1
|
Li L, Xu X, Lv K, Zheng G, Wang H, Chen S, Huang L, Liu Y, Zhang Y, Tang Z, Zhang L, Wang J, Qiao J, Li H, Wang X, Yao G, Fang C. Asebogenin suppresses thrombus formation via inhibition of Syk phosphorylation. Br J Pharmacol 2023; 180:287-307. [PMID: 36166754 DOI: 10.1111/bph.15964] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/24/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Thrombosis is a major cause of morbidity and mortality worldwide. Platelet activation by exposed collagen through glycoprotein VI (GPVI) and formation of neutrophil extracellular traps (NETs) are critical pathogenic factors for arterial and venous thrombosis. Both events are regulated by spleen tyrosine kinase (Syk)-mediated signalling events. Asebogenin is a dihydrochalcone whose pharmacological effects remain largely unknown. This study aims to investigate the antithrombotic effects of asebogenin and the underlying molecular mechanisms. EXPERIMENTAL APPROACH Platelet aggregation was assessed using an aggregometer. Platelet P-selectin exposure, integrin activation and calcium mobilization were determined by flow cytometry. NETs formation was assessed by SYTOX Green staining and immunohistochemistry. Quantitative phosphoproteomics, microscale thermophoresis, in vitro kinase assay and molecular docking combined with dynamics simulation were performed to characterize the targets of asebogenin. The in vivo effects of asebogenin on arterial thrombosis were investigated using FeCl3 -induced and laser-induced injury models, whereas those of venous thrombosis were induced by stenosis of the inferior vena cava. KEY RESULTS Asebogenin inhibited a series of GPVI-induced platelet responses and suppressed NETs formation induced by proinflammatory stimuli. Mechanistically, asebogenin directly interfered with the phosphorylation of Syk at Tyr525/526, which is important for its activation. Further, asebogenin suppressed arterial thrombosis demonstrated by decreased platelet accumulation and fibrin generation and attenuated venous thrombosis determined by reduced neutrophil accumulation and NETs formation, without increasing bleeding risk. CONCLUSION AND IMPLICATIONS Asebogenin exhibits potent antithrombotic effects by targeting Syk and is a potential lead compound for the development of efficient and safe antithrombotic agents.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Keyu Lv
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lang Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Liu
- DeepKinase Biotechnologies Ltd., Beijing, China
| | | | - Zhaoming Tang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lili Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory of Oral and Maxillofacial Development and Regeneration of Hubei Province, Wuhan, Hubei, China
| | - Jianlin Qiao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Biomedical Research Institute, School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Biomedical Research Institute, School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
2
|
Newport E, Pedrosa AR, Lees D, Dukinfield M, Carter E, Gomez-Escudero J, Casado P, Rajeeve V, Reynolds LE, R Cutillas P, Duffy SW, De Luxán Delgado B, Hodivala-Dilke K. Elucidating the role of the kinase activity of endothelial cell focal adhesion kinase in angiocrine signalling and tumour growth. J Pathol 2022; 256:235-247. [PMID: 34743335 DOI: 10.1002/path.5833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022]
Abstract
A common limitation of cancer treatments is chemotherapy resistance. We have previously identified that endothelial cell (EC)-specific deletion of focal adhesion kinase (FAK) sensitises tumour cells to DNA-damaging therapies, reducing tumour growth in mice. The present study addressed the kinase activity dependency of EC FAK sensitisation to the DNA-damaging chemotherapeutic drug, doxorubicin. FAK is recognised as a therapeutic target in tumour cells, leading to the development of a range of inhibitors, the majority being ATP competitive kinase inhibitors. We demonstrate that inactivation of EC FAK kinase domain (kinase dead; EC FAK-KD) in established subcutaneous B16F0 tumours improves melanoma cell sensitisation to doxorubicin. Doxorubicin treatment in EC FAK-KD mice reduced the percentage change in exponential B16F0 tumour growth further than in wild-type mice. There was no difference in tumour blood vessel numbers, vessel perfusion or doxorubicin delivery between genotypes, suggesting a possible angiocrine effect on the regulation of tumour growth. Doxorubicin reduced perivascular malignant cell proliferation, while enhancing perivascular tumour cell apoptosis and DNA damage in tumours grown in EC FAK-KD mice 48 h after doxorubicin injection. Human pulmonary microvascular ECs treated with the pharmacological FAK kinase inhibitors defactinib, PF-562,271 or PF-573,228 in combination with doxorubicin also reduced cytokine expression levels. Together, these data suggest that targeting EC FAK kinase activity may alter angiocrine signals that correlate with improved acute tumour cell chemosensitisation. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation
- Cytokines/metabolism
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Endothelial Cells/enzymology
- Female
- Focal Adhesion Kinase 1/antagonists & inhibitors
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Humans
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Physiologic
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/enzymology
