1
|
Pretorius E, Kell DB. A Perspective on How Fibrinaloid Microclots and Platelet Pathology May be Applied in Clinical Investigations. Semin Thromb Hemost 2024; 50:537-551. [PMID: 37748515 PMCID: PMC11105946 DOI: 10.1055/s-0043-1774796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid (fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may also be induced by a variety of purified substances, often at very low concentrations. These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of the properties of these microclots might be used to contribute to differential clinical diagnoses and prognoses of the various diseases with which they may be associated. Such properties include distributions in their size and number before and after the addition of exogenous thrombin, their spectral properties, the diameter of the fibers of which they are made, their resistance to proteolysis by various proteases, their cross-seeding ability, and the concentration dependence of their ability to bind small molecules including fluorogenic amyloid stains. Measuring these microclot parameters, together with microscopy imaging itself, along with methodologies like proteomics and imaging flow cytometry, as well as more conventional assays such as those for cytokines, might open up the possibility of a much finer use of these microclot properties in generative methods for a future where personalized medicine will be standard procedures in all clotting pathology disease diagnoses.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
2
|
Wang B, Tang N, Hou H, Chen J, Wang X, Li J. Heterozygous ITGA2B Phe1024 Deletion Associated with Abnormal αIIbβ3 Function in a Patient with Congenital Thrombocytopenia. Semin Thromb Hemost 2024. [PMID: 38604226 DOI: 10.1055/s-0044-1785655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Bin Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junkun Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Zhou L, Zhang H, Wang S, Zhao H, Li Y, Han J, Zhang H, Li X, Qu Z. PCSK-9 inhibitors: a new direction for the future treatment of ischemic stroke. Front Pharmacol 2024; 14:1327185. [PMID: 38273837 PMCID: PMC10808616 DOI: 10.3389/fphar.2023.1327185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke, the most prevalent and serious manifestation of cerebrovascular disease, is the main cause of neurological problems that require hospitalization, resulting in disability and death worldwide. Currently, clinical practice focuses on the effective management of blood lipids as a crucial approach to preventing and treating ischemic stroke. In recent years, a great breakthrough in ischemic stroke treatment has been witnessed with the emergence and use of a novel lipid-lowering medication, Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitor. And its remarkable potential for reducing the occurrence of ischemic stroke is being acknowledged. This article aims to provide a comprehensive review, encompassing the association between PCSK9 and the heightened risk of ischemic stroke, the mechanisms, and the extensive evidence supporting the proven efficacy of PCSK9 inhibitors in clinical practice. Through this present study, we can gain deeper insights into the utilization and impact of PCSK9 inhibitors in treating ischemic stroke.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuyi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Hong Zhao
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongnan Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Juqian Han
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyuan Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengyi Qu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Ye W, Wang J, Little PJ, Zou J, Zheng Z, Lu J, Yin Y, Liu H, Zhang D, Liu P, Xu S, Ye W, Liu Z. Anti-atherosclerotic effects and molecular targets of ginkgolide B from Ginkgo biloba. Acta Pharm Sin B 2024; 14:1-19. [PMID: 38239238 PMCID: PMC10792990 DOI: 10.1016/j.apsb.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases (CVDs), the world's primary cause of death. Ginkgo biloba , a well-known traditional Chinese medicine with notable cardiovascular actions, has been used as a cardio- and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries. Preclinical studies have shown that ginkgolide B, a bioactive component in Ginkgo biloba , can ameliorate atherosclerosis in cultured vascular cells and disease models. Of clinical relevance, several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases, such as ischemia stroke. Here, we present a comprehensive review of the pharmacological activities, pharmacokinetic characteristics, and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy. We highlight new molecular targets of ginkgolide B, including nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidase), lectin-like oxidized LDL receptor-1 (LOX-1), sirtuin 1 (SIRT1), platelet-activating factor (PAF), proprotein convertase subtilisin/kexin type 9 (PCSK9) and others. Finally, we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.
Collapse
Affiliation(s)
- Weile Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya QLD 4575, Australia
| | - Jiami Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhihua Zheng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanjun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Institute of Endocrine and Metabolic Diseases, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhiping Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Adair BD, Xiong JP, Yeager M, Arnaout MA. Cryo-EM structures of full-length integrin αIIbβ3 in native lipids. Nat Commun 2023; 14:4168. [PMID: 37443315 PMCID: PMC10345127 DOI: 10.1038/s41467-023-39763-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Platelet integrin αIIbβ3 is maintained in a bent inactive state (low affinity to physiologic ligand), but can rapidly switch to a ligand-competent (high-affinity) state in response to intracellular signals ("inside-out" activation). Once bound, ligands drive proadhesive "outside-in" signaling. Anti-αIIbβ3 drugs like eptifibatide can engage the inactive integrin directly, inhibiting thrombosis but inadvertently impairing αIIbβ3 hemostatic functions. Bidirectional αIIbβ3 signaling is mediated by reorganization of the associated αIIb and β3 transmembrane α-helices, but the underlying changes remain poorly defined absent the structure of the full-length receptor. We now report the cryo-EM structures of full-length αIIbβ3 in its apo and eptifibatide-bound states in native cell-membrane nanoparticles at near-atomic resolution. The apo form adopts the bent inactive state but with separated transmembrane α-helices, and a fully accessible ligand-binding site that challenges the model that this site is occluded by the plasma membrane. Bound eptifibatide triggers dramatic conformational changes that may account for impaired hemostasis. These results advance our understanding of integrin structure and function and may guide development of safer inhibitors.
Collapse
Affiliation(s)
- Brian D Adair
- Leukocyte Biology and Inflammation Laboratory, Structural Biology Program, Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Jian-Ping Xiong
- Leukocyte Biology and Inflammation Laboratory, Structural Biology Program, Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Mark Yeager
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL, 33146, USA
- Department of Chemistry, School of Arts and Sciences, University of Miami, Coral Gables, FL 33146, University of Miami, Miami, FL, 33146, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - M Amin Arnaout
- Leukocyte Biology and Inflammation Laboratory, Structural Biology Program, Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Koukouritaki SB, Thinn AMM, Ashworth KJ, Fang J, Slater HS, Du LM, Nguyen HTT, Pillois X, Nurden AT, Ng CJ, Di Paola J, Zhu J, Wilcox DA. A single F153Sβ3 mutation causes constitutive integrin αIIbβ3 activation in a variant form of Glanzmann thrombasthenia. Blood Adv 2023; 7:3180-3191. [PMID: 36884296 PMCID: PMC10338211 DOI: 10.1182/bloodadvances.2022009495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
This report identifies a novel variant form of the inherited bleeding disorder Glanzmann thrombasthenia, exhibiting only mild bleeding in a physically active individual. The platelets cannot aggregate ex vivo with physiologic agonists of activation, although microfluidic analysis with whole blood displays moderate ex vivo platelet adhesion and aggregation consistent with mild bleeding. Immunocytometry shows reduced expression of αIIbβ3 on quiescent platelets that spontaneously bind/store fibrinogen, and activation-dependent antibodies (ligand-induced binding site-319.4 and PAC-1) report β3 extension suggesting an intrinsic activation phenotype. Genetic analysis reveals a single F153Sβ3 substitution within the βI-domain from a heterozygous T556C nucleotide substitution of ITGB3 exon 4 in conjunction with a previously reported IVS5(+1)G>A splice site mutation with undetectable platelet messenger RNA accounting for hemizygous expression of S153β3. F153 is completely conserved among β3 of several species and all human β-integrin subunits suggesting that it may play a vital role in integrin structure/function. Mutagenesis of αIIb-F153Sβ3 also displays reduced levels of a constitutively activated αIIb-S153β3 on HEK293T cells. The overall structural analysis suggests that a bulky aromatic, nonpolar amino acid (F,W)153β3 is critical for maintaining the resting conformation of α2- and α1-helices of the βI-domain because small amino acid substitutions (S,A) facilitate an unhindered inward movement of the α2- and α1-helices of the βI-domain toward the constitutively active αIIbβ3 conformation, while a bulky aromatic, polar amino acid (Y) hinders such movements and restrains αIIbβ3 activation. The data collectively demonstrate that disruption of F153β3 can significantly alter normal integrin/platelet function, although reduced expression of αIIb-S153β3 may be compensated by a hyperactive conformation that promotes viable hemostasis.
