1
|
Małodobra-Mazur M, Ołdakowska M, Dobosz T. Exploring PPAR Gamma and PPAR Alpha's Regulation Role in Metabolism via Epigenetics Mechanism. Biomolecules 2024; 14:1445. [PMID: 39595621 PMCID: PMC11591816 DOI: 10.3390/biom14111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to a family of nuclear receptors. To date, three types of PPARs, namely PPARα, PPARδ, and PPARγ, have been identified, demonstrating co-expression across numerous tissues. PPARγ is primarily distributed in adipose tissue, the colon, the immune system, and the retina, while PPARα is predominantly expressed in metabolic tissues such as brown adipose tissue, the liver, and the kidneys. Both PPARγ and PPARα play crucial roles in various cellular processes. Recent data suggest that the PPAR family, among other mechanisms, might also be regulated by epigenetic mechanisms. Our recent studies, alongside numerous others, have highlighted the pivotal roles of DNA methylation and histone modifications in the regulation of PPARγ and PPARα, implicating them in the deterioration of metabolic disorders via epigenetic mechanisms. This still not fully understood mechanism of regulation in the nuclear receptors family has been summarized and described in the present paper. The present review summarizes the available data on PPARγ and PPARα regulation via epigenetic mechanisms, elucidating the link between the development of metabolic disorders and the dysregulation of PPARγ and PPARα resulting from these mechanisms.
Collapse
Affiliation(s)
- Małgorzata Małodobra-Mazur
- Department of Forensic Science, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 51-367 Wroclaw, Poland; (M.O.); (T.D.)
| | | | | |
Collapse
|
2
|
Moghadasi M, Taherimoghaddam M, Babaeenezhad E, Birjandi M, Kaviani M, Moradi Sarabi M. MicroRNA-34a and promoter methylation contribute to peroxisome proliferator-activated receptor gamma gene expression in patients with type 2 diabetes. Diabetes Metab Syndr 2024; 18:103156. [PMID: 39522431 DOI: 10.1016/j.dsx.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
AIMS This study aimed to investigate the roles of DNA methylation and miR-34a in the regulation of peroxisome proliferator-activated receptor gamma (PPARγ) in patients with type 2 diabetes (T2D). METHODS We investigated the methylation status of four regions of the PPARγ promoter and PPARγ expression in a panel of 84 T2D patients using methylation-specific PCR (MSP) and RT-qPCR, respectively. Moreover, we quantified DNA methyltransferases (DNMTs) expression and global DNA methylation levels by RT-qPCR and ELISA, respectively. We measured the expression levels of miR-34a and protein expression of PPARγ by stem-loop RT-qPCR and ELISA, respectively. RESULTS We found significant DNA hypermethylation in the R2 and R3 regions of the PPARγ promoter in people with diabetes. Functionally, this was associated with a significant reduction in PPARγ expression. In addition, we observed a significant increase in 5-methylcytosine levels in people with diabetes. A marked increase in circulating miR-34a in the early stages of T2D (up to 10 years) and a significant decrease in circulating miR-34a with increasing diabetes duration from 10 years after the onset of diabetes. Interestingly, upregulation of DNA methyltransferases 1 (DNMT1), DNMT3A, and DNMT3B was observed in people with diabetes, and the average expression of DNMTs was negatively correlated with circulating miR-34a levels. In contrast, the serum protein level of PPARγ, a direct target of miR-34a, increased considerably with diabetes duration and showed a negative correlation with circulating miR-34a, cholesterol, triglyceride, and low-density lipoprotein. CONCLUSION PPARγ promoter hypermethylation and miR-34a upregulation are associated with T2D pathogenesis through PPARγ dysregulation.
Collapse
Affiliation(s)
- Mona Moghadasi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Taherimoghaddam
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Kaviani
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
3
|
Hua B, Qiu J, Ye X, Kuang Y, Liu X. Epigenetic PPARγ preservation attenuates temporomandibular joint osteoarthritis. Int Immunopharmacol 2023; 124:111014. [PMID: 37832237 DOI: 10.1016/j.intimp.2023.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE Previous studies have demonstrated that PPARγ deficiency is associated with osteoarthritis in the knee joint. However, whether epigenetic PPARγ dysregulation has any effect on temporomandibular joint osteoarthritis (TMJOA) is unknown. This study aims to determine the role and mechanism of epigenetic PPARγ dysregulation in TMJOA. METHODS Partial TMJ discectomy was performed to induce TMJOA in rat. Primary condylar chondrocytes were isolated, and TNF-α-induced inflammatory condition was created in vitro. The expressions of PPARγ and DNA methyltransferase were investigated in vivo and in vitro. The association of PPARγ and DNA methylation was further studied by treating chondrocytes with DNA demethylation agent 5-Aza-2'-deoxycytidine (5Aza) and transfecting with siRNA of DNA methyltransferase (DNMT)1 and DNMT3a, and the methylation level of PPARγ promoter was evaluated by Bisulfite-sequencing PCR. The chondroprotective effects of 5Aza were explored in vitro and in vivo. RESULTS PPARγ suppression and upregulated DNMT1/DNMT3a expression exist in TMJOA cartilage in vivo and primary condylar chondrocytes under TNF-α-induced inflammatory conditions in vitro. DNMT1 and DNMT3a elevation contributes to PPARγ-promoter hypermethylation in TMJ chondrocytes under TNF-α-induced inflammation conditions. DNA demethylation intervention by 5Aza protects chondrocytes from inflammation response in vitro. Mechanistically, 5Aza reversed the hypermethylation of the PPARγ promoter and subsequently resulted in PPARγ restoration and decreased expression of cartilage-catabolic factors in chondrocytes. Rat TMJOA model revealed that 5Aza, by reversing PPARγ suppression, effectively attenuated cartilage degeneration and stabilized cartilage homeostasis by balancing anabolic factor and catabolic factor expression. CONCLUSION Epigenetic PPARγ suppression may play a causal role in TMJOA pathogenesis, which can be alleviated by DNA demethylation with 5Aza treatment. This study provides new insights into the pathogenic mechanism and therapeutic strategy of TMJOA.