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Tumor Burden
- Mice
Collapse
Affiliation(s)
- Emma Newport
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Ana Rita Pedrosa
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Delphine Lees
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Matthew Dukinfield
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Edward Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Jesus Gomez-Escudero
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Pedro Casado
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Vinothini Rajeeve
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Louise E Reynolds
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | | | - Beatriz De Luxán Delgado
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| |
Collapse
|
3
|
Murphy JM, Jeong K, Lim STS. FAK Family Kinases in Vascular Diseases. Int J Mol Sci 2020; 21:ijms21103630. [PMID: 32455571 PMCID: PMC7279255 DOI: 10.3390/ijms21103630] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
In various vascular diseases, extracellular matrix (ECM) and integrin expression are frequently altered, leading to focal adhesion kinase (FAK) or proline-rich tyrosine kinase 2 (Pyk2) activation. In addition to the major roles of FAK and Pyk2 in regulating adhesion dynamics via integrins, recent studies have shown a new role for nuclear FAK in gene regulation in various vascular cells. In particular, FAK primarily localizes within the nuclei of vascular smooth muscle cells (VSMCs) of healthy arteries. However, vessel injury increased FAK localization back to adhesions and elevated FAK activity, leading to VSMC hyperplasia. The study suggested that abnormal FAK or Pyk2 activation in vascular cells may cause pathology in vascular diseases. Here we will review several studies of FAK and Pyk2 associated with integrin signaling in vascular diseases including restenosis, atherosclerosis, heart failure, pulmonary arterial hypertension, aneurysm, and thrombosis. Despite the importance of FAK family kinases in vascular diseases, comprehensive reviews are scarce. Therefore, we summarized animal models involving FAK family kinases in vascular diseases.
Collapse
|
4
|
Guidetti GF, Torti M, Canobbio I. Focal Adhesion Kinases in Platelet Function and Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:857-868. [DOI: 10.1161/atvbaha.118.311787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The focal adhesion kinase family includes 2 homolog members, FAK and Pyk2 (proline-rich tyrosine kinase 2), primarily known for their roles in nucleated cells as regulators of cytoskeletal dynamics and cell adhesion. FAK and Pyk2 are also expressed in megakaryocytes and platelets and are activated by soluble agonists and on adhesion to the subendothelial matrix. Despite high sequence homology and similar molecular organization, FAK and Pyk2 play different roles in platelet function. Whereas FAK serves mostly as a traditional focal adhesion kinase activated downstream of integrins, Pyk2 coordinates multiple signals from different receptors. FAK, but not Pyk2, is involved in megakaryocyte maturation and platelet production. In circulating platelets, FAK is recruited by integrin αIIbβ3 to regulate hemostasis, whereas it plays minimal roles in thrombosis. By contrast, Pyk2 is implicated in platelet activation and is an important regulator of thrombosis. The direct activation of Pyk2 by calcium ions provides a connection between GPCRs (G-protein coupled receptors) and Src family kinases. In this review, we provide the comprehensive overview of >20 years of investigations on the role and regulation of focal adhesion kinases in blood platelets, highlighting common and distinctive features of FAK and Pyk2 in hemostasis and thrombosis.
Collapse
Affiliation(s)
| | - Mauro Torti
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ilaria Canobbio
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| |
Collapse
|
5
|
Wu JI, Lin YP, Tseng CW, Chen HJ, Wang LH. Crabp2 Promotes Metastasis of Lung Cancer Cells via HuR and Integrin β1/FAK/ERK Signaling. Sci Rep 2019; 9:845. [PMID: 30696915 PMCID: PMC6351595 DOI: 10.1038/s41598-018-37443-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/30/2018] [Indexed: 01/31/2023] Open
Abstract
Increased Crabp2 levels have been found in various types of cancer, and are associated with poor patients’ survival. Although Crabp2 is found to be overexpressed in lung cancer, its role in metastasis of lung cancer is unclear. In this study, Crabp2 was overexpressed in high-metastatic C10F4 than low-metastatic lung cancer cells. Analysis of clinical samples revealed that high CRABP2 levels were correlated with lymph node metastases, poor overall survival, and increased recurrence. Knockdown of Crabp2 decreased migration, invasion, anoikis resistance, and in vivo metastasis. Crabp2 was co-immunoprecipitated with HuR, and overexpression of Crabp2 increased HuR levels, which promoted integrin β1/FAK/ERK signaling. Inhibition of HuR or integrin β1/FAK/ERK signaling reversed the promoting effect of Crabp2 in migration, invasion, and anoikis resistance. Knockdown of Crabp2 further inhibited the growth of cancer cells as compared with that by gemcitabine or irinotecan alone. The expression of Crabp2 in human lung tumors was correlated with stress marker CHOP. In conclusion, our findings have identified the promoting role of Crabp2 in anoikis resistance and metastasis. CRABP2 may serve as a prognostic marker and targeting CRABP2 may be exploited as a modality to reduce metastasis.
