1
|
Kurz EM, Bastian L, Mölle M, Born J, Friedrich M. Development of slow oscillation-spindle coupling from infancy to toddlerhood. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae084. [PMID: 39660110 PMCID: PMC11630081 DOI: 10.1093/sleepadvances/zpae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Indexed: 12/12/2024]
Abstract
Sleep has been demonstrated to support memory formation from early life on. The precise temporal coupling of slow oscillations (SOs) with spindles has been suggested as a mechanism facilitating this consolidation process in thalamocortical networks. Here, we investigated the development of sleep spindles and SOs and their coordinate interplay by comparing frontal, central, and parietal electroencephalogram recordings during a nap between infants aged 2-3 months (n = 31) and toddlers aged 14-17 months (n = 49). Spindles and SOs showed quite different maturational patterns between age groups, as to topography, amplitude, and density. Notably, spindle-SO co-occurrence in the infants did not exceed chance levels and was increased to significant levels only in the toddlers. In the infants, the slow SO upstate over frontocortical regions was even associated with a significant decrease in spindles, contrasting with the adult-like increase in spindles seen in toddlers. These results point to an immature processing in thalamocortical networks during sleep in early infancy, possibly diminishing the efficacy of sleep-dependent memory formation at this age.
Collapse
Affiliation(s)
- Eva-Maria Kurz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Lisa Bastian
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), site Tübingen, Germany
| | - Manuela Friedrich
- Department of Psychology, Humboldt-University, Berlin, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
2
|
Annarumma L, Reda F, Scarpelli S, D'Atri A, Alfonsi V, Salfi F, Viselli L, Pazzaglia M, De Gennaro L, Gorgoni M. Spatiotemporal EEG dynamics of the sleep onset process in preadolescence. Sleep Med 2024; 119:438-450. [PMID: 38781667 DOI: 10.1016/j.sleep.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND During preadolescence the sleep electroencephalography undergoes massive qualitative and quantitative modifications. Despite these relevant age-related peculiarities, the specific EEG pattern of the wake-sleep transition in preadolescence has not been exhaustively described. METHODS The aim of the present study is to characterize regional and temporal electrophysiological features of the sleep onset (SO) process in a group of 23 preadolescents (9-14 years) and to compare the topographical pattern of slow wave activity and delta/beta ratio of preadolescents with the EEG pattern of young adults. RESULTS Results showed in preadolescence the same dynamics known for adults, but with peculiarities in the delta and beta activity, likely associated with developmental cerebral modifications: the delta power showed a widespread increase during the SO with central maxima, and the lower bins of the beta activity showed a power increase after SO. Compared to adults, preadolescents during the SO exhibited higher delta power only in the slowest bins of the band: before SO slow delta activity was higher in prefrontal, frontal and occipital areas in preadolescents, and, after SO the younger group had higher slow delta activity in occipital areas. In preadolescents delta/beta ratio was higher in more posterior areas both before and after the wake-sleep transition and, after SO, preadolescents showed also a lower delta/beta ratio in frontal areas, compared to adults. CONCLUSION Results point to a general higher homeostatic drive for the developing areas, consistently with plastic-related maturational modifications, that physiologically occur during preadolescence.
Collapse
Affiliation(s)
- Ludovica Annarumma
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Flaminia Reda
- SIPRE, Società Italiana di psicoanalisi Della Relazione, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Aurora D'Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Valentina Alfonsi
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Lorenzo Viselli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Mariella Pazzaglia
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Maurizio Gorgoni
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy.
| |
Collapse
|
3
|
Guillou J, Duprez J, Nabbout R, Kaminska A, Napuri S, Gomes C, Kuchenbuch M, Sauleau P. Interhemispheric coherence of EEG rhythms in children: Maturation and differentiation in corpus callosum dysgenesis. Neurophysiol Clin 2024; 54:102981. [PMID: 38703488 DOI: 10.1016/j.neucli.2024.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVES To evaluate the evolution of interhemispheric coherences (ICo) in background and spindle frequency bands during childhood and use it to identify individuals with corpus callosum dysgenesis (CCd). METHODS A monocentric cohort of children aged from 0.25 to 15 years old, consisting of 13 children with CCd and 164 without, was analyzed. The ICo of background activity (ICOBckgrdA), sleep spindles (ICOspindles), and their sum (sICO) were calculated. The impact of age, gender, and CC status on the ICo was evaluated, and the sICO was used to discriminate children with or without CCd. RESULTS ICOBckgrdA, ICOspindles and sICO increased significantly with age without any effect of gender (p < 10-4), in both groups. The regression equations of the different ICo were stronger, with adjusted R2 values of 0.54, 0.35, and 0.57, respectively. The ICo was lower in children with CCd compared to those without CCd (p < 10-4 for all comparisons). The area under the precision recall curves for predicting CCd using sICO was 0.992 with 98.9 % sensitivity and 87.5 % specificity. DISCUSSION ICo of spindles and background activity evolve in parallel to brain maturation and depends on the integrity of the corpus callosum. sICO could be an effective diagnostic biomarker for screening children with interhemispheric dysfunction.
Collapse
Affiliation(s)
- J Guillou
- Department of Pediatrics, Rennes University Hospital, F-35000 Rennes, France
| | - J Duprez
- Univ Rennes, LTSI - U1099, F-35000 Rennes, France
| | - R Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, member of ERN EPICARE network, Necker Enfants Malades Hospital, Imagine Institute, Paris Cité University, Paris, France; Laboratory of Translational Research for Neurological Disorders, INSERM MR1163, Imagine Institute, Paris, France
| | - A Kaminska
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, AP-HP, Paris, France; Université Paris Cité, Inserm, UMR 1141 NeuroDiderot, Paris, France; CEA, NeuroSpin, Gif-sur-Yvette, France
| | - S Napuri
- Department of Pediatrics, Rennes University Hospital, F-35000 Rennes, France
| | - C Gomes
- Department of Neurophysiology, Rennes University Hospital, F-35000 Rennes, France
| | - M Kuchenbuch
- Department of Neurophysiology, Rennes University Hospital, F-35000 Rennes, France; Université de Lorraine, CHRU-Nancy, Service de Medicine Infantile, Member of ERN EPICARE network, F-54000 Nancy, France; Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France.
