1
|
Nguyen-Ngoc L, Larsen J, Doan-Nhu H, Nguyen XV, Chomérat N, Lundholm N, Phan-Tan L, Dao HV, Nguyen NL, Nguyen HH, Van Chu T. Gambierdiscus (Gonyaulacales, Dinophyceae) diversity in Vietnamese waters with description of G. vietnamensis sp. nov. JOURNAL OF PHYCOLOGY 2023; 59:496-517. [PMID: 36866508 DOI: 10.1111/jpy.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/15/2023]
Abstract
Viet Nam has a coastline of 3200 km with thousands of islands providing diverse habitats for benthic harmful algal species including species of Gambierdiscus. Some of these species produce ciguatera toxins, which may accumulate in large carnivore fish potentially posing major threats to public health. This study reports five species of Gambierdiscus from Vietnamese waters, notably G. australes, G. caribaeus, G. carpenteri, G. pacificus, and G. vietnamensis sp. nov. All species are identified morphologically by LM and SEM, and identifications are supported by molecular analyses of nuclear rDNA (D1-D3 and D8-D10 domains of LSU, SSU, and ITS1-5.8S-ITS2 region) based on cultured material collected during 2010-2021. Statistical analyses of morphometric measurements may be used to differentiate some species if a sufficiently large number of cells are examined. Gambierdiscus vietnamensis sp. nov. is morphologically similar to other strongly reticulated species, such as G. belizeanus and possibly G. pacificus; the latter species is morphologically indistinguishable from G. vietnamensis sp. nov., but they are genetically distinct, and molecular analysis is deemed necessary for proper identification of the new species. This study also revealed that strains denoted G. pacificus from Hainan Island (China) should be included in G. vietnamensis sp. nov.
Collapse
Affiliation(s)
- Lam Nguyen-Ngoc
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Jacob Larsen
- IOC Science and Communication Centre on Harmful Algae, Marine Biological Section, University of Copenhagen, Copenhagen Ø, Denmark
| | - Hai Doan-Nhu
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Xuan-Vy Nguyen
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Nicolas Chomérat
- Ifremer, LITTORAL, Station of Marine Biology of Concarneau, Concarneau, France
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Luom Phan-Tan
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Ha Viet Dao
- Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Ngoc-Lan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huy-Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thuoc Van Chu
- Institute of Marine Environment and Resources, Vietnam Academy of Science and Technology, Da Nang, Vietnam
| |
Collapse
|
2
|
Funaki H, Nishimura T, Yoshioka T, Ataka T, Tanii Y, Hashimoto K, Yamaguchi H, Adachi M. Toxicity and growth characteristics of epiphytic dinoflagellate Gambierdiscus silvae in Japan. HARMFUL ALGAE 2022; 115:102230. [PMID: 35623687 DOI: 10.1016/j.hal.2022.102230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/13/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
The genus Gambierdiscus is a marine benthic/epiphytic dinoflagellate that has been investigated worldwide as the causative agent of ciguatera poisoning (CP). In Japan, CP occurs mainly in the subtropical region and sporadically in the temperate region. To understand the mechanism of CP outbreaks in the coastal regions, identifying the species of Gambierdiscus occurring in the regions and determining their toxicity and growth characteristics, such as growth responses to temperature, salinity, and light intensity, are important. Recently, the occurrence of G. silvae in the Japanese temperate and subtropical regions has been revealed through metabarcoding. However, the toxicity and growth characteristics of G. silvae have not yet been investigated. In this study, three strains of Gambierdiscus were isolated from a depth of 30 m in subtropical waters in Japan and were identified as Gambierdiscus silvae based on morphological characteristics and phylogenetic positions. A dichloromethane soluble fraction (DSF) and aqueous methanol soluble fraction (MSF) of the three strains showed high mouse toxicity by intraperitoneal injection, but only the DSF of the three strains showed toxicity by gavage. All strains grew in the range of 17.5-30 °C and salinity range of 25-40, and grew well at 25 °C and salinity 30. The optimal light intensity for growth of the strains was 42.0-83.0 μmol photons/m2/s. These results suggest that G. silvae has the potential to be widely distributed from temperate to subtropical/ regions and in shallow to deep coastal waters of Japan. Understanding the growth characteristics of this species would be useful in predicting the occurrence of this species in Japanese coastal waters. Finally, the results obtained in this study suggest that G. silvae showing high toxicity is one of the causative agents of CP in Japan, and knowledge of this species would be useful in understanding the mechanism of CP outbreaks in Japan.
Collapse
Affiliation(s)
- Hiroshi Funaki
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | - Tomohiro Nishimura
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| | - Takuya Yoshioka
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| | - Taichi Ataka
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| | - Yuta Tanii
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| | - Kana Hashimoto
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| | - Haruo Yamaguchi
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| |
Collapse
|
3
|
Gaiani G, Cucchi F, Toldrà A, Andree KB, Rey M, Tsumuraya T, O'Sullivan CK, Diogène J, Campàs M. Electrochemical biosensor for the dual detection of Gambierdiscus australes and Gambierdiscus excentricus in field samples. First report of G. excentricus in the Balearic Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150915. [PMID: 34653452 DOI: 10.1016/j.scitotenv.2021.150915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Several genera of marine dinoflagellates are known to produce bioactive compounds that affect human health. Among them, Gambierdiscus and Fukuyoa stand out for their ability to produce several toxins, including the potent neurotoxic ciguatoxins (CTXs), which accumulate through the food web. Once fishes contaminated with CTXs are ingested by humans, it can result in an intoxication named ciguatera. Within the two genera, only some species are able to produce toxins, and G. australes and G. excentricus have been highlighted to be the most abundant and toxic. Although the genera Gambierdiscus and Fukuyoa are endemic to tropical areas, their presence in subtropical and temperate regions has been recently recorded. In this work, the combined use of species-specific PCR primers for G. australes and G. excentricus modified with short oligonucleotide tails allowed the development of a multiplex detection system for these two toxin-producing species. Simultaneous detection was achieved using capture probes specific for G. australes and G. excentricus immobilized on maleimide-coated magnetic beads (MBs), separately placed on the working electrodes of a dual electrode array. Additionally, a rapid DNA extraction technique based on a portable bead beater system and MBs was developed, significantly reducing the extraction time (from several hours to 30 min). The developed technique was able to detect as low as 10 cells of both Gambierdiscus species and allowed the first detection of G. excentricus in the Balearic Islands in 8 out of the 12 samples analyzed. Finally, field samples were screened for CTXs with an immunosensor, successfully reporting 13.35 ± 0.5 pg CTX1B equiv. cell-1 in one sample and traces of toxins in 3 out of the 9 samples analyzed. These developments provide rapid and cost-effective strategies for ciguatera risk assessment, with the aim of guaranteeing seafood safety.
Collapse
Affiliation(s)
- Greta Gaiani
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Francesca Cucchi
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain; Dipartimento di Scienze della Vita,UNITS, Via Giorgieri, 5, 34127 Trieste, Italy
| | - Anna Toldrà
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Karl B Andree
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - María Rey
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Takeshi Tsumuraya
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, URV, Països Catalans 26, 43007 Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Jorge Diogène
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|
4
|
Funaki H, Gaonkar CC, Kataoka T, Nishimura T, Tanaka K, Yanagida I, Abe S, Yamaguchi H, Nagasaki K, Adachi M. Horizontal and vertical distribution of Gambierdiscus spp. (Dinophyceae) including novel phylotypes in Japan identified by 18S rDNA metabarcoding. HARMFUL ALGAE 2022; 111:102163. [PMID: 35016767 DOI: 10.1016/j.hal.2021.102163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The genus Gambierdiscus is a marine benthic/epiphytic dinoflagellate considered the causative agent of ciguatera poisoning (CP). Clarifying the geographical distribution of this genus to understand the potential risk of CP is important. Many studies have focused only on the species/phylotype composition of Gambierdiscus in shallow waters, but no study has investigated the species/phylotype composition of the genus in deep waters. In the present study, the distributions of Gambierdiscus species/phylotypes at two depths (2-8 and 30 m) and two sampling sites (temperate and subtropical) in Japan was investigated using high throughput sequencing (HTS) with a newly developed primer set that preferentially amplifies the 18S rDNA V8-V9 region of Alveolata. A phylogenetic analysis using 89 samples collected over three years revealed of ten Gambierdiscus species/phylotypes including not only two species that have not been reported in Japan (G. caribaeus and G. silvae) but also four novel phylotypes (Gambierdiscus spp. Clade II_1, Clade II_2, Clade II_3, and Clade VI_1). Uncorrected genetic distances also supported that these new phylotypes clearly diverged from other Gambierdiscus species. All four new phylotypes, G. caribaeus, and G. silvae were distributed in the subtropical region. Among them, Clade II_2, Clade VI_1, and G. silvae were also distributed in the temperate region. Four species/phylotypes previously reported from Japan showed a similar distribution as reported previously. Among the ten species/phylotypes, Gambierdiscus sp. type 3 and Clade VI_1 were found only in deep waters, whereas five species/phylotypes were observed only in shallow waters. The other three species/phylotypes were found in both deep and shallow waters. The results of the horizontal and vertical distribution suggest that the growth characteristics of each species/phylotypes found in Japan might adapt to the ambient environmental conditions. This study revealed an inclusive assemblage of Gambierdiscus species/phylotypes in Japan through metabarcoding using the Alveolata primer set. In the future, the abundance and toxicities/toxin productions of the newly reported species/phylotypes need to be clarified to understand the mechanism of CP outbreaks in Japan.
Collapse
Affiliation(s)
- Hiroshi Funaki
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| | - Chetan Chandrakant Gaonkar
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Takafumi Kataoka
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuen-cho, Obama, Fukui, 917-0003, Japan.
| | - Tomohiro Nishimura
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Kouki Tanaka
- Usa Marine Biological Institute, Kochi University, 194 Inoshiri, Usa, Tosa, Kochi, 781-1164, Japan.
| | | | - Shouta Abe
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Haruo Yamaguchi
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| | - Keizo Nagasaki
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| |
Collapse
|
5
|
Ramilo I, Figueroa RI, Rayón-Viña F, Cuadrado Á, Bravo I. Temperature-dependent growth and sexuality of the ciguatoxin producer dinoflagellate Gambierdiscus spp. in cultures established from the Canary Islands. HARMFUL ALGAE 2021; 110:102130. [PMID: 34887010 DOI: 10.1016/j.hal.2021.102130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Benthic dinoflagellates of the genus Gambierdiscus produce ciguatoxins, compounds that when metabolized in fish and consumed by humans cause ciguatera poisoning (CP). This syndrome, which is widespread in tropical and subtropical regions, has recently been reported also in subtropical-temperate latitudes such as the Canary Islands where CP events have been regularly detected since 2004. This study examined the effect of temperature on the growth of Gambierdiscus isolated from Canary waters: G. australes, G. caribaeus, G. carolinianus, G. excentricus, and G. silvae. From the temperature vs. growth curves, the maximum growth (µm), optimum temperature range for growth (Topt), and the temperature yielding maximum growth (Tm) were estimated for each species. The results revealed temperature-dependent differences in the growth parameters. G. caribaeus had the highest Tm and Topt, followed by G. australes, G. carolinianus, G. silvae, and G excentricus. G. australes tolerated the widest range of temperatures (from 15 °C to 29 °C), which may explain its broader geographic distribution, both worldwide and across the Canary archipelago. Neither G. excentricus nor G. silvae survived at 29 °C whereas G. caribaeus reached mean growth rates (± standard deviation) up to 0.19 ± 0.01 div.day-1 at that temperature, followed by G. australes (0.16 ± 0.01 div.day-1) and G. carolinianus (0.14 ± 0.04 div.day-1). G. caribaeus showed no measurable growth at 19°C, whereas G. excentricus and G. silvae along with G. australes appeared as the species better adapted to lower temperatures. In an intraspecific variability study of 12 strains of G. australes, the mean (± standard deviation) of µm and Tm were 0.17 ± 0.01 div.day-1 and 27.7 ± 0.5 °C, respectively. An analysis of the shapes and position of the cell nuclei at the different temperatures showed that nuclei characteristic of vegetative cells appeared mainly at 26 °C but extreme temperatures resulted in nuclei with a more variable morphology. The presence of putative zygotes at extreme temperatures (17 °C, 19 °C and 29 °C) suggests that sexual reproduction is promoted as an adaptive strategy which could play an important role in the expansion of geographic distribution of Gambierdiscus species.