Collapse
Affiliation(s)
- Sevasti B. Koukouritaki
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI
| | - Aye Myat M. Thinn
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Katrina J. Ashworth
- Department of Pediatrics, Division of Hematology & Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI
| | - Haley S. Slater
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI
| | - Lily M. Du
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI
| | | | - Xavier Pillois
- Xavier Arnozan Hôpital, Institut de Rythmologie et de Modélisation Cardiaque, Pessac, France
| | - Alan T. Nurden
- Xavier Arnozan Hôpital, Institut de Rythmologie et de Modélisation Cardiaque, Pessac, France
| | - Christopher J. Ng
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jorge Di Paola
- Department of Pediatrics, Division of Hematology & Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - David A. Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Milwaukee, WI
| |
Collapse
|
7
|
Cox D. Sepsis - it is all about the platelets. Front Immunol 2023; 14:1210219. [PMID: 37350961 PMCID: PMC10282552 DOI: 10.3389/fimmu.2023.1210219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Sepsis is accompanied by thrombocytopenia and the severity of the thrombocytopenia is associated with mortality. This thrombocytopenia is characteristic of disseminated intravascular coagulation (DIC), the sepsis-associated coagulopathy. Many of the pathogens, both bacterial and viral, that cause sepsis also directly activate platelets, which suggests that pathogen-induced platelet activation leads to systemic thrombosis and drives the multi-organ failure of DIC. In this paper we review the mechanisms of platelet activation by pathogens and the evidence for a role for anti-platelet agents in the management of sepsis.
Collapse
Affiliation(s)
- Dermot Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
8
|
Novel approaches to antiplatelet therapy. Biochem Pharmacol 2022; 206:115297. [DOI: 10.1016/j.bcp.2022.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022]
|
9
|
Vasconcelos AA, Estrada JC, David V, Wermelinger LS, Almeida FCL, Zingali RB. Structure-Function Relationship of the Disintegrin Family: Sequence Signature and Integrin Interaction. Front Mol Biosci 2021; 8:783301. [PMID: 34926583 PMCID: PMC8678471 DOI: 10.3389/fmolb.2021.783301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Disintegrins are small cysteine-rich proteins found in a variety of snake venom. These proteins selectively modulate integrin function, heterodimeric receptors involved in cell-cell and cell-matrix interaction that are widely studied as therapeutic targets. Snake venom disintegrins emerged from the snake venom metalloproteinase and are classified according to the sequence size and number of disulfide bonds. Evolutive structure and function diversification of disintegrin family involves a stepwise decrease in the polypeptide chain, loss of cysteine residues, and selectivity. Since the structure elucidation of echistatin, the description of the structural properties of disintegrins has allowed the investigation of the mechanisms involved in integrin-cell-extracellular matrix interaction. This review provides an analysis of the structures of all family groups enabling the description of an expanded classification of the disintegrin family in seven groups. Each group presents a particular disulfide pattern and sequence signatures, facilitating the identification of new disintegrins. The classification was based on the disintegrin-like domain of the human metalloproteinase (ADAM-10). We also present the sequence and structural signatures important for disintegrin-integrin interaction, unveiling the relationship between the structure and function of these proteins.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge C Estrada
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor David
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S Wermelinger
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Heinzmann ACA, Coenen DM, Vajen T, Cosemans JMEM, Koenen RR. Combined Antiplatelet Therapy Reduces the Proinflammatory Properties of Activated Platelets. TH OPEN 2021; 5:e533-e542. [PMID: 34901735 PMCID: PMC8651446 DOI: 10.1055/a-1682-3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
The cause of atherothrombosis is rupture or erosion of atherosclerotic lesions, leading to an increased risk of myocardial infarction or stroke. Here, platelet activation plays a major role, leading to the release of bioactive molecules, for example, chemokines and coagulation factors, and to platelet clot formation. Several antiplatelet therapies have been developed for secondary prevention of cardiovascular events, in which anticoagulant drugs are often combined. Besides playing a role in hemostasis, platelets are also involved in inflammation. However, it is unclear whether current antiplatelet therapies also affect platelet immune functions. In this study, the possible anti-inflammatory effects of antiplatelet medications on chemokine release were investigated using enzyme-linked immunosorbent assay and on the chemotaxis of THP-1 cells toward platelet releasates. We found that antiplatelet medication acetylsalicylic acid (ASA) led to reduced chemokine (CC motif) ligand 5 (CCL5) and chemokine (CXC motif) ligand 4 (CXCL4) release from platelets, while leukocyte chemotaxis was not affected. Depending on the agonist, α
IIb
β
3
and P2Y
12
inhibitors also affected CCL5 or CXCL4 release. The combination of ASA with a P2Y
12
inhibitor or a phosphodiesterase (PDE) inhibitor did not lead to an additive reduction in CCL5 or CXCL4 release. Interestingly, these combinations did reduce leukocyte chemotaxis. This study provides evidence that combined therapy of ASA and a P2Y
12
or PDE3 inhibitor can decrease the inflammatory leukocyte recruiting potential of the releasate of activated platelets.
Collapse
Affiliation(s)
- Alexandra C A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Daniëlle M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.,Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Tanja Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.,Cardiovascular Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
11
|
Vascular thiol isomerases: Structures, regulatory mechanisms, and inhibitor development. Drug Discov Today 2021; 27:626-635. [PMID: 34757205 DOI: 10.1016/j.drudis.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Vascular thiol isomerases (VTIs), including PDI, ERp5, ERp57, ERp72, and thioredoxin-related transmembrane protein 1 (TMX1), have important roles in platelet aggregation and thrombosis. Research on VTIs, their substrates in thrombosis, their regulatory mechanisms, and inhibitor development is an emerging and rapidly evolving area in vascular biology. Here, we describe the structures and functions of VTIs, summarize the relationship between the vascular TIs and thrombosis, and focus on the development of VTI inhibitors for antithrombotic applications.
Collapse
|
12
|
Wang Z, Zhu J. Structural determinants of the integrin transmembrane domain required for bidirectional signal transmission across the cell membrane. J Biol Chem 2021; 297:101318. [PMID: 34678312 PMCID: PMC8569584 DOI: 10.1016/j.jbc.2021.101318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Studying the tight activity regulation of platelet-specific integrin αIIbβ3 is foundational and paramount to our understanding of integrin structure and activation. αIIbβ3 is essential for the aggregation and adhesion function of platelets in hemostasis and thrombosis. Structural and mutagenesis studies have previously revealed the critical role of αIIbβ3 transmembrane (TM) association in maintaining the inactive state. Gain-of-function TM mutations were identified and shown to destabilize the TM association leading to integrin activation. Studies using isolated TM peptides have suggested an altered membrane embedding of the β3 TM α-helix coupled with αIIbβ3 activation. However, controversies remain as to whether and how the TM α-helices change their topologies in the context of full-length integrin in native cell membrane. In this study, we utilized proline scanning mutagenesis and cysteine scanning accessibility assays to analyze the structure and function correlation of the αIIbβ3 TM domain. Our identification of loss-of-function proline mutations in the TM domain suggests the requirement of a continuous TM α-helical structure in transmitting activation signals bidirectionally across the cell membrane, characterized by the inside-out activation for ligand binding and the outside-in signaling for cell spreading. Similar results were found for αLβ2 and α5β1 TM domains, suggesting a generalizable mechanism. We also detected a topology change of β3 TM α-helix within the cell membrane, but only under conditions of cell adhesion and the absence of αIIb association. Our data demonstrate the importance of studying the structure and function of the integrin TM domain in the native cell membrane.