| | - P Sauleau
- Univ Rennes, LTSI - U1099, F-35000 Rennes, France; Department of Neurophysiology, Rennes University Hospital, F-35000 Rennes, France
| |
Collapse
|
4
|
Iyer KK, Roberts JA, Waak M, Vogrin SJ, Kevat A, Chawla J, Haataja LM, Lauronen L, Vanhatalo S, Stevenson NJ. A growth chart of brain function from infancy to adolescence based on EEG. EBioMedicine 2024; 102:105061. [PMID: 38537603 PMCID: PMC11026939 DOI: 10.1016/j.ebiom.2024.105061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND In children, objective, quantitative tools that determine functional neurodevelopment are scarce and rarely scalable for clinical use. Direct recordings of cortical activity using routinely acquired electroencephalography (EEG) offer reliable measures of brain function. METHODS We developed and validated a measure of functional brain age (FBA) using a residual neural network-based interpretation of the paediatric EEG. In this cross-sectional study, we included 1056 children with typical development ranging in age from 1 month to 18 years. We analysed a 10- to 15-min segment of 18-channel EEG recorded during light sleep (N1 and N2 states). FINDINGS The FBA had a weighted mean absolute error (wMAE) of 0.85 years (95% CI: 0.69-1.02; n = 1056). A two-channel version of the FBA had a wMAE of 1.51 years (95% CI: 1.30-1.73; n = 1056) and was validated on an independent set of EEG recordings (wMAE = 2.27 years, 95% CI: 1.90-2.65; n = 723). Group-level maturational delays were also detected in a small cohort of children with Trisomy 21 (Cohen's d = 0.36, p = 0.028). INTERPRETATION A FBA, based on EEG, is an accurate, practical and scalable automated tool to track brain function maturation throughout childhood with accuracy comparable to widely used physical growth charts. FUNDING This research was supported by the National Health and Medical Research Council, Australia, Helsinki University Diagnostic Center Research Funds, Finnish Academy, Finnish Paediatric Foundation, and Sigrid Juselius Foundation.
Collapse
Affiliation(s)
- Kartik K Iyer
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - James A Roberts
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Michaela Waak
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | | | - Ajay Kevat
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | - Jasneek Chawla
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | - Leena M Haataja
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leena Lauronen
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nathan J Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
5
|
Simon KC, Cadle C, Nakra N, Nagel MC, Malerba P. Age-associated sleep spindle characteristics in Duchenne muscular dystrophy. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae015. [PMID: 38525359 PMCID: PMC10960605 DOI: 10.1093/sleepadvances/zpae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/18/2023] [Indexed: 03/26/2024]
Abstract
Brain oscillations of non-rapid eye movement sleep, including slow oscillations (SO, 0.5-1.5 Hz) and spindles (10-16 Hz), mirror underlying brain maturation across development and are associated with cognition. Hence, age-associated emergence and changes in the electrophysiological properties of these rhythms can lend insight into cortical development, specifically in comparisons between pediatric populations and typically developing peers. We previously evaluated age-associated changes in SOs in male patients with Duchenne muscular dystrophy (DMD), finding a significant age-related decline between 4 and 18 years. While primarily a muscle disorder, male patients with DMD can also have sleep, cognitive, and cortical abnormalities, thought to be driven by altered dystrophin expression in the brain. In this follow-up study, we characterized the age-associated changes in sleep spindles. We found that age-dependent spindle characteristics in patients with DMD, including density, frequency, amplitude, and duration, were consistent with age-associated trends reported in the literature for typically developing controls. Combined with our prior finding of age-associated decline in SOs, our results suggest that SOs, but not spindles, are a candidate intervention target to enhance sleep in patients with DMD.
Collapse
Affiliation(s)
- Katharine C Simon
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Pulmonology Department, Children’s Hospital of Orange County, Orange, CA, USA
| | - Chelsea Cadle
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Neal Nakra
- Pulmonology Department, Children’s Hospital of Orange County, Orange, CA, USA
| | - Marni C Nagel
- Department of Pediatric Psychology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Paola Malerba
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, School of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Castelnovo A, Lividini A, Riedner BA, Avvenuti G, Jones SG, Miano S, Tononi G, Manconi M, Bernardi G. Origin, synchronization, and propagation of sleep slow waves in children. Neuroimage 2023; 274:120133. [PMID: 37094626 DOI: 10.1016/j.neuroimage.2023.120133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
STUDY OBJECTIVES Sleep slow wave activity, as measured using EEG delta power (<4 Hz), undergoes significant changes throughout development, mirroring changes in brain function and anatomy. Yet, age-dependent variations in the characteristics of individual slow waves have not been thoroughly investigated. Here we aimed at characterizing individual slow wave properties such as origin, synchronization, and cortical propagation at the transition between childhood and adulthood. METHODS We analyzed overnight high-density (256 electrodes) EEG recordings of healthy typically developing children (N=21, 10.3±1.5 years old) and young healthy adults (N=18, 31.1±4.4 years old). All recordings were preprocessed to reduce artifacts, and NREM slow waves were detected and characterized using validated algorithms. The threshold for statistical significance was set at p=0.05. RESULTS The slow waves of children were larger and steeper, but less widespread than those of adults. Moreover, they tended to mainly originate from and spread over more posterior brain areas. Relative to those of adults, the slow waves of children also displayed a tendency to more strongly involve and originate from the right than the left hemisphere. The separate analysis of slow waves characterized by high and low synchronization efficiency showed that these waves undergo partially distinct maturation patterns, consistent with their possible dependence on different generation and synchronization mechanisms. CONCLUSIONS Changes in slow wave origin, synchronization, and propagation at the transition between childhood and adulthood are consistent with known modifications in cortico-cortical and subcortico-cortical brain connectivity. In this light, changes in slow-wave properties may provide a valuable yardstick to assess, track, and interpret physiological and pathological development.