Collapse
Affiliation(s)
- Bingqiang Hua
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jin Qiu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoping Ye
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yiwen Kuang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xianwen Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Babaeenezhad E, Moradi Sarabi M, Rajabibazl M, Oraee-Yazdani S, Karima S. Global and Regional DNA methylation silencing of PPARγ Associated with Glioblastoma Multiforme Pathogenesis. Mol Biol Rep 2023; 50:589-597. [PMID: 36355265 DOI: 10.1007/s11033-022-08051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The relationship between peroxisome proliferator-activated receptor gamma (PPARγ) expression level and epigenetic modifications occurring in glioblastoma multiforme (GBM) pathogenesis is largely unknown. Herein, we examine the association of PPARγ expression with its promoter and genomic global DNA methylation status, as well as DNA methyltransferases (DNMTs) gene expression in GBM patients. METHODS We examined the patterns of promoter methylation and PPARγ expression in 26 GBM tissues and 13 adjacent non-tumor tissues by methylation-specific PCR (MSP), real-time PCR, and ELISA, respectively. Also, we examined the genomic global 5-methyl cytosine levels and DNMTs gene expression using ELISA and real-time PCR methods, respectively. RESULTS We found that hypermethylation on a specific region of the PPARγ promoter is significantly associated with the downregulation of the PPARγ gene and protein level in GBM patients. Interestingly, the amount of 5-methyl cytosine level was significantly reduced in GBM patients and positively correlated with PPARγ protein expression. Furthermore, the expression level of DNMT1, DNMT3A, and 3B were upregulated in GBM patients and the average expression level of all three DNMTs was positively correlated with tumor area. Also, we found that tumors from cortical regions exhibited a higher global DNA hypomethylation and PPARγ hypermethylation was related to the increase in GBM risk. CONCLUSION Our study demonstrated that global DNA methylation and PPARγ epigenetic silencing is associated with the GBM risk. Our data provide a novel molecular mechanistic insight into epigenetic silencing of PPARγ in GBM patients that may be relevant as a key tumor marker for GBM pathogenesis.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Moradi Sarabi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran. .,Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gao CC, Bai J, Han H, Qin HY. The versatility of macrophage heterogeneity in liver fibrosis. Front Immunol 2022; 13:968879. [PMID: 35990625 PMCID: PMC9389038 DOI: 10.3389/fimmu.2022.968879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a highly conserved wound healing response to liver injury, characterized by excessive deposition of extracellular matrix (ECM) in the liver which might lead to loss of normal functions. In most cases, many types of insult could damage hepatic parenchymal cells like hepatocytes and/or cholangiocytes, and persistent injury might lead to initiation of fibrosis. This process is accompanied by amplified inflammatory responses, with immune cells especially macrophages recruited to the site of injury and activated, in order to orchestrate the process of wound healing and tissue repair. In the liver, both resident macrophages and recruited macrophages could activate interstitial cells which are responsible for ECM synthesis by producing a variety of cytokines and chemokines, modulate local microenvironment, and participate in the regulation of fibrosis. In this review, we will focus on the main pathological characteristics of liver fibrosis, as well as the heterogeneity on origin, polarization and functions of hepatic macrophages in the setting of liver fibrosis and their underlying mechanisms, which opens new perspectives for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Chun-Chen Gao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Jian Bai
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Hong-Yan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hong-Yan Qin,
| |
Collapse
|
6
|
Pascual-Garrido C, Kamenaga T, Brophy RH, Shen J, O'Keefe RJ, Clohisy JC. Otto Aufranc Award: Identification of Key Molecular Players in the Progression of Hip Osteoarthritis Through Transcriptomes and Epigenetics. J Arthroplasty 2022; 37:S391-S399. [PMID: 35288246 PMCID: PMC9208365 DOI: 10.1016/j.arth.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND This study aimed: (1) to compare the transcriptome profile of articular cartilage in cam-FAI (early stage) to advanced OA secondary to cam-FAI (late stage) and (2) to investigate epigenetic changes through the expression of DNA methylation enzymes DNMT3B, DNMT1, and DNMT3A and peroxisome proliferator-activated receptor gamma (PPARγ) in human cartilage samples during the progression of hip OA. METHODS Full-thickness cartilage samples were collected from the anterolateral head-neck junction (impingement zone) of 22 patients (9 early-FAI and 13 late-FAI). RNA sequencing and in vitro cartilage cultures with histological analysis and immunohistochemistry staining for PPARγ and DNMT3B were performed. Target gene validation was confirmed with RT-PCR. RESULTS Fifty genes and 42 pathways were identified differentially between early and late-FAI (fold change <-1.5 or >1.5, P < .01). PPARγ and DNMT3B were gradually suppressed with disease progression. Contrarily, disease progression induced expression of DNMT1/3A. CONCLUSION By comparing comprehensive gene expression in early and late stage hip degeneration at the whole-genome level, distinct transcriptome profiles for early and late stage disease were identified along with key molecular contributors to the progression of hip OA. Preservation of endogenous PPARγ may have therapeutic potential to delay or prevent hip OA.
Collapse
Affiliation(s)
- Cecilia Pascual-Garrido
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - John C Clohisy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
7
|
Olive Oil Improves While Trans Fatty Acids Further Aggravate the Hypomethylation of LINE-1 Retrotransposon DNA in an Environmental Carcinogen Model. Nutrients 2022; 14:nu14040908. [PMID: 35215560 PMCID: PMC8878525 DOI: 10.3390/nu14040908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that is crucial for mammalian development and genomic stability. Aberrant DNA methylation changes have been detected not only in malignant tumor tissues; the decrease of global DNA methylation levels is also characteristic for aging. The consumption of extra virgin olive oil (EVOO) as part of a balanced diet shows preventive effects against age-related diseases and cancer. On the other hand, consuming trans fatty acids (TFA) increases the risk of cardiovascular diseases as well as cancer. The aim of the study was to investigate the LINE-1 retrotransposon (L1-RTP) DNA methylation pattern in liver, kidney, and spleen of mice as a marker of genetic instability. For that, mice were fed with EVOO or TFA and were pretreated with environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-a harmful substance known to cause L1-RTP DNA hypomethylation. Our results show that DMBA and its combination with TFA caused significant L1-RTP DNA hypomethylation compared to the control group via inhibition of DNA methyltransferase (DNMT) enzymes. EVOO had the opposite effect by significantly decreasing DMBA and DMBA + TFA-induced hypomethylation, thereby counteracting their effects.
Collapse
|
8
|
Xue T, Qiu X, Liu H, Gan C, Tan Z, Xie Y, Wang Y, Ye T. Epigenetic regulation in fibrosis progress. Pharmacol Res 2021; 173:105910. [PMID: 34562602 DOI: 10.1016/j.phrs.2021.105910] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis, a common process of chronic inflammatory diseases, is defined as a repair response disorder when organs undergo continuous damage, ultimately leading to scar formation and functional failure. Around the world, fibrotic diseases cause high mortality, unfortunately, with limited treatment means in clinical practice. With the development and application of deep sequencing technology, comprehensively exploring the epigenetic mechanism in fibrosis has been allowed. Extensive remodeling of epigenetics controlling various cells phenotype and molecular mechanisms involved in fibrogenesis was subsequently verified. In this review, we summarize the regulatory mechanisms of DNA methylation, histone modification, noncoding RNAs (ncRNAs) and N6-methyladenosine (m6A) modification in organ fibrosis, focusing on heart, liver, lung and kidney. Additionally, we emphasize the diversity of epigenetics in the cellular and molecular mechanisms related to fibrosis. Finally, the potential and prospect of targeted therapy for fibrosis based on epigenetic is discussed.
Collapse
Affiliation(s)
- Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Qiu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxi Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
9
|
Wei A, Gao Q, Chen F, Zhu X, Chen X, Zhang L, Su X, Dai J, Shi Y, Cao W. Inhibition of DNA methylation derepresses PPARγ and attenuates pulmonary fibrosis. Br J Pharmacol 2021; 179:1304-1318. [PMID: 34378791 DOI: 10.1111/bph.15655] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/13/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Development of pulmonary fibrosis is associated with altered DNA methylation modifications of fibrogenic gene expressions; however, their causal relationships and the underlying mechanisms remain unclear. This study investigates the critical role of DNA methylation aberration-associated suppression of PPARγ (peroxisome proliferator-activated receptor-gamma) in pulmonary fibrosis. EXPERIMENTAL APPROACH Expressions of PPARγ and bioactive DNA methyltranferases, and PPARγ promoter methylation status were examined from fibrotic lungs of idiopathic pulmonary fibrosis (IPF) patients and bleomycin (Blm)-treated mice. DNA demethylating agent 5-Aza-2'-deoxycytidine (5aza) and glycyrrhizic acid (GA) derived from medicinal plant were assessed for their PPARγ derepression and anti-pulmonary fibrosis activities. PPARγ knockout mice were created to determine the critical role of PPARγ in the protections. KEY RESULTS Lung PPARγ expressions were markedly suppressed in IPF patients and Blm mice, accompanied by increased methyltransferase (DNMT) 1/DNMT3a and PPARγ promoter hypermethylation. Administrations of 5aza and GA similarly demethylated PPARγ promoter, recovered the PPARγ loss and alleviated the fibrotic lung pathologies, including structural alterations and adverse expressions of fibrotic mediators and inflammatory cytokines. In cultured lung fibroblast and alveolar epithelial cells, GA alleviated the fibrotic PPARγ suppression in a gain of DNMT-sensitive manner, and in PPARγ knockout mice, the anti-fibrotic effects of 5aza and GA were significantly reduced, suggesting that PPARγ is a critical mediator of epigenetic pulmonary fibrogenesis. CONCLUSION AND IMPLICATIONS Aberrant DNMT1/3a elevations and the resultant PPARγ suppression contribute significantly to the development of pulmonary fibrosis, and strategies targeting DNMT/PPARγ axis by synthetic or natural small compounds might benefit patients with pulmonary fibrotic disorders.