Collapse
Affiliation(s)
- Zhengli Wang
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Jieqing Zhu
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
13
|
Wang Z, Huang H, Chen Y, Zheng Y. Current Strategies for Microbubble-Based Thrombus Targeting: Activation-Specific Epitopes and Small Molecular Ligands. Front Bioeng Biotechnol 2021; 9:699450. [PMID: 34336810 PMCID: PMC8322734 DOI: 10.3389/fbioe.2021.699450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022] Open
Abstract
Microbubbles with enhanced ultrasound represent a potentially potent evolution to the administration of a free drug in the treatment of thrombotic diseases. Conformational and expressional changes of several thrombotic biological components during active coagulation provide epitopes that allow site-specific delivery of microbubble-based agents to the thrombus for theranostic purpose. Through the interaction with these epitopes, emerging high-affinity small molecular ligands are able to selectively target the thrombi with tremendous advantages over traditional antibody-based strategy. In this mini-review, we summarize recent novel strategies for microbubble-based targeting of thrombus through epitopes located at activated platelets and fibrin. We also discuss the challenges of current targeting modalities and supramolecular carrier systems for their translational use in thrombotic pathologies.
Collapse
Affiliation(s)
- Zhaojian Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Huaigu Huang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
14
|
Cox D. Targeting SARS-CoV-2-Platelet Interactions in COVID-19 and Vaccine-Related Thrombosis. Front Pharmacol 2021; 12:708665. [PMID: 34290613 PMCID: PMC8287727 DOI: 10.3389/fphar.2021.708665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023] Open
Abstract
It is clear that COVID-19 is more than a pneumonia and is associated with a coagulopathy and multi-organ failure. While the use of anti-coagulants does reduce the incidence of pulmonary emboli, it does not help with survival. This suggests that the coagulopathy is more likely to be platelet-driven rather than thrombin-driven. There is significant evidence to suggest that SARS-CoV-2 virions directly interact with platelets to trigger activation leading to thrombocytopenia and thrombosis. I propose a model of multiple interactions between SARS-CoV-2 and platelets that has many similarities to that with Staphylococcus aureus and Dengue virus. As platelet activation and thrombosis are major factors in poor prognosis, therapeutics that target the platelet-SARS-CoV-2 interaction have potential in treating COVID-19 and other virus infections.
Collapse
Affiliation(s)
- Dermot Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
15
|
Li D, Peng J, Li T, Liu Y, Chen M, Shi X. Itgb3-integrin-deficient mice may not be a sufficient model for patients with Glanzmann thrombasthenia. Mol Med Rep 2021; 23:449. [PMID: 33880575 PMCID: PMC8060805 DOI: 10.3892/mmr.2021.12088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
Itgb3-integrin-deficient (Itgb3−/−) mice have been reported as a Glanzmann thrombasthenia (GT) model and have been used for platelet research. However, it remains unclear whether this mouse model can fully simulate patients with GT or whether it has different characteristics from these patients. The present study aimed to answer this question. Itgb3−/− mice were tested for platelet function, tail bleeding, whole-blood count, bone marrow hematopoiesis and organ enlargement. Itgb3−/− platelets showed impaired functions, including fibrinogen binding, aggregation, adhesion or spreading. Itgb3−/− mice demonstrated decreased platelet count and microcytic hypochromic anemia. Reduced iron staining of bone marrow and decreased plasma ferritin level confirmed the diagnosis of iron deficiency anemia. Evident splenomegaly was observed in Itgb3−/− mice. Immunohistochemical analysis of spleen biopsy revealed normal expression of CD3 and CD19, but elevated expression of CD71, which suggested that the splenomegaly in Itgb3−/− mice may be associated with extramedullary hematopoiesis. In conclusion, Itgb3−/− mice exhibited some unique characteristics that differed from those of human patients with GT and thus cannot completely simulate patients with GT.
Collapse
Affiliation(s)
- Dongya Li
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jie Peng
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Tiantian Li
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yichen Liu
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Min Chen
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
16
|
Obermann WMJ, Brockhaus K, Eble JA. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:674553. [PMID: 33937274 PMCID: PMC8085416 DOI: 10.3389/fcell.2021.674553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Although platelets and the coagulation factors are components of the blood system, they become part of and contribute to the tumor microenvironment (TME) not only within a solid tumor mass, but also within a hematogenous micrometastasis on its way through the blood stream to the metastatic niche. The latter basically consists of blood-borne cancer cells which are in close association with platelets. At the site of the primary tumor, the blood components reach the TME via leaky blood vessels, whose permeability is increased by tumor-secreted growth factors, by incomplete angiogenic sprouts or by vasculogenic mimicry (VM) vessels. As a consequence, platelets reach the primary tumor via several cell adhesion molecules (CAMs). Moreover, clotting factor VII from the blood associates with tissue factor (TF) that is abundantly expressed on cancer cells. This extrinsic tenase complex turns on the coagulation cascade, which encompasses the activation of thrombin and conversion of soluble fibrinogen into insoluble fibrin. The presence of platelets and their release of growth factors, as well as fibrin deposition changes the TME of a solid tumor mass substantially, thereby promoting tumor progression. Disseminating cancer cells that circulate in the blood stream also recruit platelets, primarily by direct cell-cell interactions via different receptor-counterreceptor pairs and indirectly by fibrin, which bridges the two cell types via different integrin receptors. These tumor cell-platelet aggregates are hematogenous micrometastases, in which platelets and fibrin constitute a particular TME in favor of the cancer cells. Even at the distant site of settlement, the accompanying platelets help the tumor cell to attach and to grow into metastases. Understanding the close liaison of cancer cells with platelets and coagulation factors that change the TME during tumor progression and spreading will help to curb different steps of the metastatic cascade and may help to reduce tumor-induced thrombosis.