Collapse
Affiliation(s)
- Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Althea Lividini
- Epilepsy Center - Sleep Medicine Center, Childhood and Adolescence Neuropsychiatry Unit, ASST SS. Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Brady A Riedner
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA
| | - Giulia Avvenuti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Stephanie G Jones
- Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison(,) Madison, WI, USA
| | - Silvia Miano
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Giulio Tononi
- Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison(,) Madison, WI, USA
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
7
|
Season is related to the slow wave and sigma activity of infants and toddlers. Sleep Med 2022; 100:364-377. [PMID: 36201888 DOI: 10.1016/j.sleep.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE/BACKGROUND Slow wave activity (SWA) and sigma frequency activity (SFA) are hallmarks of NREM sleep EEG and important indicators of neural plasticity, development of the central nervous system, and cognition. However, little is known about the factors that modulate these sleep EEG activities, especially in small children. PATIENTS/METHODS We analyzed the power spectral densities of SWA (1-4 Hz) and SFA range (10-15 Hz) from six EEG derivations of 56 infants (8 months) and 60 toddlers (24 months) during their all-night sleep and during the first and the last half of night sleep. The spectral values were compared between the four seasons. RESULTS In the spring group of infants, compared with the darker seasons, SFA was lower in the centro-occipital EEG derivations during both halves of the night. The SWA findings of the infants were restricted to the last half of the night (SWA2) and frontally, where SWA2 was higher during winter than spring. The toddlers presented less frontal SWA2 during winter compared with autumn. Both age groups showed a reduction in both SWA and SFA towards the last half of the night. CONCLUSIONS The sleep EEG spectral power densities are more often associated with seasons in infants' SFA range. The results might stem from seasonally changing light exposure, but the exact mechanism warrants further study. Moreover, contrary to the adult-like increment of SFA, the SFA at both ages was lower at the last part of the night sleep. This suggests different regulation of spindle activity in infants and toddlers.
Collapse
|
8
|
Castelnovo A, Lividini A, Bernardi G, Pezzoli V, Foderaro G, Ramelli GP, Manconi M, Miano S. Sleep Power Topography in Children with Attention Deficit Hyperactivity Disorder (ADHD). CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9020197. [PMID: 35204918 PMCID: PMC8870029 DOI: 10.3390/children9020197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Recent years saw an increasing interest towards sleep microstructure abnormalities in attention-deficit/hyperactivity disorder (ADHD). However, the existing literature on sleep electroencephalographic (EEG) power in ADHD is still controversial, often based on single electrode recordings, and mainly focused on slow wave activity (SWA) during NREM sleep. This study aimed to systematically investigate sleep power topography in all traditional frequency bands, in all sleep stages and across sleep cycles using high-density EEG (HD-EEG). METHOD Thirty drug-naïve children with ADHD (10.5 ± 2.1 years, 21 male) and 23 typically developing (TD) control participants (mean age: 10.2 ± 1.6 years, 13 male) were included in the current analysis. Signal power topography was computed in classical frequency bands during sleep, contrasted between groups and sleep cycles, and correlated with measures of ADHD severity, cognitive functioning and estimated total sleep time. RESULTS Compared to TD subjects, patients with ADHD consistently displayed a widespread increase in low-frequency activity (between 3 and 10 Hz) during NREM sleep, but not during REM sleep and wake before sleep onset. Such a difference involved a wide centro-posterior cluster of channels in the upper SWA range, in Theta, and low-Alpha. Between-group difference was maximal in sleep stage N3 in the first sleep cycle, and positively correlated with average total sleep time. CONCLUSIONS These results support the concept that children with ADHD, compared to TD peers, have a higher sleep pressure and altered sleep homeostasis, which possibly interfere with (and delay) cortical maturation.
Collapse
Affiliation(s)
- Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3011 Bern, Switzerland
- Correspondence: (A.C.); (S.M.)
| | - Althea Lividini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy;
| | - Valdo Pezzoli
- Department of Pediatrics, Ospedale Civico, 6900 Lugano, Switzerland; (V.P.); (G.F.)
| | - Giuseppe Foderaro
- Department of Pediatrics, Ospedale Civico, 6900 Lugano, Switzerland; (V.P.); (G.F.)
| | - Gian Paolo Ramelli
- Department of Pediatrics, San Giovanni Hospital, 6500 Bellinzona, Switzerland;
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Neurology, University Hospital, Inselspital, 3010 Bern, Switzerland
| | - Silvia Miano
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, 6900 Lugano, Switzerland;
- Correspondence: (A.C.); (S.M.)
| |
Collapse
|
9
|
Bondopadhyay U, Diaz-Orueta U, Coogan AN. A Systematic Review of Sleep and Circadian Rhythms in Children with Attention Deficit Hyperactivity Disorder. J Atten Disord 2022; 26:149-224. [PMID: 33402013 DOI: 10.1177/1087054720978556] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Children and adults with ADHD often report sleep disturbances that may form part of the etiology and/or symptomatology of ADHD. We review the evidence for sleep changes in children with ADHD. METHODS Systematic review with narrative synthesis assessing sleep and circadian function in children aged 5 to 13 years old with a diagnosis of ADHD. RESULTS 148 studies were included for review, incorporating data from 42,353 children. We found that sleep disturbances in ADHD are common and that they may worsen behavioral outcomes; moreover, sleep interventions may improve ADHD symptoms, and pharmacotherapy for ADHD may impact sleep. CONCLUSION Sleep disturbance may represent a clinically important feature of ADHD in children, which might be therapeutically targeted in a useful way. There are a number of important gaps in the literature. We set out a manifesto for future research in the area of sleep, circadian rhythms, and ADHD.
Collapse
Affiliation(s)
- Upasana Bondopadhyay
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth
| | - Unai Diaz-Orueta
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth
| |
Collapse
|
10
|
Page J, Wakschlag LS, Norton ES. Nonrapid eye movement sleep characteristics and relations with motor, memory, and cognitive ability from infancy to preadolescence. Dev Psychobiol 2021; 63:e22202. [PMID: 34813099 PMCID: PMC8898567 DOI: 10.1002/dev.22202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
Sleep plays a critical role in neural neurodevelopment. Hallmarks of sleep reflected in the electroencephalogram during nonrapid eye movement (NREM) sleep are associated with learning processes, cognitive ability, memory, and motor functioning. Research in adults is well-established; however, the role of NREM sleep in childhood is less clear. Growing evidence suggests the importance of two NREM sleep features: slow-wave activity and sleep spindles. These features may be critical for understanding maturational change and the functional role of sleep during development. Here, we review the literature on NREM sleep from infancy to preadolescence to provide insight into the network dynamics of the developing brain. The reviewed findings show distinct relations between topographical and maturational aspects of slow waves and sleep spindles; however, the direction and consistency of these relationships vary, and associations with cognitive ability remain unclear. Future research investigating the role of NREM sleep and development would benefit from longitudinal approaches, increased control for circadian and homeostatic influences, and in early childhood, studies recording daytime naps and overnight sleep to yield increased precision for detecting age-related change. Such evidence could help explicate the role of NREM sleep and provide putative physiological markers of neurodevelopment.