Collapse
Affiliation(s)
- Ai Wei
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.,Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qi Gao
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Fang Chen
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xiaobo Zhu
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xingren Chen
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Lijun Zhang
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xin Su
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Yi Shi
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wangsen Cao
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
10
|
Li J, Guo C, Wu J. The Agonists of Peroxisome Proliferator-Activated Receptor-γ for Liver Fibrosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2619-2628. [PMID: 34168433 PMCID: PMC8219117 DOI: 10.2147/dddt.s310163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Liver fibrosis is a common link in the transformation of acute and chronic liver diseases to cirrhosis. It is of great clinical significance to study the factors associated with the induction of liver fibrosis and elucidate the method of reversal. Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear transcription factors that can be activated by peroxisome proliferators. PPARs play an important role in fibrosis of various organs, especially the liver, by regulating downstream targeted pathways, such as TGF-β, MAPKs, and NF-κB p65. In recent years, the development and screening of PPAR-γ ligands have become a focus of research. The PPAR-γ ligands include synthetic hypolipidemic and antidiabetic drugs. In addition, microRNAs, lncRNAs, circRNAs and nano new drugs have attracted research interest. In this paper, the research progress of PPAR-γ in the pathogenesis and treatment of liver fibrosis was discussed based on the relevant literature in recent years.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, People's Republic of China
| |
Collapse
|
11
|
Ahmed N, Ahmed N, Filip R, Pezacki JP. Nuclear Hormone Receptors and Host-Virus Interactions. NUCLEAR RECEPTORS 2021:315-348. [DOI: 10.1007/978-3-030-78315-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res 2021; 70:29-49. [PMID: 33231704 PMCID: PMC7684853 DOI: 10.1007/s00011-020-01425-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
AIM AND OBJECTIVE Emerging translational evidence suggests that epigenetic alterations (DNA methylation, miRNA expression, and histone modifications) occur after external stimuli and may contribute to exacerbated inflammation and the risk of suffering several diseases including diabetes, cardiovascular diseases, cancer, and neurological disorders. This review summarizes the current knowledge about the harmful effects of high-fat/high-sugar diets, micronutrient deficiencies (folate, manganese, and carotenoids), obesity and associated complications, bacterial/viral infections, smoking, excessive alcohol consumption, sleep deprivation, chronic stress, air pollution, and chemical exposure on inflammation through epigenetic mechanisms. Additionally, the epigenetic phenomena underlying the anti-inflammatory potential of caloric restriction, n-3 PUFA, Mediterranean diet, vitamin D, zinc, polyphenols (i.e., resveratrol, gallic acid, epicatechin, luteolin, curcumin), and the role of systematic exercise are discussed. METHODS Original and review articles encompassing epigenetics and inflammation were screened from major databases (including PubMed, Medline, Science Direct, Scopus, etc.) and analyzed for the writing of the review paper. CONCLUSION Although caution should be exercised, research on epigenetic mechanisms is contributing to understand pathological processes involving inflammatory responses, the prediction of disease risk based on the epigenotype, as well as the putative design of therapeutic interventions targeting the epigenome.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Madrid, Spain
| |
Collapse
|
13
|
Tao L, Wu L, Zhang W, Ma WT, Yang GY, Zhang J, Xue DY, Chen B, Liu C. Peroxisome proliferator-activated receptor γ inhibits hepatic stellate cell activation regulated by miR-942 in chronic hepatitis B liver fibrosis. Life Sci 2020; 253:117572. [PMID: 32201276 DOI: 10.1016/j.lfs.2020.117572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
AIMS Liver fibrosis is a chronic liver disease characterized by hepatic stellate cell (HSC) activation. Peroxisome proliferator-activated receptor gamma (PPARγ) play an important role in HSC activation. This study aimed to investigate the role of PPARγ in the progression of human hepatic fibrosis and the mechanism by which microRNA-942 regulates HSC activation. METHODS 70 chronic hepatitis B (CHB) patients liver tissues were used to assess PPARγ, α-SMA and miR-942 levels by immunoblot and real-time PCR. Human primary HSCs or LX2 cells were used to perform multiple molecular experiments based on the transfection of small interfering RNA (siRNA) or co-transfection of microRNA inhibitor. Site-directed mutagenesis and luciferase reporter assays were used to identify miR-942 targets. miR-942 expression and localization in hepatic fibrosis and co-localization between α-SMA were determined by fluorescence in situ hybridization (FISH). KEY FINDINGS The mRNA expression of PPARγ was decreased in activated HSCs and CHB patients with liver fibrosis, which was negatively correlated with F stage and α-SMA. miR-942 negatively regulates PPARγ expression via targeting the PPARγ 3'UTR. Inhibiting PPARγ promoted TGFβ1 induced HSC activation, and this effect was blocked after inhibiting the miR-942. Moreover, miR-942 was mainly expressed in fibrous septa and negatively correlated with PPARγ in liver fibrosis. SIGNIFICANCE PPARγ targeting by miR-942 and decreasing HSC activation in human hepatic fibrosis. Hence, regulating PPARγ may be a promising therapeutic strategy for hepatic fibrosis.
Collapse
Affiliation(s)
- Le Tao
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Liu Wu
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wei Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wen-Ting Ma
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Guang-Yue Yang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jie Zhang
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Dong-Ying Xue
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Bei Chen
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Cheng Liu
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, China.