Collapse
Affiliation(s)
- Isabel Ramilo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Rosa Isabel Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Fernando Rayón-Viña
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Ángeles Cuadrado
- Universidad de Alcalá (UAH), Dpto Biomedicina y Biotecnología, 28805 Alcalá de Henares, Madrid, Spain
| | - Isabel Bravo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain.
| |
Collapse
|
6
|
Habibi N, Uddin S, Bottein MYD, Faizuddin M. Ciguatera in the Indian Ocean with Special Insights on the Arabian Sea and Adjacent Gulf and Seas: A Review. Toxins (Basel) 2021; 13:525. [PMID: 34437396 PMCID: PMC8402595 DOI: 10.3390/toxins13080525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
The dinoflagellates of the genus Gambierdiscus are found in almost all oceans and seas between the coordinates 35° N and 35° S. Gambierdiscus and Fukuyoa are producers of ciguatoxins (CTXs), which are known to cause foodborne disease associated with contaminated seafood. The occurrence and effects of CTXs are well described in the Pacific and the Caribbean. However, historically, their properties and presence have been poorly documented in the Indian Ocean (including the Bay of Bengal, Andaman Sea, and the Gulf). A higher occurrence of these microorganisms will proportionately increase the likelihood of CTXs entering the food chain, posing a severe threat to human seafood consumers. Therefore, comprehensive research strategies are critically important for developing effective monitoring and risk assessments of this emerging threat in the Indian Ocean. This review presents the available literature on ciguatera occurrence in the region and its adjacent marginal waters: aiming to identify the data gaps and vectors.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | - Saif Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | | | - Mohd Faizuddin
- Gulf Geoinformation Solutions, Sharjah, United Arab Emirates;
| |
Collapse
|
7
|
Nishimura T, Kuribara Y, Fukuzawa R, Mimura K, Funaki H, Tanaka K, Watanabe R, Uchida H, Suzuki T, Adachi M. First report of Alexandrium (Dinophyceae) associated with marine macroalgae off Japan: Diversity, distribution, and toxicity. HARMFUL ALGAE 2021; 104:101924. [PMID: 34023072 DOI: 10.1016/j.hal.2020.101924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Macroalgal samples were collected from coastal waters in subboreal to subtropical zones in Japan (< 3-30 m depths) and 32 clonal strains of non-motile dinoflagellate-like protists were established. Molecular phylogenetic analyses of the LSU rDNA D1/D2, SSU rDNA, ITS region, and concatenated SSU rDNA + LSU rDNA D1/D2 sequences revealed that the strains nested within the genus Alexandrium. They were separated into three novel phylotypes: Alexandrium spp. type 1, type 2, and type 3. Analysis of the concatenated sequences revealed that the most closely related species for the three phylotypes was A. ostenfeldii. Most cells from strains of the three phylotypes were non-motile and hemispherical to spherical in shape. The average diameters of the non-motile cells were between 35 and 39 µm. Type 1 and type 2 were widely distributed in Japan from the temperate to subtropical zones, whereas type 3 was restricted to the temperate zone. Furthermore, type 2 was widespread from shallow to deep waters, whereas type 1 and type 3 were restricted to deep waters. Growth experiments in strains belonging to the three phylotypes revealed that the occurrence ratios of motile cells were very low (≤ 1.1% of the total cells). The production of paralytic shellfish poisoning toxins, tetrodotoxin, and cyclic imines was assessed in strains belonging to the three phylotypes by LC/MS/MS analysis. The strains did not produce any of the toxins tested. The strains of the three phylotypes showed lethal toxicity to mice by intraperitoneal administration. To the best of our knowledge, this is the first study to report the existence of Alexandrium associated with marine macroalgae from Japan.
Collapse
Affiliation(s)
- Tomohiro Nishimura
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Yuki Kuribara
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Ryo Fukuzawa
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Katsuya Mimura
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Hiroshi Funaki
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| | - Kouki Tanaka
- Usa Marine Biological Institute, Kochi University, 194 Inoshiri, Usa, Tosa, Kochi, 781-1164, Japan.
| | - Ryuichi Watanabe
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hajime Uchida
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Toshiyuki Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
8
|
Sakamoto S, Lim WA, Lu D, Dai X, Orlova T, Iwataki M. Harmful algal blooms and associated fisheries damage in East Asia: Current status and trends in China, Japan, Korea and Russia. HARMFUL ALGAE 2021; 102:101787. [PMID: 33875176 DOI: 10.1016/j.hal.2020.101787] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/12/2023]
Abstract
Occurrences of harmful algal blooms (HABs) and associated fisheries damage have been continuously monitored since the 1970s along the coasts of East Asia. Fisheries damage comprises mass mortalities of fish and shellfish mainly by harmful dinoflagellates and raphidophytes (e.g., Chattonella antiqua/marina, Cochlodinium polykrikoides and Karenia mikimotoi), and contamination of algal toxins in shellfish in particular Diarrhetic Shellfish Toxins by Dinophysis spp. and Paralytic Shellfish Toxins by Alexandrium spp. Shellfish mass mortalities due to Heterocapsa circularisquama in Hong Kong and western Japan, and fish kills by Karlodinium digitatum are unique incidents for this region, whereas C. antiqua/marina, C. polykrikoides and K. mikimotoi are common also in other regions. Time series data showed that the highest bloom numbers were recorded in 1980 (Japan), in 1998 (Korea) and in 2003 (China), followed by decreasing trends in these countries. These data suggest a shift in microalgal species composition, from dominance by diatoms to dinoflagellates after 1980s in Korea, and from diatoms to small haptophytes and cyanobacteria after 2013 in eastern Russia. HAB species composition and the changes were compared among countries, for better understanding on current status and trend of HAB species in East Asia.
Collapse
Affiliation(s)
- Setsuko Sakamoto
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Weol Ae Lim
- National Institute of Fisheries Science, Busan, Korea
| | - Douding Lu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Nature Resources, Hangzhou 310012, China
| | - Xinfeng Dai
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Nature Resources, Hangzhou 310012, China
| | - Tatiana Orlova
- National Scientific Center of Marine Biology Far East Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Mitsunori Iwataki
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
9
|
Longo S, Sibat M, Darius HT, Hess P, Chinain M. Effects of pH and Nutrients (Nitrogen) on Growth and Toxin Profile of the Ciguatera-Causing Dinoflagellate Gambierdiscus polynesiensis (Dinophyceae). Toxins (Basel) 2020; 12:E767. [PMID: 33291542 PMCID: PMC7761829 DOI: 10.3390/toxins12120767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Ciguatera poisoning is a foodborne disease caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. Ciguatera outbreaks are expected to increase worldwide with global change, in particular as a function of its main drivers, including changes in sea surface temperature, acidification, and coastal eutrophication. In French Polynesia, G. polynesiensis is regarded as the dominant source of CTXs entering the food web. The effects of pH (8.4, 8.2, and 7.9), Nitrogen:Phosphorus ratios (24N:1P vs. 48N:1P), and nitrogen source (nitrates vs. urea) on growth rate, biomass, CTX levels, and profiles were examined in four clones of G. polynesiensis at different culture age (D10, D21, and D30). Results highlight a decrease in growth rate and cellular biomass at low pH when urea is used as a N source. No significant effect of pH, N:P ratio, and N source on the overall CTX content was observed. Up to ten distinct analogs of Pacific ciguatoxins (P-CTXs) could be detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in clone NHA4 grown in urea, at D21. Amounts of more oxidized P-CTX analogs also increased under the lowest pH condition. These data provide interesting leads for the custom production of CTX standards.
Collapse
Affiliation(s)
- Sébastien Longo
- Laboratory of Marine Biotoxins, Institut Louis Malardé-UMR241 EIO (IFREMER, ILM, IRD, UPF), 98713 Papeete, Tahiti, French Polynesia; (H.T.D.); (M.C.)
| | - Manoëlla Sibat
- Phycotoxins Laboratory, IFREMER, Rue de I’lle d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Hélène Taiana Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé-UMR241 EIO (IFREMER, ILM, IRD, UPF), 98713 Papeete, Tahiti, French Polynesia; (H.T.D.); (M.C.)
| | - Philipp Hess
- Phycotoxins Laboratory, IFREMER, Rue de I’lle d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé-UMR241 EIO (IFREMER, ILM, IRD, UPF), 98713 Papeete, Tahiti, French Polynesia; (H.T.D.); (M.C.)
| |
Collapse
|
10
|
Epibenthic Harmful Marine Dinoflagellates from Fuerteventura (Canary Islands), with Special Reference to the Ciguatoxin-Producing Gambierdiscus. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The relationship between the ciguatoxin-producer benthic dinoflagellate Gambierdiscus and other epibenthic dinoflagellates in the Canary Islands was examined in macrophyte samples obtained from two locations of Fuerteventura Island in September 2016. The genera examined included Coolia, Gambierdiscus, Ostreopsis, Prorocentrum, Scrippsiella, Sinophysis, and Vulcanodinium. Distinct assemblages among these benthic dinoflagellates and preferential macroalgal communities were observed. Vulcanodinium showed the highest cell concentrations (81.6 × 103 cells gr−1 wet weight macrophyte), followed by Ostreopsis (25.2 × 103 cells gr−1 wet weight macrophyte). These two species were most represented at a station (Playitas) characterized by turfy Rhodophytes. In turn, Gambierdiscus (3.8 × 103 cells gr−1 wet weight macrophyte) and Sinophysis (2.6 × 103 cells gr−1 wet weight macrophyte) were mostly found in a second station (Cotillo) dominated by Rhodophytes and Phaeophytes. The influence of macrophyte’s thallus architecture on the abundance of dinoflagellates was observed. Filamentous morphotypes followed by macroalgae arranged in entangled clumps presented more richness of epiphytic dinoflagellates. Morphometric analysis was applied to Gambierdiscus specimens. By large, G. excentricus was the most abundant species and G. australes occupied the second place. The toxigenic potential of some of the genera/species distributed in the benthic habitats of the Canary coasts, together with the already known presence of ciguatera in the region, merits future studies on possible transmission of their toxins in the marine food chain.
Collapse
|
11
|
Gaiani G, Leonardo S, Tudó À, Toldrà A, Rey M, Andree KB, Tsumuraya T, Hirama M, Diogène J, O'Sullivan CK, Alcaraz C, Campàs M. Rapid detection of ciguatoxins in Gambierdiscus and Fukuyoa with immunosensing tools. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111004. [PMID: 32768745 DOI: 10.1016/j.ecoenv.2020.111004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Consumption of seafood contaminated with ciguatoxins (CTXs) leads to a foodborne disease known as ciguatera. Primary producers of CTXs are epibenthic dinoflagellates of the genera Gambierdiscus and Fukuyoa. In this study, thirteen Gambierdiscus and Fukuyoa strains were cultured, harvested at exponential phase, and CTXs were extracted with an implemented rapid protocol. Microalgal extracts were obtained from pellets with a low cell abundance (20,000 cell/mL) and were then analyzed with magnetic bead (MB)-based immunosensing tools (colorimetric immunoassay and electrochemical immunosensor). It is the first time that these approaches are used to screen Gambierdiscus and Fukuyoa strains, providing not only a global indication of the presence of CTXs, but also the ability to discriminate between two series of congeners (CTX1B and CTX3C). Analysis of the microalgal extracts revealed the presence of CTXs in 11 out of 13 strains and provided new information about Gambierdiscus and Fukuyoa toxin profiles. The use of immunosensing tools in the analysis of microalgal extracts facilitates the elucidation of further knowledge regarding these dinoflagellate genera and can contribute to improved ciguatera risk assessment and management.