Collapse
Affiliation(s)
- Jessica Page
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
| | - Lauren S. Wakschlag
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| | - Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| |
Collapse
|
11
|
Reicher V, Bunford N, Kis A, Carreiro C, Csibra B, Kratz L, Gácsi M. Developmental features of sleep electrophysiology in family dogs. Sci Rep 2021; 11:22760. [PMID: 34815446 PMCID: PMC8611005 DOI: 10.1038/s41598-021-02117-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Age-related differences in dog sleep and the age at which dogs reach adulthood as indexed by sleep electrophysiology are unknown. We assessed, in (1) a Juvenile sample (n = 60) of 2-14-month-old dogs (weight range: 4-68 kg), associations between age, sleep macrostructure, and non-rapid eye movement (NREM) EEG power spectrum, whether weight moderates associations, and (2) an extended sample (n = 91) of 2-30-months-old dogs, when sleep parameters stabilise. In Juvenile dogs, age was positively associated with time in drowsiness between 2 and 8 months, and negatively with time in rapid eye movement (REM) sleep between 2 and 6 months. Age was negatively associated with delta and positively with theta and alpha power activity, between 8 and 14 months. Older dogs exhibited greater sigma and beta power activity. Larger, > 8-month-old dogs had less delta and more alpha and beta activity. In extended sample, descriptive data suggest age-related power spectrum differences do not stabilise by 14 months. Drowsiness, REM, and delta power findings are consistent with prior results. Sleep electrophysiology is a promising index of dog neurodevelopment; some parameters stabilise in adolescence and some later than one year. Determination of the effect of weight and timing of power spectrum stabilisation needs further inquiry. The dog central nervous system is not fully mature by 12 months of age.
Collapse
Affiliation(s)
- Vivien Reicher
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary.
| | - Nóra Bunford
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Developmental and Translational Neuroscience Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Anna Kis
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Cecília Carreiro
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Barbara Csibra
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Lorraine Kratz
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Márta Gácsi
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| |
Collapse
|
12
|
Ventura S, Mathieson SR, O'Toole JM, Livingstone V, Ryan MA, Boylan GB. EEG sleep macrostructure and sleep spindles in early infancy. Sleep 2021; 45:6424963. [PMID: 34755881 PMCID: PMC8754499 DOI: 10.1093/sleep/zsab262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Study Objectives Sleep features in infancy are potential biomarkers for brain maturation but poorly characterized. We describe normative values for sleep macrostructure and sleep spindles at 4–5 months of age. Methods Healthy term infants were recruited at birth and had daytime sleep electroencephalograms (EEGs) at 4–5 months. Sleep staging was performed and five features were analyzed. Sleep spindles were annotated and seven quantitative features were extracted. Features were analyzed across sex, recording time (am/pm), infant age, and from first to second sleep cycles. Results We analyzed sleep recordings from 91 infants, 41% females. Median (interquartile range [IQR]) macrostructure results: sleep duration 49.0 (37.8–72.0) min (n = 77); first sleep cycle duration 42.8 (37.0–51.4) min; rapid eye movement (REM) percentage 17.4 (9.5–27.7)% (n = 68); latency to REM 36.0 (30.5–41.1) min (n = 66). First cycle median (IQR) values for spindle features: number 241.0 (193.0–286.5), density 6.6 (5.7–8.0) spindles/min (n = 77); mean frequency 13.0 (12.8–13.3) Hz, mean duration 2.9 (2.6–3.6) s, spectral power 7.8 (4.7–11.4) µV2, brain symmetry index 0.20 (0.16–0.29), synchrony 59.5 (53.2–63.8)% (n = 91). In males, spindle spectral power (µV2) was 24.5% lower (p = .032) and brain symmetry index 24.2% higher than females (p = .011) when controlling for gestational and postnatal age and timing of the nap. We found no other significant associations between studied sleep features and sex, recording time (am/pm), or age. Spectral power decreased (p < .001) on the second cycle. Conclusion This normative data may be useful for comparison with future studies of sleep dysfunction and atypical neurodevelopment in infancy. Clinical Trial Registration: BABY SMART (Study of Massage Therapy, Sleep And neurodevelopMenT) (BabySMART) URL: https://clinicaltrials.gov/ct2/show/results/NCT03381027?view=results. ClinicalTrials.gov Identifier: NCT03381027
Collapse
Affiliation(s)
- Soraia Ventura
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Sean R Mathieson
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - John M O'Toole
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Vicki Livingstone
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Mary-Anne Ryan
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Geraldine B Boylan
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| |
Collapse
|
13
|
Subjective and Electroencephalographic Sleep Parameters in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review. J Clin Med 2021; 10:jcm10173893. [PMID: 34501341 PMCID: PMC8432113 DOI: 10.3390/jcm10173893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Sleep problems have commonly manifested in children and adolescents with autism spectrum disorder (ASD) with a complex and multifactorial interaction between clinical and etiological components. These disorders are associated with functional impairment, and provoke significant physical and mental affliction. The purpose of this study is to update the existing literature about objective and subjective sleep parameters in children and adolescents with ASD, extrapolating information from polysomnography or sleep electroencephalography, and sleep related questionnaires. Methods: We have conducted a systematic review of case-control studies on this topic, performing a web-based search on PubMed, Scopus and the Web of Science databases according to the Preferred Reporting items for Systematic Review and Meta-analyses (PRISMA) guidelines. Results: Data collected from 20 survey result reports showed that children and adolescents with ASD experienced a higher rate of sleep abnormalities than in typically developing children. The macrostructural sleep parameters that were consistent with subjective parent reported measures unveil a greater percentage of nighttime signs of insomnia. Sleep microstructure patterns, in addition, pointed towards the bidirectional relationship between brain dysfunctions and sleep problems in children with ASD. Conclusions: Today’s literature acknowledges that objective and subjective sleep difficulties are more often recognized in individuals with ASD, so clinicians should assess sleep quality in the ASD clinical population, taking into consideration the potential implications on treatment strategies. It would be worthwhile in future studies to examine how factors, such as age, cognitive level or ASD severity could be related to ASD sleep abnormalities. Future research should directly assess whether sleep alterations could represent a specific marker for atypical brain development in ASD.