| |
Collapse
|
14
|
Zhu X, Chen F, Lu K, Wei A, Jiang Q, Cao W. PPARγ preservation via promoter demethylation alleviates osteoarthritis in mice. Ann Rheum Dis 2019; 78:1420-1429. [PMID: 31239244 DOI: 10.1136/annrheumdis-2018-214940] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Osteoarthritis (OA) is the most common degenerative joint disease in aged population and its development is significantly influenced by aberrant epigenetic modifications of numerous OA susceptible genes; however, the precise mechanisms that DNA methylation alterations affect OA pathogenesis remain undefined. This study investigates the critical role of epigenetic PPARγ (peroxisome proliferator-activated receptor-gamma) suppression in OA development. METHODS Articular cartilage expressions of PPARγ and bioactive DNA methyltransferases (DNMTs) from OA patients and mice incurred by DMM (destabilisation of medial meniscus) were examined. DNA methylation status of both human and mouse PPARγ promoters were assessed by methylated specific PCR and/or bisulfite-sequencing PCR. OA protections by a pharmacological DNA demethylating agent 5Aza (5-Aza-2'-deoxycytidine) were compared between wild type and PPARγ knockout mice. RESULTS Articular cartilages from both OA patients and DMM mice display substantial PPARγ suppressions likely due to aberrant elevations of DNMT1 and DNMT3a and consequential PPARγ promoter hypermethylation. 5Aza known to inhibit both DNMT1 and DNMT3a reversed the PPARγ promoter hypermethylation, recovered the PPARγ loss and effectively attenuated the cartilage damage in OA mice. 5Aza also inhibited the OA-associated excessive inflammatory cytokines and deficit anti-oxidant enzymes, which were blocked by a specific PPARγ inhibitor in cultured chondrocytes. Further, 5Aza-confered protections against the cartilage damage and the associated abnormalities of OA-susceptible factors were significantly abrogated in PPARγ knockout mice. CONCLUSION Epigenetic PPARγ suppression plays a key role in OA development and PPARγ preservation via promoter demethylation possesses promising therapeutic potentials in clinical treatment of OA and the related joint diseases.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Fang Chen
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Ke Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Ai Wei
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China .,Model Animal Research Center, Nanjing University, Nanjing, China
| | - Wangsen Cao
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
15
|
The role of DNA methylation and hydroxymethylation in immunosenescence. Ageing Res Rev 2019; 51:11-23. [PMID: 30769150 DOI: 10.1016/j.arr.2019.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
A healthy functioning immune system is critical to stave off infectious diseases, but as humans and other organisms age, their immune systems decline. As a result, diseases that were readily thwarted in early life pose nontrivial harm and can even be deadly in late life. Immunosenescence is defined as the general deterioration of the immune system with age, and it is characterized by functional changes in hematopoietic stem cells (HSCs) and specific blood cell types as well as changes in levels of numerous factors, particularly those involved in inflammation. Potential mechanisms underlying immunosenescence include epigenetic changes such as changes in DNA methylation (DNAm) and DNA hydroxymethylation (DNAhm) that occur with age. The purpose of this review is to describe what is currently known about the relationship between immunosenescence and the age-related changes to DNAm and DNAhm, and to discuss experimental approaches best suited to fill gaps in our understanding.
Collapse
|
16
|
Decreased Nuclear Ascorbate Accumulation Accompanied with Altered Genomic Methylation Pattern in Fibroblasts from Arterial Tortuosity Syndrome Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8156592. [PMID: 30800210 PMCID: PMC6360052 DOI: 10.1155/2019/8156592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022]
Abstract
Ascorbate requiring Fe2+/2-oxoglutarate-dependent dioxygenases located in the nucleoplasm have been shown to participate in epigenetic regulation of gene expression via histone and DNA demethylation. Transport of dehydroascorbic acid is impaired in the endomembranes of fibroblasts from arterial tortuosity syndrome (ATS) patients, due to the mutation in the gene coding for glucose transporter GLUT10. We hypothesized that altered nuclear ascorbate concentration might be present in ATS fibroblasts, affecting dioxygenase activity and DNA demethylation. Therefore, our aim was to characterize the subcellular distribution of vitamin C, the global and site-specific changes in 5-methylcytosine and 5-hydroxymethylcytosine levels, and the effect of ascorbate supplementation in control and ATS fibroblast cultures. Diminished nuclear accumulation of ascorbate was found in ATS fibroblasts upon ascorbate or dehydroascorbic acid addition. Analyzing DNA samples of cultured fibroblasts from controls and ATS patients, a lower global 5-hydroxymethylcytosine level was found in ATS fibroblasts, which could not be significantly modified by ascorbate addition. Investigation of the (hydroxy)methylation status of specific regions in six candidate genes related to ascorbate metabolism and function showed that ascorbate addition could stimulate hydroxymethylation and active DNA demethylation at the PPAR-γ gene region in control fibroblasts only. The altered DNA hydroxymethylation patterns in patient cells both at the global level and at specific gene regions accompanied with decreased nuclear accumulation of ascorbate suggests the epigenetic role of vitamin C in the pathomechanism of ATS. The present findings represent the first example for the role of vitamin C transport in epigenetic regulation suggesting that ATS is a compartmentalization disease.
Collapse
|
17
|
Castellano-Castillo D, Moreno-Indias I, Sanchez-Alcoholado L, Ramos-Molina B, Alcaide-Torres J, Morcillo S, Ocaña-Wilhelmi L, Tinahones F, Queipo-Ortuño MI, Cardona F. Altered Adipose Tissue DNA Methylation Status in Metabolic Syndrome: Relationships Between Global DNA Methylation and Specific Methylation at Adipogenic, Lipid Metabolism and Inflammatory Candidate Genes and Metabolic Variables. J Clin Med 2019; 8:jcm8010087. [PMID: 30642114 PMCID: PMC6352101 DOI: 10.3390/jcm8010087] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) has been postulated to increase the risk for type 2 diabetes, cardiovascular disease and cancer. Adipose tissue (AT) plays an important role in metabolic homeostasis, and AT dysfunction has an active role in metabolic diseases. MetS is closely related to lifestyle and environmental factors. Epigenetics has emerged as an interesting landscape to evaluate the possible interconnection between AT and metabolic disease, since it can be modulated by environmental factors and metabolic status. The aim of this study was to determine whether MetS has an impact on the global DNA methylation pattern and the DNA methylation of several genes related to adipogenesis (PPARG, PPARA), lipid metabolism (RXRA, SREBF2, SREBF1, SCD, LPL, LXRb), and inflammation (LRP1 C3, LEP and TNF) in visceral adipose tissue. LPL and TNF DNA methylation values were significantly different in the control-case comparisons, with higher and lower methylation respectively in the MetS group. Negative correlations were found between global DNA methylation (measured by LINE-1 methylation levels) and the metabolic deterioration and glucose levels. There were associations among variables of MetS, BMI, and HOMA-IR with DNA methylation at several CpG positions for the studied genes. In particular, there was a strong positive association between serum triglyceride levels (TG) with PPARA and LPL methylation levels. TNF methylation was negatively associated with the metabolic worsening and could be an important factor in preventing MetS occurrence according to logistic regression analysis. Therefore, global DNA methylation and methylation at specific genes related to adipogenesis, lipid metabolism and inflammation are related to the etiology of MetS and might explain in part some of the features associated to metabolic disorders.
Collapse
Affiliation(s)
- Daniel Castellano-Castillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Isabel Moreno-Indias
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Lidia Sanchez-Alcoholado
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Bruno Ramos-Molina
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Juan Alcaide-Torres
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Sonsoles Morcillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Luis Ocaña-Wilhelmi
- Unidad de Cirugía Metabólica, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain.
| | - Francisco Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
- Unidad de Gestión Clínica de Oncología Médica del Hospital Virgen de la Victoria, 29010 Málaga, Spain.
| | - Fernando Cardona
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| |
Collapse
|
18
|
Prospects in non-invasive assessment of liver fibrosis: Liquid biopsy as the future gold standard? Biochim Biophys Acta Mol Basis Dis 2018; 1864:1024-1036. [PMID: 29329986 DOI: 10.1016/j.bbadis.2018.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is the result of persistent liver injury, and is characterized by sustained scar formation and disruption of the normal liver architecture. The extent of fibrosis is considered as an important prognostic factor for the patient outcome, as an absence of (early) treatment can lead to the development of liver cirrhosis and hepatocellular carcinoma. Till date, the most sensitive and specific way for the diagnosis and staging of liver fibrosis remains liver biopsy, an invasive diagnostic tool, which is associated with high costs and discomfort for the patient. Over time, non-invasive scoring systems have been developed, of which the measurements of serum markers and liver stiffness are validated for use in the clinic. These tools lack however the sensitivity and specificity to detect small changes in the progression or regression of both early and late stages of fibrosis. Novel non-invasive diagnostic markers with the potential to overcome these limitations have been developed, but often lack validation in large patient cohorts. In this review, we will summarize novel trends in non-invasive markers of liver fibrosis development and will discuss their (dis-)advantages for use in the clinic.
