1
|
Hindman BJ, Olinger CR, Woodroffe RW, Zanaty M, Streese CD, Zacharias ZR, Houtman JCD, Wendt LH, Eyck PPT, O’Connell-Moore DJ, Ray EJ, Lee SJ, Waldschmidt DF, Havertape LG, Nguyen LB, Chen PF, Banks MI, Sanders RD, Howard MA. Exploratory Randomised Trial of Tranexamic Acid to Decrease Postoperative Delirium in Adults Undergoing Lumbar Fusion: A trial stopped early. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.16.24315638. [PMID: 39484259 PMCID: PMC11527054 DOI: 10.1101/2024.10.16.24315638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Postoperative delirium may be mediated by perioperative systemic- and neuro-inflammation. By inhibiting the pro-inflammatory actions of plasmin, tranexamic acid (TXA) may decrease postoperative delirium. To explore this hypothesis, we modified an ongoing randomised trial of TXA, adding measures of postoperative delirium, cognitive function, systemic cytokines, and astrocyte activation. Methods Adults undergoing elective posterior lumbar fusion randomly received intraoperative intravenous TXA (n=43: 10 mg kg-1 loading dose, 2 mg kg-1 h-1 infusion) or Placebo (n=40). Blood was collected pre- and at 24 h post-operatively (n=32) for biomarkers of systemic inflammation (cytokines) and astrocyte activation (S100B). Participants had twice daily delirium assessments using the 3-minute diagnostic interview for Confusion Assessment Method (n=65). Participants underwent 4 measures of cognitive function preoperatively and during post-discharge follow-up. Results Delirium incidence in the TXA group (7/32=22%) was not significantly less than in the Placebo group (11/33=33%); P=0.408, absolute difference=11%, relative difference=33%, effect size = -0.258 (95% CI -0.744 to 0.229). In the Placebo group (n=16), delirium severity was associated with the number of instrumented vertebral levels (P=0.001) and with postoperative interleukin -8 and -10 concentrations (P=0.00008 and P=0.005, respectively) and these associations were not significantly modified by TXA. In the Placebo group, delirium severity was associated with S100B concentration (P=0.0009) and the strength of the association was decreased by TXA (P=0.002). Conclusions A potential 33% relative decrease in postoperative delirium incidence justifies an adequately powered clinical trial to determine if intraoperative TXA decreases delirium in adults undergoing lumbar fusion.
Collapse
Affiliation(s)
- Bradley J. Hindman
- Department of Anesthesia, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Catherine R. Olinger
- Department of Orthopedics and Rehabilitation, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Royce W. Woodroffe
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Zeb R. Zacharias
- Human Immunology Core Laboratory, University of Iowa, Iowa City, Iowa, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Jon C. D. Houtman
- Human Immunology Core Laboratory, University of Iowa, Iowa City, Iowa, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Linder H. Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Patrick P. Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Debra J. O’Connell-Moore
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Emanuel J. Ray
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sarah J. Lee
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Daniel F. Waldschmidt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Lauren G. Havertape
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Lanchi B. Nguyen
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Pei-fu Chen
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan City, 320315, Taiwan
| | - Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert D. Sanders
- Central Clinical School and National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, Australia
- Department of Anaesthetics and Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney, Australia
| | - Matthew A. Howard
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Baragetti A, Da Dalt L, Norata GD. New insights into the therapeutic options to lower lipoprotein(a). Eur J Clin Invest 2024; 54:e14254. [PMID: 38778431 DOI: 10.1111/eci.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Elevated levels of lipoprotein(a) [Lp(a)] represent a risk factor for cardiovascular disease including aortic valve stenosis, myocardial infarction and stroke. While the patho-physiological mechanisms linking Lp(a) with atherosclerosis are not fully understood, from genetic studies that lower Lp(a) levels protect from CVD independently of other risk factors including lipids and lipoproteins. Hereby, Lp(a) has been considered an appealing pharmacological target. RESULTS However, approved lipid lowering therapies such as statins, ezetimibe or PCSK9 inhibitors have a neutral to modest effect on Lp(a) levels, thus prompting the development of new strategies selectively targeting Lp(a). These include antisense oligonucleotides and small interfering RNAs (siRNAs) directed towards apolipoprotein(a) [Apo(a)], which are in advanced phase of clinical development. More recently, additional approaches including inhibitors of Apo(a) and gene editing approaches via CRISPR-Cas9 technology entered early clinical development. CONCLUSION If the results from the cardiovascular outcome trials, designed to demonstrate whether the reduction of Lp(a) of more than 80% as observed with pelacarsen, olpasiran or lepodisiran translates into the decrease of cardiovascular mortality and major adverse cardiovascular events, will be positive, lowering Lp(a) will become a new additional target in the management of patients with elevated cardiovascular risk.
Collapse
Grants
- RF-2019-12370896 Ministero Della Salute, Ricerca Finalizzata
- Ministero Dell'Università e Della Ricerca, CARDINNOV, ERA4 Health, GAN°101095426, the EU Horizon Europe Research and Innovation Programe
- PRIN-PNRRR2022P202294PHK Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale
- PRIN2022KTSAT Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale
- NANOKOSEUROPEAID/173691/DD/ACT/XK European Commission
- Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale PNRR Missione 4, Progetto CN3-National Center for Gene Therpay and Drugs based on RNA Technology
- Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale, MUSA-Multilayered Urban Sustainabiliy Action
- PNRR-MAD-2022-12375913 Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale
Collapse
Affiliation(s)
- A Baragetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milano, Italy
| | - L Da Dalt
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milano, Italy
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
3
|
Liu D, Li R, Wang Y, Li D, Li L. Identification and validation of genes associated with prognosis of cisplatin-resistant ovarian cancer. BMC Cancer 2024; 24:508. [PMID: 39103807 DOI: 10.1186/s12885-024-12264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/15/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE To investigate the role of prognostic genes related to cisplatin resistance in ovarian cancer during disease progression. METHOD The gene expression profile of the NCI-60 cell line was acquired through comprehensive analysis of the GEO database accession GSE116439. We performed a thorough analysis of gene expression differences in samples from seven individuals exposed to cisplatin concentrations of 0 nM compared to seven samples exposed to 15000 nM over a 24-h period. Key genes were initially identified through LASSO regression, followed by their enrichment through differential gene function analysis (GO) and pathway enrichment analysis (KEGG). Subsequently, a prognostic risk model was established for these key genes. The prognostic model's performance was assessed through K-M survival curves and ROC curves. To examine the variance in immune cell infiltration between the high and low-risk groups, CIBERSORTx analysis was employed. Finally, validation of prognostic gene expression in cisplatin-resistant ovarian cancer was carried out using clinical samples, employing RT-qPCR and Western Blot techniques. RESULTS A total of 132 differential genes were found between cisplatin resistance and control group, and 8 key prognostic genes were selected by analysis, namely VPS13B, PLGRKT, CDKAL1, TBC1D22A, TAP1, PPP3CA, CUX1 and PPP1R15A. The efficacy of the risk assessment model derived from prognostic biomarkers, as indicated by favorable performance on both Kaplan-Meier survival curves and ROC curves. Significant variations in the abundance of Macrophages M1, T cells CD4 memory resting, T cells follicular helper, and T cells gamma delta were observed between the high and low-risk groups. To further validate our findings, RT-qPCR and Western Blot analyses were employed, confirming differential expression of the identified eight key genes between the two groups. CONCLUSION VPS13B, TBC1D22A, PPP3CA, CUX1 and PPP1R15A were identified as poor prognostic genes of cisplatin resistance in ovarian cancer, while PLGRKT, CDKAL1 and TAP1 were identified as good prognostic genes. This offers a novel perspective for future advancements in ovarian cancer treatment, suggesting potential avenues for the development of new therapeutic targets.
Collapse
Affiliation(s)
- Dajiang Liu
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Ruiyun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yidan Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Leilei Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Abstract
Acute liver injury (ALI), that is, the development of reduced liver function in patients without preexisting liver disease, can result from a wide range of causes, such as viral or bacterial infection, autoimmune disease, or adverse reaction to prescription and over-the-counter medications. ALI patients present with a complex coagulopathy, characterized by both hypercoagulable and hypocoagulable features. Similarly, ALI patients display a profound dysregulation of the fibrinolytic system with the vast majority of patients presenting with a hypofibrinolytic phenotype. Decades of research in experimental acute liver injury in mice suggest that fibrinolytic proteins, including plasmin(ogen), plasminogen activators, fibrinolysis inhibitors, and fibrin(ogen), can contribute to initial hepatotoxicity and/or stimulate liver repair. This review summarizes major experimental findings regarding the role of fibrinolytic factors in ALI from the last approximately 30 years and identifies unanswered questions, as well as highlighting areas for future research.