Collapse
|
14
|
Satomaa AL, Mäkelä T, Saarenpää-Heikkilä O, Kylliäinen A, Huupponen E, Himanen SL. Slow-wave activity and sigma activities are associated with psychomotor development at 8 months of age. Sleep 2020; 43:5813737. [PMID: 32227230 DOI: 10.1093/sleep/zsaa061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/09/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES The electrophysiological properties of non-rapid eye movement sleep (NREM) EEG are homeostatically modulated on global and local use-dependent levels. Furthermore, the local NREM quality reflects age-dependent brain maturation and individual, age-independent, and psychomotor potential. Cortical maturation and its electrophysiological marker, Slow-wave activity (SWA), as well as sleep spindles are known to change in topography and quality during the early years of life, but their associations with psychomotor development in infants are unknown. Therefore, we aimed to evaluate the local properties of SWA and spindles (sigma power) and ascertain whether they correlate with psychomotor development in 8-month-old infants. METHODS Ambulatory polysomnographies were recorded in 56 infants at 8 months of age to calculate the local SWA and sigma powers. The associations between the SWA and sigma powers and psychomotor development (Bayley-III) were examined in 36 of these infants. RESULTS In both hemispheres, the highest SWA and sigma powers were found occipitally and centrally, respectively, with higher powers in the right hemisphere than in the left. The Bayley-III correlated with local SWA and sigma powers: the occipital SWA and centro-occipital sigma correlated with cognitive scales, and the frontal and occipital SWA and centro-occipital sigma correlated with language and fine motor scales. Most of the correlations were unilateral. CONCLUSIONS In 8-month-old infants, the NREM sleep quality shows local differences that are mostly attributable to the topical phase of brain maturation. The local NREM parameters correlate with psychomotor development.
Collapse
Affiliation(s)
- Anna-Liisa Satomaa
- Department of Clinical Neurophysiology, Tampere University Hospital, Medical Imaging Centre and Hospital Pharmacy, Pirkanmaa Hospital District, Tampere, Finland
| | - Tiina Mäkelä
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Outi Saarenpää-Heikkilä
- Center for Child Health Research, Tampere University, Faculty of Medicine and Health Technology and Tampere University Hospital, Tampere, Finland
| | - Anneli Kylliäinen
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Eero Huupponen
- Department of Clinical Neurophysiology, Tampere University Hospital, Medical Imaging Centre and Hospital Pharmacy, Pirkanmaa Hospital District, Tampere, Finland
| | - Sari-Leena Himanen
- Department of Clinical Neurophysiology, Tampere University Hospital, Medical Imaging Centre and Hospital Pharmacy, Pirkanmaa Hospital District, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
15
|
Cook IA, Wilson AC, Peters JM, Goyal MN, Bebin EM, Northrup H, Krueger D, Leuchter AF, Sahin M. EEG Spectral Features in Sleep of Autism Spectrum Disorders in Children with Tuberous Sclerosis Complex. J Autism Dev Disord 2020; 50:916-923. [PMID: 31811616 DOI: 10.1007/s10803-019-04326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tuberous sclerosis complex (TSC) is a multisystem disorder with increased prevalence of autism spectrum disorders (ASDs). This project aimed to characterize the autism phenotype of TSC and identify biomarkers of risk for ASD. Because abnormalities of EEG during sleep are tied to neurodevelopment in children, we compared electroencephalographic (EEG) measures during Stage II sleep in TSC children who either did (ASD+) or did not (ASD-) exhibit symptoms of ASD over 36-month follow up. Relative alpha band power was significantly elevated in the ASD+ group at 24 months of age with smaller differences at younger ages, suggesting this may arise from differences in brain development. These findings suggest that EEG features could enhance the detection of risk for ASD.
Collapse
Affiliation(s)
- Ian A Cook
- Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, #57-456, Los Angeles, CA, 90024, USA.,Department of Psychiatry & Biobehavioral Sciences, UCLA David Geffen School of Medicine, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.,Department of Bioengineering, UCLA Henry Samueli School of Engineering at Applied Science, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Andrew C Wilson
- Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, #57-456, Los Angeles, CA, 90024, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Monisha N Goyal
- Department of Neurology, University of Alabama at Birmingham, 1600 7th Avenue S, Birmingham, AL, 35233, USA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, 1600 7th Avenue S, Birmingham, AL, 35233, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, 1941 East Road, 3.126 BBSB, Houston, TX, 77054, USA
| | - Darcy Krueger
- Department of Neurology and Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7004, Cincinnati, OH, 45229, USA
| | - Andrew F Leuchter
- Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, #57-456, Los Angeles, CA, 90024, USA. .,Department of Psychiatry & Biobehavioral Sciences, UCLA David Geffen School of Medicine, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.
| | - Mustafa Sahin
- Department of Neurology, Harvard Medical School, Harvard University, 300 Longwood Avenue, Boston, MA, 02115, USA.,Boston Children's Hospital, F.M. Kirby Neurobiology Center, 300 Longwood Avenue, Boston, MA, 02115, USA
| | | |
Collapse
|
16
|
Abstract
The human need for sleep is universal and unquestioned; however, humans vary in their sleep needs according to age, individual differences, as well as cultural and social norms and practices. Therefore, what is “normal” in infant sleep and the development of sleep architecture in humans is highly dependent on biological and sociocultural variables as well as socially constructed assumptions about what infant sleep “should” look like. This paper uses a multidisciplinary approach to review papers from fields including pediatrics, anthropology, psychology, medicine, and sociology to understand “normal” infant sleep. Because human culture and behavioral practice changes much more quickly than evolved human biology, and because human evolutionary history occurred in the context of breastfeeding and cosleeping, new work in the field of infant sleep architecture development would benefit from a multidisciplinary approach. To come to a consensus about what is “normal” infant sleep, researchers must agree on underlying basic assumptions of infant sleep from which to ask question and interpret findings.