Collapse
|
19
|
Fu S, Sun L, Zhang X, Shi H, Xu K, Xiao Y, Ye W. 5-Aza-2'-deoxycytidine induces human Tenon's capsule fibroblasts differentiation and fibrosis by up-regulating TGF-β type I receptor. Exp Eye Res 2017; 165:47-58. [PMID: 28893564 DOI: 10.1016/j.exer.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
The principle reason of high failure rate of glaucoma filtration surgery is the loss of filtration function caused by postoperative scar formation. We investigated the effects of 5-aza-2'-deoxycytidine (5-Aza-dc), a DNA methyltransferases inhibitor, on human Tenon's capsule fibroblasts (HTFs) differentiation and fibrosis and its mechanism of action, especially in relation to transforming growth factor (TGF)-β1 signaling. TGF-β1 was used to induce differentiation of cultured HTFs. 5-Aza-dc suppressed DNA methyltransferases (DNMTs) activity 6 h after treatment with a course corresponding to that of TGF-β1-induced reduction of DNMT activity without affecting cell viability as measured by Cell Counting Kit-8 assay. 5-Aza-dc also reduced DNMT1 and DNMT3a protein expression from 24 to 48 h. HTFs migration evaluated by scratch-wound assay were significantly increased 24 h after 5-Aza-dc treatment, a time course similar to that of TGF-β1. Treatment with 5-Aza-dc significantly increased the mRNA and protein levels of α-smooth muscle actin (α-SMA), collagen-1A1 (Col1A1), fibronectin (FN) and TGF-β type I receptor (TGFβRI). Furthermore, the effects of 5-Aza-dc on DNMT activity suppression, cell migration, and fibrosis were all reversed by a TGFβRI inhibitor- SB-431542. Meanwhile, knockdown of DNMT1 upregulated TGFβRI expression and had the same fibrosis-inducing effect in HTFs, which was also inhibited by SB-431542. Thus, the results indicate that DNA hypomethylation induces HTFs differentiation and fibrosis through up-regulation of TGFβRI. DNA methylation status plays an important role in subconjunctival wound healing.
Collapse
Affiliation(s)
- Shuhao Fu
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Sun
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huimin Shi
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kang Xu
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiqin Xiao
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Wen Ye
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Motawi TK, Shaker OG, Ismail MF, Sayed NH. Peroxisome Proliferator-Activated Receptor Gamma in Obesity and Colorectal Cancer: the Role of Epigenetics. Sci Rep 2017; 7:10714. [PMID: 28878369 PMCID: PMC5587696 DOI: 10.1038/s41598-017-11180-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that is deregulated in obesity. PPARγ exerts diverse antineoplastic effects. Attempting to determine the clinical relevance of the epigenetic mechanisms controlling the expression PPARγ and susceptibility to colorectal cancer (CRC) in obese subjects, this study investigated the role of some microRNAs and DNA methylation on the deregulation of PPARγ. Seventy CRC patients (34 obese and 36 lean), 22 obese and 24 lean healthy controls were included. MicroRNA levels were measured in serum. PPARγ promoter methylation was evaluated in peripheral blood mononuclear cells (PBMC). PPARγ level was evaluated by measuring mRNA level in PBMC and protein level in serum. The tested microRNAs (miR-27b, 130b and 138) were significantly upregulated in obese and CRC patients. Obese and CRC patients had significantly low levels of PPARγ. A significant negative correlation was found between PPARγ levels and the studied microRNAs. There was a significant PPARγ promoter hypermethylation in CRC patients that correlated to low PPARγ levels. Our results suggest that upregulation of microRNAs 27b, 130b and 138 is associated with susceptibility to CRC in obese subjects through PPARγ downregulation. Hypermethylation of PPARγ gene promoter is associated with CRC through suppression of PPARγ regardless of BMI.
Collapse
Affiliation(s)
- T K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - O G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M F Ismail
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - N H Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
21
|
Yasumoto J, Kasai H, Yoshimura K, Otoguro T, Watashi K, Wakita T, Yamashita A, Tanaka T, Takeda S, Moriishi K. Hepatitis B virus prevents excessive viral production via reduction of cell death-inducing DFF45-like effectors. J Gen Virol 2017; 98:1762-1773. [PMID: 28745269 DOI: 10.1099/jgv.0.000813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The relationship between hepatitis B virus (HBV) infection and lipid accumulation remains largely unknown. In this study, we investigated the effect of HBV propagation on lipid droplet growth in HBV-infected cells and HBV-producing cell lines, HepG2.2.15 and HBV-inducible Hep38.7-Tet. The amount of intracellular triglycerides was significantly reduced in HBV-infected and HBV-producing cells compared with HBV-lacking control cells. Electron and immunofluorescent microscopic analyses showed that the average size of a single lipid droplet (LD) was significantly less in the HBV-infected and HBV-producing cells than in the HBV-lacking control cells. Cell death-inducing DFF45-like effectors (CIDEs) B and C (CIDEB and CIDEC), which are involved in LD expansion for the improvement of lipid storage, were expressed at a significantly lower level in HBV-infected or HBV-producing cells than in HBV-lacking control cells, while CIDEA was not detected in those cells regardless of HBV production. The activity of the CIDEB and CIDEC gene promoters was impaired in HBV-infected or HBV-producing cells compared to HBV-lacking control cells, while CIDEs potentiated HBV core promoter activity. The amount of HNF4α, that can promote the transcription of CIDEB was significantly lower in HBV-producing cells than in HBV-lacking control cells. Knockout of CIDEB or CIDEC significantly reduced the amount of supernatant HBV DNA, intracellular viral RNA and nucleocapsid-associated viral DNA, while the expression of CIDEB or CIDEC recovered HBV production in CIDEB- or CIDEC-knockout cells. These results suggest that HBV regulates its own viral replication via CIDEB and CIDEC.
Collapse
Affiliation(s)
- Jun Yasumoto
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Teruhime Otoguro
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| |
Collapse
|
22
|
Zhao J, Fan YC, Chen LY, Gao S, Li F, Wang K. Alteration of methyl-CpG binding domain family in patients with chronic hepatitis B. Clin Res Hepatol Gastroenterol 2017; 41:272-283. [PMID: 28065745 DOI: 10.1016/j.clinre.2016.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/25/2016] [Accepted: 11/30/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Epigenetics contributes to the outcome of chronic hepatitis B virus (HBV) infection. However, the role of methyl-CpG binding domain (MBD) family in the natural history of chronic hepatitis B (CHB) has not been demonstrated. It is aimed to investigate the dynamic expression of MBD family and assess the potential association of MBD family in the progression of CHB. METHODS Quantitative real-time polymerase chain reaction (RT-PCR) was used to determine the mRNA levels of MBD family in peripheral blood mononuclear cells (PBMCs) from 223 patients with CHB as training cohort, 146 patients with CHB as validation cohort [immune-tolerant (IT), immune clearance (IC), non/low-replicative (LR) and HBeAg negative hepatitis (ENH)], and 14 healthy controls (HCs). RESULTS The mRNA levels of MeCP2, MBD1, MBD2 and MBD4 were upregulated in patients with CHB compared with HCs. MBD1 mRNA was highest expressed in IT phase than other phases. The optimal cut-off value for MBD1 mRNA in discriminating IT phase from CHB was 0.0305 in both training and validation cohorts. Both MBD2 and MBD4 mRNA were highest expressed in IC phase than other phases. Moreover, the optimal cut-off values for MBD2 and MBD4 mRNA in discriminating IC phase from CHB were 0.0069 and 0.00099. Furthermore, MBD2 plus MBD4 performed better than MBD2 alone for discriminating IC phase from CHB in training (area under the curve of receiver operating characteristics [AUC] 0.736 vs. 0.671, P=0.0225) and validation cohorts (AUC 0.754 vs. 0.665, P=0.004). MeCP2 mRNA was highest expressed in patients with S3+S4. MeCP2 mRNA has higher AUC than APRI score for predicting S3+S4 and S4 in fibrosis. CONCLUSIONS MBD family is involved in the pathogenesis of CHB and is correlated with disease progression, suggesting the value in evaluating disease severity.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China; Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Long-Yan Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China; Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China; Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Feng Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China; Institute of Hepatology, Shandong University, Jinan 250012, China.
| |
Collapse
|
23
|
Rinaldi L, Avgustinova A, Martín M, Datta D, Solanas G, Prats N, Benitah SA. Loss of Dnmt3a and Dnmt3b does not affect epidermal homeostasis but promotes squamous transformation through PPAR-γ. eLife 2017; 6:e21697. [PMID: 28425913 PMCID: PMC5429093 DOI: 10.7554/elife.21697] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
The DNA methyltransferase Dnmt3a suppresses tumorigenesis in models of leukemia and lung cancer. Conversely, deregulation of Dnmt3b is thought to generally promote tumorigenesis. However, the role of Dnmt3a and Dnmt3b in many types of cancer remains undefined. Here, we show that Dnmt3a and Dnmt3b are dispensable for homeostasis of the murine epidermis. However, loss of Dnmt3a-but not Dnmt3b-increases the number of carcinogen-induced squamous tumors, without affecting tumor progression. Only upon combined deletion of Dnmt3a and Dnmt3b, squamous carcinomas become more aggressive and metastatic. Mechanistically, Dnmt3a promotes the expression of epidermal differentiation genes by interacting with their enhancers and inhibits the expression of lipid metabolism genes, including PPAR-γ, by directly methylating their promoters. Importantly, inhibition of PPAR-γ partially prevents the increase in tumorigenesis upon deletion of Dnmt3a. Altogether, we demonstrate that Dnmt3a and Dnmt3b protect the epidermis from tumorigenesis and that squamous carcinomas are sensitive to inhibition of PPAR-γ.
Collapse
Affiliation(s)
- Lorenzo Rinaldi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Alexandra Avgustinova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mercè Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Debayan Datta
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guiomar Solanas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
24
|
Wang ZL, Gao S, Li L, Li XY, Huan SL, Wang K. Demethylation of tumor necrosis factor-α converting enzyme predicts poor prognosis in acute-on-chronic hepatitis B liver failure. Clin Res Hepatol Gastroenterol 2016; 40:457-64. [PMID: 26850359 DOI: 10.1016/j.clinre.2015.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Tumor necrosis factor-α converting enzyme (TACE) has been demonstrated to be involved in liver inflammation. However, the significance of TACE methylation in acute-on-chronic hepatitis B liver failure (ACHBLF) has not been demonstrated. This study aims to evaluate TACE methylation status in ACHBLF and determine its predictive value for prognosis. METHODS Forty-five patients with ACHBLF, 80 with chronic hepatitis B (CHB) and 54 healthy controls (HCs) were enrolled. The methylation status of TACE promoter was determined by methylation-specific polymerase chain reaction. The TACE mRNA expression was determined by quantitative real-time polymerase chain reaction. The plasma levels of TACE, TNF-α, sTNFRI, sTNFRII were measured by enzyme-linked immunosorbent assay. RESULTS TACE methylation was significantly lower in patients with ACHBLF than those with CHB (χ(2)=24.69, P<0.01) and HCs (χ(2)=35.93, P<0.01). Meanwhile, TACE methylation was significantly lower in CHB patients than HCs (χ(2)=4.03, P<0.05). TACE methylation was significantly inversely associated with its mRNA expression (r=-0.68; P<0.01). The plasma levels of TACE, TNF-α, sTNFRI, sTNFRII were significantly higher in patients with ACHBLF than those with CHB (P<0.05, respectively) and HCs (P<0.05, respectively). In patients with ACHBLF, significantly higher prothrombin activity, lower total bilirubin and MELD score were found in TACE methylated group than unmethylated group (P<0.05). ACHBLF patients with methylated TACE showed significantly better survival than those without (P<0.01). CONCLUSION This study showed that demethylation of TACE promoter occurred in ACHBLF and might serve as a potential prognostic marker.
Collapse
Affiliation(s)
- Zhen-Li Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Institute of Shandong University, Wenhuaxi Road 107#, Shandong, Jinan 250012, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Institute of Shandong University, Wenhuaxi Road 107#, Shandong, Jinan 250012, China
| | - Lei Li
- Department of Infectious Diseases, Qingdao Women and Children Hospital, Qingdao 266034 Shandong, China
| | - Xin-You Li
- Department of Hepatology, Qilu Hospital of Shandong University, Institute of Shandong University, Wenhuaxi Road 107#, Shandong, Jinan 250012, China
| | - Shu-Ling Huan
- Department of Hepatology, Qilu Hospital of Shandong University, Institute of Shandong University, Wenhuaxi Road 107#, Shandong, Jinan 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Institute of Shandong University, Wenhuaxi Road 107#, Shandong, Jinan 250012, China; Institute of Hepatology, Shandong University, 250012 Shandong, Jinan, China.
| |
Collapse
|
25
|
Tost J. Follow the trace of death: methylation analysis of cell-free DNA for clinical applications in non-cancerous diseases. Epigenomics 2016; 8:1169-72. [PMID: 27529647 DOI: 10.2217/epi-2016-0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, 2 rue Gaston Crémieux, 91000 Evry, France
| |
Collapse
|
26
|
Richter K, Kietzmann T. Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res 2016; 365:591-605. [PMID: 27345301 PMCID: PMC5010605 DOI: 10.1007/s00441-016-2445-3] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023]
Abstract
Age-related diseases such as obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiomyopathy are frequently associated with fibrosis. Work within the last decade has improved our understanding of the pathophysiological mechanisms contributing to fibrosis development. In particular, oxidative stress and the antioxidant system appear to be crucial modulators of processes such as transforming growth factor-β1 (TGF-β1) signalling, metabolic homeostasis and chronic low-grade inflammation, all of which play important roles in fibrosis development and persistence. In the current review, we discuss the connections between reactive oxygen species, antioxidant enzymes and TGF-β1 signalling, together with functional consequences, reflecting a concept of redox-fibrosis that can be targeted in future therapies. ᅟ ![]()
Collapse
Affiliation(s)
- Kati Richter
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90230, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90230, Oulu, Finland.
| |
Collapse
|
27
|
Zeybel M, Vatansever S, Hardy T, Sarı AA, Cakalağaoğlu F, Avcı A, Zeybel GL, Karahüseyinoğlu S, Bashton M, Mathers JC, Ünsal B, Mann J. DNA methylation profiling identifies novel markers of progression in hepatitis B-related chronic liver disease. Clin Epigenetics 2016; 8:48. [PMID: 27152124 PMCID: PMC4857425 DOI: 10.1186/s13148-016-0218-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/28/2016] [Indexed: 12/19/2022] Open
Abstract
Background Chronic hepatitis B infection is characterized by hepatic immune and inflammatory response with considerable variation in the rates of progression to cirrhosis. Genetic variants and environmental cues influence predisposition to the development of chronic liver disease; however, it remains unknown if aberrant DNA methylation is associated with fibrosis progression in chronic hepatitis B. Results To identify epigenetic marks associated with inflammatory and fibrotic processes of the hepatitis B-induced chronic liver disease, we carried out hepatic genome-wide methylation profiling using Illumina Infinium BeadArrays comparing mild and severe fibrotic disease in a discovery cohort of 29 patients. We obtained 310 differentially methylated regions and selected four loci comprising three genes from the top differentially methylated regions: hypermethylation of HOXA2 and HDAC4 along with hypomethylation of PPP1R18 were significantly linked to severe fibrosis. We replicated the prominent methylation marks in an independent cohort of 102 patients by bisulfite modification and pyrosequencing. The timing and causal relationship of epigenetic modifications with disease severity was further investigated using a cohort of patients with serial biopsies. Conclusions Our findings suggest a linkage of widespread epigenetic dysregulation with disease progression in chronic hepatitis B infection. CpG methylation at novel genes sheds light on new molecular pathways, which can be potentially exploited as a biomarker or targeted to attenuate inflammation and fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0218-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Müjdat Zeybel
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,School of Medicine, Koç University Hospital, Koç University, 4th floor- M-4220. Davutpaşa Caddesi no: 4, 34010 Istanbul, Turkey
| | - Sezgin Vatansever
- Department of Gastroenterology and Hepatology, Katip Çelebi University, Atatürk Eğitim ve Araştırma Hastanesi, Izmir, Turkey
| | - Timothy Hardy
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ayşegül Akder Sarı
- Department of Pathology, Katip Çelebi University, Atatürk Eğitim ve Araştırma Hastanesi, Izmir, Turkey
| | - Fulya Cakalağaoğlu
- Department of Pathology, Katip Çelebi University, Atatürk Eğitim ve Araştırma Hastanesi, Izmir, Turkey
| | - Arzu Avcı
- Department of Pathology, Katip Çelebi University, Atatürk Eğitim ve Araştırma Hastanesi, Izmir, Turkey
| | - Gemma Louise Zeybel
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Serçin Karahüseyinoğlu
- School of Medicine, Koç University Hospital, Koç University, 4th floor- M-4220. Davutpaşa Caddesi no: 4, 34010 Istanbul, Turkey
| | - Matthew Bashton
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Belkıs Ünsal
- Department of Gastroenterology and Hepatology, Katip Çelebi University, Atatürk Eğitim ve Araştırma Hastanesi, Izmir, Turkey
| | - Jelena Mann
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
28
|
Casamadrid V, Amaya CA, Mendieta ZH. Body Mass Index in Pregnancy Does Not Affect Peroxisome Proliferator-activated Receptor Gamma Promoter Region (-359 to -260) Methylation in the Neonate. Ann Med Health Sci Res 2016; 6:38-43. [PMID: 27144075 PMCID: PMC4849114 DOI: 10.4103/2141-9248.180272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Obesity in pregnancy can contribute to epigenetic changes. Aim: To assess whether body mass index (BMI) in pregnancy is associated with changes in the methylation of the peroxisome proliferator-activated receptor γ (PPAR) promoter region (-359 to - 260) in maternal and neonatal leukocytes. Subjects and Methods: In this matched, cohort study 41 pregnant women were allocated into two groups: (a) Normal weight (n = 21) and (b) overweight (n = 20). DNA was extracted from maternal and neonatal leukocytes (4000-10,000 cells) in MagNA Pure (Roche) using MagNA Pure LC DNA Isolation Kit 1 (Roche, Germany). Treatment of DNA (2 μg) was performed with sodium bisulfite (EZ DNA Methylation-Direct™ Kit; Zymo Research). Real-time quantitative polymerase chain reaction (qPCR) was performed in a LightCycler 2.0 (Roche) using the SYBR® Advantage® qPCR Premix Kit (Clontech). The primers used for PPARγ coactivator (PPARG) M3 were 5’- aagacggtttggtcgatc-3’ (forward), and5’- cgaaaaaaaatccgaaatttaa-3’ (reverse) and those for PPARG unmethylated were: 5’-gggaagatggtttggttgatt-3’ (forward) and 5’- ttccaaaaaaaaatccaaaatttaa-3’ (reverse). Intergroup differences were calculated using the Mann-Whitney U-test, and intragroup differences, with the Wilcoxon test (IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp.). Results: Significant differences were found in BMI, pregestational weight, and postdelivery weight between groups but not in the methylation status of the PPARγ promoter region (-359 to - 260). Conclusion: The PPARγ promoter region (-359 to - 260) in peripheral leukocytes is unlikely to get an obesity-induced methylation in pregnancy.
Collapse
Affiliation(s)
- Vre Casamadrid
- Department of Toxicology, Faculty of Chemistry, Autonomous University of the State of Mexico (UAEMex), "Mónica Pretelini Sáenz" Maternal-Perinatal Hospital (HMPMPS), Toluca, Mexico
| | - C A Amaya
- Department of Toxicology, Faculty of Chemistry, Autonomous University of the State of Mexico (UAEMex), "Mónica Pretelini Sáenz" Maternal-Perinatal Hospital (HMPMPS), Toluca, Mexico
| | - Z H Mendieta
- Academy of Endocrinology, Faculty of Medicine, Autonomous University of the State of Mexico (UAEMex), "Mónica Pretelini Sáenz" Maternal-Perinatal Hospital (HMPMPS), Toluca, Mexico
| |
Collapse
|
29
|
Richter K, Konzack A, Pihlajaniemi T, Heljasvaara R, Kietzmann T. Redox-fibrosis: Impact of TGFβ1 on ROS generators, mediators and functional consequences. Redox Biol 2015; 6:344-352. [PMID: 26335400 PMCID: PMC4565043 DOI: 10.1016/j.redox.2015.08.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is one of the most prevalent features of age-related diseases like obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease, or cardiomyopathy and affects millions of people in all countries. Although the understanding about the pathophysiology of fibrosis has improved a lot during the recent years, a number of mechanisms still remain unknown. Although TGF-β1 signaling, loss of metabolic homeostasis and chronic low-grade inflammation appear to play important roles in the pathogenesis of fibrosis, recent evidence indicates that oxidative stress and the antioxidant system may also be crucial for fibrosis development and persistence. These findings point to a concept of a redox-fibrosis where the cellular oxidant and antioxidant system could be potential therapeutic targets. The current review aims to summarize the existing links between TGF-β1 signaling, generation and action of reactive oxygen species, expression of antioxidative enzymes, and functional consequences including epigenetic redox-mediated responses during fibrosis.
Collapse
Affiliation(s)
- Kati Richter
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anja Konzack
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Finland
| | - Ritva Heljasvaara
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
30
|
Zhao ZH, Fan YC, Zhao Q, Dou CY, Ji XF, Zhao J, Gao S, Li XY, Wang K. Promoter methylation status and expression of PPAR-γ gene are associated with prognosis of acute-on-chronic hepatitis B liver failure. Clin Epigenetics 2015; 7:115. [PMID: 26516376 PMCID: PMC4625884 DOI: 10.1186/s13148-015-0149-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022] Open
Abstract
Background Peroxisome proliferator-activated receptor gamma (PPAR-γ) has been demonstrated to be involved in anti-inflammatory reactions, but its role in acute-on-chronic hepatitis B liver failure (ACHBLF) is unclear. Therefore, DNA methylation patterns and expression level of PPAR-γ gene were detected in peripheral blood mononuclear cells (PBMCs) from 81 patients with ACHBLF, 50 patients with chronic hepatitis B (CHB), and 30 healthy controls, and the possible role of PPAR-γ in ACHBLF was analyzed. Results We found that aberrant PPAR-γ promoter methylation was attenuated in ACHBLF patients compared with CHB patients and was responsible for the elevated PPAR-γ expression level, which was negatively correlated with total bilirubin and international normalized ratio. Plasma level of TNF-α and IL-6 in ACHBLF patients were higher than CHB patients and healthy controls and significantly reduced in unmethylated group. ACHBLF patients with PPAR-γ promoter methylation had poorer outcomes than those without. Correspondingly, PPAR-γ messenger RNA (mRNA) level was higher in survivors than non-survivors and gradually increased in survivors with time, while remained low level in non-survivors. Conclusions Aberrant promoter methylation decline and PPAR-γ expression rebound occurred in ACHBLF compared with CHB and could improve prognosis of ACHBLF by negatively regulating cytokines. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0149-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ze-Hua Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012 China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012 China ; Institute of Hepatology, Shandong University, Wenhuaxi Road 107#, Jinan, 250012 China
| | - Qi Zhao
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, 250012 China
| | - Cheng-Yun Dou
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012 China
| | - Xiang-Fen Ji
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012 China
| | - Jing Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012 China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012 China
| | - Xin-You Li
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012 China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012 China ; Institute of Hepatology, Shandong University, Wenhuaxi Road 107#, Jinan, 250012 China
| |
Collapse
|
31
|
Gong M, Liu J, Sakurai R, Corre A, Anthony S, Rehan VK. Perinatal nicotine exposure suppresses PPARγ epigenetically in lung alveolar interstitial fibroblasts. Mol Genet Metab 2015; 114:604-12. [PMID: 25661292 PMCID: PMC4390504 DOI: 10.1016/j.ymgme.2015.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
Due to the active inhibition of the adipogenic programming, the default destiny of the developing lung mesenchyme is to acquire a myogenic phenotype. We have previously shown that perinatal nicotine exposure, by down-regulating PPARγ expression, accentuates this property, culminating in myogenic pulmonary phenotype, though the underlying mechanisms remained incompletely understood. We hypothesized that nicotine-induced PPARγ down-regulation is mediated by PPARγ promoter methylation, controlled by DNA methyltransferase 1 (DNMT1) and methyl CpG binding protein 2 (MeCP2), two known key regulators of DNA methylation. Using cultured alveolar interstitial fibroblasts and an in vivo perinatal nicotine exposure rat model, we found that PPARγ promoter methylation is strongly correlated with inhibition of PPARγ expression in the presence of nicotine. Methylation inhibitor 5-aza-2'-deoxycytidine restored the nicotine-induced down-regulation of PPARγ expression and the activation of its downstream myogenic marker fibronectin. With nicotine exposure, a specific region of PPARγ promoter was significantly enriched with antibodies against chromatin repressive markers H3K9me3 and H3K27me3, dose-dependently. Similar data were observed with antibodies against DNA methylation regulatory factors DNMT1 and MeCP2. The knock down of DNMT1 and MeCP2 abolished nicotine-mediated increases in DNMT1 and MeCP2 protein levels, and PPARγ promoter methylation, restoring nicotine-induced down regulation of PPARγ and upregulation of the myogenic protein, fibronectin. The nicotine-induced alterations in DNA methylation modulators DNMT1 and MeCP2, PPARγ promoter methylation, and its down-stream targets, were also validated in perinatally nicotine exposed rat lung tissue. These data provide novel mechanistic insights into nicotine-induced epigenetic silencing of PPARγ that could be exploited to design novel targeted molecular interventions against the smoke exposed lung injury in general and perinatal nicotine exposure induced lung damage in particular.
Collapse
Affiliation(s)
- M Gong
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - J Liu
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - R Sakurai
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - A Corre
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - S Anthony
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - V K Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA.
| |
Collapse
|
32
|
Yao HW, Li J. Epigenetic modifications in fibrotic diseases: implications for pathogenesis and pharmacological targets. J Pharmacol Exp Ther 2015; 352:2-13. [PMID: 25362107 DOI: 10.1124/jpet.114.219816] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Organ fibrosis is a complex and chronic disorder that results from a variety of acute injuries and contributes to thirty percent of naturally occurring deaths worldwide. The main feature of organ fibrosis is the excessive accumulation and deposit of extracellular matrix, thereby leading to organ dysfunction, loss of elasticity, and development of a rigid organ. Accumulating evidence shows that epigenetic remodeling, including aberrant DNA methylation and noncoding RNA expression as well as histone post-translational modifications, play important roles in the pathogenesis of fibrosis through the regulation of fibroblast activation, differentiation, and apoptosis, as well as collagen synthesis and profibrotic gene transcription. In this review, we discuss the basic regulation of DNA methylation, noncoding RNA expression, and histone post-translational modification, and their participation in the pathogenesis and development of organ fibrosis. This review also provides the latest insights into the novel biomarkers and therapeutic targets for fibrosis through modulation of epigenetic remodeling.
Collapse
Affiliation(s)
- Hong-Wei Yao
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
33
|
Gao S, Wang K. DNA methylation in liver diseases. World J Clin Infect Dis 2014; 4:41-49. [DOI: 10.5495/wjcid.v4.i4.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Recently, growing evidences show that the combination of epigenetic and genetic abnormalities contribute together to the development of liver diseases. DNA methylation is a very important epigenetic mechanism in human beings. It refers to addition of the methyl groups to DNA and mainly occurs at cytosine adjacent to guanine. DNA methylation is prevalent across human genome and is essential for the normal human development, while its dysfunction is associated with many human diseases. A deep understanding of DNA methylation may provide us deep insight into the origination of liver diseases. Also, it may provide us new tools for diseases diagnosis and prognosis prediction. This review summarized recent progress of DNA methylation study and provided an overview of DNA methylation and liver diseases. Meanwhile, the association between DNA methylation and liver diseases including hepatocellular carcinoma, liver fibrosis, nonalcoholic steatohepatitis and liver failure were extensively discussed. Finally, we discussed the potential of DNA methylation therapeutics for liver diseases and the value of DNA methylation as biomarkers for liver diseases diagnosis and prognosis prediction. This review aimed to provide the emerging DNA methylation information about liver diseases. It might provide essential information for managing and care of these patients.
Collapse
|
34
|
Zhao Q, Li T, Qi J, Liu J, Qin C. The miR-545/374a cluster encoded in the Ftx lncRNA is overexpressed in HBV-related hepatocellular carcinoma and promotes tumorigenesis and tumor progression. PLoS One 2014; 9:e109782. [PMID: 25299640 PMCID: PMC4192320 DOI: 10.1371/journal.pone.0109782] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a poor prognosis, and monitoring sera levels of miR-545/374a may be a useful diagnostic marker for HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/surgery
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Hepatitis B/complications
- Hepatitis B/genetics
- Hepatitis B/surgery
- Hepatitis B/virology
- Hepatitis B virus/genetics
- Hepatitis B virus/pathogenicity
- