1
|
Ku JC, Pan H, Abd GM, Richter DM, Minor A, Sawyer RG, Li Y. Blood Clots Used as Natural Biomaterials for Antibiotic Delivery in Vitro. J Surg Res 2024; 303:224-232. [PMID: 39374565 DOI: 10.1016/j.jss.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/06/2024] [Accepted: 09/08/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION The search for an optimal drug delivery system capable of addressing a wide range of wounds and defects in regenerative medicine remains a challenge. Blood clots (BCs) have been implicated as a promising candidate due to their natural occurrence, autologous nature, and potential for tissue repair. The aim of this study is to investigate BC as a vehicle for antibiotic delivery and its effectiveness in infection control. METHODS BCs derived from murine and porcine models were used to study the in vitro release of gentamicin and vancomycin over a 7-d period. Moreover, BCs conjugated with mesenchymal stem cells and these antibiotics were assessed for antimicrobial activity via microdilution and agar well diffusion, and quantification of vascular endothelial growth factor release through enzyme-linked immunosorbent assay. RESULTS Conjugated BCs maintained a sustained release of gentamicin and vancomycin throughout the 7-d period. Functional tests confirmed antimicrobial activity with zones of inhibition comparable to antibiotic controls. Vascular endothelial growth factor quantification revealed a pronounced and sustained release, especially from BCs conjugated with male mesenchymal stem cells, suggesting a gender influence on therapeutic outcomes. This sex-specific variance underscores the need for tailored therapeutic approaches in regenerative medicine applications. CONCLUSIONS We demonstrated the remarkable potential of BC as a drug delivery system through sustained antibiotic and growth factor release, both of which are key in preventing infection and promoting tissue regeneration. The ease and cost effectiveness of BC preparation as well as its favorable federal regulatory profile support the potential translational application of BCs as a natural biomaterial in regenerative medicine.
Collapse
Affiliation(s)
- Jennifer C Ku
- Medical Student, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Haiying Pan
- Department of Biomedical Engineering, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Genevieve M Abd
- Department of Biomedical Engineering, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - David M Richter
- Medical Student, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Ashley Minor
- Medical Student, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Robert G Sawyer
- Department of Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Yong Li
- Department of Biomedical Engineering, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan.
| |
Collapse
|
2
|
Xiao M, Tang D, Luan S, Hu B, Gong W, Pommer W, Dai Y, Yin L. Dysregulated coagulation system links to inflammation in diabetic kidney disease. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1270028. [PMID: 38143793 PMCID: PMC10748384 DOI: 10.3389/fcdhc.2023.1270028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Diabetic kidney disease (DKD) is a significant contributor to end-stage renal disease worldwide. Despite extensive research, the exact mechanisms responsible for its development remain incompletely understood. Notably, patients with diabetes and impaired kidney function exhibit a hypercoagulable state characterized by elevated levels of coagulation molecules in their plasma. Recent studies propose that coagulation molecules such as thrombin, fibrinogen, and platelets are interconnected with the complement system, giving rise to an inflammatory response that potentially accelerates the progression of DKD. Remarkably, investigations have shown that inhibiting the coagulation system may protect the kidneys in various animal models and clinical trials, suggesting that these systems could serve as promising therapeutic targets for DKD. This review aims to shed light on the underlying connections between coagulation and complement systems and their involvement in the advancement of DKD.
Collapse
Affiliation(s)
- Mengyun Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Donge Tang
- Shenzhen People’s Hospital/The Second Clinical School of Jinan University, Shenzhen, Guangdong, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wenyu Gong
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wolfgang Pommer
- KfH Kuratoriumfuer Dialyse und Nierentransplantatione.V., Bildungszentrum, Neu-Isenburg, Germany
| | - Yong Dai
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Verbout NG, Su W, Pham P, Jordan K, Kohs TC, Tucker EI, McCarty OJ, Sherman LS. E-WE thrombin, a protein C activator, reduces disease severity and spinal cord inflammation in relapsing-remitting murine experimental autoimmune encephalomyelitis. RESEARCH SQUARE 2023:rs.3.rs-2802415. [PMID: 37131631 PMCID: PMC10153372 DOI: 10.21203/rs.3.rs-2802415/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Objective Relapses in patients with relapsing-remitting multiple sclerosis (RRMS) are typically treated with high-dose corticosteroids including methylprednisolone. However, high-dose corticosteroids are associated with significant adverse effects, can increase the risk for other morbidities, and often do not impact disease course. Multiple mechanisms are proposed to contribute to acute relapses in RRMS patients, including neuroinflammation, fibrin formation and compromised blood vessel barrier function. The protein C activator, E-WE thrombin is a recombinant therapeutic in clinical development for its antithrombotic and cytoprotective properties, including protection of endothelial cell barrier function. In mice, treatment with E-WE thrombin reduced neuroinflammation and extracellular fibrin formation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). We therefore tested the hypothesis that E-WE thrombin could reduce disease severity in a relapsing-remitting model of EAE. Methods Female SJL mice were inoculated with proteolipid protein (PLP) peptide and treated with E-WE thrombin (25 μg/kg; iv) or vehicle at onset of detectable disease. In other experiments, E-WE thrombin was compared to methylprednisolone (100 mg/kg; iv) or the combination of both. Results Compared to vehicle, administration of E-WE thrombin significantly improved disease severity of the initial attack and relapse and delayed onset of relapse as effectively as methylprednisolone. Both methylprednisolone and E-WE thrombin reduced demyelination and immune cell recruitment, and the combination of both treatments had an additive effect. Conclusion The data presented herein demonstrate that E-WE thrombin is protective in mice with relapsing-remitting EAE, a widely used model of MS. Our data indicate that E-WE thrombin is as effective as high-dose methylprednisolone in improving disease score and may exert additional benefit when administered in combination. Taken together, these data suggest that E-WE thrombin may be an effective alternative to high-dose methylprednisolone for managing acute MS attacks.
Collapse
Affiliation(s)
| | - Weiping Su
- Oregon National Primate Research Center, Oregon Health & Science University
| | - Peter Pham
- Oregon National Primate Research Center, Oregon Health & Science University
| | | | | | | | | | - Larry S Sherman
- Oregon National Primate Research Center, Oregon Health & Science University
| |
Collapse
|
4
|
Hypercoagulability Impairs Plaque Stability in Diabetes-Induced Atherosclerosis. Nutrients 2022; 14:nu14101991. [PMID: 35631132 PMCID: PMC9143009 DOI: 10.3390/nu14101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus, which is largely driven by nutritional and behavioral factors, is characterized by accelerated atherosclerosis with impaired plaque stability. Atherosclerosis and associated complications are the major cause of mortality in diabetic patients. Efficient therapeutic concepts for diabetes-associated atherosclerosis are lacking. Atherosclerosis among diabetic patients is associated with reduced endothelial thrombomodulin (TM) expression and impaired activated protein C (aPC) generation. Here, we demonstrate that atherosclerotic plaque stability is reduced in hyperglycemic mice expressing dysfunctional TM (TMPro/Pro mice), which have a pro-coagulant phenotype due to impaired thrombin inhibition and markedly reduced aPC generation. The vessel lumen and plaque size of atherosclerotic lesions in the truncus brachiocephalic were decreased in diabetic TMPro/Pro ApoE-/- mice compared to diabetic ApoE-/- mice. While lipid accumulation in lesions of diabetic TMPro/Pro ApoE-/- mice was lower than that in diabetic ApoE-/- mice, morphometric analyses revealed more prominent signs of instable plaques, such as a larger necrotic core area and decreased fibrous cap thickness in diabetic TMPro/Pro ApoE-/- mice. Congruently, more macrophages and fewer smooth muscle cells were observed within lesions of diabetic TMPro/Pro ApoE-/- mice. Thus, impaired TM function reduces plaque stability, a characteristic of hyperglycemia-associated plaques, thus suggesting the crucial role of impaired TM function in mediating diabetes-associated atherosclerosis.
Collapse
|
5
|
Kohli S, Isermann B. Crosstalk between inflammation and coagulation: Focus on pregnancy related complications. THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2021.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Oe Y, Miyazaki M, Takahashi N. Coagulation, Protease-Activated Receptors, and Diabetic Kidney Disease: Lessons from eNOS-Deficient Mice. TOHOKU J EXP MED 2021; 255:1-8. [PMID: 34511578 DOI: 10.1620/tjem.255.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) dysfunction is known to exacerbate the progression and prognosis of diabetic kidney disease (DKD). One of the mechanisms through which this is achieved is that low eNOS levels are associated with hypercoagulability, which promotes kidney injury. In the extrinsic coagulation cascade, the tissue factor (factor III) and downstream coagulation factors, such as active factor X (FXa), exacerbate inflammation through activation of the protease-activated receptors (PARs). Recently, it has been shown that the lack of or reduced eNOS expression in diabetic mice, as a model of advanced DKD, increases renal tissue factor levels and PAR1 and 2 expression in their kidneys. Furthermore, pharmaceutical inhibition or genetic deletion of coagulation factors or PARs ameliorated inflammation in DKD in mice lacking eNOS. In this review, we summarize the relationship between eNOS, coagulation, and PARs and propose a novel therapeutic option for the management of patients with DKD.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine
| | - Mariko Miyazaki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences
| |
Collapse
|
7
|
Fan L, Zhu X, Zheng Y, Zhang W, Seidner DL, Ness R, Murff HJ, Yu C, Huang X, Shrubsole MJ, Hou L, Dai Q. Magnesium treatment on methylation changes of transmembrane serine protease 2 (TMPRSS2). Nutrition 2021; 89:111340. [PMID: 34116393 PMCID: PMC8102075 DOI: 10.1016/j.nut.2021.111340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The viral entry of SARS-CoV-2 requires host-expressed TMPRSS2 to facilitate the viral spike protein priming. This study aims to test the hypothesis that magnesium (Mg) treatment leads to DNA methylation changes in TMPRSS2. METHODS This study is nested within the Personalized Prevention of Colorectal Cancer Trial, a double-blind 2 × 2 factorial randomized controlled trial, which enrolled 250 participants from Vanderbilt University Medical Center. RESULTS We found that 12 wk of personalized Mg treatment significantly increased 5-methylcytosine methylation at cg16371860 (TSS1500, promoter) by 7.2% compared to the placebo arm (decreased by 0.1%) in those ages < 65 y. The difference remained statistically significant after adjusting for age, sex, and baseline methylation as well as correction for false discovery rate (adjusted P = 0.014). Additionally, Mg treatment significantly reduced 5-hydroxymethylcytosine levels at cg26337277 (close proximity to TSS200 and the 5' untranslated region, promoter) by 2.3% compared to an increase of 7.1% in the placebo arm after adjusting for covariates in those ages < 65 y (P = 0.003). The effect remained significant at a false discovery rate of 0.10 (adjusted P = 0.088). CONCLUSIONS Among individuals ages < 65 y with calcium-to-magnesium intake ratios equal to or over 2.6, reducing the ratio to around 2.3 increased 5-methylcytosine modifications (i.e., cg16371860) and reduced 5-hydroxymethylcytosine modifications (i.e., cg26337277) in the TMPRSS2 gene. These findings, if confirmed, provide another mechanism for the role of Mg intervention in the prevention of COVID-19 and treatment of early and mild disease by modifying the phenotype of the TMPRSS2 genotype.
Collapse
Affiliation(s)
- Lei Fan
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiangzhu Zhu
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Wei Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Douglas L Seidner
- Center for Human Nutrition, Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgical Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Reid Ness
- Department of Medicine, Division of Gastroenterology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Harvey J Murff
- Division of Geriatric Medicine, General Internal Medicine and Public Health, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Xiang Huang
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Martha J Shrubsole
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Qi Dai
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
8
|
Fan L, Zhu X, Zheng Y, Zhang W, Seidner DL, Ness R, Murff HJ, Yu C, Huang X, Shrubsole MJ, Hou L, Dai Q. Magnesium Treatment on Methylation Changes of Transmembrane Serine Protease 2 (TMPRSS2). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.11.21253287. [PMID: 33758885 PMCID: PMC7987044 DOI: 10.1101/2021.03.11.21253287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND The viral entry of SARS-CoV-2 requires host-expressed TMPRSS2 to facilitate the viral spike (S) protein priming. OBJECTIVES To test the hypothesis that Mg treatment leads to DNA methylation changes in TMPRSS2 . METHODS This study is nested within the Personalized Prevention of Colorectal Cancer Trial (PPCCT), a double-blind 2×2 factorial randomized controlled trial, which enrolled 250 participants from Vanderbilt University Medical Center. Target doses for both Mg and placebo arms were personalized. RESULTS We found that 12-week of personalized Mg treatment significantly increased 5-mC methylation at cg16371860 (TSS1500, promoter) by 7.2% compared to placebo arm (decreased by 0.1%) in those aged < 65 years old. The difference remained statistically significant after adjusting for age, sex and baseline methylation as well as FDR correction (FDR-adjusted P =0.014). Additionally, Mg treatment significantly reduced 5-hmC level at cg26337277 (close proximity to TSS200 and 5'UTR, promoter) by 2.3% compared to increases by 7.1% in the placebo arm after adjusting for covariates in those aged < 65 years old ( P =0.003). The effect remained significant at FDR of 0.10 (adjusted P value=0.088). CONCLUSION Among individuals aged younger than 65 years with the Ca:Mg intake ratios equal to or over 2.6, reducing Ca:Mg ratios to around 2.3 increased 5-mC modifications (i.e. cg16371860) and reduced 5-hmC modifications (i.e. cg26337277) in the TMPRSS2 gene. These findings, if confirmed, provide another mechanism for the role of Mg intervention for the prevention of COVID-19 and treatment of early and mild disease by modifying the phenotype of the TMPRSS2 genotype.
Collapse
|
9
|
Gadi I, Fatima S, Elwakiel A, Nazir S, Al-Dabet MM, Rana R, Bock F, Manhoran J, Gupta D, Biemann R, Nieswand B, Braun-Dullaeus R, Besler C, Scholz M, Geffers R, Griffin JH, Esmon CT, Kohli S, Isermann B, Shahzad K. Different DOACs Control Inflammation in Cardiac Ischemia-Reperfusion Differently. Circ Res 2021; 128:513-529. [PMID: 33353373 PMCID: PMC8293866 DOI: 10.1161/circresaha.120.317219] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE While thrombin is the key protease in thrombus formation, other coagulation proteases, such as fXa (factor Xa) or aPC (activated protein C), independently modulate intracellular signaling via partially distinct receptors. OBJECTIVES To study the differential effects of fXa or fIIa (factor IIa) inhibition on gene expression and inflammation in myocardial ischemia-reperfusion injury. METHODS AND RESULTS Mice were treated with a direct fIIa inhibitor (fIIai) or direct fXa inhibitor (fXai) at doses that induced comparable anticoagulant effects ex vivo and in vivo (tail-bleeding assay and FeCl3-induced thrombosis). Myocardial ischemia-reperfusion injury was induced via left anterior descending ligation. We determined infarct size and in vivo aPC generation, analyzed gene expression by RNA sequencing, and performed immunoblotting and ELISA. The signaling-only 3K3A-aPC variant and inhibitory antibodies that blocked all or only the anticoagulant function of aPC were used to determine the role of aPC. Doses of fIIai and fXai that induced comparable anticoagulant effects resulted in a comparable reduction in infarct size. However, unbiased gene expression analyses revealed marked differences, including pathways related to sterile inflammation and inflammasome regulation. fXai but not fIIai inhibited sterile inflammation by reducing the expression of proinflammatory cytokines (IL [interleukin]-1β, IL-6, and TNFα [tumor necrosis factor alpha]), as well as NF-κB (nuclear factor kappa B) and inflammasome activation. This anti-inflammatory effect was associated with reduced myocardial fibrosis 28 days post-myocardial ischemia-reperfusion injury. Mechanistically, in vivo aPC generation was higher with fXai than with fIIai. Inhibition of the anticoagulant and signaling properties of aPC abolished the anti-inflammatory effect associated with fXai, while inhibiting only the anticoagulant function of aPC had no effect. Combining 3K3A-aPC with fIIai reduced the inflammatory response, mimicking the fXai-associated effect. CONCLUSIONS We showed that specific inhibition of coagulation via direct oral anticoagulants had differential effects on gene expression and inflammation, despite comparable anticoagulant effects and infarct sizes. Targeting individual coagulation proteases induces specific cellular responses unrelated to their anticoagulant effect.
Collapse
Affiliation(s)
- Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Sumra Nazir
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Moh’d Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
- Medical Laboratories, Faculty of Health Sciences, American University of Madaba (AUM), Amman 11821, Jordan
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Fabian Bock
- Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jaykumar Manhoran
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Bernhard Nieswand
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Centre, University of Würzburg, Germany
| | | | - Christian Besler
- Cardiology, Leipzig-Heart Center, University of Leipzig, Germany
| | - Markus Scholz
- Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
| | - Robert Geffers
- RG Genome Analytics, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - John H. Griffin
- Molecular Medicine, The Scripps Research Institute, La Jolla, CA, US 92037, United States
| | - Charles T. Esmon
- Laboratory of Coagulation Biology, Oklahoma Medical Research Foundation, 73104 Oklahoma City, United States
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| |
Collapse
|
10
|
Cao H, Seto SW, Bhuyan DJ, Chan HH, Song W. Effects of Thrombin on the Neurovascular Unit in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:973-984. [PMID: 33392917 DOI: 10.1007/s10571-020-01019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia is a cerebrovascular disease with high morbidity and mortality that poses a significant burden on society and the economy. About 60% of cerebral ischemia is caused by thrombus, and the formation of thrombus proceeds from insoluble fibrin, following its transformation from liquid fibrinogen. In thrombus-induced ischemia, increased permeability of the blood-brain barrier (BBB), followed by the extravasation of blood components into the brain results in an altered brain microenvironment. Changes in the brain microenvironment affect brain function and the neurovascular unit (NVU), the working unit of the brain. Recent studies have reported that coagulation factors interact with the NVU and its components, but the specific function of this interaction is highly speculative and warrants further investigations. In this article, we reviewed the role of coagulation factors in cerebral ischemia and the role of coagulation factors in thrombosis. Additionally, the influence of thrombin on the NVU is introduced, as well as in the function of NVU, which may help to explore part of brain injury mechanism during ischemia. Lastly, we propose some novel therapeutic approaches on ischemic stroke by reducing the risk of coagulation.
Collapse
Affiliation(s)
- Hui Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China
| | - Sai Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China.,NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Hoi Huen Chan
- Hong Kong Community College, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wenting Song
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China.
| |
Collapse
|
11
|
Healy LD, Fernández JA, Mosnier LO, Griffin JH. Activated protein C and PAR1-derived and PAR3-derived peptides are anti-inflammatory by suppressing macrophage NLRP3 inflammasomes. J Thromb Haemost 2021; 19:269-280. [PMID: 33049092 PMCID: PMC7790994 DOI: 10.1111/jth.15133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Essentials Activated protein C (APC) is a serine protease with anticoagulant and cytoprotective effects. We tested whether APC or non-canonical PAR-derived peptides suppress inflammasome activity. APC or PAR1- and PAR3-derived peptides restrict inflammasome-dependent caspase-1 activity. Combined PAR1-derived and PAR3-derived peptides synergistically suppress caspase-1 activity. ABSTRACT: Background Activated protein C (APC) has been shown to restrict murine inflammasome activity. However, whether APC can exert anti-inflammatory activity in part through suppression of inflammasome activation in human systems is unknown. Objectives Studies were made to determine whether either APC or protease activated receptor (PAR)-derived peptides can reduce NLRP3 inflammasome activity in differentiated human THP-1 macrophage-like cells or in primary human monocytes stimulated to activate the inflammasome. Methods Human THP-1 cells or primary human monocytes were differentiated, treated with APC or PAR-derived peptides, and then stimulated with lipopolysaccharide and ATP to induce caspase-1 activity, a product of inflammasome activation. Results Activated protein C or noncanonical PAR1-derived or PAR3-derived peptides significantly reduced caspase-1 activity, detection of fluorescent NLRP3, and IL-1β release from THP-1 cells. At low concentrations where no effect was observed for each individual peptide, combinations of the PAR1-derived peptide and the PAR3-derived peptide resulted in a significant synergistic decrease in caspase-1 and IL-1β release. Caspase-1 activity was also reduced in primary human monocytes. Studies using blocking antibodies and small molecule PAR1 inhibitors suggest that EPCR, PAR1, and PAR3 each play roles in the observed anti-inflammatory effects. Several shortened versions of the PAR1- and PAR3-derived peptide reduced caspase-1 activity and exhibited synergistic anti-inflammatory effects. Conclusions The results indicate that both APC and certain PAR1- and PAR3-derived peptides, which are biased agonists for PAR1 or PAR3, can reduce inflammasome activity in stimulated human monocytes as measured by caspase-1 activity and IL-1β release and that PAR-derived biased peptide agonist combinations are synergistically anti-inflammatory.
Collapse
Affiliation(s)
- Laura D Healy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - José A Fernández
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Laurent O Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
12
|
Piacente C, Martucci G, Miceli V, Pavone G, Papeo A, Occhipinti G, Panarello G, Lorusso R, Tanaka K, Arcadipane A. A narrative review of antithrombin use during veno-venous extracorporeal membrane oxygenation in adults: rationale, current use, effects on anticoagulation, and outcomes. Perfusion 2020; 35:452-464. [PMID: 32228213 DOI: 10.1177/0267659120913803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND During extracorporeal membrane oxygenation, the large contact surface between the blood and the extracorporeal circuit causes a continuous activation of coagulation and inflammation. Unfractionated heparin, a glycosaminoglycan that must bind to antithrombin as a cofactor, is currently the standard anticoagulant adopted during extracorporeal membrane oxygenation. Antithrombin, beyond being a potent natural anticoagulant, acts in the cross-talk between coagulation and inflammatory system through anticoagulation and coagulation-independent effects. OBJECTIVES In this review, we describe, in the adult setting of veno-venous extracorporeal membrane oxygenation, the pathophysiological rationale for antithrombin use, the current practice of administration, and the effects of antithrombin on anticoagulation, bleeding, and outcomes. DATA SOURCES Studies on adults (18 years or older) on veno-venous extracorporeal membrane oxygenation published from 1995 to 2018 in order to evaluate the use of antithrombin. RESULTS In adults on veno-venous extracorporeal membrane oxygenation, antithrombin supplementation has a highly pathophysiological rationale since coagulation factor consumption, systemic inflammatory response syndrome, and endothelial activation are triggered by extracorporeal membrane oxygenation. Eleven articles are focused on the topic but among the authors there is no consensus on the threshold for supplementation (ranging from 70% to 80%) as well as on the dose (rarely standardized) and time of administration (bolus vs continuous infusion). Consistently, antithrombin is considered able to achieve better anticoagulation targets in or not in the presence of heparin resistance. The impact of antithrombin administration on bleeding still shows contrasting results. CONCLUSION Antithrombin use in veno-venous extracorporeal membrane oxygenation should be investigated on the threshold for supplementation, dose, and time of administration.
Collapse
Affiliation(s)
- Claudia Piacente
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Gennaro Martucci
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
- Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Vitale Miceli
- Research Department, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Gaetano Pavone
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Anna Papeo
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Giovanna Occhipinti
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Giovanna Panarello
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Roberto Lorusso
- Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kenichi Tanaka
- Department of Anesthesiology, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Antonio Arcadipane
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| |
Collapse
|
13
|
Madhusudhan T, Ghosh S, Wang H, Dong W, Gupta D, Elwakiel A, Stoyanov S, Al-Dabet MM, Krishnan S, Biemann R, Nazir S, Zimmermann S, Mathew A, Gadi I, Rana R, Zeng-Brouwers J, Moeller MJ, Schaefer L, Esmon CT, Kohli S, Reiser J, Rezaie AR, Ruf W, Isermann B. Podocyte Integrin- β 3 and Activated Protein C Coordinately Restrict RhoA Signaling and Ameliorate Diabetic Nephropathy. J Am Soc Nephrol 2020; 31:1762-1780. [PMID: 32709711 DOI: 10.1681/asn.2019111163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS The zymogen protein C and aPC bind to podocyte integrin-β 3, a subunit of integrin-α v β 3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-α v β 3 induces transient binding of integrin-β 3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-β 3 via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-β 3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-β 3 interaction by specifically deleting podocyte integrin-β 3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-α v β 3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-α v β 3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.
Collapse
Affiliation(s)
- Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany .,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Sanchita Ghosh
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Hongjie Wang
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Dong
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Dheerendra Gupta
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Stoyan Stoyanov
- German Center for Neurodegenerative Diseases, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.,Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, Amman, Jordan
| | - Shruthi Krishnan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ronald Biemann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Sumra Nazir
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Silke Zimmermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Akash Mathew
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ihsan Gadi
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Rajiv Rana
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Jinyang Zeng-Brouwers
- Institute of Pharmacology, University Hospital and Goethe University, Frankfurt, Germany
| | - Marcus J Moeller
- Division of Nephrology and Immunology, University Hospital of the Rheinisch-Westfälische Technische Hochschule, Aachen University of Technology, Aachen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology, University Hospital and Goethe University, Frankfurt, Germany
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shrey Kohli
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany .,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Griffin JH, Lyden P. COVID-19 hypothesis: Activated protein C for therapy of virus-induced pathologic thromboinflammation. Res Pract Thromb Haemost 2020; 4:506-509. [PMID: 32548551 PMCID: PMC7292662 DOI: 10.1002/rth2.12362] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Seriously ill patients with coronavirus disease 2019 (COVID‐19) at risk for death exhibit elevated cytokine and chemokine levels and D‐dimer, and they often have comorbidities related to vascular dysfunctions. In preclinical studies, activated protein C (APC) provides negative feedback downregulation of excessive inflammation and thrombin generation, attenuates damage caused by ischemia‐reperfusion in many organs including lungs, and reduces death caused by bacterial pneumonia. APC exerts both anticoagulant activities and direct cell‐signaling activities. Preclinical studies show that its direct cell‐signaling actions mediate anti‐inflammatory and anti‐apoptotic actions, mortality reduction for pneumonia, and beneficial actions for ischemia‐reperfusion injury. The APC mutant 3K3A‐APC, which was engineered to have diminished anticoagulant activity while retaining cell‐signaling actions, was safe in phase 1 and phase 2 human trials. Because of its broad spectrum of homeostatic effects in preclinical studies, we speculate that 3K3A‐APC merits consideration for clinical trial studies in appropriately chosen, seriously ill patients with COVID‐19.
Collapse
Affiliation(s)
- John H Griffin
- Department of Molecular Medicine The Scripps Research Institute La Jolla California USA.,Department of Medicine University of California San Diego California USA
| | - Patrick Lyden
- Department of Neurology Cedars-Sinai Medical Center Los Angeles California USA
| |
Collapse
|
15
|
Hamedani NS, Müller J, Tolle F, Rühl H, Pezeshkpoor B, Liphardt K, Oldenburg J, Mayer G, Pötzsch B. Selective Modulation of the Protease Activated Protein C Using Exosite Inhibiting Aptamers. Nucleic Acid Ther 2020; 30:276-288. [PMID: 32486960 DOI: 10.1089/nat.2020.0844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Activated protein C (APC) is a serine protease with anticoagulant and cytoprotective activities. Nonanticoagulant APC mutants show beneficial effects as cytoprotective agents. To study, if such biased APC signaling can be achieved by APC-binding ligands, the aptamer technology has been used. A G-quadruplex-containing aptamer, G-NB3, has been selected that binds to the basic exosite of APC with a KD of 0.2 nM and shows no binding to APC-related serine proteases or the zymogen protein C. G-NB3 inhibits the inactivation of activated cofactors V and VIII with IC50 values of 11.6 and 13.1 nM, respectively, without inhibiting the cytoprotective and anti-inflammatory functions of APC as tested using a staurosporine-induced apoptosis assay and a vascular barrier protection assay. In addition, G-NB3 prolongs the plasma half-life of APC through inhibition of APC-serine protease inhibitor complex formation. These physicochemical and functional characteristics qualify G-NB3 as a promising therapeutic agent usable to enhance the cytoprotective functions of APC without increasing the risk of APC-related hemorrhage.
Collapse
Affiliation(s)
- Nasim Shahidi Hamedani
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Jens Müller
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Fabian Tolle
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Heiko Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Behnaz Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Kerstin Liphardt
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Günter Mayer
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Bernd Pötzsch
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
16
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol Int 2020; 70:309-322. [PMID: 32166823 PMCID: PMC7317428 DOI: 10.1111/pin.12921] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and morbidity worldwide. The underlying mechanisms of atherothrombosis comprise plaque disruption and subsequent thrombus formation. Arterial thrombi are thought to mainly comprise aggregated platelets as a result of high blood velocity. However, thrombi that develop on disrupted plaques comprise not only aggregated platelets, but also large amounts of fibrin, because plaques contain large amount of tissue factor that activate the coagulation cascade. Since not all thrombi grow large enough to occlude the vascular lumen, the propagation of thrombi is also critical in the onset of adverse vascular events. Various factors such as vascular wall thrombogenicity, local hemorheology, systemic thrombogenicity and fibrinolytic activity modulate thrombus formation and propagation. Although the activation mechanisms of platelets and the coagulation cascade have been intensively investigated, the underlying mechanisms of occlusive thrombus formation on disrupted plaques remain obscure. Pathological findings derived from humans and animal models of human atherothrombosis have uncovered pathophysiological processes during thrombus formation and propagation after plaque disruption, and novel factors have been identified that modulate the activation of platelets and the coagulation cascade. These findings have also provided insights into the development of novel drugs for atherothrombosis.
Collapse
Affiliation(s)
- Yujiro Asada
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki, Miyazaki, Japan
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University, Nara, Japan
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The serine protease activated protein C (aPC) was initially characterized as an endogenous anticoagulant, but in addition conveys anti-inflammatory, barrier-protective, and pro cell-survival functions. Its endogenous anticoagulant function hampered the successful and continuous implantation of aPC as a therapeutic agent in septic patients. However, it became increasingly apparent that aPC controls cellular function largely independent of its anticoagulant effects through cell-specific and context-specific receptor complexes and intracellular signaling pathways. The purpose of this review is to outline the mechanisms of aPC-dependent cell signaling and its intracellular molecular targets. RECENT FINDINGS With the advent of new therapeutic agents either modulating directly and specifically the activity of coagulation proteases or interfering with protease-activated receptor signaling a better understanding not only of the receptor mechanisms but also of the intracellular signaling mechanisms controlled by aPC in a disease-specific and context-specific fashion, is required to tailor new therapeutic approaches based on aPC's anti-inflammatory, barrier-protective, and pro cell-survival functions. SUMMARY This review summarizes recent insights into the intracellular signaling pathways controlled by aPC in a cell-specific and context-specific fashion. We focus on aPC-mediated barrier protection, inhibition of inflammation, and cytoprotecting within this review.
Collapse
|
18
|
Abstract
Increasing evidence suggests that renal inflammation contributes to the pathogenesis and progression of diabetic kidney disease (DKD) and that anti-inflammatory therapies might have renoprotective effects in DKD. Immune cells and resident renal cells that activate innate immunity have critical roles in triggering and sustaining inflammation in this setting. Evidence from clinical and experimental studies suggests that several innate immune pathways have potential roles in the pathogenesis and progression of DKD. Toll-like receptors detect endogenous danger-associated molecular patterns generated during diabetes and induce a sterile tubulointerstitial inflammatory response via the NF-κB signalling pathway. The NLRP3 inflammasome links sensing of metabolic stress in the diabetic kidney to activation of pro-inflammatory cascades via the induction of IL-1β and IL-18. The kallikrein-kinin system promotes inflammatory processes via the generation of bradykinins and the activation of bradykinin receptors, and activation of protease-activated receptors on kidney cells by coagulation enzymes contributes to renal inflammation and fibrosis in DKD. In addition, hyperglycaemia leads to protein glycation and activation of the complement cascade via recognition of glycated proteins by mannan-binding lectin and/or dysfunction of glycated complement regulatory proteins. Data from preclinical studies suggest that targeting these innate immune pathways could lead to novel therapies for DKD.
Collapse
|
19
|
Martínez-Rojas PP, Quiroz-García E, Monroy-Martínez V, Agredano-Moreno LT, Jiménez-García LF, Ruiz-Ordaz BH. Participation of Extracellular Vesicles from Zika-Virus-Infected Mosquito Cells in the Modification of Naïve Cells' Behavior by Mediating Cell-to-Cell Transmission of Viral Elements. Cells 2020; 9:cells9010123. [PMID: 31947958 PMCID: PMC7016930 DOI: 10.3390/cells9010123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
To date, no safe vaccine or antivirals for Zika virus (ZIKV) infection have been found. The pathogenesis of severe Zika, where host and viral factors participate, remains unclear. For the control of Zika, it is important to understand how ZIKV interacts with different host cells. Knowledge of the targeted cellular pathways which allow ZIKV to productively replicate and/or establish prolonged viral persistence contributes to novel vaccines and therapies. Monocytes and endothelial vascular cells are the main ZIKV targets. During the infection process, cells are capable of releasing extracellular vesicles (EVs). EVs are mediators of intercellular communication. We found that mosquito EVs released from ZIKV-infected (C6/36) cells carry viral RNA and ZIKV-E protein and are able to infect and activate naïve mosquito and mammalian cells. ZIKV C6/36 EVs promote the differentiation of naïve monocytes and induce a pro-inflammatory state with tumor necrosis factor-alpha (TNF-α) mRNA expression. ZIKV C6/36 EVs participate in endothelial vascular cell damage by inducing coagulation (TF) and inflammation (PAR-1) receptors at the endothelial surface of the cell membranes and promote a pro-inflammatory state with increased endothelial permeability. These data suggest that ZIKV C6/36 EVs may contribute to the pathogenesis of ZIKV infection in human hosts.
Collapse
Affiliation(s)
- Pedro Pablo Martínez-Rojas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Elizabeth Quiroz-García
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Verónica Monroy-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
| | - Lourdes Teresa Agredano-Moreno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (L.T.A.-M.); (L.F.J.-G.)
| | - Blanca H. Ruiz-Ordaz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México; (P.P.M.-R.); (E.Q.-G.); (V.M.-M.)
- Correspondence: or ; Tel.: +521-55-56228931
| |
Collapse
|
20
|
Willis Fox O, Preston RJS. Molecular basis of protease-activated receptor 1 signaling diversity. J Thromb Haemost 2020; 18:6-16. [PMID: 31549766 DOI: 10.1111/jth.14643] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Protease-activated receptors (PARs) are a family of highly conserved G protein-coupled receptors (GPCRs) that respond to extracellular proteases via a unique proteolysis-dependent activation mechanism. Protease-activated receptor 1 (PAR1) was the first identified member of the receptor family and plays important roles in hemostasis, inflammation and malignancy. The biology underlying PAR1 signaling by its canonical agonist thrombin is well characterized; however, definition of the mechanistic basis of PAR1 signaling by other proteases, including matrix metalloproteases, activated protein C, plasmin, and activated factors VII and X, remains incompletely understood. In this review, we discuss emerging insights into the molecular bases for "biased" PAR1 signaling, including atypical PAR1 proteolysis, PAR1 heterodimer and coreceptor interactions, PAR1 translocation on the membrane surface, and interactions with different G-proteins and β-arrestins upon receptor activation. Moreover, we consider how these new insights into PAR1 signaling have acted to spur development of novel PAR1-targeted therapeutics that act to inhibit, redirect, or fine-tune PAR1 signaling output to treat cardiovascular and inflammatory disease. Finally, we discuss some of the key unanswered questions relating to PAR1 biology, in particular how differences in PAR1 proteolysis, signaling intermediate coupling, and engagement with coreceptors and GPCRs combine to mediate the diversity of identified PAR1 signaling outputs.
Collapse
Affiliation(s)
- Orla Willis Fox
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
21
|
Activated clotting factor X mediates mitochondrial alterations and inflammatory responses via protease-activated receptor signaling in alveolar epithelial cells. Eur J Pharmacol 2019; 869:172875. [PMID: 31877279 DOI: 10.1016/j.ejphar.2019.172875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
There is growing evidence for the contribution of the activated coagulation factor X (FXa) in the development of chronic inflammatory lung diseases. Therefore, we aimed to investigate effects of exogenous FXa on mitochondrial and metabolic function as well as the induction of inflammatory molecules in type II alveolar epithelial cells. Effects of FXa on epithelial cells were investigated in A549 cell line. Activation of extracellular signal-regulated kinase (ERK) and induction of inflammatory molecules were examined by immunoblot and gene expression analysis. Mitochondrial function was assessed by the measurement of oxygen consumption during maximal oxidative phosphorylation and quantitative determination of cardiolipin oxidation. Apoptosis was tested using a caspase 3 antibody. Metabolic activity and lactate dehydrogenase assay were applied for the detection of cellular viability. FXa activated ERK1/2 and induced an increase in the expression of pro-inflammatory cytokines, which was prevented by an inhibitor of FXa, edoxaban, or an inhibitor of protease-activated receptor 1, vorapaxar. Exposure to FXa caused mitochondrial alteration with restricted capacity for ATP generation, which was effectively prevented by edoxaban, vorapaxar and GB83 (inhibitor of protease-activated receptor 2). Of note, exposure to FXa did not initiate apoptosis in epithelial cells. FXa-dependent pro-inflammatory state and impairment of mitochondria did not reach the level of significance in lung epithelial cells. However, these effects might limit regenerative potency of lung epithelial cells, particular under clinical circumstances where lung injury causes exposure to clotting factors.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Activated protein C (APC) is a homeostatic coagulation protease with anticoagulant and cytoprotective activities. Focusing on APC's effects in the brain, this review discusses three different scenarios that illustrate how APC functions are intimately affecting the physiology and pathophysiology of the brain. RECENT FINDINGS Cytoprotective APC therapy holds promise for the treatment of ischemic stroke, and a recently completed trial suggested that cytoprotective-selective 3K3A-APC reduced bleeding in ischemic stroke patients. In contrast, APC's anticoagulant activity contributes to brain bleeding as shown by the disproportional upregulation of APC generation in cerebral cavernous malformations lesions in mice. However, too little APC generation also contributes to maladies of the brain, such as in case of cerebral malaria where the binding of infected erythrocytes to the endothelial protein C receptor (EPCR) may interfere with the EPCR-dependent functions of the protein C pathway. Furthermore, discoveries of new activities of APC such as the inhibition of the NLRP3-mediated inflammasome and of new applications of APC therapy such as in Alzheimer's disease and graft-versus-host disease continue to advance our knowledge of this important proteolytic regulatory system. SUMMARY APC's many activities or lack thereof are intimately involved in multiple neuropathologies, providing abundant opportunities for translational research.
Collapse
|
23
|
Regulation of Acetylcholine Quantal Release by Coupled Thrombin/BDNF Signaling in Mouse Motor Synapses. Cells 2019; 8:cells8070762. [PMID: 31336670 PMCID: PMC6678150 DOI: 10.3390/cells8070762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/13/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to compare the acute effects of thrombin and brain-derived neurotrophic factor (BDNF) on spontaneous miniature endplate potentials (MEPPs) and multiquantal evoked endplate potentials (EPPs) in mouse neuromuscular junctions (NMJs) of m. diaphragma and m. EDL. Intracellular microelectrode recordings of MEPPs and EPPs were used to evaluate the changes in acetylcholine (ACh) release in mature and newly-formed mouse NMJs. Thrombin (1 nM) increased the amplitude of MEPPs and EPPs by 25–30% in mature and newly-formed NMJs. This effect was due to an enhanced loading of synaptic vesicles with ACh and increase of ACh quantal size, since it was fully prevented by blocking of vesicular ACh transporter. It was also prevented by tropomyosin-related kinase B (TrkB) receptors inhibitor ANA12. Exogenous BDNF (1 nM) mimicked thrombin effect and increased the amplitude of MEPPs and EPPs by 25–30%. It required involvement of protein kinase A (PKA) and mitogen-activated protein kinase (MEK1/2)-mediated pathway, but not phospholipase C (PLC). Blocking A2A adenosine receptors by ZM241385 abolished the effect of BDNF, whereas additional stimulation of A2A receptors by CGS21680 increased MEPP amplitudes, which was prevented by MEK1/2 inhibitor U0126. At mature NMJs, BDNF enhanced MEPPs frequency by 30–40%. This effect was selectively prevented by inhibition of PLC, but not PKA or MEK1/2. It is suggested that interrelated effects of thrombin/BDNF in mature and newly-formed NMJs are realized via enhancement of vesicular ACh transport and quantal size increase. BDNF-induced potentiation of synaptic transmission involves the functional coupling between A2A receptor-dependent active PKA and neurotrophin-triggered MAPK pathway, as well as PLC-dependent increase in frequency of MEPPs.
Collapse
|
24
|
Cai X, Biswas I, Panicker SR, Giri H, Rezaie AR. Activated protein C inhibits lipopolysaccharide-mediated acetylation and secretion of high-mobility group box 1 in endothelial cells. J Thromb Haemost 2019; 17:803-817. [PMID: 30865333 PMCID: PMC6494677 DOI: 10.1111/jth.14425] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 12/21/2022]
Abstract
Essentials APC elicits cytoprotective responses in endothelial cells via EPCR-dependent cleavage of PAR1. APC inhibits LPS-mediated translocation and extracellular secretion of HMGB1 in endothelial cells. Signaling activity of APC inhibits LPS-mediated acetylation of HMGB1 by epigenetic mechanisms. APC inhibits LPS-mediated HMGB1 expression in CD31-positive endothelial cells in cremaster muscle. SUMMARY: Background Activated protein C (APC) inhibits high-mobility group box 1 (HMGB1) signaling and its lipopolysaccharide (LPS)-mediated release by endothelial protein C receptor (EPCR)-dependent activation of protease-activated receptor 1 (PAR1) in endothelial cells. Post-translational acetylation is known to modulate the subcellular localization of HMGB1, and its hyperacetylated form is translocated to the cytoplasm of innate immune cells before being secreted into the extracellular space. Objective To determine whether APC inhibits LPS-mediated HMGB1 secretion from endothelial cells by modulating its acetylation status. Methods The subcellular localization of HMGB1 in LPS-treated endothelial cells was monitored in the absence and presence of APC by western blot analysis of fractionated cell lysates and confocal immunofluorescence microscopy. Results Both western blot and immunofluorescence data indicated that APC effectively inhibits LPS-mediated translocation of HMGB1 from the nucleus to the cytoplasm by EPCR-dependent and PAR1-dependent mechanisms. When EPCR was ligated by the Gla-domain of protein C/APC, thrombin also inhibited LPS-mediated HMGB1 translocation. Further studies revealed that APC inhibits the translocation of HMGB1 from the nucleus to the cytoplasm by inhibiting LPS-mediated hyperacetylation of HMGB1 by (de)acetylating enzymes. Furthermore, the translocated HMGB1 was found to be associated with lysosome-associated membrane protein 1 in LPS-treated endothelial cells. The in vivo relevance of these findings was investigated in the mouse cremaster muscle, and this demonstrated that both wild-type APC and a signaling-selective mutant of APC inhibit LPS-mediated HMGB1 expression and translocation in CD31-positive endothelial cells. Conclusion These results suggest that APC inhibits LPS-mediated cytoplasmic translocation and secretion of HMGB1 in endothelial cells by epigenetic mechanisms.
Collapse
Affiliation(s)
- Xiaofeng Cai
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Sumith R. Panicker
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Alireza R. Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
25
|
Pant A, Kopec AK, Luyendyk JP. Role of the blood coagulation cascade in hepatic fibrosis. Am J Physiol Gastrointest Liver Physiol 2018; 315:G171-G176. [PMID: 29723040 PMCID: PMC6139645 DOI: 10.1152/ajpgi.00402.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
Liver is the primary source of numerous proteins that are critical for normal function of the blood coagulation cascade. Because of this, diseases of the liver, particularly when affiliated with severe complications like cirrhosis, are associated with abnormalities of blood clotting. Although conventional interpretation has inferred cirrhosis as a disorder of uniform bleeding risk, it is now increasingly appreciated as a disease wherein the coagulation cascade is precariously rebalanced. Moreover, prothrombotic risk factors are also associated with a more rapid progression of fibrosis in humans, suggesting that coagulation proteases participate in disease pathogenesis. Indeed, strong evidence drawn from experimental animal studies indicates that components of the coagulation cascade, particularly coagulation factor Xa and thrombin, drive profibrogenic events, leading to hepatic fibrosis. Here, we concisely review the evidence supporting a pathologic role for coagulation in the development of liver fibrosis and the potential mechanisms involved. Further, we highlight how studies in experimental animals may shed light on emerging clinical evidence, suggesting that beneficial effects of anticoagulation could extend beyond preventing thrombotic complications to include reducing pathologies like fibrosis.
Collapse
Affiliation(s)
- Asmita Pant
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
| | - Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
26
|
Bitto N, Liguori E, La Mura V. Coagulation, Microenvironment and Liver Fibrosis. Cells 2018; 7:E85. [PMID: 30042349 PMCID: PMC6115868 DOI: 10.3390/cells7080085] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
Fibrosis is the main consequence of any kind of chronic liver damage. Coagulation and thrombin generation are crucial in the physiological response to tissue injury; however, the inappropriate and uncontrolled activation of coagulation cascade may lead to fibrosis development due to the involvement of several cellular types and biochemical pathways in response to thrombin generation. In the liver, hepatic stellate cells and sinusoidal endothelial cells orchestrate fibrogenic response to chronic damage. Thrombin interacts with these cytotypes mainly through protease-activated receptors (PARs), which are expressed by endothelium, platelets and hepatic stellate cells. This review focuses on the impact of coagulation in liver fibrogenesis, describes receptors and pathways involved and explores the potential antifibrotic properties of drugs active in hemostasis in studies with cells, animal models of liver damage and humans.
Collapse
Affiliation(s)
- Niccolò Bitto
- Medicina Interna, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Donato, Università Degli Studi di Milano, 20097 San Donato Milanese (MI), Italy.
| | - Eleonora Liguori
- Medicina Interna, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Donato, Università Degli Studi di Milano, 20097 San Donato Milanese (MI), Italy.
| | - Vincenzo La Mura
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, UOC Medicina Generale-Emostasi e Trombosi, 20122 Milano, Italy.
- Dipartimento di Scienze biomediche per la Salute, Università degli Studi di Milano, 20122 Milano, Italy.
- A. M. and A. Migliavacca per lo studio delle Malattie del Fegato, 20122 Milano, Italy.
| |
Collapse
|
27
|
Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C, protease activated receptor 1, and neuroprotection. Blood 2018; 132:159-169. [PMID: 29866816 PMCID: PMC6043978 DOI: 10.1182/blood-2018-02-769026] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023] Open
Abstract
Protein C is a plasma serine protease zymogen whose active form, activated protein C (APC), exerts potent anticoagulant activity. In addition to its antithrombotic role as a plasma protease, pharmacologic APC is a pleiotropic protease that activates diverse homeostatic cell signaling pathways via multiple receptors on many cells. Engineering of APC by site-directed mutagenesis provided a signaling selective APC mutant with 3 Lys residues replaced by 3 Ala residues, 3K3A-APC, that lacks >90% anticoagulant activity but retains normal cell signaling activities. This 3K3A-APC mutant exerts multiple potent neuroprotective activities, which require the G-protein-coupled receptor, protease activated receptor 1. Potent neuroprotection in murine ischemic stroke models is linked to 3K3A-APC-induced signaling that arises due to APC's cleavage in protease activated receptor 1 at a noncanonical Arg46 site. This cleavage causes biased signaling that provides a major explanation for APC's in vivo mechanism of action for neuroprotective activities. 3K3A-APC appeared to be safe in ischemic stroke patients and reduced bleeding in the brain after tissue plasminogen activator therapy in a recent phase 2 clinical trial. Hence, it merits further clinical testing for its efficacy in ischemic stroke patients. Recent studies using human fetal neural stem and progenitor cells show that 3K3A-APC promotes neurogenesis in vitro as well as in vivo in the murine middle cerebral artery occlusion stroke model. These recent advances should encourage translational research centered on signaling selective APC's for both single-agent therapies and multiagent combination therapies for ischemic stroke and other neuropathologies.
Collapse
Affiliation(s)
- John H Griffin
- The Scripps Research Institute, La Jolla, CA
- Department of Medicine, University of California, San Diego, CA; and
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | | |
Collapse
|
28
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Thrombus Formation and Propagation in the Onset of Cardiovascular Events. J Atheroscler Thromb 2018; 25:653-664. [PMID: 29887539 PMCID: PMC6099067 DOI: 10.5551/jat.rv17022] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ischemic cardiovascular disease is a major cause of morbidity and mortality worldwide and thrombus formation on disrupted atherosclerotic plaques is considered to trigger its onset. Although the activation of platelets and coagulation pathways has been investigated intensively, the mechanisms of thrombus formation on disrupted plaques have not been understood in detail. Platelets are thought to play a central role in the formation of arterial thrombus because of rapid flow conditions; however, thrombus that develops on disrupted plaques consistently includes large amounts of fibrin in addition to aggregated platelets. While, thrombus does not always become large enough to completely occlude the vascular lumen, indicating that the propagation of thrombus is also critical for the onset of cardiovascular events. Various factors, such as vascular wall thrombogenicity, altered blood flow and imbalanced blood hemostasis, modulate thrombus formation and propagation on disrupted plaques. Pathological findings derived from humans and experimental animal models of atherothrombosis have identified important factors that affect thrombus formation and propagation, namely platelets, extrinsic and intrinsic coagulation factors, proinflammatory factors, plaque hypoxia and blood flow alteration. These findings might provide insight into the mechanisms of thrombus formation and propagation on disrupted plaques that lead to the onset of cardiovascular events.
Collapse
Affiliation(s)
- Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki
| | | |
Collapse
|
29
|
Extravascular coagulation in hematopoietic stem and progenitor cell regulation. Blood 2018; 132:123-131. [PMID: 29866813 DOI: 10.1182/blood-2017-12-768986] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
The hemostatic system plays pivotal roles in injury repair, innate immunity, and adaptation to inflammatory challenges. We review the evidence that these vascular-protective mechanisms have nontraditional roles in hematopoietic stem cell (HSC) maintenance in their physiological bone marrow (BM) niches at steady-state and under stress. Expression of coagulation factors and the extrinsic coagulation initiator tissue factor by osteoblasts, tissue-resident macrophages, and megakaryocytes suggests that endosteal and vascular HSC niches are functionally regulated by extravascular coagulation. The anticoagulant endothelial protein C receptor (EPCR; Procr) is highly expressed by primitive BM HSCs and endothelial cells. EPCR is associated with its major ligand, activated protein C (aPC), in proximity to thrombomodulin-positive blood vessels, enforcing HSC integrin α4 adhesion and chemotherapy resistance in the context of CXCL12-CXCR4 niche retention signals. Protease-activated receptor 1-biased signaling by EPCR-aPC also maintains HSC retention, whereas thrombin signaling activates HSC motility and BM egress. Furthermore, HSC mobilization under stress is enhanced by the fibrinolytic and complement cascades that target HSCs and their BM niches. In addition, coagulation, fibrinolysis, and HSC-derived progeny, including megakaryocytes, synergize to reestablish functional perivascular HSC niches during BM stress. Therapeutic restoration of the anticoagulant pathway has preclinical efficacy in reversing BM failure following radiation injury, but questions remain about how antithrombotic therapy influences extravascular coagulation in HSC maintenance and hematopoiesis.
Collapse
|
30
|
Sinha RK, Wang Y, Zhao Z, Xu X, Burnier L, Gupta N, Fernández JA, Martin G, Kupriyanov S, Mosnier LO, Zlokovic BV, Griffin JH. PAR1 biased signaling is required for activated protein C in vivo benefits in sepsis and stroke. Blood 2018; 131:1163-1171. [PMID: 29343482 PMCID: PMC5855020 DOI: 10.1182/blood-2017-10-810895] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Activated protein C (APC) cleaves protease-activated receptor 1 (PAR1) in vitro at R46 to initiate beneficial cell signaling; however, thrombin and APC can cleave at R41. To elucidate PAR1-dependent aspects of the pharmacologic in vivo mechanisms of APC, we generated C57BL/6 mouse strains carrying QQ41 or QQ46 point mutations in PAR1 (F2r gene). Using these strains, we determined whether or not recombinant murine signaling-selective APC mutants would reduce septic death or provide neuroprotection against ischemic stroke when mice carried PAR1-homozygous mutations that prevent cleavage at either R41 or R46. Intercrossing PAR1+/R46Q mice generated expected numbers of PAR1+/+, PAR1+/R46Q, and R46Q/R46Q offspring whereas intercrossing PAR1+/R41Q mice gave decreased R41Q/R41Q homozygotes (resembling intercrossing PAR1+/PAR1-knockout mice). QQ41-PAR1 and QQ46-PAR1 brain endothelial cells showed the predicted retention or loss of cellular responses to thrombin receptor-activating peptide, thrombin, or APC for each PAR1 mutation. In sepsis studies, exogenous APC reduced mortality from 50% to 10% in Escherichia coli-induced pneumonia for wild-type (Wt) PAR1 and QQ41-PAR1 mice (P < .01) but had no benefit for QQ46-PAR1 mice. In transient distal middle cerebral artery occlusion stroke studies, exogenous APC significantly reduced infarct size, edema, and neuronal apoptosis for Wt mice and QQ41-PAR1 mice but had no detectable benefits for mice carrying QQ46-PAR1. In functional studies of forelimb-asymmetry and foot-fault tests at 24 hours after stroke induction, signaling-selective APC was beneficial for Wt and QQ41-PAR1 mice but not QQ46-PAR1 mice. These results support the concept that APC-induced, PAR1-dependent biased signaling following R46 cleavage is central to the in vivo benefits of APC.
Collapse
Affiliation(s)
| | - Yaoming Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA; and
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA; and
| | - Xiao Xu
- The Scripps Research Institute, La Jolla, CA
| | | | - Naveen Gupta
- The Scripps Research Institute, La Jolla, CA
- Department of Medicine, University of California San Diego, San Diego, CA
| | | | - Greg Martin
- The Scripps Research Institute, La Jolla, CA
| | | | | | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA; and
| | - John H Griffin
- The Scripps Research Institute, La Jolla, CA
- Department of Medicine, University of California San Diego, San Diego, CA
| |
Collapse
|