Collapse
Affiliation(s)
- Elaine S. Barry
- Human Development and Family Studies, Penn State Fayette, The Eberly Campus, Lemont Furnace, PA, USA
| |
Collapse
|
17
|
Page J, Lustenberger C, Frӧhlich F. Nonrapid eye movement sleep and risk for autism spectrum disorder in early development: A topographical electroencephalogram pilot study. Brain Behav 2020; 10:e01557. [PMID: 32037734 PMCID: PMC7066345 DOI: 10.1002/brb3.1557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/10/2019] [Accepted: 01/03/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder that emerges in the beginning years of life (12-48 months). Yet, an early diagnosis of ASD is challenging as it relies on the consistent presence of behavioral symptomatology, and thus, many children are diagnosed later in development, which prevents early interventions that could benefit cognitive and social outcomes. As a result, there is growing interest in detecting early brain markers of ASD, such as in the electroencephalogram (EEG) to elucidate divergence in early development. Here, we examine the EEG of nonrapid eye movement (NREM) sleep in the transition from infancy to toddlerhood, a period of rapid development and pronounced changes in early brain function. NREM features exhibit clear developmental trajectories, are related to social and cognitive development, and may be altered in neurodevelopmental disorders. Yet, spectral features of NREM sleep are poorly understood in infants/toddlers with or at high risk for ASD. METHODS The present pilot study is the first to examine NREM sleep in 13- to 30-month-olds with ASD in comparison with age-matched healthy controls (TD). EEG was recorded during a daytime nap with high-density array EEG. RESULTS We found topographically distinct decreased fast theta oscillations (5-7.25 Hz), decreased fast sigma (15-16 Hz), and increased beta oscillations (20-25 Hz) in ASD compared to TD. CONCLUSION These findings suggest a possible functional role of NREM sleep during this important developmental period and provide support for NREM sleep to be a potential early marker for ASD.
Collapse
Affiliation(s)
- Jessica Page
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois
| | - Caroline Lustenberger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Health Sciences and Technology, Institute of Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Flavio Frӧhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Gorgoni M, Scarpelli S, Reda F, De Gennaro L. Sleep EEG oscillations in neurodevelopmental disorders without intellectual disabilities. Sleep Med Rev 2020; 49:101224. [PMID: 31731102 DOI: 10.1016/j.smrv.2019.101224] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/29/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
|
19
|
Gorgoni M, D'Atri A, Scarpelli S, Reda F, De Gennaro L. Sleep electroencephalography and brain maturation: developmental trajectories and the relation with cognitive functioning. Sleep Med 2020; 66:33-50. [PMID: 31786427 DOI: 10.1016/j.sleep.2019.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M Gorgoni
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - A D'Atri
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - S Scarpelli
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - F Reda
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - L De Gennaro
- Department of Psychology, University of Rome "Sapienza", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
20
|
Gilad R, Shapiro C. Sleep and Development. Health (London) 2020. [DOI: 10.4236/health.2020.126049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Scarpelli S, Gorgoni M, D'Atri A, Reda F, De Gennaro L. Advances in Understanding the Relationship between Sleep and Attention Deficit-Hyperactivity Disorder (ADHD). J Clin Med 2019; 8:E1737. [PMID: 31635095 PMCID: PMC6832299 DOI: 10.3390/jcm8101737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 02/05/2023] Open
Abstract
Starting from the consolidated relationship between sleep and cognition, we reviewed the available literature on the association between Attention Deficit-Hyperactivity Disorder (ADHD) and sleep. This review analyzes the macrostructural and microstructural sleep features, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria (PRISMA). We included the polysomnographic studies published in the last 15 years. The results of macrostructural parameters are mixed. Almost half of the 18 selected investigations did not find differences between sleep architecture of children with ADHD and controls. Five studies observed that children with ADHD show a longer Rapid Eye Movement (REM) sleep duration than controls. Eight studies included microstructural measures. Remarkable alterations in sleep microstructure of ADHD are related to slow wave activity (SWA) and theta oscillations, respectively, during Non-REM (NREM) and REM sleep. Specifically, some studies found higher SWA in the ADHD group than controls. Similarly, higher theta activity appears to be detrimental for memory performance and inhibitory control in ADHD. These patterns could be interpreted as a maturational delay in ADHD. Also, the increased amount of these activities would be consistent with the hypothesis that the poor sleep could imply a chronic sleep deprivation in children with ADHD, which in turn could affect their cognitive functioning.
Collapse
Affiliation(s)
- Serena Scarpelli
- Department of Psychology, University of Rome "Sapienza", Rome 00185, Italy.
| | - Maurizio Gorgoni
- Department of Psychology, University of Rome "Sapienza", Rome 00185, Italy.
| | - Aurora D'Atri
- Department of Psychology, University of Rome "Sapienza", Rome 00185, Italy.
| | - Flaminia Reda
- Department of Psychology, University of Rome "Sapienza", Rome 00185, Italy.
| | - Luigi De Gennaro
- Department of Psychology, University of Rome "Sapienza", Rome 00185, Italy.
| |
Collapse
|
22
|
Scarpelli S, Bartolacci C, D'Atri A, Gorgoni M, De Gennaro L. Mental Sleep Activity and Disturbing Dreams in the Lifespan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3658. [PMID: 31569467 PMCID: PMC6801786 DOI: 10.3390/ijerph16193658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Abstract
Sleep significantly changes across the lifespan, and several studies underline its crucial role in cognitive functioning. Similarly, mental activity during sleep tends to covary with age. This review aims to analyze the characteristics of dreaming and disturbing dreams at different age brackets. On the one hand, dreams may be considered an expression of brain maturation and cognitive development, showing relations with memory and visuo-spatial abilities. Some investigations reveal that specific electrophysiological patterns, such as frontal theta oscillations, underlie dreams during sleep, as well as episodic memories in the waking state, both in young and older adults. On the other hand, considering the role of dreaming in emotional processing and regulation, the available literature suggests that mental sleep activity could have a beneficial role when stressful events occur at different age ranges. We highlight that nightmares and bad dreams might represent an attempt to cope the adverse events, and the degrees of cognitive-brain maturation could impact on these mechanisms across the lifespan. Future investigations are necessary to clarify these relations. Clinical protocols could be designed to improve cognitive functioning and emotional regulation by modifying the dream contents or the ability to recall/non-recall them.
Collapse
Affiliation(s)
- Serena Scarpelli
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Chiara Bartolacci
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Aurora D'Atri
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Maurizio Gorgoni
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Luigi De Gennaro
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
- IRCCS Santa Lucia Foundation, 00142 Rome, Italy.
| |
Collapse
|
23
|
Brain maturation in the first 3 months of life, measured by electroencephalogram: A comparison between preterm and term-born infants. Clin Neurophysiol 2019; 130:1859-1868. [PMID: 31401493 DOI: 10.1016/j.clinph.2019.06.230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/02/2019] [Accepted: 06/28/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Preterm infants are at risk for altered brain maturation resulting in neurodevelopmental impairments. Topographical analysis of high-density electroencephalogram during sleep matches underlying brain maturation. Using such an EEG mapping approach could identify preterm infants at risk early in life. METHODS 20 preterm (gestational age < 32 weeks) and 20 term-born infants (gestational age > 37 weeks) were recorded by 18-channel daytime sleep-EEG at term age (GA 40 weeks for preterm and 2-3 days after birth for term infants) and 3 months (corrected age for preterm infants). RESULTS Preterm infant's power spectrum at term age is immature, leveling off with term infants at 3 months of age. Topographical distribution of maximal power density however, reveals qualitative differences between the groups until 3 months of age. Preterm infants exhibit more temporal than central activation at term age and more occipital than central activation at 3 months of age. Moreover, being less mature at term age predicts being less mature at 3 months of age. CONCLUSION Topographical analysis of sleep EEG reveals changes in brain maturation between term and preterm infants early in life. SIGNIFICANCE In future, automated analysis tools using topographical power distribution could help identify preterm infants at risk early in life.
Collapse
|
24
|
Page J, Lustenberger C, Frӧhlich F. Social, motor, and cognitive development through the lens of sleep network dynamics in infants and toddlers between 12 and 30 months of age. Sleep 2018; 41:4835154. [PMID: 29506060 PMCID: PMC6018907 DOI: 10.1093/sleep/zsy024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/15/2017] [Indexed: 11/13/2022] Open
Abstract
Widespread change in behavior and the underlying brain network substrate is a hallmark of early development. Sleep plays a fundamental role in this process. Both slow waves and spindles are key features of nonrapid eye movement sleep (NREM) that exhibit pronounced developmental trajectories from infancy to adulthood. Yet, these prominent features of NREM sleep are poorly understood in infants and toddlers in the age range of 12 to 30 months. Moreover, it is unknown how network dynamics of NREM sleep are associated with outcomes of early development. Addressing this gap in our understanding of sleep during development will enable the subsequent study of pathological changes in neurodevelopmental disorders. The aim of the current study was to characterize the sleep topography with high-density electroencephalography in this age group. We found that δ, θ, and β oscillations and sleep spindles exhibited clear developmental changes. Low δ and high θ oscillations correlated with motor, language, and social skills, independent of age. These findings suggest an important role of network dynamics of NREM sleep in cortical maturation and the associated development of skills during this important developmental period.
Collapse
Affiliation(s)
- Jessica Page
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Caroline Lustenberger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Institute of Robotics and Intelligent Systems, Mobile Health Systems Lab, ETH Zurich, Zurich, Switzerland
| | - Flavio Frӧhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
25
|
Satomaa AL, Saarenpää-Heikkilä O, Huupponen E, Kirjavainen T, Heinonen J, Himanen SL. Local changes in computational non-rapid eye movement sleep depth in infants. Clin Neurophysiol 2018; 129:448-454. [PMID: 29304420 DOI: 10.1016/j.clinph.2017.09.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/22/2017] [Accepted: 09/24/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Deep NREM sleep and its hallmark EEG phenomenon slow wave activity (SWA) are under homeostatic control in adults. SWA is also locally regulated as it increases in the brain areas that have been used intensively. Moreover, in children, SWA is a marker of cortical maturation. In the present study the local properties of NREM sleep depth were evaluated using the quantitative mean frequency method. We aimed to study if age is related to NREM sleep depth in young infants. In addition, we studied if young infants have local differences in their NREM sleep. METHODS Ambulatory over-night polysomnographies were recorded in 59 healthy and full-term infants at the age of one month. The infants were divided into two age groups (<44 weeks and ≥44 weeks) to allow maturational evaluations. RESULTS The quantitative sleep depth analysis showed differences between the age groups. In addition, there were local sleep depth differences within the age groups. CONCLUSIONS The sleep depth change with age is most likely related to cortical maturation, whereas the local sleep depth gradients might also reflect the use-dependent properties of SWA. SIGNIFICANCE The results support the idea that young infants have frontal cortical processing.
Collapse
Affiliation(s)
- Anna-Liisa Satomaa
- Department of Clinical Neurophysiology, Tampere University Hospital, Medical Imaging Centre and Hospital Pharmacy, Pirkanmaa Hospital District, Tampere, Finland.
| | | | - Eero Huupponen
- Department of Clinical Neurophysiology, Tampere University Hospital, Medical Imaging Centre and Hospital Pharmacy, Pirkanmaa Hospital District, Tampere, Finland
| | - Turkka Kirjavainen
- Helsinki University Hospital, Department of Pediatrics, Helsinki, Finland
| | - Juhani Heinonen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Sari-Leena Himanen
- Department of Clinical Neurophysiology, Tampere University Hospital, Medical Imaging Centre and Hospital Pharmacy, Pirkanmaa Hospital District, Tampere, Finland; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
26
|
Abstract
Brain and sleep maturation covary across different stages of life. At the same time, dream generation and dream recall are intrinsically dependent on the development of neural systems. The aim of this paper is to review the existing studies about dreaming in infancy, adulthood, and the elderly stage of life, assessing whether dream mentation may reflect changes of the underlying cerebral activity and cognitive processes. It should be mentioned that some evidence from childhood investigations, albeit still weak and contrasting, revealed a certain correlation between cognitive skills and specific features of dream reports. In this respect, infantile amnesia, confabulatory reports, dream-reality discerning, and limitation in language production and emotional comprehension should be considered as important confounding factors. Differently, growing evidence in adults suggests that the neurophysiological mechanisms underlying the encoding and retrieval of episodic memories may remain the same across different states of consciousness. More directly, some studies on adults point to shared neural mechanisms between waking cognition and corresponding dream features. A general decline in the dream recall frequency is commonly reported in the elderly, and it is explained in terms of a diminished interest in dreaming and in its emotional salience. Although empirical evidence is not yet available, an alternative hypothesis associates this reduction to an age-related cognitive decline. The state of the art of the existing knowledge is partially due to the variety of methods used to investigate dream experience. Very few studies in elderly and no investigations in childhood have been performed to understand whether dream recall is related to specific electrophysiological pattern at different ages. Most of all, the lack of longitudinal psychophysiological studies seems to be the main issue. As a main message, we suggest that future longitudinal studies should collect dream reports upon awakening from different sleep states and include neurobiological measures with cognitive performances.