Collapse
Affiliation(s)
- G Gaiani
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - S Leonardo
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - À Tudó
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - A Toldrà
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - M Rey
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - K B Andree
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - T Tsumuraya
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - M Hirama
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - J Diogène
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - C K O'Sullivan
- Departament D'Enginyeria Química, URV, Av. Països Catalans 26, 43007, Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - C Alcaraz
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - M Campàs
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain.
| |
Collapse
|
12
|
Van Dolah FM, Morey JS, Milne S, Ung A, Anderson PE, Chinain M. Transcriptomic analysis of polyketide synthases in a highly ciguatoxic dinoflagellate, Gambierdiscus polynesiensis and low toxicity Gambierdiscus pacificus, from French Polynesia. PLoS One 2020; 15:e0231400. [PMID: 32294110 PMCID: PMC7159223 DOI: 10.1371/journal.pone.0231400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 11/18/2022] Open
Abstract
Marine dinoflagellates produce a diversity of polyketide toxins that are accumulated in marine food webs and are responsible for a variety of seafood poisonings. Reef-associated dinoflagellates of the genus Gambierdiscus produce toxins responsible for ciguatera poisoning (CP), which causes over 50,000 cases of illness annually worldwide. The biosynthetic machinery for dinoflagellate polyketides remains poorly understood. Recent transcriptomic and genomic sequencing projects have revealed the presence of Type I modular polyketide synthases in dinoflagellates, as well as a plethora of single domain transcripts with Type I sequence homology. The current transcriptome analysis compares polyketide synthase (PKS) gene transcripts expressed in two species of Gambierdiscus from French Polynesia: a highly toxic ciguatoxin producer, G. polynesiensis, versus a non-ciguatoxic species G. pacificus, each assembled from approximately 180 million Illumina 125 nt reads using Trinity, and compares their PKS content with previously published data from other Gambierdiscus species and more distantly related dinoflagellates. Both modular and single-domain PKS transcripts were present. Single domain β-ketoacyl synthase (KS) transcripts were highly amplified in both species (98 in G. polynesiensis, 99 in G. pacificus), with smaller numbers of standalone acyl transferase (AT), ketoacyl reductase (KR), dehydratase (DH), enoyl reductase (ER), and thioesterase (TE) domains. G. polynesiensis expressed both a larger number of multidomain PKSs, and larger numbers of modules per transcript, than the non-ciguatoxic G. pacificus. The largest PKS transcript in G. polynesiensis encoded a 10,516 aa, 7 module protein, predicted to synthesize part of the polyether backbone. Transcripts and gene models representing portions of this PKS are present in other species, suggesting that its function may be performed in those species by multiple interacting proteins. This study contributes to the building consensus that dinoflagellates utilize a combination of Type I modular and single domain PKS proteins, in an as yet undefined manner, to synthesize polyketides.
Collapse
Affiliation(s)
- Frances M. Van Dolah
- Marine Genomics Core, Hollings Marine Laboratory, Charleston, SC, United States of America
- * E-mail:
| | - Jeanine S. Morey
- Marine Genomics Core, Hollings Marine Laboratory, Charleston, SC, United States of America
| | - Shard Milne
- Charleston Computational Genomics Group, Department of Computer Science, College of Charleston, Charleston, SC, United States of America
| | - André Ung
- Laboratoire des Biotoxines Marines, Institut Louis Malardé—UMR 241 EIO, Papeete, Tahiti, French Polynesia
| | - Paul E. Anderson
- Charleston Computational Genomics Group, Department of Computer Science, College of Charleston, Charleston, SC, United States of America
| | - Mireille Chinain
- Laboratoire des Biotoxines Marines, Institut Louis Malardé—UMR 241 EIO, Papeete, Tahiti, French Polynesia
| |
Collapse
|
13
|
Ciguatera Fish Poisoning: The Risk from an Aotearoa/New Zealand Perspective. Toxins (Basel) 2020; 12:toxins12010050. [PMID: 31952334 PMCID: PMC7020403 DOI: 10.3390/toxins12010050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
Gambierdiscus and Fukuyoa species have been identified in Aotearoa/New Zealand's coastal waters and G. polynesiensis, a known producer of ciguatoxins, has been isolated from Rangitāhua/Kermadec Islands (a New Zealand territory). The warming of the Tasman Sea and the waters around New Zealand's northern subtropical coastline heighten the risk of Gambierdiscus proliferating in New Zealand. If this occurs, the risk of ciguatera fish poisoning due to consumption of locally caught fish will increase. Research, including the development and testing of sampling methods, molecular assays, and chemical and toxicity tests, will continue. Reliable monitoring strategies are important to manage and mitigate the risk posed by this emerging threat. The research approaches that have been made, many of which will continue, are summarised in this review.
Collapse
|
14
|
Tester PA, Litaker RW, Berdalet E. Climate change and harmful benthic microalgae. HARMFUL ALGAE 2020; 91:101655. [PMID: 32057343 DOI: 10.1016/j.hal.2019.101655] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Sea surface temperatures in the world's oceans are projected to warm by 0.4-1.4 °C by mid twenty-first century causing many tropical and sub-tropical harmful dinoflagellate genera like Gambierdiscus, Fukuyoa and Ostreopsis (benthic harmful algal bloom species, BHABs) to exhibit higher growth rates over much of their current geographic range, resulting in higher population densities. The primary exception to this trend will be in the tropics where temperatures exceed species-specific upper thermal tolerances (30-31 °C) beyond which growth slows significantly. As surface waters warm, migration to deeper habitats is expected to provide refuge. Range extensions of several degrees of latitude also are anticipated, but only where species-specific habitat requirements can be met (e.g., temperature, suitable substrate, low turbulence, light, salinity, pH). The current understanding of habitat requirements that determine species distributions are reviewed to provide fuller understanding of how individual species will respond to climate change from the present to 2055 while addressing the paucity of information on environmental factors controlling small-scale distribution in localized habitats. Based on the available information, we hypothesized how complex environmental interactions can influence abundance and potential range extensions of BHAB species in different biogeographic regions and identify sentinel sites appropriate for long-term monitoring programs to detect range extensions and reduce human health risks.
Collapse
Affiliation(s)
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Elisa Berdalet
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Longo S, Sibat M, Viallon J, Darius HT, Hess P, Chinain M. Intraspecific Variability in the Toxin Production and Toxin Profiles of In Vitro Cultures of Gambierdiscus polynesiensis (Dinophyceae) from French Polynesia. Toxins (Basel) 2019; 11:toxins11120735. [PMID: 31861242 PMCID: PMC6950660 DOI: 10.3390/toxins11120735] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Ciguatera poisoning (CP) is a foodborne disease caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. The toxin production and toxin profiles were explored in four clones of G. polynesiensis originating from different islands in French Polynesia with contrasted CP risk: RIK7 (Mangareva, Gambier), NHA4 (Nuku Hiva, Marquesas), RAI-1 (Raivavae, Australes), and RG92 (Rangiroa, Tuamotu). Productions of CTXs, maitotoxins (MTXs), and gambierone group analogs were examined at exponential and stationary growth phases using the neuroblastoma cell-based assay and liquid chromatography–tandem mass spectrometry. While none of the strains was found to produce known MTX compounds, all strains showed high overall P-CTX production ranging from 1.1 ± 0.1 to 4.6 ± 0.7 pg cell−1. In total, nine P-CTX analogs were detected, depending on strain and growth phase. The production of gambierone, as well as 44-methylgamberione, was also confirmed in G. polynesiensis. This study highlighted: (i) intraspecific variations in toxin production and profiles between clones from distinct geographic origins and (ii) the noticeable increase in toxin production of both CTXs, in particular CTX4A/B, and gambierone group analogs from the exponential to the stationary phase.
Collapse
Affiliation(s)
- Sébastien Longo
- Laboratoire de recherche sur les Biotoxines Marines Institut Louis Malardé-UMR 241 EIO, 98713 Papeete-Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
- Correspondence:
| | - Manoella Sibat
- Laboratoire Phycotoxines, IFREMER, Rue de l’Ile d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Jérôme Viallon
- Laboratoire de recherche sur les Biotoxines Marines Institut Louis Malardé-UMR 241 EIO, 98713 Papeete-Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| | - Hélène Taiana Darius
- Laboratoire de recherche sur les Biotoxines Marines Institut Louis Malardé-UMR 241 EIO, 98713 Papeete-Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| | - Philipp Hess
- Laboratoire Phycotoxines, IFREMER, Rue de l’Ile d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Laboratoire de recherche sur les Biotoxines Marines Institut Louis Malardé-UMR 241 EIO, 98713 Papeete-Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| |
Collapse
|
16
|
Kretzschmar AL, Verma A, Kohli G, Murray S. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). PLoS One 2019; 14:e0224664. [PMID: 31730656 PMCID: PMC6857910 DOI: 10.1371/journal.pone.0224664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/19/2019] [Indexed: 11/19/2022] Open
Abstract
Ciguatera fish poisoning (CFP) is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, CFP is prevalent in tropical Queensland and increasingly in sub-tropical regions of Australia, but has a report rate of approximately 10%. Yet the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study, we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species first described from Australia. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, to determine the presence and patchiness of this species across samples from Chnoospora sp., Padina sp. and Sargassum sp. macroalgal hosts.
Collapse
Affiliation(s)
- Anna Liza Kretzschmar
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, Australia
- ithree institute (i3), University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Arjun Verma
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Gurjeet Kohli
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, Australia
- Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Bremerhaven, Germany
| | - Shauna Murray
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
17
|
Kretzschmar AL, Larsson ME, Hoppenrath M, Doblin MA, Murray SA. Characterisation of Two Toxic Gambierdiscus spp. (Gonyaulacales, Dinophyceae) from the Great Barrier Reef (Australia): G. lewisii sp. nov. and G. holmesii sp. nov. Protist 2019; 170:125699. [PMID: 31770639 DOI: 10.1016/j.protis.2019.125699] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/29/2022]
Abstract
Ciguatera fish poisoning (CFP) is a human illness caused via consumption of seafood contaminated with neurotoxins produced by some species from the epiphytic dinoflagellate genus Gambierdiscus. In this study, we describe two new species of Gambierdiscus isolated from Heron Island in the Southern Great Barrier Reef, Queensland, Australia. These new species were analysed using light microscopy, scanning electron microscopy, and phylogenetic analyses of nuclear encoded ribosomal ITS, SSU as well as D1-D3 and D8-D10 of the LSU gene regions. Gambierdiscus lewisii sp. nov. (Po, 3', 0a, 7″, 6c,? s, 5‴, 0p, 2'‴) is distinguished by its strong reticulate-foveate ornamentation and is genetically distinct from its sister species, G. pacificus. Gambierdiscus holmesii sp. nov. (Po, 3', 0a, 7″, 6c, 6s?, 5‴, 0p, 2'‴) is morphologically distinct from the genetically similar species G. silvae because of a strongly ventrally displaced apical pore complex and a characteristic fold at the anterior edge of the sulcus. Both G. lewisii and G. holmesii produce putative Maitotoxin-(44-Methylgambierone) and compounds which show ciguatoxin and maitotoxin-like activities. Identification of two new Gambierdiscus species will enable us to more accurately assess the risk of CFP in Australia and internationally.
