diversity in polar environments. Here, a brief overview of polar microbial eukaryote diversity, as revealed by in-situ surveys of the high-throughput sequencing on 18S rRNA gene, is presented. Using these 'omic' approaches, further attention still needs to be focused on differences between specific locations and/or entire polar oceans and on bipolar comparisons of diversity and distribution.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003 China
| | - Qiannan Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003 China
| | - Andrew McMinn
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Eun Jin Yang
- Division of Polar Ocean Environment, Korea Polar Research Institute, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840 Korea
| | - Yong Jiang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
7
|
Edwards A, Cameron KA, Cook JM, Debbonaire AR, Furness E, Hay MC, Rassner SM. Microbial genomics amidst the Arctic crisis. Microb Genom 2020; 6:e000375. [PMID: 32392124 PMCID: PMC7371112 DOI: 10.1099/mgen.0.000375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
The Arctic is warming - fast. Microbes in the Arctic play pivotal roles in feedbacks that magnify the impacts of Arctic change. Understanding the genome evolution, diversity and dynamics of Arctic microbes can provide insights relevant for both fundamental microbiology and interdisciplinary Arctic science. Within this synthesis, we highlight four key areas where genomic insights to the microbial dimensions of Arctic change are urgently required: the changing Arctic Ocean, greenhouse gas release from the thawing permafrost, 'biological darkening' of glacial surfaces, and human activities within the Arctic. Furthermore, we identify four principal challenges that provide opportunities for timely innovation in Arctic microbial genomics. These range from insufficient genomic data to develop unifying concepts or model organisms for Arctic microbiology to challenges in gaining authentic insights to the structure and function of low-biomass microbiota and integration of data on the causes and consequences of microbial feedbacks across scales. We contend that our insights to date on the genomics of Arctic microbes are limited in these key areas, and we identify priorities and new ways of working to help ensure microbial genomics is in the vanguard of the scientific response to the Arctic crisis.
Collapse
Affiliation(s)
- Arwyn Edwards
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Karen A. Cameron
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Joseph M. Cook
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Aliyah R. Debbonaire
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Eleanor Furness
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Melanie C. Hay
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Sara M.E. Rassner
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| |
Collapse
|
8
|
Nitrate Consumers in Arctic Marine Eukaryotic Communities: Comparative Diversities of 18S rRNA, 18S rRNA Genes, and Nitrate Reductase Genes. Appl Environ Microbiol 2019; 85:AEM.00247-19. [PMID: 31053582 DOI: 10.1128/aem.00247-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022] Open
Abstract
For photosynthetic microbial eukaryotes, the rate-limiting step in NO3 - assimilation is its reduction to nitrite (NO2 -), which is catalyzed by assimilatory nitrate reductase (NR). Oceanic productivity is primarily limited by available nitrogen and, although nitrate is the most abundant form of available nitrogen in oceanic waters, little is known about the identity of microbial eukaryotes that take up nitrate. This lack of knowledge is especially severe for ice-covered seas that are being profoundly affected by climate change. To address this, we examined the distribution and diversity of NR genes in the Arctic region by way of clone libraries and data mining of available metagenomes (total of 4.24 billion reads). We directly compared NR clone phylogenies with the V4 region of the 18S rRNA gene (DNA pool) and 18S rRNA (RNA pool) at two ice-influenced stations in the Canada Basin (Beaufort Sea). The communities from the two nucleic acid templates were similar at the level of major groups, and species identified by way of NR gene phylogeny and microscopy were a subset of the 18S results. Most NR genes from arctic clone libraries matched diatoms and chromist nanoflagellates, including novel clades, while the NR genes in arctic eukaryote metagenomes were dominated by chlorophyte NR, in keeping with the ubiquitous occurrence of Mamiellophyceae in the Arctic Ocean. Overall, these data suggest that a dynamic and mixed eukaryotic community utilizes nitrate across the Arctic region, and they show the potential utility of NR as a tool to identify ongoing changes in arctic photosynthetic communities.IMPORTANCE To better understand the diversity of primary producers in the Arctic Ocean, we targeted a nitrogen cycle gene, NR, which is required for phytoplankton to assimilate nitrate into organic forms of nitrogen macromolecules. We compared this to the more detailed taxonomy from ice-influenced stations using a general taxonomic gene (18S rRNA). NR genes were ubiquitous and could be classified as belonging to diatoms, dinoflagellates, other flagellates, chlorophytes, and unknown microbial eukaryotes, suggesting novel diversity of both species and metabolism in arctic phytoplankton.