Collapse
Affiliation(s)
| | - Serena Scarpelli
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - Chiara Bartolacci
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
27
|
Rossi Sebastiano D, Visani E, Panzica F, Sattin D, Bersano A, Nigri A, Ferraro S, Parati E, Leonardi M, Franceschetti S. Sleep patterns associated with the severity of impairment in a large cohort of patients with chronic disorders of consciousness. Clin Neurophysiol 2017; 129:687-693. [PMID: 29307451 DOI: 10.1016/j.clinph.2017.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/21/2017] [Accepted: 12/02/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We assessed sleep patterns in 85 patients with chronic disorders of consciousness (DOC) in order to reveal any relationship with the degree of the impairment. METHODS Nocturnal polysomnography (PSG) was scored in patients classified as being in an unresponsive wakefulness syndrome/vegetative state (UWS/VS; n = 49) or a minimally conscious state (MCS; n = 36) in accordance with the rules of the American Academy of Sleep Medicine. The PSG data in the two diagnostic groups were compared, and the PSG parameters associated with the degree of impairment were analysed. RESULTS In 19/49 UWS/VS patients, signal attenuation was the only EEG pattern detectable in sleep. Non-REM 2 (NREM2) and slow-wave sleep (SWS) (but not REM) stages were more frequent in the MCS patients. The presence of SWS was the most appropriate factor for classifying patients as UWS/VS or MCS, and the duration of SWS was the main factor that significantly correlated with revised Coma Recovery Scale scores. CONCLUSION The presence of NREM sleep (namely SWS) reflects better preservation of the circuitry and structures needed to sustain this stage of sleep in DOC patients. SIGNIFICANCE PSG is a simple and effective technique, and sleep patterns may reflect the degree of impairment in chronic DOC patients.
Collapse
Affiliation(s)
- Davide Rossi Sebastiano
- Neurophysiopathology Department and Epilepsy Centre, Neurological Institute "Carlo Besta", IRCCS Foundation, Milan, Italy.
| | - Elisa Visani
- Neurophysiopathology Department and Epilepsy Centre, Neurological Institute "Carlo Besta", IRCCS Foundation, Milan, Italy
| | - Ferruccio Panzica
- Neurophysiopathology Department and Epilepsy Centre, Neurological Institute "Carlo Besta", IRCCS Foundation, Milan, Italy
| | - Davide Sattin
- Neurology, Public Health, Disability Unit and Coma Research Centre, Neurological Institute "Carlo Besta", IRCCS Foundation, Milan, Italy
| | - Anna Bersano
- Cerebrovascular Disease Unit, Neurological Institute "Carlo Besta", IRCCS Foundation, Milan, Italy
| | - Anna Nigri
- Neuroradiology Department, Neurological Institute "Carlo Besta", IRCCS Foundation, Milan, Italy
| | - Stefania Ferraro
- Neuroradiology Department, Neurological Institute "Carlo Besta", IRCCS Foundation, Milan, Italy
| | - Eugenio Parati
- Cerebrovascular Disease Unit, Neurological Institute "Carlo Besta", IRCCS Foundation, Milan, Italy
| | - Matilde Leonardi
- Neurology, Public Health, Disability Unit and Coma Research Centre, Neurological Institute "Carlo Besta", IRCCS Foundation, Milan, Italy
| | - Silvana Franceschetti
- Neurophysiopathology Department and Epilepsy Centre, Neurological Institute "Carlo Besta", IRCCS Foundation, Milan, Italy
| |
Collapse
|
28
|
D'Atri A, Novelli L, Ferrara M, Bruni O, De Gennaro L. Different maturational changes of fast and slow sleep spindles in the first four years of life. Sleep Med 2017; 42:73-82. [PMID: 29458750 DOI: 10.1016/j.sleep.2017.11.1138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVE/BACKGROUND Massive changes in brain morphology and function in the first years of life reveal a postero-anterior trajectory of cortical maturation accompanied by regional modifications of NREM sleep. One of the most sensible marker of this maturation process is represented by electroencephalographic (EEG) activity within the frequency range of sleep spindles. However, direct evidence that these changes actually reflect maturational modifications of fast and slow spindles still lacks. Our study aimed at answering the following questions: 1. Do cortical changes at 11.50 Hz frequency correspond to slow spindles? 2. Do fast and slow spindles show different age trajectories and different topographical distributions? 3. Do changes in peak frequency explain age changes of slow and fast spindles? PATIENTS/METHODS We measured the antero-posterior changes of slow and fast spindles in the first 60 min of nightly sleep of 39 infants and children (0-48 mo.). RESULTS We found that (A) changes of slow spindles from birth to childhood mostly affect frontal areas (B) variations of fast and slow spindles across age groups go in opposite direction, the latter progressively increasing across ages; (C) this process is not merely reducible to changes of spindle frequency. CONCLUSIONS As a main finding, our cross-sectional study shows that the first form of mature spindle (i.e., corresponding to the adult phasic event of NREM sleep) is marked by the emergence of slow spindles on anterior regions around the age of 12 months.
Collapse
Affiliation(s)
- Aurora D'Atri
- Department of Psychology, University of Rome "Sapienza", 00185, Rome, Italy.
| | - Luana Novelli
- Department of Psychology, University of Rome "Sapienza", 00185, Rome, Italy.
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, University of Rome "Sapienza", 00185, Rome, Italy.
| | - Luigi De Gennaro
- Department of Psychology, University of Rome "Sapienza", 00185, Rome, Italy.
| |
Collapse
|
29
|
Olbrich E, Rusterholz T, LeBourgeois MK, Achermann P. Developmental Changes in Sleep Oscillations during Early Childhood. Neural Plast 2017; 2017:6160959. [PMID: 28845310 PMCID: PMC5563422 DOI: 10.1155/2017/6160959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/14/2017] [Indexed: 12/02/2022] Open
Abstract
Although quantitative analysis of the sleep electroencephalogram (EEG) has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n = 8; 3 males) at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., "ultrafast" spindle-like oscillations, theta oscillation incidence/frequency) also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function.
Collapse
Affiliation(s)
- Eckehard Olbrich
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | - Thomas Rusterholz
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Monique K. LeBourgeois
- Sleep and Development Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|