Collapse
Affiliation(s)
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Aslan JE. Platelet Proteomes, Pathways, and Phenotypes as Informants of Vascular Wellness and Disease. Arterioscler Thromb Vasc Biol 2021; 41:999-1011. [PMID: 33441027 PMCID: PMC7980774 DOI: 10.1161/atvbaha.120.314647] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets rapidly undergo responsive transitions in form and function to repair vascular endothelium and mediate hemostasis. In contrast, heterogeneous platelet subpopulations with a range of primed or refractory phenotypes gradually arise in chronic inflammatory and other conditions in a manner that may indicate or support disease. Qualitatively distinguishable platelet phenotypes are increasingly associated with a variety of physiological and pathological circumstances; however, the origins and significance of platelet phenotypic variation remain unclear and conceptually vague. As changes in platelet function in disease exhibit many similarities to platelets following the activation of platelet agonist receptors, the intracellular responses of platelets common to hemostasis and inflammation may provide insights to the molecular basis of platelet phenotype. Here, we review concepts around how protein-level relations-from platelet receptors through intracellular signaling events-may help to define platelet phenotypes in inflammation, immune responses, aging, and other conditions. We further discuss how representing systems-wide platelet proteomics data profiles as circuit-like networks of causally related intracellular events, or, pathway maps, may inform molecular definitions of platelet phenotype. In addition to offering insights into platelets as druggable targets, maps of causally arranged intracellular relations underlying platelet function can also advance precision and interceptive medicine efforts by leveraging platelets as accessible, dynamic, endogenous, circulating biomarkers of vascular wellness and disease. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry and School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
18
|
Liao Z, Gingras AR, Lagarrigue F, Ginsberg MH, Shattil SJ. Optogenetics-based localization of talin to the plasma membrane promotes activation of β3 integrins. J Biol Chem 2021; 296:100675. [PMID: 33865854 PMCID: PMC8131925 DOI: 10.1016/j.jbc.2021.100675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Interaction of talin with the cytoplasmic tails of integrin β triggers integrin activation, leading to an increase of integrin affinity/avidity for extracellular ligands. In talin KO mice, loss of talin interaction with platelet integrin αIIbβ3 causes a severe hemostatic defect, and loss of talin interaction with endothelial cell integrin αVβ3 affects angiogenesis. In normal cells, talin is autoinhibited and localized in the cytoplasm. Here, we used an optogenetic platform to assess whether recruitment of full-length talin to the plasma membrane was sufficient to induce integrin activation. A dimerization module (Arabidopsis cryptochrome 2 fused to the N terminus of talin; N-terminal of cryptochrome-interacting basic helix-loop-helix domain ended with a CAAX box protein [C: cysteine; A: aliphatic amino acid; X: any C-terminal amino acid]) responsive to 450 nm (blue) light was inserted into Chinese hamster ovary cells and endothelial cells also expressing αIIbβ3 or αVβ3, respectively. Thus, exposure of the cells to blue light caused a rapid and reversible recruitment of Arabidopsis cryptochrome 2-talin to the N-terminal of cryptochrome-interacting basic helix-loop-helix domain ended with a CAAX box protein [C: cysteine; A: aliphatic amino acid; X: any C-terminal amino acid]-decorated plasma membrane. This resulted in β3 integrin activation in both cell types, as well as increasing migration of the endothelial cells. However, membrane recruitment of talin was not sufficient for integrin activation, as membrane-associated Ras-related protein 1 (Rap1)-GTP was also required. Moreover, talin mutations that interfered with its direct binding to Rap1 abrogated β3 integrin activation. Altogether, these results define a role for the plasma membrane recruitment of talin in β3 integrin activation, and they suggest a nuanced sequence of events thereafter involving Rap1-GTP.
Collapse
Affiliation(s)
- Zhongji Liao
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.
| | - Alexandre R Gingras
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Frederic Lagarrigue
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Sanford J Shattil
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
19
|
El Alaoui MZ, Guy A, Khalki L, Limami Y, Benomar A, Zaid N, Cherrah Y, Mekhfi H, Cadi R, Zaid Y. [Current antiplatelet agents, new inhibitors and therapeutic targets]. Med Sci (Paris) 2020; 36:348-357. [PMID: 32356711 DOI: 10.1051/medsci/2020061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular diseases are the leading cause of deaths in the world. Platelets play a major role in the occurrence of these diseases and the development of antiplatelet drugs is a priority in the fight against cardiovascular diseases-associated mortality. Aspirin and thienopyridine-based P2Y12 inhibitors are the main drugs currently used. These molecules target the initiation of platelets activation and are responsible for a moderate inhibitory action. Other antiplatelet agents, as glycoprotein (GP) IIb/IIIa antagonists, inhibit platelet aggregation independently of initial activation-associated pathways, but are responsible for increased hemorrhagic events. Regarding each antiplatelet agent's specific characteristics, the prescription of these drugs must take into account the type of cardiovascular event, the age of the patient, the past medical history, and the potential hemorrhagic adverse events. Thus, there is a need for the development of new molecules with a more targeted effect, maintaining optimal efficiency but with a reduction of the hemorrhagic risk, which is the principal limitation of these treatments.
Collapse
Affiliation(s)
| | - Alexandre Guy
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Maroc
| | - Loubna Khalki
- Research Center of Mohammed VI University of Health Sciences, Casablanca, Maroc
| | - Youness Limami
- Research Center of Abulcasis University of Health Sciences, Rabat, Maroc
| | - Ali Benomar
- Research Center of Abulcasis University of Health Sciences, Rabat, Maroc
| | - Nabil Zaid
- Faculty of Sciences, Department of Biology, Mohammed V University, Rabat, Maroc
| | - Yahia Cherrah
- Research Center of Abulcasis University of Health Sciences, Rabat, Maroc
| | - Hassan Mekhfi
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed the First University, Oujda, Maroc
| | - Rachida Cadi
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Maroc
| | - Younes Zaid
- Research Center of Abulcasis University of Health Sciences, Rabat, Maroc - Faculty of Sciences, Department of Biology, Mohammed V University, Rabat, Maroc
| |
Collapse
|
20
|
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease in which a variety of circulating pro-inflammatory cells and dysregulated molecules are involved in disease aetiology and progression. Platelets are an important cellular element in the circulation that can bind several dysregulated molecules (such as collagen, thrombin and fibrinogen) that are present both in the synovium and the circulation of patients with RA. Platelets not only respond to dysregulated molecules in their environment but also transport and express their own inflammatory mediators, and serve as regulators at the boundary between haemostasis and immunity. Activated platelets also produce microparticles, which further convey signalling molecules and receptors to the synovium and circulation, thereby positioning these platelet-derived particles as strategic regulators of inflammation. These diverse functions come together to make platelets facilitators of cellular crosstalk in RA. Thus, the receptor functions, ligand binding potential and dysregulated signalling pathways in platelets are becoming increasingly important for treatment in RA. This Review aims to highlight the role of platelets in RA and the need to closely examine platelets as health indicators when designing effective pharmaceutical targets in this disease.
Collapse
|
21
|
Zheng Y, Leftheris K. Insights into Protein–Ligand Interactions in Integrin Complexes: Advances in Structure Determinations. J Med Chem 2020; 63:5675-5696. [DOI: 10.1021/acs.jmedchem.9b01869] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yajun Zheng
- Pliant Therapeutics, South San Francisco, California 94080, United States
| | - Katerina Leftheris
- Pliant Therapeutics, South San Francisco, California 94080, United States
| |
Collapse
|
22
|
Preclinical Studies of RUC-4, a Novel Platelet αIIbβ3 Antagonist, in Non-Human Primates and With Human Platelets. J Clin Transl Sci 2019; 3:65-74. [PMID: 31544007 PMCID: PMC6753935 DOI: 10.1017/cts.2019.382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction We are developing the novel αIIbβ3 antagonist, RUC-4, for subcutaneously (SC)-administered first-point-of-medical-contact treatment for ST Segment Elevated Myocardial Infarction (STEMI). Methods We studied the: 1. pharmacokinetics (PK) of RUC-4 at 1.0, 1.93, and 3.86 mg/kg IV, IM, and SC in non-human primates (NHPs); 2. impact of aspirin on RUC-4 IC50 in human platelet-rich plasma (PRP); 3. effect of different anticoagulants on the RUC-4 IC50 in human PRP; and 4. relationship between αIIbβ3 receptor blockade by RUC-4 and inhibition of ADP-induced platelet aggregation. Results 1. All doses of RUC-4 were well tolerated, but animals demonstrated variable temporary bruising. IM and SC RUC-4 reached dose-dependent peak levels within 5-15 min, with T½ s between 0.28 and 0.56 hrs. Platelet aggregation studies in NHPs receiving IM RUC-4 demonstrated >80% inhibition of the initial slope of ADP-induced aggregation with all 3 doses 30 minutes post-dosing, with subsequent dose-dependent loss of inhibition over 4-5 hours. 2. The RUC-4 IC50 for ADP-induced platelet aggregation was unaffected by aspirin treatment (40±9 nM vs. 37±5 nM; p=0.39). 3. The RUC-4 IC50 was significantly higher in PRP prepared from PPACK-anticoagulated blood compared to citrate-anticoagulated blood using either TRAP (122±17 vs. 66±25 nM; p=0.05; n=4) or ADP (102±22 vs. 54±13; p<0.001; n=5). 4. There was a close correspondence between receptor blockade and inhibition of ADP-induced platelet aggregation, with aggregation inhibition beginning with ~40% receptor blockade and becoming nearly complete at >80% receptor blockade. Discussion Based on these results and others, RUC-4 has now progressed to formal preclinical toxicology studies.
Collapse
|
23
|
Pillois X, Guy A, Choquet É, James C, Tuffigo M, Viallard JF, Garcia C, Bordet JC, Jandrot-Perrus M, Payrastre B, Fiore M. First description of an IgM monoclonal antibody causing α IIb β 3 integrin activation and acquired Glanzmann thrombasthenia associated with macrothrombocytopenia. J Thromb Haemost 2019; 17:795-802. [PMID: 30868743 DOI: 10.1111/jth.14424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Indexed: 12/25/2022]
Abstract
Essentials Acquired Glanzmann thrombasthenia (GT) is generally caused by anti-αIIb β3 autoantibodies. We report the case of a man with an acquired GT phenotype associated with macrothrombocytopenia. Perturbed platelet function were associated with an activating anti-αIIb β3 IgM autoantibody. This novel clinical entity raises interesting questions about the αIIb β3 integrin signaling. SUMMARY: Background Acquired Glanzmann thrombasthenia (GT) is a bleeding disorder generally caused by anti-αIIb β3 autoantibodies. Objectives We aimed to characterize the molecular mechanism leading to a progressive GT-like phenotype in a patient with chronic immune thrombocytopenia. Patient, Methods, and Results The patient suffered from repeated episodes of gastrointestinal bleeding; further studies indicated a moderate platelet aggregation defect. A few months later, platelet function showed abolished aggregation using all agonists, but normal agglutination with ristocetin. No platelet-bound antibodies were detected, but the presence of large amounts of an IgM type antibody detected together with αIIb β3 in the patient permeabilized platelets suggested that this IgM was an autoantibody causing the internalization of the complex. This was confirmed by the fact that the patient IgM bound to normal platelets but not to platelets from GT type I patients. Moreover, patient's plasma activated αIIb β3 on controls' platelets as evidenced by increased PAC-1 binding. We also demonstrated that the patient plasma triggered αIIb β3 outside-in signaling, as β3 Tyr773 and FAK were phosphorylated, and increased the rate of actin polymerization in resting platelets reflecting an impairment of cytoskeletal reorganization. Because different signs of dysmegakaryopoiesis were also observed in our patient, we evaluated the ability of its serum to impair proplatelets formation and showed that it significantly decreased the number of proplatelet-bearing megakaryocytes in controls' bone marrow stem cells culture compared with normal serum. Conclusions We present the case of a patient with a progressive and severely perturbed platelet function associated with the presence of an IgM activating autoantibody directed against αIIb β3 .
Collapse
Affiliation(s)
- Xavier Pillois
- Cardiovascular Adaptation to Ischemia, INSERM U1034, Pessac, France
- Reference Center for Platelet Disorders, Pessac, France
| | - Alexandre Guy
- Cardiovascular Adaptation to Ischemia, INSERM U1034, Pessac, France
- Laboratory Hematology, University Hospital of Bordeaux, Pessac, France
| | - Émeline Choquet
- Laboratory Hematology, University Hospital of Bordeaux, Pessac, France
- INSERM U1211 - University of Bordeaux, Maladies Rares: Génétique et Métabolisme, Bordeaux, France
- Victor Segalen, University of Bordeaux, Bordeaux, France
| | - Chloé James
- Cardiovascular Adaptation to Ischemia, INSERM U1034, Pessac, France
- Laboratory Hematology, University Hospital of Bordeaux, Pessac, France
- Victor Segalen, University of Bordeaux, Bordeaux, France
| | - Marie Tuffigo
- Laboratory Hematology, University Hospital of Bordeaux, Pessac, France
- Victor Segalen, University of Bordeaux, Bordeaux, France
| | - Jean-François Viallard
- Cardiovascular Adaptation to Ischemia, INSERM U1034, Pessac, France
- Victor Segalen, University of Bordeaux, Bordeaux, France
- Internal Medecine and Infectious Diseases Department, University Hospital of Bordeaux, Pessac, France
| | - Cédric Garcia
- Laboratoire d'Hématologie, CHU de Toulouse, Toulouse, France
| | - Jean-Claude Bordet
- Hôpital Cardiologique Louis Pradel, Université Claude Bernard, Lyon 1, Lyon, France
| | - Martine Jandrot-Perrus
- INSERM U1148, Université Paris Diderot, Centre Hospitalier Universitaire Bichat, Paris, France
| | - Bernard Payrastre
- Laboratoire d'Hématologie, CHU de Toulouse, Toulouse, France
- INSERM, U1048 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
| | - Mathieu Fiore
- Reference Center for Platelet Disorders, Pessac, France
- Laboratory Hematology, University Hospital of Bordeaux, Pessac, France
| |
Collapse
|
24
|
|
25
|
Zhou D, Thinn AMM, Zhao Y, Wang Z, Zhu J. Structure of an extended β 3 integrin. Blood 2018; 132:962-972. [PMID: 30018079 PMCID: PMC6117741 DOI: 10.1182/blood-2018-01-829572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022] Open
Abstract
Cells use adhesion receptor integrins to communicate with their surroundings. Integrin activation and cellular signaling are coupled with change from bent to extended conformation. β3 integrins, including αIIbβ3, which is essential for the function of platelets in hemostasis and thrombosis, and αVβ3, which plays multiple roles in diverse cell types, have been prototypes in understanding integrin structure and function. Despite extensive structural studies, a high-resolution integrin structure in an extended conformation remains to be determined. The human β3 Leu33Pro polymorphism, located at the PSI domain, defines human platelet-specific alloantigens 1a and 1b (HPA-1a/b), immune response to which is a cause of posttransfusion purpura and fetal/neonatal alloimmune thrombocytopenia. Leu33Pro substitution has also been suggested to be a risk factor for thrombosis. Here we report the crystal structure of the β3 headpiece in either Leu33 or Pro33 form, both of which reveal intermediate and fully extended conformations coexisting in 1 crystal. These were used to build high-resolution structures of full-length β3 integrin in the intermediate and fully extended states, agreeing well with the corresponding conformations observed by electron microscopy. Our structures reveal how β3 integrin becomes extended at its β-knee region and how the flexibility of β-leg domains is determined. In addition, our structures reveal conformational changes of the PSI and I-EGF1 domains upon β3 extension, which may affect the binding of conformation-dependent anti-HPA-1a alloantibodies. Our structural and functional data show that Leu33Pro substitution does not directly alter the conformation or ligand binding of β3 integrin.
Collapse
Affiliation(s)
- Dongwen Zhou
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
| | - Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI; and
| | - Yan Zhao
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Physiology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, part of Versiti, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI; and
| |
Collapse
|
26
|
Wdr-1 is essential for F-actin interaction with focal adhesions in platelets. Blood Coagul Fibrinolysis 2018; 29:540-545. [PMID: 29995657 DOI: 10.1097/mbc.0000000000000756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: Wdr-1, an actin interacting protein, enhances cofilin's capacity to accelerate depolymerization of F-actin filaments. Wdr-1-deficient mice have impaired hemostasis due to defective inside-out integrin signaling in platelets. Here, we studied the role of Wdr-1 on outside-in signaling necessary for retraction of the clot and platelet spreading. Outside-in signaling was assessed by fibrin clot retraction assay and by adhesion and spreading of unstimulated platelets on fibrinogen substrate. The spatial distribution of actin, cofilin-1 and Wdr-1 were determined by immunofluorescence microscopy. Interaction of F-actin with focal adhesion kinase was assessed in dual-color confocal images and by immunoblotting of F-actin filaments. Clot retraction is markedly impaired in Wdr-1-deficient platelets. Wdr-1-deficient platelets adhere and spread poorly on fibrinogen substrate compared with wild-type controls. In resting platelets, Wdr-1 is colocalized with cofilin-1 in cortical actin. Following platelets spreading on fibrinogen substrate, Wdr-1 translocates to the cytoskeleton in association with cofilin-1. In Wdr-1-deficient platelets, cofilin-1 is aberrantly localized throughout the cytoplasm and there is no significant change following adhesion to fibrinogen substrate. The actin filaments formed upon spreading on fibrinogen are mostly in the periphery of the platelets and does not traverse the cytoplasm. Furthermore, there is diminished colocalization of actin filaments with focal adhesion kinase. These studies show that Wdr-1 is essential for the localization of cofilin-1 to the platelet membrane skeleton. F-actin fails to attach to focal adhesions resulting in defective reorganization of actin filaments necessary for platelet spreading and clot retraction.
Collapse
|
27
|
Zhou L, Wang ZY, Ruan CG. [Special type of Glanzmann's thrombasthenia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:524-526. [PMID: 30032577 PMCID: PMC7342917 DOI: 10.3760/cma.j.issn.0253-2727.2018.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - C G Ruan
- Key Lab of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
28
|
Pina-Cabral LB, Carneiro M, Criado B, Esteves PJ. Maximum likelihood approach suggests positive selection in platelet integrin αIIbβ3 in mammalian species. Platelets 2018; 30:460-466. [PMID: 29617175 DOI: 10.1080/09537104.2018.1457783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Platelet integrin αIIbβ3 is crucial for platelet aggregation. Although structural and functional characteristics of this protein have been extensively studied, the evolutionary pattern studies of this protein complex in mammals are scarce. Here, we addressed this question using maximum likelihood approaches to identify codons that are evolving under positive selection. Likelihood of positive selection was estimated using CODEML implemented in PAML software applied to integrin αIIbβ3 derived from nucleotide sequences of 10 different mammalian species. Four codons in mature αIIb-subunit (corresponding to residues 150, 184, 193, and 370) and three codons in mature β3-subunit (corresponding to residues 129, 440, and 444) showed signs of positive selection with posterior probabilities over 95%. The different amino acids observed for each of the positively selected residues detected showed different physicochemical properties. These results open new research avenues to understand the physiological importance of specific residues and should allow for a better understanding of the function and the different interactions of each residue within the mature protein.
Collapse
Affiliation(s)
- Luís Bernardo Pina-Cabral
- a CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra , Gandra PRD , Portugal
| | - Miguel Carneiro
- b CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos , Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas , Vairão , Portugal
| | - Begoña Criado
- a CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra , Gandra PRD , Portugal
| | - Pedro José Esteves
- a CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra , Gandra PRD , Portugal.,b CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos , Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas , Vairão , Portugal.,c Departamento de Biologia , Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre , Porto , Portugal
| |
Collapse
|
29
|
Thinn AMM, Wang Z, Zhu J. The membrane-distal regions of integrin α cytoplasmic domains contribute differently to integrin inside-out activation. Sci Rep 2018; 8:5067. [PMID: 29568062 PMCID: PMC5864728 DOI: 10.1038/s41598-018-23444-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Functioning as signal receivers and transmitters, the integrin α/β cytoplasmic tails (CT) are pivotal in integrin activation and signaling. 18 α integrin subunits share a conserved membrane-proximal region but have a highly diverse membrane-distal (MD) region at their CTs. Recent studies demonstrated that the presence of α CTMD region is essential for talin-induced integrin inside-out activation. However, it remains unknown whether the non-conserved α CTMD regions differently regulate the inside-out activation of integrin. Using αIIbβ3, αLβ2, and α5β1 as model integrins and by replacing their α CTMD regions with those of α subunits that pair with β3, β2, and β1 subunits, we analyzed the function of CTMD regions of 17 α subunits in talin-mediated integrin activation. We found that the α CTMD regions play two roles on integrin, which are activation-supportive and activation-regulatory. The regulatory but not the supportive function depends on the sequence identity of α CTMD region. A membrane-proximal tyrosine residue present in the CTMD regions of a subset of α integrins was identified to negatively regulate integrin inside-out activation. Our study provides a useful resource for investigating the function of α integrin CTMD regions.
Collapse
Affiliation(s)
- Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
30
|
Pillois X, Peters P, Segers K, Nurden AT. In silico analysis of structural modifications in and around the integrin αIIb genu caused by ITGA2B variants in human platelets with emphasis on Glanzmann thrombasthenia. Mol Genet Genomic Med 2018; 6:249-260. [PMID: 29385657 PMCID: PMC5902390 DOI: 10.1002/mgg3.365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/01/2017] [Accepted: 12/20/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Studies on the inherited bleeding disorder, Glanzmann thrombasthenia (GT), have helped define the role of the αIIbβ3 integrin in platelet aggregation. Stable bent αIIbβ3 undergoes conformation changes on activation allowing fibrinogen binding and its taking an extended form. The αIIb genu assures the fulcrum of the bent state. Our goal was to determine how structural changes induced by missense mutations in the αIIb genu define GT phenotype. METHODS Sanger sequencing of ITGA2B and ITGB3 in the index case followed by in silico modeling of all known GT-causing missense mutations extending from the lower part of the β-propeller, and through the thigh and upper calf-1 domains. RESULTS A homozygous c.1772A>C transversion in exon 18 of ITGA2B coding for a p.Asp591Ala substitution in an interconnecting loop of the lower thigh domain of αIIb in a patient with platelets lacking αIIbβ3 led us to extend our in silico modeling to all 16 published disease-causing missense variants potentially affecting the αIIb genu. Modifications of structuring H-bonding were the major cause in the thigh domain although one mutation gave mRNA decay. In contrast, short-range changes induced in calf-1 appeared minor suggesting long-range effects. All result in severe to total loss of αIIbβ3 in platelets. The absence of mutations within a key Ca2+-binding loop in the genu led us to scan public databases; three potential single allele variants giving major structural changes were identiffied suggesting that this key region is not protected from genetic variation. CONCLUSIONS It appears that the αIIb genu is the object of stringent quality control to prevent platelets from circulating with activated and extended integrin.
Collapse
Affiliation(s)
- Xavier Pillois
- Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation BiomédicaleHôpital Xavier ArnozanBordeauxFrance
- Université de BordeauxINSERM U1034BordeauxFrance
| | - Pierre Peters
- Laboratoire de Thrombose‐HémostaseService d'Hématologie biologique et Immuno‐HématologieCHU Sart TilmanLiègeBelgium
| | | | | |
Collapse
|
31
|
Bury L, Zetterberg E, Leinøe EB, Falcinelli E, Marturano A, Manni G, Nurden AT, Gresele P. A novel variant Glanzmann thrombasthenia due to co-inheritance of a loss- and a gain-of-function mutation of ITGB3: evidence of a dominant effect of gain-of-function mutations. Haematologica 2018; 103:e259-e263. [PMID: 29439184 DOI: 10.3324/haematol.2017.180927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Eva Zetterberg
- Department of Haematology, Coagulation Unit, Skaane University Hospital, Lund, Sweden
| | - Eva B Leinøe
- Department of Haematology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Emanuela Falcinelli
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Alessandro Marturano
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Giorgia Manni
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Alan T Nurden
- French National Reference Centre for Platelet Disorders, Hopital Xavier Arnozan, 33600 Pessac, France
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| |
Collapse
|
32
|
Abstract
Platelets play a vital role in normal hemostasis to stem blood loss at sites of vascular injury by tethering and adhering to sites of injury, recruiting other platelets and blood cells to the developing clot, releasing vasoactive small molecules and proteins, and assembling and activating plasma coagulation proteins in a tightly regulated temporal and spatial manner. In synchrony with specific end products of coagulation, primarily cross-linked fibrin, a stable thrombus quickly forms. Far beyond physiological hemostasis and pathological thrombosis, emerging evidence supports platelets playing a pivotal role in vascular homeostasis, inflammation, cellular repair, regeneration, and wide range of autocrine and paracrine functions. In essence, platelets play both structural and functional roles as reporters, messengers, and active transporters surveying the vasculature for cues of environmental or developmental stimuli and participating as first responders.1 In this review, we will provide a contemporary perspective of platelet physiology, including fundamental, translational, and clinical constructs that apply directly to human health and disease.
Collapse
Affiliation(s)
- Richard C Becker
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine.
| | - Travis Sexton
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| | - Susan S Smyth
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| |
Collapse
|
33
|
Hanein D, Volkmann N. Conformational Equilibrium of Human Platelet Integrin Investigated by Three-Dimensional Electron Cryo-Microscopy. Subcell Biochem 2018; 87:353-363. [PMID: 29464566 DOI: 10.1007/978-981-10-7757-9_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Integrins are bidirectional transmembrane receptors that play central roles in hemostasis and arterial thrombosis. They have been subject to structural studies for many years, in particular using X-ray crystallography, nuclear magnetic resonance spectroscopy, and two-dimensional negative stain electron microscopy. Despite considerable progress, a full consensus on the molecular mechanism of integrin activation is still lacking. Three-dimensional reconstructions of full-length human platelet integrin αIIbβ3 in lipid-bilayer nanodiscs obtained by electron cryo-microscopy and single-particle reconstruction have shed new light on the activation process. These studies show that integrin αIIbβ3 exists in a continuous conformational equilibrium ranging from a compact nodular conformation similar to that obtained in crystal structures to a fully extended state with the leg domains separated. This equilibrium is shifted towards the extended conformation when extracellular ligands, cytosolic activators and lipid-bilayer nanodiscs are added. Addition of cytosolic activators and extracellular ligands in the absense of nanodiscs produces significantly less dramatic shifts, emphasizing the importance of the membrane bilayer in the activation process.
Collapse
Affiliation(s)
- Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, San Diego, CA, USA.
| |
Collapse
|
34
|
Molecular characterization of Glanzmann's thrombasthenia in Iran: identification of three novel mutations. Blood Coagul Fibrinolysis 2017; 28:681-686. [PMID: 29084015 DOI: 10.1097/mbc.0000000000000673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
: Quantitative and/or qualitative defects of the platelet membrane glycoprotein IIb/IIIa complex lead to the clinical entity of Glanzmann's thrombasthenia. A large variety of mutations and polymorphisms are responsible for the aberrant expression and defective activity of this heterodimeric complex. The current study aimed to determine the pattern of mutations among Iranian population with Glanzmann's thrombasthenia. A total of 20 patients with Glanzmann's thrombasthenia have been evaluated. All exons and splice sites of ITGA2B and ITGB3 genes were amplified using touchdown PCR. Mutation screening was analyzed using conformation sensitive gel electrophoresis heteroduplex PCR, and DNA sequencing. In addition to finding one previously identified mutation and polymorphism, the experimenters explored 3 and 2 novel mutations and polymorphisms, respectively. One substitution mutation, two deletions of a single nucleotide, one insertion of a single nucleotide, two synonymous polymorphisms, and one missense polymorphism were found using Sanger sequencing method. All detected mutations were homozygous which will most likely contribute to the pathogenesis of Glanzmann's thrombasthenia. Furthermore, it suggested ITGB3 as the mainly affected gene impaired in the patients with Glanzmann's thrombasthenia. As expected, the molecular results were consistent with the phenotypic findings so that GPIIb/IIIa complex was disrupted due to mutations in all type-I Glanzmann's thrombasthenia patients. It is concluded that intronic alterations or epigenetic regulations could be responsible for aberrant expression and/or defective activity of GPIIb/IIIa complex among other patients.
Collapse
|
35
|
Platelet interaction with activated endothelium: mechanistic insights from microfluidics. Blood 2017; 130:2819-2828. [PMID: 29018081 DOI: 10.1182/blood-2017-04-780825] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022] Open
Abstract
Traditionally, in vitro flow chamber experiments and in vivo arterial thrombosis studies have been proved to be of vital importance to elucidate the mechanisms of platelet thrombus formation after vessel wall injury. In recent years, it has become clear that platelets also act as modulators of inflammatory processes, such as atherosclerosis. A key element herein is the complex cross talk between platelets, the coagulation system, leukocytes, and the activated endothelium. This review provides insight into the platelet-endothelial interface, based on in vitro flow chamber studies and cross referenced with in vivo thrombosis studies. The main mechanisms of platelet interaction with the activated endothelium encompass (1) platelet rolling via interaction of platelet glycoprotein Ib-IX-V with endothelial-released von Willebrand factor with a supporting role for the P-selectin/P-selectin glycoprotein ligand 1 axis, followed by (2) firm platelet adhesion to the endothelium via interaction of platelet αIIbβ3 with endothelial αvβ3 and intercellular adhesion molecule 1, and (3) a stimulatory role for thrombin, the thrombospondin-1/CD36 axis and cyclooxygenase 1 in subsequent platelet activation and stable thrombus formation. In addition, the molecular mechanisms underlying the stimulatory effect of platelets on leukocyte transendothelial migration, a key mediator of atheroprogression, are discussed. Throughout the review, emphasis is placed on recommendations for setting up, reporting, interpreting, and comparing endothelial-lined flow chamber studies and suggestions for future studies.
Collapse
|
36
|
The importance of N-glycosylation on β 3 integrin ligand binding and conformational regulation. Sci Rep 2017; 7:4656. [PMID: 28680094 PMCID: PMC5498496 DOI: 10.1038/s41598-017-04844-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/19/2017] [Indexed: 11/25/2022] Open
Abstract
N-glycosylations can regulate the adhesive function of integrins. Great variations in both the number and distribution of N-glycosylation sites are found in the 18 α and 8 β integrin subunits. Crystal structures of αIIbβ3 and αVβ3 have resolved the precise structural location of each N-glycan site, but the structural consequences of individual N-glycan site on integrin activation remain unclear. By site-directed mutagenesis and structure-guided analyses, we dissected the function of individual N-glycan sites in β3 integrin activation. We found that the N-glycan site, β3-N320 at the headpiece and leg domain interface positively regulates αIIbβ3 but not αVβ3 activation. The β3-N559 N-glycan at the β3-I-EGF3 and αIIb-calf-1 domain interface, and the β3-N654 N-glycan at the β3-β-tail and αIIb-calf-2 domain interface positively regulate the activation of both αIIbβ3 and αVβ3 integrins. In contrast, removal of the β3-N371 N-glycan near the β3 hybrid and I-EGF3 interface, or the β3-N452 N-glycan at the I-EGF1 domain rendered β3 integrin more active than the wild type. We identified one unique N-glycan at the βI domain of β1 subunit that negatively regulates α5β1 activation. Our study suggests that the bulky N-glycans influence the large-scale conformational rearrangement by potentially stabilizing or destabilizing the domain interfaces of integrin.
Collapse
|
37
|
Miller LM, Pritchard JM, Macdonald SJF, Jamieson C, Watson AJB. Emergence of Small-Molecule Non-RGD-Mimetic Inhibitors for RGD Integrins. J Med Chem 2017; 60:3241-3251. [DOI: 10.1021/acs.jmedchem.6b01711] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lisa M. Miller
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| | - John M. Pritchard
- Fibrosis Discovery
Performance Unit, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Simon J. F. Macdonald
- Fibrosis Discovery
Performance Unit, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Craig Jamieson
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| | - Allan J. B. Watson
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| |
Collapse
|
38
|
A Naphthalenic Derivative ND-1 Inhibits Thrombus Formation by Interfering the Binding of Fibrinogen to Integrin αIIb β3. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8587164. [PMID: 28097150 PMCID: PMC5206433 DOI: 10.1155/2016/8587164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 12/24/2022]
Abstract
Integrin αIIbβ3 plays a crucial role in the process of platelet aggregation. Three integrin αIIbβ3 antagonists (abciximab, eptifibatide, and tirofiban) have been approved by FDA for clinical use. Unfortunately, they all showed severe side effects such as thrombocytopenia and bleeding risk. Thus, researches on the development of more effective and safer antiplatelet agents are needed. In this manuscript we reported a novel naphthalenic derivative compound ND-1 with potent antithrombotic effect and lower bleeding risk. ND-1 inhibited ADP-, collagen-, thrombin-, and U46619-induced platelet aggregation with IC50 values of 1.29, 14.46, 12.84, and 40.24 μM, respectively. Mechanism studies indicated that ND-1 inhibited the binding of fibrinogen to integrin αIIbβ3 in a dose-dependent manner with an IC50 value of 3.12 μM. ND-1 inhibited P-selectin expression induced by ADP, collagen, thrombin, and U46619 on the surface of platelets. Additionally, this compound reduced platelets spreading to the immobilized fibrinogen. In vivo, ND-1 potently decreased thrombus formation in an arteriovenous shunt thrombosis model in rats and slightly prolonged bleeding time in a tail cutting model in mice. Taken together, our results reveal that ND-1 is a novel antagonist of αIIbβ3 with strong antithrombotic effect and lower bleeding risk.
Collapse
|
39
|
Kannan M, Saxena R. No genetic abnormalities identified in α2IIb and β3: phenotype overcomes genotype in Glanzmann thrombasthenia. Int J Lab Hematol 2016; 39:e41-e44. [DOI: 10.1111/ijlh.12603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M. Kannan
- Blood & Vascular Biology Research Laboratory; Department of Life Sciences; School of Basic and Applied Sciences; Central University of Tamil Nadu; Thiruvarur India
| | - R. Saxena
- Department of Hematology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
40
|
Xu XR, Carrim N, Neves MAD, McKeown T, Stratton TW, Coelho RMP, Lei X, Chen P, Xu J, Dai X, Li BX, Ni H. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb J 2016; 14:29. [PMID: 27766055 PMCID: PMC5056500 DOI: 10.1186/s12959-016-0100-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Platelets are central mediators of thrombosis and hemostasis. At the site of vascular injury, platelet accumulation (i.e. adhesion and aggregation) constitutes the first wave of hemostasis. Blood coagulation, initiated by the coagulation cascades, is the second wave of thrombin generation and enhance phosphatidylserine exposure, can markedly potentiate cell-based thrombin generation and enhance blood coagulation. Recently, deposition of plasma fibronectin and other proteins onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that occurs prior to platelet accumulation (i.e. the classical first wave of hemostasis). These three waves of hemostasis, in the event of atherosclerotic plaque rupture, may turn pathogenic, and cause uncontrolled vessel occlusion and thrombotic disorders (e.g. heart attack and stroke). Current anti-platelet therapies have significantly reduced cardiovascular mortality, however, on-treatment thrombotic events, thrombocytopenia, and bleeding complications are still major concerns that continue to motivate innovation and drive therapeutic advances. Emerging evidence has brought platelet adhesion molecules back into the spotlight as targets for the development of novel anti-thrombotic agents. These potential antiplatelet targets mainly include the platelet receptors glycoprotein (GP) Ib-IX-V complex, β3 integrins (αIIb subunit and PSI domain of β3 subunit) and GPVI. Numerous efforts have been made aiming to balance the efficacy of inhibiting thrombosis without compromising hemostasis. This mini-review will update the mechanisms of thrombosis and the current state of antiplatelet therapies, and will focus on platelet adhesion molecules and the novel anti-thrombotic therapies that target them.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong People’s Republic of China
| | - Naadiya Carrim
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Miguel Antonio Dias Neves
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Thomas McKeown
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Tyler W. Stratton
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Rodrigo Matos Pinto Coelho
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Jianhua Xu
- CCOA Therapeutics Inc, Toronto, ON Canada
| | - Xiangrong Dai
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
| | - Benjamin Xiaoyi Li
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
- Hong Kong University of Science and technology, Hong Kong, China
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
- CCOA Therapeutics Inc, Toronto, ON Canada
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
41
|
Dasgupta SK, Le A, Da Q, Cruz M, Rumbaut RE, Thiagarajan P. Wdr1-Dependent Actin Reorganization in Platelet Activation. PLoS One 2016; 11:e0162897. [PMID: 27627652 PMCID: PMC5023164 DOI: 10.1371/journal.pone.0162897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022] Open
Abstract
In resting platelets, the integrin αIIbβ3 is present in a low-affinity “bent” state. During platelet aggregation, intracytoplasmic signals induce conformational changes (inside-out signaling) that result in a “swung-out” conformation competent to bind ligands such as fibrinogen. The cytoskeleton plays an essential role in αIIbβ3 activation. We investigated the role of the actin interacting protein Wdr1 in αIIbβ3 activation. Wdr1-hypomorphic mice had a prolonged bleeding time (> 10 minutes) compared to that of wild-type mice (2.1 ± 0.7 minutes). Their platelets had impaired aggregation to collagen and thrombin. In a FeCl3 induced carotid artery thrombosis model, vessel occlusion in Wdr1-hypomorphic mice was prolonged significantly compared to wild-type mice (9.0 ± 10.5 minutes versus 5.8 ± 12.6 minutes (p = 0.041). Activation-induced binding of JON/A (a conformation-specific antibody to activated αIIbβ3) was significantly less in Wdr1-hypomorphic platelets at various concentrations of collagen, indicating impaired inside-out activation of αIIbβ3, despite a normal calcium response. Actin turnover, assessed by measuring F-actin and G-actin ratios during collagen- and thrombin-induced platelet aggregation, was highly impaired in Wdr1-hypomorphic platelets. Furthermore, talin failed to redistribute and translocate to the cytoskeleton following activation in Wdr1-hypomorphic platelets. These studies show that Wdr1 is essential for talin-induced activation of αIIbβ3 during platelet activation.
Collapse
Affiliation(s)
- Swapan K. Dasgupta
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
- * E-mail:
| | - Anhquyen Le
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Qi Da
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Miguel Cruz
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Rolando E. Rumbaut
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Perumal Thiagarajan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| |
Collapse
|