Collapse
Affiliation(s)
- Jun-I Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yi-Pei Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chien-Wei Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Jane Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Lu-Hai Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan. .,Department of Life Sciences, National Central University, Taoyuan, Taiwan. .,Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan. .,Chinese Medical Research Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Lederer PA, Zhou T, Chen W, Epshtein Y, Wang H, Mathew B, Jacobson JR. Attenuation of murine acute lung injury by PF-573,228, an inhibitor of focal adhesion kinase. Vascul Pharmacol 2018; 110:16-23. [PMID: 29969688 DOI: 10.1016/j.vph.2018.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/01/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023]
Abstract
Acute lung injury (ALI) is characterized by endothelial barrier disruption resulting in increased vascular permeability. As focal adhesion kinase (FAK), a non-receptor protein tyrosine kinase, is involved in endothelial cell (EC) barrier regulation, we hypothesized that FAK inhibition could attenuate agonist-induced EC barrier disruption relevant to ALI. Human lung EC were pretreated with one of three pharmacologic FAK inhibitors, PF-573,228 (PF-228, 10 μM), PF-562,271 (PF-271, 5 μM) or NVP-TAE226 (TAE226, 5 μM) for 30 min prior to treatment with thrombin (1 U/ml, 30 min). Western blotting confirmed attenuated thrombin-induced FAK phosphorylation associated with all three inhibitors. Subsequently, EC were pretreated with either PF-228 (10 μM), TAE226 (5 μM) or PF-271 (5 μM) for 30 min prior to thrombin stimulation (1 U/ml) followed by measurements of barrier integrity by transendothelial electrical resistance (TER). Separately, EC grown in transwell inserts prior to thrombin (1 U/ml) with measurements of FITC-dextran flux after 30 min confirmed a significant attenuation of thrombin-induced EC barrier disruption by PF-228 alone. Finally, in a murine ALI model induced by LPS (1.25 mg/ml, IT), rescue treatment with PF-228 was associated with significantly reduced lung injury. Our findings PF-228, currently being studied in clinical trials, may serve as a novel and effective therapeutic agent for ALI.
Collapse
Affiliation(s)
- Paul A Lederer
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Tingting Zhou
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Yulia Epshtein
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Huashan Wang
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Biji Mathew
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
7
|
Thiagarajan PS, Sinyuk M, Turaga SM, Mulkearns-Hubert EE, Hale JS, Rao V, Demelash A, Saygin C, China A, Alban TJ, Hitomi M, Torre-Healy LA, Alvarado AG, Jarrar A, Wiechert A, Adorno-Cruz V, Fox PL, Calhoun BC, Guan JL, Liu H, Reizes O, Lathia JD. Cx26 drives self-renewal in triple-negative breast cancer via interaction with NANOG and focal adhesion kinase. Nat Commun 2018; 9:578. [PMID: 29422613 PMCID: PMC5805730 DOI: 10.1038/s41467-018-02938-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
Tumors adapt their phenotypes during growth and in response to therapies through dynamic changes in cellular processes. Connexin proteins enable such dynamic changes during development, and their dysregulation leads to disease states. The gap junction communication channels formed by connexins have been reported to exhibit tumor-suppressive functions, including in triple-negative breast cancer (TNBC). However, we find that connexin 26 (Cx26) is elevated in self-renewing cancer stem cells (CSCs) and is necessary and sufficient for their maintenance. Cx26 promotes CSC self-renewal by forming a signaling complex with the pluripotency transcription factor NANOG and focal adhesion kinase (FAK), resulting in NANOG stabilization and FAK activation. This FAK/NANOG-containing complex is not formed in mammary epithelial or luminal breast cancer cells. These findings challenge the paradigm that connexins are tumor suppressors in TNBC and reveal a unique function for Cx26 in regulating the core self-renewal signaling that controls CSC maintenance. Connexin proteins are usually considered as tumor suppressors. Here, the authors show that connexin 26 (Cx26) regulates the self-renewal of breast cancer stem cells via a ternary complex with FAK and NANOG.