Collapse
Affiliation(s)
- Anna L Kretzschmar
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Michaela E Larsson
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Mona Hoppenrath
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany
| | - Martina A Doblin
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Shauna A Murray
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
18
|
Bravo I, Rodriguez F, Ramilo I, Rial P, Fraga S. Ciguatera-Causing Dinoflagellate Gambierdiscus spp. (Dinophyceae) in a Subtropical Region of North Atlantic Ocean (Canary Islands): Morphological Characterization and Biogeography. Toxins (Basel) 2019; 11:toxins11070423. [PMID: 31331083 PMCID: PMC6669716 DOI: 10.3390/toxins11070423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/04/2022] Open
Abstract
Dinoflagellates belonging to the genus Gambierdiscus produce ciguatoxins (CTXs), which are metabolized in fish to more toxic forms and subsequently cause ciguatera fish poisoning (CFP) in humans. Five species of Gambierdiscus have been described from the Canary Islands, where CTXs in fish have been reported since 2004. Here we present new data on the distribution of Gambierdiscus species in the Canary archipelago and specifically from two islands, La Palma and La Gomera, where the genus had not been previously reported. Gambierdiscus spp. concentrations were low, with maxima of 88 and 29 cells·g−1 wet weight in samples from La Gomera and La Palma, respectively. Molecular analysis (LSUrRNA gene sequences) revealed differences in the species distribution between the two islands: only G. excentricus was detected at La Palma whereas four species, G. australes, G. caribaeus, G. carolinianus, and G. excentricus, were identified from La Gomera. Morphometric analyses of cultured cells of the five Canary Islands species and of field specimens from La Gomera included cell size and a characterization of three thecal arrangement traits: (1) the shape of the 2′ plate, (2) the position of Po in the anterior suture of the 2′ plate, and (3) the length–width relationship of the 2″″ plate. Despite the wide morphological variability within the culture and field samples, the use of two or more variables allowed the discrimination of two species in the La Gomera samples: G. cf. excentricus and G. cf. silvae. A comparison of the molecular data with the morphologically based classification demonstrated important coincidences, such as the dominance of G. excentricus, but also differences in the species composition of Gambierdiscus, as G. caribaeus was detected in the study area only by using molecular methods.
Collapse
Affiliation(s)
- Isabel Bravo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Francisco Rodriguez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Isabel Ramilo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Pilar Rial
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Santiago Fraga
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
19
|
Díaz-Asencio L, Vandersea M, Chomérat N, Fraga S, Clausing RJ, Litaker RW, Chamero-Lago D, Gómez-Batista M, Moreira-González A, Tester P, Alonso-Hernández C, Dechraoui Bottein MY. Morphology, toxicity and molecular characterization of Gambierdiscus spp. towards risk assessment of ciguatera in south central Cuba. HARMFUL ALGAE 2019; 86:119-127. [PMID: 31358271 DOI: 10.1016/j.hal.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Ciguatera poisoning is caused by the consumption of reef fish or shellfish that have accumulated ciguatoxins, neurotoxins produced by benthic dinoflagellates of the genera Gambierdiscus or Fukuyoa. Although ciguatera constitutes the primary cause of seafood intoxication in Cuba, very little information is available on the occurrence of ciguatoxins in the marine food web and the causative benthic dinoflagellate species. This study conducted on the south-central coast of Cuba reports the occurrence of Gambierdiscus and Fukuyoa genera and the associated benthic genera Ostreopsis and Prorocentrum. Gambierdiscus/Fukuyoa cells were present at low to moderate abundances depending on the site and month of sampling. This genus was notably higher on Dictyotaceae than on other macrophytes. PCR analysis of field-collected samples revealed the presence of six different Gambierdiscus and one Fukuyoa species, including G. caribaeus, G. carolinianus, G. carpenteri, G. belizeanus, F. ruetzleri, G. silvae, and Gambierdiscus sp. ribotype 2. Only Gambierdiscus excentricus was absent from the eight Gambierdiscus/Fukuyoa species known in the wider Caribbean region. Eleven clonal cultures were established and confirmed by PCR and SEM as being either G. carolinianus or G. caribaeus. Toxin production in each isolate was assessed by a radioligand receptor binding assay and found to be below the assay quantification limit. These novel findings augment the knowledge of the ciguatoxin-source dinoflagellates that are present in Cuba, however further studies are needed to better understand the correlation between their abundance, species-specific toxin production in the environment, and the risk for fish contamination, in order to develop better informed ciguatera risk management strategies.
Collapse
Affiliation(s)
- Lisbet Díaz-Asencio
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Mark Vandersea
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Nicolas Chomérat
- Ifremer, Laboratory of Environment and Resources Western Britanny, Coastal Research Unit, Place de la Croix, B.P. 40537, 29185, Concarneau Cedex, France
| | - Santiago Fraga
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Rachel J Clausing
- Environment Laboratories, Department of Nuclear Science and Application, International Atomic Energy Agency, 98000, Monaco
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Donaida Chamero-Lago
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Miguel Gómez-Batista
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Angel Moreira-González
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Patricia Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, NC, 28516, USA
| | - Carlos Alonso-Hernández
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | | |
Collapse
|
20
|
Reñé A, Hoppenrath M. Psammodinium inclinatum gen. nov. et comb. nov. (=Thecadinium inclinatum Balech) is the closest relative to the toxic dinoflagellate genera Gambierdiscus and Fukuyoa. HARMFUL ALGAE 2019; 84:161-171. [PMID: 31128800 DOI: 10.1016/j.hal.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
The heterotrophic sand-dwelling dinoflagellate Thecadinium inclinatum has been re-examined by light and scanning electron microscopy in order to resolve the discrepancies on its plate pattern from the literature, and to obtain its phylogenetic information single-cell PCR technique has been used. The comparison of morphological and molecular information available for other Thecadinium species confirms the genus is polyphyletic and T. inclinatum seems not related to other representatives of the genus sensu lato. Thus, a new genus and combination for the species, Psammodinium inclinatum gen. nov., comb. nov. is proposed. Cells are heterotrophic and strongly laterally flattened, with sulcal pocket. The revised tabulation is: APC 3' 7" 7c 7s? 5"' 1p 2"" with a long-shank fishhook-shaped apical pore and descending cingulum. The cingulum inclines ventrally and declines on the right lateral side producing an asymmetrical epitheca. The epitheca is much smaller than the hypotheca. The phylogenetic results showed a strong relationship with the autotrophic epiphytic genera Gambierdiscus and Fukuyoa, being closely related with the latter. The Gambierdiscus species typically have a tropical and sub-tropical distribution and produce ciguatoxins, causing thousands of intoxications every year by consumption of contaminated fish. Fukuyoa representatives have a wider distribution including warm and temperate waters, and it has been demonstrated that they are also able to produce ciguatoxins, even though at lower amounts. P. inclinatum, which potential toxicity remains to be determined, represents an interesting independent evolutionary branch that resulted in the loss of chloroplasts, the strong lateral compression and the adaptation to sandy habitats in temperate and cold waters.
Collapse
Affiliation(s)
- Albert Reñé
- Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain.
| | - Mona Hoppenrath
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany
| |
Collapse
|
21
|
Ciguatera in Mexico (1984⁻2013). Mar Drugs 2018; 17:md17010013. [PMID: 30597874 PMCID: PMC6356608 DOI: 10.3390/md17010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022] Open
Abstract
Historical records of ciguatera in Mexico date back to 1862. This review, including references and epidemiological reports, documents 464 cases during 25 events from 1984 to 2013: 240 (51.72%) in Baja California Sur, 163 (35.12%) in Quintana Roo, 45 (9.69%) in Yucatan, and 16 (3.44%) cases of Mexican tourists intoxicated in Cuba. Carnivorous fish, such as snapper (Lutjanus) and grouper (Epinephelus and Mycteroperca) in the Pacific Ocean, and great barracuda (Sphyraena barracuda) and snapper (Lutjanus) in the Atlantic (Gulf of Mexico and Caribbean Sea), were involved in all cases. In the Mexican Caribbean, a sub-record of ciguatera cases that occurred before 1984 exists. However, the number of intoxications has increased in recent years, and this food poisoning is poorly studied in the region. Current records suggest that ciguatera fish poisoning in humans is the second most prevalent form of seafood poisoning in Mexico, only exceeded by paralytic shellfish poisoning (505 cases, 21 fatalities in the same 34-year period). In this study, the status of ciguatera in Mexico (epidemiological and treatment), and the fish vectors are reviewed. Dinoflagellate species Gambierdiscus, Ostreopsis, and Prorocentrum are related with the reported outbreaks, marine toxins, ecological risk, and the potential toxicological impact.
Collapse
|
22
|
Jang SH, Jeong HJ, Yoo YD. Gambierdiscus jejuensis sp. nov., an epiphytic dinoflagellate from the waters of Jeju Island, Korea, effect of temperature on the growth, and its global distribution. HARMFUL ALGAE 2018; 80:149-157. [PMID: 30502807 DOI: 10.1016/j.hal.2018.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
The genus Gambierdiscus produces ciguatera toxins, which has led to extensive studies of this genus. Epiphytic dinoflagellate cells were isolated from coralline macroalgae collected from the coastal waters of Jeju Island, Korea, and two clonal cultures were established. The morphology of these cells was examined using light and scanning electron microscopy, and the sequences of the small subunit (SSU), large subunit (LSU), and internal transcribed spacer (ITS) region of rDNA were determined. The phylogenetic trees based on SSU, LSU (D1-D3), and LSU (D8-D10) rDNA showed the two Korean isolates forming a clade with unidentified strains named Gambierdiscus sp. type 2. This clade showed a clear divergence from the two closest clades containing of the G. caribaeus and G. carpenteri strains. Morphologically, the Korean isolates had an anteroposteriorly compressed cell shape having a smooth theca ornamentation. Growth of the Korean isolates ceased when water temperatures were <20 °C or >30 °C with an optimum at 26 °C. This temperature preference may account for why Gambierdiscus sp. type 2 has only been isolated from the temperate waters of Korea and Japan. However, the two most closely related species G. caribaeus and G. carpenteri have broader temperature ranges tolerating as high as 34-36 °C and are globally distributed. Based on these results, the Korean isolates are proposed as a new species in the genus Gambierdiscus and named Gambierdiscus jejuensis sp. nov. Furthermore, it is suggested that the unidentified strains belonging to the Gambierdiscus sp. type 2 be transferred to the new species, G. jejuensis.
Collapse
Affiliation(s)
- Se Hyeon Jang
- School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hae Jin Jeong
- School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, Republic of Korea.
| | - Yeong Du Yoo
- Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan 54150, Republic of Korea
| |
Collapse
|
23
|
Nakada M, Hatayama Y, Ishikawa A, Ajisaka T, Sawayama S, Imai I. Seasonal distribution of Gambierdiscus spp. in Wakasa Bay, the Sea of Japan, and antagonistic relationships with epiphytic pennate diatoms. HARMFUL ALGAE 2018; 76:58-65. [PMID: 29887205 DOI: 10.1016/j.hal.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The occurrence of the ciguatera fish poisoning (CFP) causative Gambierdiscus spp. was confirmed in the Sea of Japan for the first time in 2009. This paper reports seasonal distribution of Gambierdiscus spp. and epiphytic diatoms in the Sea of Japan. Monitoring results suggested an antagonistic interaction in abundances between epiphytic diatoms and the dinoflagellate Gambierdiscus spp. Allelopathic effects of diatoms were considered to be involved in the competitive phenomenon. Therefore it is hypothesized that cell densities of epiphytic pennate diatoms on macroalgae are a novel determinant affecting the abundance of Gambierdiscus spp. other than sea water temperature, salinity and nutrients. Monitorings of the abundance of epiphytic diatoms would lead us to predict the occurrences of Gambierdiscus spp. blooms in the CFP area, and thereby the CFP risk assessments would be developed. Phylogenetic analyses indicated that Gambierdiscus spp. in the Sea of Japan belonged to Gambierdiscus sp. type 2 which was reported to be non-toxic. Nevertheless, based on morphological characteristics, at least two types of Gambierdiscus spp. were found in the Sea of Japan. It is needed to test the toxicity of the both types of Gambierdiscus recognized in the present study for evaluation of the probability of CFP outbreak risks in the Sea of Japan in the future.
Collapse
Affiliation(s)
- Mitsutaka Nakada
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Hatayama
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Akira Ishikawa
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Tetsuro Ajisaka
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeki Sawayama
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ichiro Imai
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
24
|
Larsson ME, Laczka OF, Harwood DT, Lewis RJ, Himaya SWA, Murray SA, Doblin MA. Toxicology of Gambierdiscus spp. (Dinophyceae) from Tropical and Temperate Australian Waters. Mar Drugs 2018; 16:md16010007. [PMID: 29301247 PMCID: PMC5793055 DOI: 10.3390/md16010007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 11/22/2022] Open
Abstract
Ciguatera Fish Poisoning (CFP) is a human illness caused by the consumption of marine fish contaminated with ciguatoxins (CTX) and possibly maitotoxins (MTX), produced by species from the benthic dinoflagellate genus Gambierdiscus. Here, we describe the identity and toxicology of Gambierdiscus spp. isolated from the tropical and temperate waters of eastern Australia. Based on newly cultured strains, we found that four Gambierdiscus species were present at the tropical location, including G. carpenteri, G. lapillus and two others which were not genetically identical to other currently described species within the genus, and may represent new species. Only G. carpenteri was identified from the temperate location. Using LC-MS/MS analysis we did not find any characterized microalgal CTXs (P-CTX-3B, P-CTX-3C, P-CTX-4A and P-CTX-4B) or MTX-1; however, putative maitotoxin-3 (MTX-3) was detected in all species except for the temperate population of G. carpenteri. Using the Ca2+ influx SH-SY5Y cell Fluorescent Imaging Plate Reader (FLIPR) bioassay we found CTX-like activity in extracts of the unidentified Gambierdiscus strains and trace level activity in strains of G. lapillus. While no detectable CTX-like activity was observed in tropical or temperate strains of G. carpenteri, all species showed strong maitotoxin-like activity. This study, which represents the most comprehensive analyses of the toxicology of Gambierdiscus strains isolated from Australia to date, suggests that CFP in this region may be caused by currently undescribed ciguatoxins and maitotoxins.
Collapse
Affiliation(s)
- Michaela E Larsson
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| | - Olivier F Laczka
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| | - D Tim Harwood
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7010, New Zealand.
| | - Richard J Lewis
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - S W A Himaya
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Shauna A Murray
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| |
Collapse
|
25
|
|
26
|
Litaker RW, Holland WC, Hardison DR, Pisapia F, Hess P, Kibler SR, Tester PA. Ciguatoxicity of Gambierdiscus and Fukuyoa species from the Caribbean and Gulf of Mexico. PLoS One 2017; 12:e0185776. [PMID: 29045489 PMCID: PMC5646788 DOI: 10.1371/journal.pone.0185776] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022] Open
Abstract
Dinoflagellate species belonging to the genera Gambierdiscus and Fukuyoa produce ciguatoxins (CTXs), potent neurotoxins that concentrate in fish causing ciguatera fish poisoning (CFP) in humans. While the structures and toxicities of ciguatoxins isolated from fish in the Pacific and Caribbean are known, there are few data on the variation in toxicity between and among species of Gambierdiscus and Fukuyoa. Quantifying the differences in species-specific toxicity is especially important to developing an effective cell-based risk assessment strategy for CFP. This study analyzed the ciguatoxicity of 33 strains representing seven Gambierdiscus and one Fukuyoa species using a cell based Neuro-2a cytotoxicity assay. All strains were isolated from either the Caribbean or Gulf of Mexico. The average toxicity of each species was inversely proportional to growth rate, suggesting an evolutionary trade-off between an investment in growth versus the production of defensive compounds. While there is 2- to 27-fold variation in toxicity within species, there was a 1740-fold difference between the least and most toxic species. Consequently, production of CTX or CTX-like compounds is more dependent on the species present than on the random occurrence of high or low toxicity strains. Seven of the eight species tested (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, Gambierdiscus ribotype 2, G. silvae and F. ruetzleri) exhibited low toxicities, ranging from 0 to 24.5 fg CTX3C equivalents cell-1, relative to G. excentricus, which had a toxicity of 469 fg CTX3C eq. cell-1. Isolates of G. excentricus from other regions have shown similarly high toxicities. If the hypothesis that G. excentricus is the primary source of ciguatoxins in the Atlantic is confirmed, it should be possible to identify areas where CFP risk is greatest by monitoring only G. excentricus abundance using species-specific molecular assays.
Collapse
Affiliation(s)
- R. Wayne Litaker
- National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, United States of America
- * E-mail:
| | - William C. Holland
- National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, United States of America
| | - D. Ransom Hardison
- National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, United States of America
| | - Francesco Pisapia
- L'Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire Phycotoxines, Nantes, France
| | - Philipp Hess
- L'Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire Phycotoxines, Nantes, France
| | - Steven R. Kibler
- National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, United States of America
| | | |
Collapse
|
27
|
Giussani V, Asnaghi V, Pedroncini A, Chiantore M. Management of harmful benthic dinoflagellates requires targeted sampling methods and alarm thresholds. HARMFUL ALGAE 2017; 68:97-104. [PMID: 28962993 DOI: 10.1016/j.hal.2017.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Concern regarding Benthic Harmful Algal Blooms (BHABs) is increasing since some harmful benthic species have been identified in new areas. In the Mediterranean basin, the most common harmful benthic microalgae are Ostreopsis cf. ovata and Prorocentrum lima, which produce palytoxin-like compounds and okadaic acid respectively, and the need to implement monitoring activities has increased. However, a general agreement on appropriate strategies (e.g. sampling season, definition of alarm thresholds, etc.) is still lagging behind, especially for P. lima, whose proliferation dynamics are still poorly known.
Collapse
Affiliation(s)
- Valentina Giussani
- DISTAV-University of Genoa, Corso Europa 26, 16132, Genoa, Italy; ARPAL-Dip. Biotossicologia ambientale, Via Fontevivo 21L, 19125 La Spezia, Italy.
| | - Valentina Asnaghi
- DISTAV-University of Genoa, Corso Europa 26, 16132, Genoa, Italy; CoNISMa-P.le Flaminio, 9, 00196, Rome, Italy
| | | | - Mariachiara Chiantore
- DISTAV-University of Genoa, Corso Europa 26, 16132, Genoa, Italy; CoNISMa-P.le Flaminio, 9, 00196, Rome, Italy
| |
Collapse
|
28
|
Smith KF, Biessy L, Argyle PA, Trnski T, Halafihi T, Rhodes LL. Molecular Identification of Gambierdiscus and Fukuyoa (Dinophyceae) from Environmental Samples. Mar Drugs 2017; 15:md15080243. [PMID: 28767092 PMCID: PMC5577598 DOI: 10.3390/md15080243] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 12/03/2022] Open
Abstract
Ciguatera Fish Poisoning (CFP) is increasing across the Pacific and the distribution of the causative dinoflagellates appears to be expanding. Subtle differences in thecal plate morphology are used to distinguish dinoflagellate species, which are difficult to determine using light microscopy. For these reasons we sought to develop a Quantitative PCR assay that would detect all species from both Gambierdiscus and Fukuyoa genera in order to rapidly screen environmental samples for potentially toxic species. Additionally, a specific assay for F. paulensis was developed as this species is of concern in New Zealand coastal waters. Using the assays we analyzed 31 samples from three locations around New Zealand and the Kingdom of Tonga. Fourteen samples in total were positive for Gambierdiscus/Fukuyoa and two samples were also positive using the F. paulensis assay. Samples from the Kermadec Islands were further characterized using high-throughput sequencing metabarcoding. The majority of reads corresponded to Gambierdiscus species with three species identified at all sites (G. australes, G. honu and G. polynesiensis). This is the first confirmed identification of G. polynesiensis, a known ciguatoxin producer, in New Zealand waters. Other known toxin-producing genera were also detected, included Alexandrium, Amphidinium, Azadinium, Dinophysis, Ostreopsis, and Prorocentrum.
Collapse
Affiliation(s)
- Kirsty F Smith
- Coastal & Freshwater Group, Cawthron Institute, Private Bag 2, 98 Halifax Street East, Nelson 7042, New Zealand.
| | - Laura Biessy
- Coastal & Freshwater Group, Cawthron Institute, Private Bag 2, 98 Halifax Street East, Nelson 7042, New Zealand.
| | - Phoebe A Argyle
- Coastal & Freshwater Group, Cawthron Institute, Private Bag 2, 98 Halifax Street East, Nelson 7042, New Zealand.
- School of Biological Sciences, University of Canterbury, Private Bag 4800, 20 Kirkwood Avenue, Christchurch 8041, New Zealand.
| | - Tom Trnski
- Auckland War Memorial Museum, Private Bag 92018, Victoria Street West, Auckland 1142, New Zealand.
| | | | - Lesley L Rhodes
- Coastal & Freshwater Group, Cawthron Institute, Private Bag 2, 98 Halifax Street East, Nelson 7042, New Zealand.
| |
Collapse
|
29
|
Shmukler YB, Nikishin DA. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge. Mar Drugs 2017; 15:E232. [PMID: 28726749 PMCID: PMC5532674 DOI: 10.3390/md15070232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na⁺-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.
Collapse
Affiliation(s)
- Yuri B Shmukler
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| | - Denis A Nikishin
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| |
Collapse
|
30
|
Pisapia F, Sibat M, Herrenknecht C, Lhaute K, Gaiani G, Ferron PJ, Fessard V, Fraga S, Nascimento SM, Litaker RW, Holland WC, Roullier C, Hess P. Maitotoxin-4, a Novel MTX Analog Produced by Gambierdiscus excentricus. Mar Drugs 2017; 15:E220. [PMID: 28696398 PMCID: PMC5532662 DOI: 10.3390/md15070220] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 11/17/2022] Open
Abstract
Maitotoxins (MTXs) are among the most potent toxins known. These toxins are produced by epi-benthic dinoflagellates of the genera Gambierdiscus and Fukuyoa and may play a role in causing the symptoms associated with Ciguatera Fish Poisoning. A recent survey revealed that, of the species tested, the newly described species from the Canary Islands, G. excentricus, is one of the most maitotoxic. The goal of the present study was to characterize MTX-related compounds produced by this species. Initially, lysates of cells from two Canary Island G. excentricus strains VGO791 and VGO792 were partially purified by (i) liquid-liquid partitioning between dichloromethane and aqueous methanol followed by (ii) size-exclusion chromatography. Fractions from chromatographic separation were screened for MTX toxicity using both the neuroblastoma neuro-2a (N2a) cytotoxicity and Ca2+ flux functional assays. Fractions containing MTX activity were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to pinpoint potential MTX analogs. Subsequent non-targeted HRMS analysis permitted the identification of a novel MTX analog, maitotoxin-4 (MTX4, accurate mono-isotopic mass of 3292.4860 Da, as free acid form) in the most toxic fractions. HRMS/MS spectra of MTX4 as well as of MTX are presented. In addition, crude methanolic extracts of five other strains of G. excentricus and 37 other strains representing one Fukuyoa species and ten species, one ribotype and one undetermined strain/species of Gambierdiscus were screened for the presence of MTXs using low resolution tandem mass spectrometry (LRMS/MS). This targeted analysis indicated the original maitotoxin (MTX) was only present in one strain (G. australes S080911_1). Putative maitotoxin-2 (p-MTX2) and maitotoxin-3 (p-MTX3) were identified in several other species, but confirmation was not possible because of the lack of reference material. Maitotoxin-4 was detected in all seven strains of G. excentricus examined, independently of their origin (Brazil, Canary Islands and Caribbean), and not detected in any other species. MTX4 may therefore serve as a biomarker for the highly toxic G. excentricus in the Atlantic area.
Collapse
Affiliation(s)
- Francesco Pisapia
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Manoëlla Sibat
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Christine Herrenknecht
- Mer Molécules Santé (MMS) Laboratory EA2160, University of Nantes, LUNAM, Pharmacy Faculty, 9 rue Bias, F-44035 Nantes, France.
| | - Korian Lhaute
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Greta Gaiani
- Department of Life Science, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| | - Pierre-Jean Ferron
- Toxicology of Contaminants Unit, ANSES Laboratory-French Agency for Food, Environmental and Occupational Health and Safety, Fougères, 10 B rue Claude Bourgelat, 35133 Javené, France.
| | - Valérie Fessard
- Toxicology of Contaminants Unit, ANSES Laboratory-French Agency for Food, Environmental and Occupational Health and Safety, Fougères, 10 B rue Claude Bourgelat, 35133 Javené, France.
| | - Santiago Fraga
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Silvia M Nascimento
- Laboratório de Microalgas Marinhas, Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, Brazil.
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR), 101 Pivers Island Road, Beaufort, NC 28516, USA.
| | - William C Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR), 101 Pivers Island Road, Beaufort, NC 28516, USA.
| | - Catherine Roullier
- Mer Molécules Santé (MMS) Laboratory EA2160, University of Nantes, LUNAM, Pharmacy Faculty, 9 rue Bias, F-44035 Nantes, France.
| | - Philipp Hess
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| |
Collapse
|
31
|
Dai X, Mak YL, Lu CK, Mei HH, Wu JJ, Lee WH, Chan LL, Lim PT, Mustapa NI, Lim HC, Wolf M, Li D, Luo Z, Gu H, Leaw CP, Lu D. Taxonomic assignment of the benthic toxigenic dinoflagellate Gambierdiscus sp. type 6 as Gambierdiscus balechii (Dinophyceae), including its distribution and ciguatoxicity. HARMFUL ALGAE 2017; 67:107-118. [PMID: 28755713 DOI: 10.1016/j.hal.2017.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Recent molecular phylogenetic studies of Gambierdiscus species flagged several new species and genotypes, thus leading to revitalizing its systematics. The inter-relationships of clades revealed by the primary sequence information of nuclear ribosomal genes (rDNA), however, can sometimes be equivocal, and therefore, in this study, the taxonomic status of a ribotype, Gambierdiscus sp. type 6, was evaluated using specimens collected from the original locality, Marakei Island, Republic of Kiribati; and specimens found in Rawa Island, Peninsular Malaysia, were further used for comparison. Morphologically, the ribotype cells resembled G. scabrosus, G. belizeanus, G. balechii, G. cheloniae and G. lapillus in thecal ornamentation, where the thecal surfaces are reticulate-foveated, but differed from G. scabrosus by its hatchet-shaped Plate 2', and G. belizeanus by the asymmetrical Plate 3'. To identify the phylogenetic relationship of this ribotype, a large dataset of the large subunit (LSU) and small subunit (SSU) rDNAs were compiled, and performed comprehensive analyses, using Bayesian-inference, maximum-parsimony, and maximum-likelihood, for the latter two incorporating the sequence-structure information of the SSU rDNA. Both the LSU and SSU rDNA phylogenetic trees displayed an identical topology and supported the hypothesis that the relationship between Gambierdiscus sp. type 6 and G. balechii was monophyletic. As a result, the taxonomic status of Gambierdiscus sp. type 6 was revised, and assigned as Gambierdiscus balechii. Toxicity analysis using neuroblastoma N2A assay confirmed that the Central Pacific strains were toxic, ranging from 1.1 to 19.9 fg P-CTX-1 eq cell-1, but no toxicity was detected in a Western Pacific strain. This suggested that the species might be one of the species contributing to the high incidence rate of ciguatera fish poisoning in Marakei Island.
Collapse
Affiliation(s)
- Xinfeng Dai
- Key Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, SOA, Hangzhou 310012, China
| | - Yim Ling Mak
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1, Sec. 2, Linong St, Beitou District, Taipei 1121, Taiwan; Department of Bioscience and Institute of Genomics, National Yang Ming University, Taiwan
| | - Hua-Hsuan Mei
- Department of Bioscience and Institute of Genomics, National Yang Ming University, Taiwan
| | - Jia Jun Wu
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen, China
| | - Wai Hin Lee
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Leo Lai Chan
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong Special Administrative Region; Department of Biomedical Science, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Nurin Izzati Mustapa
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Hong Chang Lim
- Faculty of Applied Sciences, Tunku Abdul Rahman University College, Johor Branch Campus, 85000 Segamat, Johor, Malaysia
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Dongrong Li
- Key Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, SOA, Hangzhou 310012, China
| | - Zhaohe Luo
- Third Institute of Oceanography, Xiamen, China
| | - Haifeng Gu
- Third Institute of Oceanography, Xiamen, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia.
| | - Douding Lu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, SOA, Hangzhou 310012, China; Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
32
|
Lyu Y, Richlen ML, Sehein TR, Chinain M, Adachi M, Nishimura T, Xu Y, Parsons ML, Smith TB, Zheng T, Anderson DM. LSU rDNA based RFLP assays for the routine identification of Gambierdiscus species. HARMFUL ALGAE 2017; 66:20-28. [PMID: 28602250 DOI: 10.1016/j.hal.2017.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
The Gambierdiscus genus is a group of benthic dinoflagellates commonly associated with ciguatera fish poisoning (CFP), which is generally found in tropical or sub-tropical regions around the world. Morphologically similar species within the genus can vary in toxicity; however, species identifications are difficult or sometimes impossible using light microscopy. DNA sequencing of ribosomal RNA genes (rDNA) is thus often used to identify and describe Gambierdiscus species and ribotypes, but the expense and time can be prohibitive for routine culture screening and/or large-scale monitoring programs. This study describes a restriction fragment length polymorphism (RFLP) typing method based on analysis of the large subunit rDNA that can successfully identify at least nine of the described Gambierdiscus species and two Fukuyoa species. The software programs DNAMAN 6.0 and Restriction Enzyme Picker were used to identify a set of restriction enzymes (SpeI, HpyCH4IV, and TaqαI) capable of distinguishing most of the known Gambierdiscus species for which DNA sequences were available. This assay was tested using in silico analysis and cultured isolates, and species identifications of isolates assigned by RFLP typing were confirmed by DNA sequencing. To verify the assay and assess intra-specific heterogeneity in RFLP patterns, identifications of 63 Gambierdiscus isolates comprising ten Gambierdiscus species, one ribotype, and two Fukuyoa species were confirmed using RFLP typing, and this method was subsequently employed in the routine identification of isolates collected from the Caribbean Sea. The RFLP assay presented here reduces the time and cost associated with morphological identification via scanning electron microscopy and/or DNA sequencing, and provides a phylogenetically sensitive method for routine Gambierdiscus species assignment.
Collapse
Affiliation(s)
- Yihua Lyu
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
| | - Mindy L Richlen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Taylor R Sehein
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mireille Chinain
- Laboratoire des Microalgues Toxiques, Institut Louis Malardé, UMR 241-EIO, BP 30, 98713 Papeete Tahiti, French Polynesia
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Tomohiro Nishimura
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yixiao Xu
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, Nanning 530001, China
| | - Michael L Parsons
- Coastal Watershed Institute, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Tyler B Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St Thomas, U.S. Virgin Islands 00802, USA
| | - Tianling Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Science, Xiamen University, Xiamen 361102, China
| | - Donald M Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
33
|
Rhodes L, Smith KF, Verma A, Curley BG, Harwood DT, Murray S, Kohli GS, Solomona D, Rongo T, Munday R, Murray SA. A new species of Gambierdiscus (Dinophyceae) from the south-west Pacific: Gambierdiscus honu sp. nov. HARMFUL ALGAE 2017; 65:61-70. [PMID: 28526120 DOI: 10.1016/j.hal.2017.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Two isolates of a new tropical, epiphytic dinoflagellate species, Gambierdiscus honu sp. nov., were obtained from macroalgae sampled in Rarotonga, Cook Islands, and from North Meyer Island, Kermadec Islands. Gambierdiscus honu sp. nov. had the common Gambierdiscus Kofoidian plate formula: Po, 3', 6″, 6C?, 6 or 7S, 5‴, 1p and 2⁗. The characteristic morphological features of this species were its relatively small short dorsoventral length and width and the shape of individual plates, in particular the combination of the hatchet-shaped 2' and pentagonal 3' plates and the length to width ratio of the antapical 1p plate. The combination of these characteristics plus the smooth thecal surface and equal sized 1⁗ and 2⁗ plates differentiated this species from other Gambierdiscus species. The phylogenetic analyses supported the unique description. Both isolates of G. honu produced the putative maitotoxin (MTX)-3 analogue, but neither produced ciguatoxin (CTX) or MTX. Extracts of G. honu were shown to be highly toxic to mice by intraperitoneal injection (0.2mg/kg), although less toxic by gavage. It is possible that toxins other than putative MTX-3 are produced.
Collapse
Affiliation(s)
- Lesley Rhodes
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand.
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Arjun Verma
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Belinda G Curley
- Sydney Institute of Marine Sciences, Chowder Bay Rd, Mosman 2088, New South Wales, Australia
| | - D Tim Harwood
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Sam Murray
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Gurjeet S Kohli
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Driver, SBS-01N-27, Singapore 637551, Singapore
| | - Dorothy Solomona
- Ministry of Marine Resources, Private Bag, Avarua, Rarotonga, Cook Islands
| | - Teina Rongo
- Climate Change Cook Islands, Office of the Prime Minister, Private Bag, Avarua, Rarotonga, Cook Islands
| | - Rex Munday
- AgResearch, Ruakura Research Centre, 10 Bisley Road, Private Bag 3240, Hamilton 3214, New Zealand
| | - Shauna A Murray
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia; Sydney Institute of Marine Sciences, Chowder Bay Rd, Mosman 2088, New South Wales, Australia
| |
Collapse
|
34
|
Kretzschmar AL, Verma A, Harwood T, Hoppenrath M, Murray S. Characterization of Gambierdiscus lapillus sp. nov. (Gonyaulacales, Dinophyceae): a new toxic dinoflagellate from the Great Barrier Reef (Australia). JOURNAL OF PHYCOLOGY 2017; 53:283-297. [PMID: 27885668 DOI: 10.1111/jpy.12496] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Gambierdiscus is a genus of benthic dinoflagellates found worldwide. Some species produce neurotoxins (maitotoxins and ciguatoxins) that bioaccumulate and cause ciguatera fish poisoning (CFP), a potentially fatal food-borne illness that is common worldwide in tropical regions. The investigation of toxigenic species of Gambierdiscus in CFP endemic regions in Australia is necessary as a first step to determine which species of Gambierdiscus are related to CFP cases occurring in this region. In this study, we characterized five strains of Gambierdiscus collected from Heron Island, Australia, a region in which ciguatera is endemic. Clonal cultures were assessed using (i) light microscopy; (ii) scanning electron microscopy; (iii) DNA sequencing based on the nuclear encoded ribosomal 18S and D8-D10 28S regions; (iv) toxicity via mouse bioassay; and (v) toxin profile as determined by Liquid Chromatography-Mass Spectrometry. Both the morphological and phylogenetic data indicated that these strains represent a new species of Gambierdiscus, G. lapillus sp. nov. (plate formula Po, 3', 0a, 7″, 6c, 7-8s, 5‴, 0p, 2″″ and distinctive by size and hatchet-shaped 2' plate). Culture extracts were found to be toxic using the mouse bioassay. Using chemical analysis, it was determined that they did not contain maitotoxin (MTX1) or known algal-derived ciguatoxin analogs (CTX3B, 3C, CTX4A, 4B), but that they contained putative MTX3, and likely other unknown compounds.
Collapse
Affiliation(s)
- Anna Liza Kretzschmar
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Arjun Verma
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Tim Harwood
- Cawthron Institute, The Wood, Nelson, 7010, New Zealand
| | - Mona Hoppenrath
- Senckenberg Research Institute, German Centre for Marine Biodiversity Research, 26382, Wilhelmshaven, Germany
| | - Shauna Murray
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
35
|
Yan M, Leung PTY, Ip JCH, Cheng JP, Wu JJ, Gu JR, Lam PKS. Developmental toxicity and molecular responses of marine medaka (Oryzias melastigma) embryos to ciguatoxin P-CTX-1 exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:149-159. [PMID: 28214734 DOI: 10.1016/j.aquatox.2017.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 06/06/2023]
Abstract
Ciguatoxins are produced by toxic benthic dinoflagellates and cause ciguatera fish poisoning worldwide, but the toxic effects on developing marine fish have not been well investigated. The Pacific ciguatoxin (P-CTX-1), is a potent sodium channel agonist, which is one of the most toxic members among all CTXs. This study evaluated the toxic effects of microinjecting purified Pacific ciguatoxin-1 (P-CTX-1) on embryonic development of marine medaka Oryzias melastigma. A lower 96h-LD50 value was estimated for eleuthero-embryos (1.32ngg-1) than that for embryos (1.71ngg-1), indicating that P-CTX-1 is more lethal to newly hatched medaka larvae. P-CTX-1 induced detrimental effects during embryonic development, including hatching failure, abnormalities in physical development (caudal fin malformation and spinal deformities), internal damage (green coloration of the gall bladder and hemorrhaging), immune dysfunction, and altered muscle physiology (bradycardia and hyperkinetic twitching). The results of a transcriptional expression analysis of genes related to the stress/immune responses, cardiac and bone development, and apoptosis supported the observed developmental abnormalities. This study advanced the understanding of P-CTX-1 mediated toxic mechanisms in the development of early life stages of a fish, and thus contributed to the toxicity assessment of CTXs in marine ecosystems.
Collapse
Affiliation(s)
- Meng Yan
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| | - Priscilla T Y Leung
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| | - Jack C H Ip
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Jin-Ping Cheng
- School of Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Jia-Jun Wu
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| | - Jia-Rui Gu
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
36
|
Pisapia F, Holland WC, Hardison DR, Litaker RW, Fraga S, Nishimura T, Adachi M, Nguyen-Ngoc L, Séchet V, Amzil Z, Herrenknecht C, Hess P. Toxicity screening of 13 Gambierdiscus strains using neuro-2a and erythrocyte lysis bioassays. HARMFUL ALGAE 2017; 63:173-183. [PMID: 28366392 DOI: 10.1016/j.hal.2017.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
Species in the epi-benthic dinoflagellate genus Gambierdiscus produce ciguatoxins (CTXs) and maitotoxins (MTXs), which are among the most potent marine toxins known. Consumption of fish contaminated with sufficient quantities of CTXs causes Ciguatera Fish Poisoning (CFP), the largest cause of non-bacterial food poisoning worldwide. Maitotoxins, which can be found in the digestive system of fish, could also contribute to CFP if such tissues are consumed. Recently, an increasing number of Gambierdiscus species have been identified; yet, little is known about the variation in toxicity among Gambierdiscus strains or species. This study is the first assessment of relative CTX- and MTX-toxicity of Gambierdiscus species from areas as widespread as the North-Eastern Atlantic Ocean, Pacific Ocean and the Mediterranean Sea. A total of 13 strains were screened: (i) seven Pacific strains of G. australes, G. balechii, G. caribaeus, G. carpenteri, G. pacificus, G. scabrosus and one strain of an undetermined species (Gambierdiscus sp. Viet Nam), (ii) five strains from the North-Eastern Atlantic Ocean (two G. australes, a single G. excentricus and two G. silvae strains), and (iii) one G. carolinianus strain from the Mediterranean Sea. Cell pellets of Gambierdiscus were extracted with methanol and the crude extracts partitioned into a CTX-containing dichloromethane fraction and a MTX-containing aqueous methanol fraction. CTX-toxicity was estimated using the neuro-2a cytoxicity assay, and MTX-toxicity via a human erythrocyte lysis assay. Different species were grouped into different ratios of CTX- and MTX-toxicity, however, the ratio was not related to the geographical origin of species (Atlantic, Mediterranean, Pacific). All strains showed MTX-toxicity, ranging from 1.5 to 86pg MTX equivalents (eq) cell-1. All but one of the strains showed relatively low CTX-toxicity ranging from 0.6 to 50 fg CTX3C eq cell-1. The exception was the highly toxic G. excentricus strain from the Canary Islands, which produced 1426 fg CTX3C eq cell-1. As was true for CTX, the highest MTX-toxicity was also found in G. excentricus. Thus, the present study confirmed that at least one species from the Atlantic Ocean demonstrates similar toxicity as the most toxic strains from the Pacific, even if the metabolites in fish have so far been shown to be more toxic in the Pacific Ocean.
Collapse
Affiliation(s)
- Francesco Pisapia
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - William C Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR),101 Pivers Island Road, Beaufort, NC 28516, USA
| | - D Ransom Hardison
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR),101 Pivers Island Road, Beaufort, NC 28516, USA
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR),101 Pivers Island Road, Beaufort, NC 28516, USA
| | - Santiago Fraga
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Tomohiro Nishimura
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Masao Adachi
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Lam Nguyen-Ngoc
- Institute of Oceanography, VAST, Cauda 01, Vinh Nguyen, Nha Trang, Viet Nam
| | - Véronique Séchet
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| | - Zouher Amzil
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| | - Christine Herrenknecht
- LUNAM, University of Nantes, MMS EA2160, Pharmacy Faculty, 9 rue Bias, F-44035 Nantes, France
| | - Philipp Hess
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France
| |
Collapse
|
37
|
Yoshimatsu T, Tie C, Yamaguchi H, Funaki H, Honma C, Tanaka K, Adachi M. The effects of light intensity on the growth of Japanese Gambierdiscus spp. (Dinophyceae). HARMFUL ALGAE 2016; 60:107-115. [PMID: 28073553 DOI: 10.1016/j.hal.2016.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R>0.92 (p<0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μmax values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208μmol photons m-2s-1 and 91-422μmol photons m-2s-1, respectively; (2) those of G. scabrosus were 252 and 120-421μmol photons m-2s-1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75-430μmol photons m-2s-1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73-427μmol photons m-2s-1, respectively. All four Gambierdiscus species/phylotypes required approximately 10μmol photons m-2s-1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer's Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058-0.119m-1. The values 1700μmol photons m-2s-1, 500μmol photons m-2s-1, and 200μmol photons m-2s-1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12-38m and 12-54m, 1-16m and 1-33m, and 0m and 0-16m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.
Collapse
Affiliation(s)
- Takamichi Yoshimatsu
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Chaoyu Tie
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Haruo Yamaguchi
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Hiroshi Funaki
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Chiho Honma
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouki Tanaka
- Usa Marine Biological Institute, Kochi University, Susaki, Kochi 781-1164, Japan
| | - Masao Adachi
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
38
|
Smith KF, Rhodes L, Verma A, Curley BG, Harwood DT, Kohli GS, Solomona D, Rongo T, Munday R, Murray SA. A new Gambierdiscus species (Dinophyceae) from Rarotonga, Cook Islands: Gambierdiscus cheloniae sp. nov. HARMFUL ALGAE 2016; 60:45-56. [PMID: 28073562 DOI: 10.1016/j.hal.2016.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Ciguatera fish poisoning (CFP) has been reported for many years in Rarotonga, Cook Islands, and has had the world's highest reported incidence of this illness for the last 20 years. Following intensive sampling to understand the distribution of the causative organisms of CFP, an undescribed Gambierdiscus species was isolated from the Rarotongan lagoon. Gambierdiscus cheloniae sp. nov. has the common Gambierdiscus Kofoidian plate formula (except for a variability in the number of precingular plates in aberrant cells): Po, 3', 6″ (7″), 6C?, 6 or 7S, 5'″, 1p and 2″″. The 2' plate is hatchet shaped and the dorsal end of 1p is pointed and the relatively narrow 1p plate. Morphologically G. cheloniae is similar to the genetically closely related species G. pacificus, G. toxicus and G. belizeanus, although smaller (depth and length) than G. toxicus. The apical pore plate varies from those of G. belizeanus and G. pacificus, which are shorter and narrower, and from G. toxicus, which is larger. G. cheloniae also differs from G. pacificus in the shape of the 2' plate. The description of this new species is supported by phylogenetic analyses using three different gene regions. G. cheloniae produced the putative maitotoxin-3 analogue, MTX-3, but neither maitotoxin or monitored ciguatoxin. Extracts of G. cheloniae were shown to be highly toxic to mice by intraperitoneal (i.p.) injection, although they were less toxic by gavage. It is possible that this species produces toxins other than putative MTX-3.
Collapse
Affiliation(s)
- Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand.
| | - Lesley Rhodes
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Arjun Verma
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Belinda G Curley
- Sydney Institute of Marine Sciences, Chowder Bay Rd, Mosman 2088, New South Wales Australia
| | - D Tim Harwood
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Gurjeet S Kohli
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Dorothy Solomona
- Ministry of Marine Resources, Private Bag, Avarua, Rarotonga, Cook Islands
| | - Teina Rongo
- Climate Change Cook Islands, Office of the Prime Minister, Private Bag, Avarua, Rarotonga, Cook Islands
| | - Rex Munday
- AgResearch, Ruakura Research Centre, 10 Bisley Road, Private Bag 3240, Hamilton 3214, New Zealand
| | - Shauna A Murray
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia; Sydney Institute of Marine Sciences, Chowder Bay Rd, Mosman 2088, New South Wales Australia
| |
Collapse
|
39
|
Fraga S, Rodríguez F, Riobó P, Bravo I. Gambierdiscus balechii sp. nov (Dinophyceae), a new benthic toxic dinoflagellate from the Celebes Sea (SW Pacific Ocean). HARMFUL ALGAE 2016; 58:93-105. [PMID: 28073464 DOI: 10.1016/j.hal.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
A new benthic toxic dinoflagellate is described from the Celebes Sea. Gambierdiscus balechii sp. nov. was isolated from seaweeds growing in tidal ponds. Its morphology was studied by means of LM and SEM; G. balechii has a very ornamented theca, a hatchet shaped second apical plate, a narrow second antapical plate and an asymmetrical third precigular plate, a unique combination of characters among Gambierdiscus species. It has a very wide size range with widths from 36 to 88μm. Phylogenetic analyses of two G. balechii strains, based on LSU rRNA (D8-D10) and partial SSUrRNA sequences confirmed that these clustererd in its' own group, separated from the rest of Gambierdiscus species and with G. pacificus, G. belizeanus and G. scabrosus as its closest relatives. Thecate cysts are described from culture as non motile vegetative-like cells which germinated after being isolated and transferred to fresh medium. Mouse tests showed that this species is toxic and hence it is a potential cause of ciguatera in the Celebes Sea.
Collapse
Affiliation(s)
- Santiago Fraga
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Francisco Rodríguez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Pilar Riobó
- Instituto de Investigacións Mariñas (IIM-CSIC) Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Isabel Bravo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Subida a Radio Faro 50, 36390 Vigo, Spain.
| |
Collapse
|
40
|
Lewis RJ, Inserra M, Vetter I, Holland WC, Hardison DR, Tester PA, Litaker RW. Rapid Extraction and Identification of Maitotoxin and Ciguatoxin-Like Toxins from Caribbean and Pacific Gambierdiscus Using a New Functional Bioassay. PLoS One 2016; 11:e0160006. [PMID: 27467390 PMCID: PMC4965106 DOI: 10.1371/journal.pone.0160006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/12/2016] [Indexed: 11/18/2022] Open
Abstract
Background Ciguatera is a circumtropical disease produced by polyether sodium channel toxins (ciguatoxins) that enter the marine food chain and accumulate in otherwise edible fish. Ciguatoxins, as well as potent water-soluble polyethers known as maitotoxins, are produced by certain dinoflagellate species in the genus Gambierdiscus and Fukuyoa spp. in the Pacific but little is known of the potential of related Caribbean species to produce these toxins. Methods We established a simplified procedure for extracting polyether toxins from Gambierdiscus and Fukuyoa spp. based on the ciguatoxin rapid extraction method (CREM). Fractionated extracts from identified Pacific and Caribbean isolates were analysed using a functional bioassay that recorded intracellular calcium changes (Ca2+) in response to sample addition in SH-SY5Y cells. Maitotoxin directly elevated Ca2+i, while low levels of ciguatoxin-like toxins were detected using veratridine to enhance responses. Results We identified significant maitotoxin production in 11 of 12 isolates analysed, with 6 of 12 producing at least two forms of maitotoxin. In contrast, only 2 Caribbean isolates produced detectable levels of ciguatoxin-like activity despite a detection limit of >30 pM. Significant strain-dependent differences in the levels and types of ciguatoxins and maitotoxins produced by the same Gambierdiscus spp. were also identified. Conclusions The ability to rapidly identify polyether toxins produced by Gambierdiscus spp. in culture has the potential to distinguish ciguatoxin-producing species prior to large-scale culture and in naturally occurring blooms of Gambierdiscus and Fukuyoa spp. Our results have implications for the evaluation of ciguatera risk associated with Gambierdiscus and related species.
Collapse
Affiliation(s)
- Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
- * E-mail:
| | - Marco Inserra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - William C. Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries & Habitat Research, 101 Pivers Island Road, Beaufort, NC, 28516, United States of America
| | - D. Ransom Hardison
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries & Habitat Research, 101 Pivers Island Road, Beaufort, NC, 28516, United States of America
| | - Patricia A. Tester
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries & Habitat Research, 101 Pivers Island Road, Beaufort, NC, 28516, United States of America
| | - R. Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries & Habitat Research, 101 Pivers Island Road, Beaufort, NC, 28516, United States of America
| |
Collapse
|
41
|
Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution. PLoS One 2016; 11:e0153197. [PMID: 27074134 PMCID: PMC4830584 DOI: 10.1371/journal.pone.0153197] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/24/2016] [Indexed: 11/19/2022] Open
Abstract
Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4-5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0-0.48 divisions day(-1). In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55 μmol photons · m(-2) · s(-1) were lower than those at 110-400 μmol photons · m(-2) · s(-1). At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1-38.5 and 23.8-29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may explain their broad geographic distribution. In contrast, G. silvae and Gambierdiscus sp. types 4-5 all displayed a comparatively narrow range of tolerance to temperature, salinity, and irradiance.
Collapse
|
42
|
Nishimura T, Hariganeya N, Tawong W, Sakanari H, Yamaguchi H, Adachi M. Quantitative PCR assay for detection and enumeration of ciguatera-causing dinoflagellate Gambierdiscus spp. (Gonyaulacales) in coastal areas of Japan. HARMFUL ALGAE 2016; 52:11-22. [PMID: 28073467 DOI: 10.1016/j.hal.2015.11.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 06/06/2023]
Abstract
In Japan, ciguatera fish poisoning (CFP) has been increasingly reported not only in subtropical areas but also in temperate areas in recent years, causing a serious threat to human health. Ciguatera fish poisoning is caused by the consumption of fish that have accumulated toxins produced by an epiphytic/benthic dinoflagellate, genus Gambierdiscus. Previous studies revealed the existence of five Gambierdiscus species/phylotypes in Japan: Gambierdiscus australes, Gambierdiscus scabrosus, Gambierdiscus sp. type 2, Gambierdiscus sp. type 3, and Gambierdiscus (Fukuyoa) cf. yasumotoi. Among these, G. australes, G. scabrosus, and Gambierdiscus sp. type 3 strains exhibited toxicities in mice, whereas Gambierdiscus sp. type 2 strains did not show any toxicity. Therefore, it is important to monitor the cell abundance and dynamics of these species/phylotypes to identify and characterize CFP outbreaks in Japan. Because it is difficult to differentiate these species/phylotypes by observation under a light microscope, development of a rapid and reliable detection and enumeration method is needed. In this study, a quantitative PCR assay was developed using a TaqMan probe that targets unique SSU rDNA sequences of four Japanese Gambierdiscus species/phylotypes and incorporates normalization with DNA recovery efficiency. First, we constructed standard curves with high linearity (R2=1.00) and high amplification efficiency (≥1.98) using linearized plasmids that contained SSU rDNA of the target species/phylotypes. The detection limits for all primer and probe sets were approximately 10 gene copies. Further, the mean number of SSU rDNA copies per cell of each species/phylotype was determined from single cells in culture and from those in environmental samples using the qPCR assay. Next, the number of cells of each species/phylotype in the mixed samples, which were spiked with cultured cells of the four species/phylotypes, was calculated by division of the total number of rDNA copies of each species/phylotype in each sample by the number of rDNA copies per cell. The numbers of cells of each species/phylotype quantified by qPCR assay were similar to the number of cells of each species/phylotype that were spiked. Finally, the cell densities of the target species/phylotypes were quantified using the qPCR assay in 30 environmental samples collected from Japanese coastal areas. Total cell densities of the four Gambierdiscus species/phylotypes quantified by qPCR assay were similar to those of Gambierdiscus spp. quantified by direct counting under a light microscope. The qPCR assay developed in this study is expected to be a powerful new tool for determining detailed distribution patterns and for monitoring the cell abundance and dynamics of each Japanese Gambierdiscus species/phylotype in the coastal areas of Japan.
Collapse
Affiliation(s)
- Tomohiro Nishimura
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| | - Naohito Hariganeya
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Wittaya Tawong
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| | - Hiroshi Sakanari
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Haruo Yamaguchi
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Masao Adachi
- LAQUES (Laboratory of Aquatic Environmental Science), Faculty of Agriculture, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
43
|
Laza-Martínez A, David H, Riobó P, Miguel I, Orive E. Characterization of a Strain of Fukuyoa paulensis (Dinophyceae) from the Western Mediterranean Sea. J Eukaryot Microbiol 2016; 63:481-97. [PMID: 26686980 DOI: 10.1111/jeu.12292] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/26/2022]
Abstract
A single cell of the dinoflagellate genus Fukuyoa was isolated from the island of Formentera (Balearic Islands, west Mediterranean Sea), cultured, and characterized by morphological and molecular methods and toxin analyses. This is the first report of the Gambierdiscus lineage (genera Fukuyoa and Gambierdiscus) from the western Mediterranean Sea, which is cooler than its eastern basin. Molecular analyses revealed that the Mediterranean strain belongs to F. paulensis and that it bears LSU rDNA sequences identical to New Zealand, Australian, and Brazilian strains. It also shared an identical sequence of the more variable ITS-rDNA with the Brazilian strain. Toxin analyses showed the presence of maitotoxin, 54-deoxyCTX1B, and gambieric acid A. This is the first observation of the two latter compounds in a Fukuyoa strain. Therefore, both Gambierdiscus and Fukuyoa should be considered when as contributing to ciguatera fish poisoning. Different strains of Fukuyoa form a complex of morphologically cryptic lineages where F. paulensis stands as the most distantly related nominal species. The comparison of the ITS2 secondary structures revealed the absence of CBCs among strains. The study of the morphological and molecular traits depicted an unresolved taxonomic scenario impacted by the low strains sampling.
Collapse
Affiliation(s)
- Aitor Laza-Martínez
- Department of Plant Biology and Ecology, University of The Basque Country (UPV/EHU), Sarriena z/g, Leioa 48940, Basque Country, Spain
| | - Helena David
- Department of Plant Biology and Ecology, University of The Basque Country (UPV/EHU), Sarriena z/g, Leioa 48940, Basque Country, Spain
| | - Pilar Riobó
- Unidad Asociada de I+D+i Microalgas Nocivas IEO-CSIC, Instituto de Investigaciones Marinas, Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Irati Miguel
- Sequencing and Genotyping Unit from SGIker services of the University of The Basque Country (UPV/EHU), Sarriena z/g, Leioa, 48940, Basque Country, Spain
| | - Emma Orive
- Department of Plant Biology and Ecology, University of The Basque Country (UPV/EHU), Sarriena z/g, Leioa 48940, Basque Country, Spain
| |
Collapse
|
44
|
Kibler SR, Tester PA, Kunkel KE, Moore SK, Litaker RW. Effects of ocean warming on growth and distribution of dinoflagellates associated with ciguatera fish poisoning in the Caribbean. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.08.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Fukuyoa paulensis gen. et sp. nov., a new genus for the globular species of the dinoflagellate Gambierdiscus (Dinophyceae). PLoS One 2015; 10:e0119676. [PMID: 25831082 PMCID: PMC4382304 DOI: 10.1371/journal.pone.0119676] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 01/27/2015] [Indexed: 11/19/2022] Open
Abstract
The marine epiphytic dinoflagellate Gambierdiscus is a toxicologically important genus responsible for ciguatera fish poisoning, the principal cause of non-bacterial illness associated with fish consumption. The genus currently contains species exhibiting either globular or anterior-posteriorly compressed morphologies with marked differences in cell shape and plate arrangement. Here we report a third globular, epiphytic and tychoplanktonic species from the coasts of Ubatuba, Brazil. The new species can be distinguished from G. yasumotoi and G. ruetzleri by its broader first apical plate that occupies a larger portion of the epitheca. Accordingly, phylogenetic trees from small subunit (SSU) and large subunit (LSU) ribosomal DNA sequences also showed strongly supported separation of the new species from the G. yasumotoi/G. ruetzleri group albeit with short distance. The molecular phylogenies, which included new sequences of the planktonic species Goniodoma polyedricum, further indicated that the globular species of Gambierdiscus formed a tight clade, clearly separated (with strong bootstrap support) from the clade of lenticular species including the type for Gambierdiscus. The morphological and molecular data in concert support the split of Gambierdiscus sensu lato into two genera. Gambierdiscus sensu stricto should be reserved for the species with lenticular shapes, highly compressed anterioposteriorly, with short-shank fishhook apical pore plate, large 2' plate, low and ascending cingular displacement, and pouch-like sulcal morphology. The new genus name Fukuyoa gen. nov. should be applied to the globular species, slightly laterally compressed, with long-shank fishhook apical pore plate, large 1' plate, greater and descending cingular displacement, and not pouch-like vertically-oriented sulcal morphology. Fukuyoa contains the new species Fukuyoa paulensis gen. et sp. nov., and F. yasumotoi comb. nov. and F. ruetzleri comb. nov.
Collapse
|
46
|
Genus Gambierdiscus in the Canary Islands (NE Atlantic Ocean) with description of Gambierdiscus silvae sp. nov., a new potentially toxic epiphytic benthic dinoflagellate. Protist 2014; 165:839-53. [PMID: 25460234 DOI: 10.1016/j.protis.2014.09.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/22/2014] [Accepted: 09/30/2014] [Indexed: 11/21/2022]
Abstract
Species of the dinoflagellate genus Gambierdiscus are the cause of Ciguatera Fish Poisoning, common in tropical areas. Nevertheless, until recently this syndrome was not reported in the NE Atlantic Ocean. A new photosynthetic dinoflagellate species, Gambierdiscus silvae sp. nov. is described based on samples taken from tide pools on rocky shores of the Canary Islands (NE Atlantic Ocean). Its morphology was studied by light and scanning electron microscopy. The new species is anterioposteriorly compressed, lenticular in shape with an epitheca slightly higher than the hypotheca. It is round in apical view and has a thick smooth theca with many scattered pores. Plate formula is Po, 4', 0a, 6″, 6c, 6s?, 5'″, 0p, 2″″. Plate 2' is hatchet-shaped and Plate 2″″ is very wide and the largest of the hypotheca. Phylogenies inferred from the large subunit nuclear rRNA showed that three G. silvae strains clustered in a well supported sister clade to G. polynesiensis, distinct from the other species. G. australes was observed for the first time in the Atlantic, together with G. excentricus already reported from these islands. This work increases the number of Gambierdiscus species described and shows their unexpected diversity in the Canary Islands.
Collapse
|