Collapse
Affiliation(s)
- Gina E Capece
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Lauren G Poole
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey
| |
Collapse
|
5
|
Sang M, Liu S, Yan H, Zhang B, Chen S, Wu B, Ma T, Jiang H, Zhao P, Sun G, Gao X, Zang H, Cheng Y, Li C. Synergistic detoxification efficiency and mechanism of triclocarban degradation by a bacterial consortium in the liver-gut-microbiota axis of zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134178. [PMID: 38608581 DOI: 10.1016/j.jhazmat.2024.134178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to human health with long-term exposure. Here, Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 were utilized to degrade TCC at environmental related concentrations for enhancing TCC biodegradation and investigating whether the toxicity of intermediate metabolites is lower than that of the parent compound. The results demonstrated that the bacterial consortium could degrade TCC by 82.0% within 7 days. The calculated 96 h LC50 for TCC, as well as its main degradation product 3,4-Dichloroaniline (DCA) were 0.134 mg/L and 1.318 mg/L respectively. Biodegradation also alleviated histopathological lesions induced by TCC in zebrafish liver and gut tissues. Liver transcriptome analysis revealed that biodegradation weakened differential expression of genes involved in disrupted immune regulation and lipid metabolism caused by TCC, verified through RT-qPCR analysis and measurement of related enzyme activities and protein contents. 16 S rRNA sequencing indicated that exposure to TCC led to gut microbial dysbiosis, which was efficiently improved through TCC biodegradation, resulting in decreased relative abundances of major pathogens. Overall, this study evaluated potential environmental risks associated with biodegradation of TCC and explored possible biodetoxification mechanisms, providing a theoretical foundation for efficient and harmless bioremediation of environmental pollutants.
Collapse
Affiliation(s)
- Mingyu Sang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuyu Liu
- Heilongjiang Provincial Natural Resources Rights and Interests Investigation and Monitoring Institute, Harbin 150030, China
| | - Haohao Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bing Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siyuan Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bowen Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tian Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hanyi Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Peichao Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guanjun Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Gao
- Heilongjiang Boneng Green Energy Technology Co., Ltd, Harbin 150030, China
| | - Hailian Zang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yi Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
6
|
Dadachanji R, Khavale S, Patil A, Mukherjee S. Investigating the association of previously identified genome-wide significant loci (rs10739076 and rs1784692) with PCOS susceptibility and its related traits in Indian women. Eur J Obstet Gynecol Reprod Biol 2024; 294:156-162. [PMID: 38245954 DOI: 10.1016/j.ejogrb.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE(S) Polycystic ovary syndrome (PCOS) is a multifactorial endocrinopathy with an enigmatic etiology. Hallmark features include irregular menstrual cycles, insulin resistance and hyperandrogenemia and affected women are prone to development of adverse reproductive and cardiometabolic outcomes like anovulatory infertility, impaired glucose tolerance, type 2 diabetes, dyslipidemia, metabolic syndrome and cardiovascular disease. Genetic underpinnings of PCOS have been investigated extensively using genome-wide association studies, which have led to the identification of several novel susceptibility loci. However, as ethnic diversity contributes to phenotypic and genetic heterogeneity, we undertook the first genetic association study to determine the association of rs10739076 of PLGRKT and rs1784692 of ZBTB16 with PCOS susceptibility and its related traits in Indian women. STUDY DESIGN The present case-control study comprised 497 women with PCOS diagnosed according to the Rotterdam criteria and 233 age matched healthy women as controls. All participants were characterized in terms of anthropometric, hormonal and metabolic parameters and the variants were investigated by direct sequencing. Genotypic and genotype-phenotype association of these variants with PCOS susceptibility and its related biochemical and hormonal traits was analyzed with appropriate statistical tests. RESULTS The genotypic and allelic frequencies of rs1784692 of ZBTB16 were significantly decreased in lean women with PCOS only, and this variant was associated with lowered insulin levels, HOMA-IR, LH:FSH ratio along with increased ApoA1 levels and QUICKI in them. Although, the PLGRKT variant, rs10739076, showed similar frequency distribution in both lean and obese groups, it was found to be associated with reduced fasting glucose in all women with PCOS. CONCLUSION(S) To the best of our knowledge, this is the first study to demonstrate that ZBTB16 variant showed significant association with reduced PCOS susceptibility in lean rather than obese Indian women, highlighting the impact of obesity on determining genetic predisposition to PCOS in Indian women. In contrast, PLGRKT variant did not influence PCOS risk in lean or obese women. Importantly, both variants exerted a protective effect on glucose metabolism, insulin resistance, gonadotropin and lipid levels in women with PCOS. Determination of susceptibility variants for PCOS demand population specific replication studies to ascertain best candidate loci for PCOS.
Collapse
Affiliation(s)
- Roshan Dadachanji
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India
| | - Sushma Khavale
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India
| | - Anushree Patil
- Department of Clinical Research, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India.
| |
Collapse
|
7
|
Dai W, Castleberry M, Zheng Z. Tale of two systems: the intertwining duality of fibrinolysis and lipoprotein metabolism. J Thromb Haemost 2023; 21:2679-2696. [PMID: 37579878 PMCID: PMC10599797 DOI: 10.1016/j.jtha.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Fibrinolysis is an enzymatic process that breaks down fibrin clots, while dyslipidemia refers to abnormal levels of lipids and lipoproteins in the blood. Both fibrinolysis and lipoprotein metabolism are critical mechanisms that regulate a myriad of functions in the body, and the imbalance of these mechanisms is linked to the development of pathologic conditions, such as thrombotic complications in atherosclerotic cardiovascular diseases. Accumulated evidence indicates the close relationship between the 2 seemingly distinct and complicated systems-fibrinolysis and lipoprotein metabolism. Observational studies in humans found that dyslipidemia, characterized by increased blood apoB-lipoprotein and decreased high-density lipoprotein, is associated with lower fibrinolytic potential. Genetic variants of some fibrinolytic regulators are associated with blood lipid levels, supporting a causal relationship between these regulators and lipoprotein metabolism. Mechanistic studies have elucidated many pathways that link the fibrinolytic system and lipoprotein metabolism. Moreover, profibrinolytic therapies improve lipid panels toward an overall cardiometabolic healthier phenotype, while some lipid-lowering treatments increase fibrinolytic potential. The complex relationship between lipoprotein and fibrinolysis warrants further research to improve our understanding of the bidirectional regulation between the mediators of fibrinolysis and lipoprotein metabolism.
Collapse
Affiliation(s)
- Wen Dai
- Versiti Blood Research Institute, Milwaukee, USA.
| | | | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, USA.
| |
Collapse
|
8
|
Koschinsky ML, Stroes ESG, Kronenberg F. Daring to dream: Targeting lipoprotein(a) as a causal and risk-enhancing factor. Pharmacol Res 2023; 194:106843. [PMID: 37406784 DOI: 10.1016/j.phrs.2023.106843] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Lipoprotein(a) [Lp(a)], a distinct lipoprotein class, has become a major focus for cardiovascular research. This review is written in light of the recent guideline and consensus statements on Lp(a) and focuses on 1) the causal association between Lp(a) and cardiovascular outcomes, 2) the potential mechanisms by which elevated Lp(a) contributes to cardiovascular diseases, 3) the metabolic insights on the production and clearance of Lp(a) and 4) the current and future therapeutic approaches to lower Lp(a) concentrations. The concentrations of Lp(a) are under strict genetic control. There exists a continuous relationship between the Lp(a) concentrations and risk for various endpoints of atherosclerotic cardiovascular disease (ASCVD). One in five people in the Caucasian population is considered to have increased Lp(a) concentrations; the prevalence of elevated Lp(a) is even higher in black populations. This makes Lp(a) a cardiovascular risk factor of major public health relevance. Besides the association between Lp(a) and myocardial infarction, the relationship with aortic valve stenosis has become a major focus of research during the last decade. Genetic studies provided strong support for a causal association between Lp(a) and cardiovascular outcomes: carriers of genetic variants associated with lifelong increased Lp(a) concentration are significantly more frequent in patients with ASCVD. This has triggered the development of drugs that can specifically lower Lp(a) concentrations: mRNA-targeting therapies such as anti-sense oligonucleotide (ASO) therapies and short interfering RNA (siRNA) therapies have opened new avenues to lower Lp(a) concentrations more than 95%. Ongoing Phase II and III clinical trials of these compounds are discussed in this review.
Collapse
Affiliation(s)
- Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
9
|
Buzza MS, Pawar NR, Strong AA, Antalis TM. Intersection of Coagulation and Fibrinolysis by the Glycosylphosphatidylinositol (GPI)-Anchored Serine Protease Testisin. Int J Mol Sci 2023; 24:9306. [PMID: 37298257 PMCID: PMC10252689 DOI: 10.3390/ijms24119306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hemostasis is a delicate balance between coagulation and fibrinolysis that regulates the formation and removal of fibrin, respectively. Positive and negative feedback loops and crosstalk between coagulation and fibrinolytic serine proteases maintain the hemostatic balance to prevent both excessive bleeding and thrombosis. Here, we identify a novel role for the glycosylphosphatidylinositol (GPI)-anchored serine protease testisin in the regulation of pericellular hemostasis. Using in vitro cell-based fibrin generation assays, we found that the expression of catalytically active testisin on the cell surface accelerates thrombin-dependent fibrin polymerization, and intriguingly, that it subsequently promotes accelerated fibrinolysis. We find that the testisin-dependent fibrin formation is inhibited by rivaroxaban, a specific inhibitor of the central prothrombin-activating serine protease factor Xa (FXa), demonstrating that cell-surface testisin acts upstream of factor X (FX) to promote fibrin formation at the cell surface. Unexpectedly, testisin was also found to accelerate fibrinolysis by stimulating the plasmin-dependent degradation of fibrin and enhancing plasmin-dependent cell invasion through polymerized fibrin. Testisin was not a direct activator of plasminogen, but it is able to induce zymogen cleavage and the activation of pro-urokinase plasminogen activator (pro-uPA), which converts plasminogen to plasmin. These data identify a new proteolytic component that can regulate pericellular hemostatic cascades at the cell surface, which has implications for angiogenesis, cancer biology, and male fertility.
Collapse
Affiliation(s)
- Marguerite S. Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Nisha R. Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Amando A. Strong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Vago JP, Zaidan I, Perucci LO, Brito LF, Teixeira LC, Silva CMS, Miranda TC, Melo EM, Bruno AS, Queiroz-Junior CM, Sugimoto MA, Tavares LP, Grossi LC, Borges IN, Schneider AH, Baik N, Schneider AH, Talvani A, Ferreira RG, Alves-Filho JC, Nobre V, Teixeira MM, Parmer RJ, Miles LA, Sousa LP. Plasmin and plasminogen prevent sepsis severity by reducing neutrophil extracellular traps and systemic inflammation. JCI Insight 2023; 8:e166044. [PMID: 36917195 PMCID: PMC10243804 DOI: 10.1172/jci.insight.166044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.
Collapse
Affiliation(s)
- Juliana P. Vago
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Isabella Zaidan
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Luiza O. Perucci
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Larissa Froede Brito
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Lívia C.R. Teixeira
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Camila Meirelles Souza Silva
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaís C. Miranda
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Eliza M. Melo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre S. Bruno
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A. Sugimoto
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P. Tavares
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laís C. Grossi
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Isabela N. Borges
- Hospital of Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ayda Henriques Schneider
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nagyung Baik
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ayda H. Schneider
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André Talvani
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Raphael G. Ferreira
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José C. Alves-Filho
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vandack Nobre
- Hospital of Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System and University of California, San Diego, California, USA
| | - Lindsey A. Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Lirlândia P. Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| |
Collapse
|
11
|
Yatsenko T, Skrypnyk M, Troyanovska O, Tobita M, Osada T, Takahashi S, Hattori K, Heissig B. The Role of the Plasminogen/Plasmin System in Inflammation of the Oral Cavity. Cells 2023; 12:cells12030445. [PMID: 36766787 PMCID: PMC9913802 DOI: 10.3390/cells12030445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The oral cavity is a unique environment that consists of teeth surrounded by periodontal tissues, oral mucosae with minor salivary glands, and terminal parts of major salivary glands that open into the oral cavity. The cavity is constantly exposed to viral and microbial pathogens. Recent studies indicate that components of the plasminogen (Plg)/plasmin (Pm) system are expressed in tissues of the oral cavity, such as the salivary gland, and contribute to microbial infection and inflammation, such as periodontitis. The Plg/Pm system fulfills two major functions: (a) the destruction of fibrin deposits in the bloodstream or damaged tissues, a process called fibrinolysis, and (b) non-fibrinolytic actions that include the proteolytic modulation of proteins. One can observe both functions during inflammation. The virus that causes the coronavirus disease 2019 (COVID-19) exploits the fibrinolytic and non-fibrinolytic functions of the Plg/Pm system in the oral cavity. During COVID-19, well-established coagulopathy with the development of microthrombi requires constant activation of the fibrinolytic function. Furthermore, viral entry is modulated by receptors such as TMPRSS2, which is necessary in the oral cavity, leading to a derailed immune response that peaks in cytokine storm syndrome. This paper outlines the significance of the Plg/Pm system for infectious and inflammatory diseases that start in the oral cavity.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Maksym Skrypnyk
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Olga Troyanovska
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Morikuni Tobita
- Department of Oral and Maxillofacial Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-Shi 279-0021, Japan
| | - Satoshi Takahashi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo 108-8639, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (K.H.); (B.H.); Tel.: +81-3-3813-3111 (switchboard 2115) (B.H.)
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (K.H.); (B.H.); Tel.: +81-3-3813-3111 (switchboard 2115) (B.H.)
| |
Collapse
|
12
|
Sugimoto MA, Perucci LO, Tavares LP, Teixeira MM, Sousa LP. Fibrinolysis in COVID-19: Impact on Clot Lysis and Modulation of Inflammation. Curr Drug Targets 2022; 23:1578-1592. [PMID: 36221881 DOI: 10.2174/1389450123666221011102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
COVID-19 is a multisystem disease caused by SARS-CoV-2 and is associated with an imbalance between the coagulation and fibrinolytic systems. Overall, hypercoagulation, hypofibrinolysis and fibrin-clot resistance to fibrinolysis predispose patients to thrombotic and thromboembolic events. In the lungs, the virus triggers alveolar and interstitial fibrin deposition, endothelial dysfunction, and pulmonary intravascular coagulation, all events intrinsically associated with the activation of inflammation and organ injury. Adding to the pathogenesis of COVID-19, there is a positive feedback loop by which local fibrin deposition in the lungs can fuel inflammation and consequently dysregulates coagulation, a process known as immunothrombosis. Therefore, fibrinolysis plays a central role in maintaining hemostasis and tissue homeostasis during COVID-19 by cleaning fibrin clots and controlling feed-forward products of coagulation. In addition, components of the fibrinolytic system have important immunomodulatory roles, as evidenced by studies showing the contribution of Plasminogen/Plasmin (Plg/Pla) to the resolution of inflammation. Herein, we review clinical evidence for the dysregulation of the fibrinolytic system and discuss its contribution to thrombosis risk and exacerbated inflammation in severe COVID-19. We also discuss the current concept of an interplay between fibrinolysis and inflammation resolution, mirroring the well-known crosstalk between inflammation and coagulation. Finally, we consider the central role of the Plg/Pla system in resolving thromboinflammation, drawing attention to the overlooked consequences of COVID-19-associated fibrinolytic abnormalities to local and systemic inflammation.
Collapse
Affiliation(s)
- Michelle A Sugimoto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Medicine, University College London, London, UK.,Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiza O Perucci
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Nucleus of Research on Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luciana P Tavares
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Plasminogen and plasmin can bind to human T cells and generate truncated CCL21 that increases dendritic cell chemotactic responses. J Biol Chem 2022; 298:102112. [PMID: 35690148 PMCID: PMC9270246 DOI: 10.1016/j.jbc.2022.102112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
Plasmin is a broad-spectrum protease and therefore needs to be tightly regulated. Active plasmin is formed from plasminogen, which is found in high concentrations in the blood and is converted by the plasminogen activators. In the circulation, high levels of α2-antiplasmin rapidly and efficiently inhibit plasmin activity. Certain myeloid immune cells have been shown to bind plasmin and plasminogen on their cell surface via proteins that bind to the plasmin(ogen) kringle domains. Our earlier work showed that T cells can activate plasmin, but that they do not themselves express plasminogen. Here, we demonstrate that T cells express several known plasminogen receptors, and that they bind plasminogen on their cell surface. We show T cell-bound plasminogen was converted to plasmin by plasminogen activators upon T cell activation. To examine functional consequences of plasmin generation by activated T cells, we investigated its effect on the chemokine, C-C Motif Chemokine Ligand 21 (CCL21). Video microscopy and western blotting confirmed that plasmin bound by human T cells cleaves CCL21 and increases the chemotactic response of monocyte-derived dendritic cells towards higher CCL21 concentrations along the concentration gradient by increasing their directional migration and track straightness. These results demonstrate how migrating T cells and potentially other activated immune cells may co-opt a powerful proteolytic system from the plasma towards immune processes in the peripheral tissues, where α2-antiplasmin is more likely to be absent. We propose that plasminogen bound to migrating immune cells may strongly modulate chemokine responses in peripheral tissues.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of the processes of apolipoprotein(a) secretion, assembly of the Lp(a) particle and removal of Lp(a) from the circulation. We also identify existing knowledge gaps that need to be addressed in future studies. RECENT FINDINGS The Lp(a) particle is assembled in two steps: a noncovalent, lysine-dependent interaction of apo(a) with apoB-100 inside hepatocytes, followed by extracellular covalent association between these two molecules to form circulating apo(a).The production rate of Lp(a) is primarily responsible for the observed inverse correlation between apo(a) isoform size and Lp(a) levels, with a contribution of catabolism restricted to larger Lp(a) isoforms.Factors that affect apoB-100 secretion from hepatocytes also affect apo(a) secretion.The identification of key hepatic receptors involved in Lp(a) clearance in vivo remains unclear, with a role for the LDL receptor seemingly restricted to conditions wherein LDL concentrations are low, Lp(a) is highly elevated and LDL receptor number is maximally upregulated. SUMMARY The key role for production rate of Lp(a) [including secretion and assembly of the Lp(a) particle] rather than its catabolic rate suggests that the most fruitful therapies for Lp(a) reduction should focus on approaches that inhibit production of the particle rather than its removal from circulation.
Collapse
Affiliation(s)
| | - Marlys L Koschinsky
- Robarts Research Institute
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Alfano D, Franco P, Stoppelli MP. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front Cell Dev Biol 2022; 10:818616. [PMID: 35493073 PMCID: PMC9045800 DOI: 10.3389/fcell.2022.818616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycosyl-phosphatidyl-inositol anchored (GPI) membrane protein. The uPAR primary ligand is the serine protease urokinase (uPA), converting plasminogen into plasmin, a broad spectrum protease, active on most extracellular matrix components. Besides uPA, the uPAR binds specifically also to the matrix protein vitronectin and, therefore, is regarded also as an adhesion receptor. Complex formation of the uPAR with diverse transmembrane proteins, including integrins, formyl peptide receptors, G protein-coupled receptors and epidermal growth factor receptor results in intracellular signalling. Thus, the uPAR is a multifunctional receptor coordinating surface-associated pericellular proteolysis and signal transduction, thereby affecting physiological and pathological mechanisms. The uPAR-initiated signalling leads to remarkable cellular effects, that include increased cell migration, adhesion, survival, proliferation and invasion. Although this is beyond the scope of this review, the uPA/uPAR system is of great interest to cancer research, as it is associated to aggressive cancers and poor patient survival. Increasing evidence links the uPA/uPAR axis to epithelial to mesenchymal transition, a highly dynamic process, by which epithelial cells can convert into a mesenchymal phenotype. Furthermore, many reports indicate that the uPAR is involved in the maintenance of the stem-like phenotype and in the differentiation process of different cell types. Moreover, the levels of anchor-less, soluble form of uPAR, respond to a variety of inflammatory stimuli, including tumorigenesis and viral infections. Finally, the role of uPAR in virus infection has received increasing attention, in view of the Covid-19 pandemics and new information is becoming available. In this review, we provide a mechanistic perspective, via the detailed examination of consolidated and recent studies on the cellular responses to the multiple uPAR activities.
Collapse
|
16
|
The plasminogen receptor directs maintenance of spermatogonial stem cells by targeting BMI1. Mol Biol Rep 2022; 49:4469-4478. [DOI: 10.1007/s11033-022-07289-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022]
|
17
|
Abstract
Plasminogen is an abundant plasma protein that exists in various zymogenic forms. Plasmin, the proteolytically active form of plasminogen, is known for its essential role in fibrinolysis. To date, therapeutic targeting of the fibrinolytic system has been for 2 purposes: to promote plasmin generation for thromboembolic conditions or to stop plasmin to reduce bleeding. However, plasmin and plasminogen serve other important functions, some of which are unrelated to fibrin removal. Indeed, for >40 years, the antifibrinolytic agent tranexamic acid has been administered for its serendipitously discovered skin-whitening properties. Plasmin also plays an important role in the removal of misfolded/aggregated proteins and can trigger other enzymatic cascades, including complement. In addition, plasminogen, via binding to one of its dozen cell surface receptors, can modulate cell behavior and further influence immune and inflammatory processes. Plasminogen administration itself has been reported to improve thrombolysis and to accelerate wound repair. Although many of these more recent findings have been derived from in vitro or animal studies, the use of antifibrinolytic agents to reduce bleeding in humans has revealed additional clinically relevant consequences, particularly in relation to reducing infection risk that is independent of its hemostatic effects. The finding that many viruses harness the host plasminogen to aid infectivity has suggested that antifibrinolytic agents may have antiviral benefits. Here, we review the broadening role of the plasminogen-activating system in physiology and pathophysiology and how manipulation of this system may be harnessed for benefits unrelated to its conventional application in thrombosis and hemostasis.
Collapse
|
18
|
Yaron JR, Zhang L, Guo Q, Haydel SE, Lucas AR. Fibrinolytic Serine Proteases, Therapeutic Serpins and Inflammation: Fire Dancers and Firestorms. Front Cardiovasc Med 2021; 8:648947. [PMID: 33869309 PMCID: PMC8044766 DOI: 10.3389/fcvm.2021.648947] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The making and breaking of clots orchestrated by the thrombotic and thrombolytic serine protease cascades are critical determinants of morbidity and mortality during infection and with vascular or tissue injury. Both the clot forming (thrombotic) and the clot dissolving (thrombolytic or fibrinolytic) cascades are composed of a highly sensitive and complex relationship of sequentially activated serine proteases and their regulatory inhibitors in the circulating blood. The proteases and inhibitors interact continuously throughout all branches of the cardiovascular system in the human body, representing one of the most abundant groups of proteins in the blood. There is an intricate interaction of the coagulation cascades with endothelial cell surface receptors lining the vascular tree, circulating immune cells, platelets and connective tissue encasing the arterial layers. Beyond their role in control of bleeding and clotting, the thrombotic and thrombolytic cascades initiate immune cell responses, representing a front line, "off-the-shelf" system for inducing inflammatory responses. These hemostatic pathways are one of the first response systems after injury with the fibrinolytic cascade being one of the earliest to evolve in primordial immune responses. An equally important contributor and parallel ancient component of these thrombotic and thrombolytic serine protease cascades are the serine protease inhibitors, termed serpins. Serpins are metastable suicide inhibitors with ubiquitous roles in coagulation and fibrinolysis as well as multiple central regulatory pathways throughout the body. Serpins are now known to also modulate the immune response, either via control of thrombotic and thrombolytic cascades or via direct effects on cellular phenotypes, among many other functions. Here we review the co-evolution of the thrombolytic cascade and the immune response in disease and in treatment. We will focus on the relevance of these recent advances in the context of the ongoing COVID-19 pandemic. SARS-CoV-2 is a "respiratory" coronavirus that causes extensive cardiovascular pathogenesis, with microthrombi throughout the vascular tree, resulting in severe and potentially fatal coagulopathies.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, United States
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Qiuyun Guo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Shelley E. Haydel
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
19
|
Sharma S, Shinde SS, Teekas L, Vijay N. Evidence for the loss of plasminogen receptor KT gene in chicken. Immunogenetics 2020; 72:507-515. [PMID: 33247773 DOI: 10.1007/s00251-020-01186-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
The loss of conserved genes has the potential to alter phenotypes drastically. Screening of vertebrate genomes for lineage-specific gene loss events has identified numerous natural knockouts associated with specific phenotypes. We provide evidence for the loss of a multi-exonic plasminogen receptor KT (PLGRKT) protein-encoding gene located on the Z chromosome in chicken. Exons 1 and 2 are entirely missing; remnants of exon 3 and a mostly intact exon 4 are identified in an assembly gap-free region in chicken with conserved synteny across species and verified using transcriptome and genome sequencing. PLGRKT gene disrupting changes are present in representative species from all five galliform families. In contrast to this, the presence of an intact transcriptionally active PLGRKT gene in species such as mallard, swan goose, and Anolis lizard suggests that gene loss occurred in the galliform lineage sometime between 68 and 80 Mya. The presence of galliform specific chicken repeat 1 (CR1) insertion at the erstwhile exon 2 of PLGRKT gene suggests repeat insertion-mediated loss. However, at least nine other independent PLGRKT coding frame disrupting changes in other bird species are supported by genome sequencing and indicate a role for relaxed purifying selection before CR1 insertion. The recurrent loss of a conserved gene with a role in the regulation of macrophage migration, efferocytosis, and blood coagulation is intriguing. Hence, we propose potential candidate genes that might be compensating the function of PLGRKT based on the presence of a C-terminal lysine residue, transmembrane domains, and gene expression patterns.
Collapse
Affiliation(s)
- Sandhya Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Sagar Sharad Shinde
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Lokdeep Teekas
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|