Collapse
Affiliation(s)
- Praveena S Thiagarajan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA.,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Maksim Sinyuk
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Soumya M Turaga
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Erin E Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Vinay Rao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Abeba Demelash
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Caner Saygin
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Arnab China
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Tyler J Alban
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA.,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Masahiro Hitomi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA.,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Luke A Torre-Healy
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Alvaro G Alvarado
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Awad Jarrar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Andrew Wiechert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Valery Adorno-Cruz
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.,Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Departments of Pharmacology and Medicine, Northwestern University School of Medicine, Chicago, IL, 60611, USA
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA.,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | | | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Huiping Liu
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.,Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Departments of Pharmacology and Medicine, Northwestern University School of Medicine, Chicago, IL, 60611, USA
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA. .,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA. .,Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44915, USA. .,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA. .,Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
8
|
An EGFR/Src-dependent β4 integrin/FAK complex contributes to malignancy of breast cancer. Sci Rep 2015; 5:16408. [PMID: 26549523 PMCID: PMC4637903 DOI: 10.1038/srep16408] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/14/2015] [Indexed: 01/24/2023] Open
Abstract
β4 integrin and focal adhesion kinase (FAK) are often associated with a poor prognosis in cancer patients, and their signaling events have recently been linked to malignant outcomes. Here, we demonstrate, for the first time, physical and functional interactions between β4 integrin and FAK that influence breast cancer malignancy. An amino-terminal linker within FAK is essential for its binding with the cytodomain of β4 integrin. Moreover, EGFR/Src-signaling triggers the tyrosine phosphorylation of β4 integrin, which, in turn, recruits FAK to β4 integrin and leads to FAK activation and signaling. Upon disruption of the β4 integrin/FAK complex, tumorigenesis and metastasis in triple-negative breast cancer were markedly reduced. Importantly, the concomitant overexpression of β4 integrin and FAK significantly correlates with malignant potential in patients with triple-negative breast cancer. This study describes a pro-metastatic EGFR/Src-dependent β4 integrin/FAK complex that is involved in breast cancer malignancy and is a novel therapeutic target for triple-negative breast cancer.
Collapse
|
9
|
Emerging roles of focal adhesion kinase in cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:690690. [PMID: 25918719 PMCID: PMC4396139 DOI: 10.1155/2015/690690] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic nonreceptor tyrosine kinase that enables activation by growth factor receptors or integrins in various types of human cancers. The kinase-dependent and kinase-independent scaffolding functions of FAK modulate the authentic signaling and fundamental functions not only in cancer cells but also in tumor microenvironment to facilitate cancer progression and metastasis. The overexpression and activation of FAK are usually investigated in primary or metastatic cancers and correlated with the poor clinical outcome, highlighting FAK as a potential prognostic marker and anticancer target. Small molecule inhibitors targeting FAK kinase activity or FAK-scaffolding functions impair cancer development in preclinical or clinical trials. In this review, we give an overview for FAK signaling in cancer cells as well as tumor microenvironment that provides new strategies for the invention of cancer development and malignancy.
Collapse
|
10
|
Carrim N, Walsh TG, Consonni A, Torti M, Berndt MC, Metharom P. Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation. PLoS One 2014; 9:e113679. [PMID: 25415317 PMCID: PMC4240642 DOI: 10.1371/journal.pone.0113679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/29/2014] [Indexed: 01/22/2023] Open
Abstract
Background We have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI. Aims To evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway. Methods and Results Human and mouse washed platelets (from WT or Pyk2 KO mice) were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively) and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, α-granule secretion (P-selectin (CD62P) surface expression) and integrin αIIbβ3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk), PI3-K and Bruton's tyrosine kinase (Btk) and upstream of Rac1, PLCγ2, Ca2+ release, PKC, Hic-5, NOX1 and αIIbβ3 activation. Conclusion Overall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway.
Collapse
Affiliation(s)
- Naadiya Carrim
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tony G. Walsh
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alessandra Consonni
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mauro Torti
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michael C. Berndt
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Pat Metharom
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Australia
- * E-mail:
| |
Collapse
|
11
|
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase that is overexpressed and activated in several advanced-stage solid cancers. FAK promotes tumour progression and metastasis through effects on cancer cells, as well as stromal cells of the tumour microenvironment. The kinase-dependent and kinase-independent functions of FAK control cell movement, invasion, survival, gene expression and cancer stem cell self-renewal. Small molecule FAK inhibitors decrease tumour growth and metastasis in several preclinical models and have initial clinical activity in patients with limited adverse events. In this Review, we discuss FAK signalling effects on both tumour and stromal cell biology that provide rationale and support for future therapeutic opportunities.
Collapse
Affiliation(s)
- Florian J. Sulzmaier
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
| | - Christine Jean
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
| | - David D. Schlaepfer
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
- Address correspondence to: David D. Schlaepfer, Ph.D., University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, 3855 Health Sciences Dr., MC0803, La Jolla, CA 92093,
| |
Collapse
|