Collapse
|
9
|
The potential of sedimentary ancient DNA for reconstructing past sea ice evolution. ISME JOURNAL 2019; 13:2566-2577. [PMID: 31235841 PMCID: PMC6776040 DOI: 10.1038/s41396-019-0457-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/02/2019] [Accepted: 05/24/2019] [Indexed: 11/24/2022]
Abstract
Sea ice is a crucial component of the Arctic climate system, yet the tools to document the evolution of sea ice conditions on historical and geological time scales are few and have limitations. Such records are essential for documenting and understanding the natural variations in Arctic sea ice extent. Here we explore sedimentary ancient DNA (aDNA), as a novel tool that unlocks and exploits the genetic (eukaryote) biodiversity preserved in marine sediments specifically for past sea ice reconstructions. Although use of sedimentary aDNA in paleoceanographic and paleoclimatic studies is still in its infancy, we use here metabarcoding and single-species quantitative DNA detection methods to document the sea ice conditions in a Greenland Sea marine sediment core. Metabarcoding has allowed identifying biodiversity changes in the geological record back to almost ~100,000 years ago that were related to changing sea ice conditions. Detailed bioinformatic analyses on the metabarcoding data revealed several sea-ice-associated taxa, most of which previously unknown from the fossil record. Finally, we quantitatively traced one known sea ice dinoflagellate in the sediment core. We show that aDNA can be recovered from deep-ocean sediments with generally oxic bottom waters and that past sea ice conditions can be documented beyond instrumental time scales. Our results corroborate sea ice reconstructions made by traditional tools, and thus demonstrate the potential of sedimentary aDNA, focusing primarily on microbial eukaryotes, as a new tool to better understand sea ice evolution in the climate system.
Collapse
|
10
|
Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of Ice-Algal Aggregate Export on the Connectivity of Bacterial Communities in the Central Arctic Ocean. Front Microbiol 2018; 9:1035. [PMID: 29875749 PMCID: PMC5974969 DOI: 10.3389/fmicb.2018.01035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022] Open
Abstract
In summer 2012, Arctic sea ice declined to a record minimum and, as a consequence of the melting, large amounts of aggregated ice-algae sank to the seafloor at more than 4,000 m depth. In this study, we assessed the composition, turnover and connectivity of bacterial and microbial eukaryotic communities across Arctic habitats from sea ice, algal aggregates and surface waters to the seafloor. Eukaryotic communities were dominated by diatoms, dinoflagellates and other alveolates in all samples, and showed highest richness and diversity in sea-ice habitats (∼400-500 OTUs). Flavobacteriia and Gammaproteobacteria were the predominant bacterial classes across all investigated Arctic habitats. Bacterial community richness and diversity peaked in deep-sea samples (∼1,700 OTUs). Algal aggregate-associated bacterial communities were mainly recruited from the sea-ice community, and were transported to the seafloor with the sinking ice algae. The algal deposits at the seafloor had a unique community structure, with some shared sequences with both the original sea-ice community (22% OTU overlap), as well as with the deep-sea sediment community (17% OTU overlap). We conclude that ice-algal aggregate export does not only affect carbon export from the surface to the seafloor, but may change microbial community composition in central Arctic habitats with potential effects for benthic ecosystem functioning in the future.
Collapse
Affiliation(s)
- Josephine Z. Rapp
- HGF-MPG Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Christina Bienhold
- HGF-MPG Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Boetius
- HGF-MPG Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
11
|
Belevich TA, Ilyash LV, Milyutina IA, Logacheva MD, Goryunov DV, Troitsky AV. Photosynthetic Picoeukaryotes in the Land-Fast Ice of the White Sea, Russia. MICROBIAL ECOLOGY 2018; 75:582-597. [PMID: 28942559 DOI: 10.1007/s00248-017-1076-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The White Sea is a unique marine environment combining features of temperate and Arctic seas. The composition and abundance of photosynthetic picoeukaryotes (PPEs) were investigated in the land-fast ice of the White Sea, Russia, in March 2013 and 2014. High-throughput tag sequencing (Illumina MiSeq system) of the V4 region of the 18S rRNA gene was used to reveal the diversity of PPE ice community. The integrated PPE abundance varied from 11 × 106 cells/m2 to 364 × 106 cells/m2; the integrated biomass ranged from 0.02 to 0.26 mg С/m2. The composition of sea-ice PPEs was represented by 16 algae genera belonging to eight classes and three super-groups. Chlorophyta, especially Mamiellophyceae, dominated among ice PPEs. The detailed analysis revealed the latent diversity of Micromonas and Mantоniella. Micromonas clade E2 revealed in the subarctic White Sea ice indicates that the area of distribution of this species is wider than previously thought. We suppose there exists a new Micromonas clade F. Micromonas clade C and Minutocellulus polymorphus were first discovered in the ice and extend the modern concept of sympagic communities' diversity generally and highlights the importance of further targeting subarctic sea ice for microbial study.
Collapse
Affiliation(s)
- T A Belevich
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.
| | - L V Ilyash
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - I A Milyutina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - M D Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - D V Goryunov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - A V Troitsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Belevich TA, Ilyash LV, Milyutina IA, Logacheva MD, Troitsky AV. Metagenomics of bolidophyceae in plankton and ice of the White Sea. BIOCHEMISTRY (MOSCOW) 2017; 82:1538-1548. [DOI: 10.1134/s0006297917120136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Seasonal dynamics of algal and bacterial communities in Arctic sea ice under variable snow cover. Polar Biol 2017. [DOI: 10.1007/s00300-017-2168-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Sea-ice eukaryotes of the Gulf of Finland, Baltic Sea, and evidence for herbivory on weakly shade-adapted ice algae. Eur J Protistol 2017; 57:1-15. [DOI: 10.1016/j.ejop.2016.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/28/2016] [Accepted: 10/17/2016] [Indexed: 12/27/2022]
|
15
|
Comeau AM, Vincent WF, Bernier L, Lovejoy C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep 2016; 6:30120. [PMID: 27444055 PMCID: PMC4957111 DOI: 10.1038/srep30120] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/29/2016] [Indexed: 11/08/2022] Open
Abstract
In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.
Collapse
Affiliation(s)
- André M. Comeau
- Institut de Biologie Intégrative et des Systèmes (IBIS) and Centre d’Étude de la Forêt (CEF), Université Laval, Québec, Canada
| | - Warwick F. Vincent
- Centre d’Études Nordiques (CEN), Takuvik Joint International Laboratory (CNRS UMI-3376) and Département de Biologie, Université Laval, Québec, Canada
| | - Louis Bernier
- Institut de Biologie Intégrative et des Systèmes (IBIS) and Centre d’Étude de la Forêt (CEF), Université Laval, Québec, Canada
| | - Connie Lovejoy
- Institut de Biologie Intégrative et des Systèmes (IBIS), Takuvik Joint International Laboratory (CNRS UMI-3376) and Département de Biologie, Université Laval, Québec, Canada
| |
Collapse
|
16
|
Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015; 13:677-90. [PMID: 26344407 DOI: 10.1038/nrmicro3522] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Earth's cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns. This Review summarizes current knowledge of the microbial ecology of frozen waters, including the diversity of niches, the composition of microbial communities at these sites and their biogeochemical activities.
Collapse
Affiliation(s)
- Antje Boetius
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Alexandre M Anesio
- Bristol Glaciology Center, School of Geographical Sciences, University of Bristol, BS8 1SS, UK
| | - Jody W Deming
- School of Oceanography, Box 357940, University of Washington, Seattle, Washington 98195, USA
| | - Jill A Mikucki
- Department of Biology, 276 Bicentennial Way, Middlebury College, Middlebury, Vermont 05753, USA
| | - Josephine Z Rapp
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
17
|
Biogeography of heterotrophic flagellate populations indicates the presence of generalist and specialist taxa in the Arctic Ocean. Appl Environ Microbiol 2015; 81:2137-48. [PMID: 25595764 DOI: 10.1128/aem.02737-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterotrophic marine flagellates (HF) are ubiquitous in the world's oceans and represented in nearly all branches of the domain Eukaryota. However, the factors determining distributions of major taxonomic groups are poorly known. The Arctic Ocean is a good model environment for examining the distribution of functionally similar but phylogenetically diverse HF because the physical oceanography and annual ice cycles result in distinct environments that could select for microbial communities or favor specific taxa. We reanalyzed new and previously published high-throughput sequencing data from multiple studies in the Arctic Ocean to identify broad patterns in the distribution of individual taxa. HF accounted for fewer than 2% to over one-half of the reads from the water column and for up to 60% of reads from ice, which was dominated by Cryothecomonas. In the water column, many HF phylotypes belonging to Telonemia and Picozoa, uncultured marine stramenopiles (MAST), and choanoflagellates were geographically widely distributed. However, for two groups in particular, Telonemia and Cryothecomonas, some species level taxa showed more restricted distributions. For example, several phylotypes of Telonemia favored open waters with lower nutrients such as the Canada Basin and offshore of the Mackenzie Shelf. In summary, we found that while some Arctic HF were successful over a range of conditions, others could be specialists that occur under particular conditions. We conclude that tracking species level diversity in HF not only is feasible but also provides a potential tool for understanding the responses of marine microbial ecosystems to rapidly changing ice regimes.
Collapse
|
18
|
Kilias ES, Nöthig EM, Wolf C, Metfies K. Picoeukaryote plankton composition off West Spitsbergen at the entrance to the Arctic Ocean. J Eukaryot Microbiol 2014; 61:569-79. [PMID: 24996010 DOI: 10.1111/jeu.12134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 11/29/2022]
Abstract
Investigation of marine eukaryotic picoplankton composition is limited by missing morphological features for appropriate identification. Consequently, molecular methods are required. In this study, we used 454-pyrosequencing to study picoplankton communities at four stations in the West Spitsbergen Current (WSC; Fram Strait). High abundances of Micromonas pusilla were detected in the station situated closest to Spitsbergen, as seen in surveys of picoplankton assemblages in the Beaufort Sea. At the other three stations, other phylotypes, affiliating with Phaeocystis pouchetii and Syndiniales in the phylogenetic tree, were present in high numbers, dominating most of them. The picoplankton community structures at three of the stations, all with similar salinity and temperature, were alike. At the fourth station, the influence of the East Spitsbergen Current, transporting cold water from the Barents Sea around Spitsbergen, causes different abiotic parameters that result in a significantly different picoeukaryote community composition, which is dominated by M. pusilla. This observation is particularly interesting with regard to ongoing environmental changes in the Arctic. Ongoing warming of the WSC could convey a new picoplankton assemblage into the Arctic Ocean, which may come to affect the dominance of M. pusilla.
Collapse
Affiliation(s)
- Estelle S Kilias
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| | | | | | | |
Collapse
|
19
|
Kilias E, Kattner G, Wolf C, Frickenhaus S, Metfies K. A molecular survey of protist diversity through the central Arctic Ocean. Polar Biol 2014. [DOI: 10.1007/s00300-014-1519-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Wolf C, Frickenhaus S, Kilias ES, Peeken I, Metfies K. Protist community composition in the Pacific sector of the Southern Ocean during austral summer 2010. Polar Biol 2013. [DOI: 10.1007/s00300-013-1438-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Thaler M, Lovejoy C. Environmental selection of marine stramenopile clades in the Arctic Ocean and coastal waters. Polar Biol 2013. [DOI: 10.1007/s00300-013-1435-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Potvin É, Rochon A, Lovejoy C. Cyst-theca relationship of the arctic dinoflagellate cyst Islandinium minutum (Dinophyceae) and phylogenetic position based on SSU rDNA and LSU rDNA. JOURNAL OF PHYCOLOGY 2013; 49:848-866. [PMID: 27007311 DOI: 10.1111/jpy.12089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 05/06/2013] [Indexed: 06/05/2023]
Abstract
Round brown spiny cysts constitute a morphological group common in high latitude dinoflagellate cyst assemblages. The dinoflagellate cyst Islandinium minutum (Harland et Reid) Head, Harland et Matthiessen is the main paleoecological indicator of seasonal sea-ice cover in the Arctic. Despite the importance of this cyst in paleoceanographical studies, its biological affinity has so far been unknown. The biological affinity of the species I. minutum and its phylogenetic position based on the small subunit ribosomal RNA gene (SSU rDNA) and the large subunit ribosomal RNA gene (LSU rDNA) were established from cyst incubation experiments in controlled conditions, optical and scanning electron microscopy, and single-cell PCR. The thecal motile cell obtained was undescribed. Although the motile cell was similar to Archaeperidinium minutum (Kofoid) Jörgensen, the motile cell of I. minutum lacked a transitional plate in the cingular series, which is present in Archaeperidinium spp. Islandinium minutum and Archaeperidinium spp. were paraphyletic in all phylogenetic analyses. Furthermore, Protoperidinium tricingulatum, which also lacks a transitional plate, was closely related to I. minutum and transfered to the genus Islandinium. Based on available data, it is clear that Islandinium is distinct from Archaeperidinium. Therefore, we considered Islandinium Head, Harland et Matthiessen as a non-fossil genus and emend its description, as well as the species I. minutum. This is the first description of a cyst-theca relationship and the first study that reports molecular data based on SSU rDNA and LSU rDNA on a species assigned to the genus Islandinium.
Collapse
Affiliation(s)
- Éric Potvin
- School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-747, Korea
| | - André Rochon
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada, G5L 3A1
| | - Connie Lovejoy
- Département de biologie, Université Laval, Québec, QC, Canada, G1V 0A6
| |
Collapse
|
23
|
Mertens KN, Yamaguchi A, Takano Y, Pospelova V, Head MJ, Radi T, Pieńkowski AJ, de Vernal A, Kawami H, Matsuoka K. A New Heterotrophic Dinoflagellate from the North-eastern Pacific, Protoperidinium fukuyoi
: Cyst-Theca Relationship, Phylogeny, Distribution and Ecology. J Eukaryot Microbiol 2013; 60:545-63. [DOI: 10.1111/jeu.12058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Kenneth N. Mertens
- Research Unit for Palaeontology; Ghent University; Krijgslaan 281 s8 9000 Ghent Belgium
| | - Aika Yamaguchi
- Okinawa Institution of Science and Technology; 1919-1 Tancha Onna-son, Kunigami Okinawa 904-0412 Japan
- Kobe University Research Center for Inland Seas; Rokkodai Kobe 657-8501 Japan
| | - Yoshihito Takano
- Institute for East China Sea Research (ECSER); 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Vera Pospelova
- School of Earth and Ocean Sciences; University of Victoria; OEASB A405; P. O. Box 1700 STN CSC Victoria British Columbia V8W 2Y2 Canada
| | - Martin J. Head
- Department of Earth Sciences; Brock University; 500 Glenridge Avenue St. Catharines Ontario L2S 3A1 Canada
| | - Taoufik Radi
- GEOTOP; Université du Québec à Montréal; P. O. Box 8888 Montréal Qubec H3C 3P8 Canada
| | - Anna J. Pieńkowski
- School of Ocean Sciences, College of Natural Sciences; Bangor University; Menai Bridge Anglesey LL59 5AB United Kingdom
| | - Anne de Vernal
- GEOTOP; Université du Québec à Montréal; P. O. Box 8888 Montréal Qubec H3C 3P8 Canada
| | - Hisae Kawami
- Institute for East China Sea Research (ECSER); 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Kazumi Matsuoka
- Institute for East China Sea Research (ECSER); 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
24
|
Piwosz K, Wiktor JM, Niemi A, Tatarek A, Michel C. Mesoscale distribution and functional diversity of picoeukaryotes in the first-year sea ice of the Canadian Arctic. ISME JOURNAL 2013; 7:1461-71. [PMID: 23514779 DOI: 10.1038/ismej.2013.39] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/10/2013] [Accepted: 02/04/2013] [Indexed: 11/09/2022]
Abstract
Sea ice, a characteristic feature of polar waters, is home to diverse microbial communities. Sea-ice picoeukaryotes (unicellular eukaryotes with cell size <3 μm) have received little attention compared with diatoms that dominate the spring bloom in Arctic first-year sea ice. Here, we investigated the abundance of all picoeukaryotes, and of 11 groups (chlorophytes, cryptophytes, bolidophytes, haptophytes, Pavlovaphyceae, Phaeocystis spp., pedinellales, stramenopiles groups MAST-1, MAST-2 and MAST-6 and Syndiniales Group II) at 13 first-year sea-ice stations localized in Barrow Strait and in the vicinity of Cornwallis Island, Canadian Arctic Archipelago. We applied Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization to identify selected groups at a single cell level. Pavlovaphyceae and stramenopiles from groups MAST-2 and MAST-6 were for the first time reported from sea ice. Total numbers of picoeukaryotes were significantly higher in the vicinity of Cornwallis Island than in Barrow Strait. Similar trend was observed for all the groups except for haptophytes. Chlorophytes and cryptophytes were the dominant plastidic, and MAST-2 most numerous aplastidic of all the groups investigated. Numbers of total picoeukaryotes, chlorophytes and MAST-2 stramenopiles were positively correlated with the thickness of snow cover. All studied algal and MAST groups fed on bacteria. Presence of picoeukaryotes from various trophic groups (mixotrophs, phagotrophic and parasitic heterotrophs) indicates the diverse ecological roles picoeukaryotes have in sea ice. Yet, >50% of total sea-ice picoeukaryote cells remained unidentified, highlighting the need for further study of functional and phylogenetic sea-ice diversity, to elucidate the risks posed by ongoing Arctic changes.
Collapse
Affiliation(s)
- Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland.
| | | | | | | | | |
Collapse
|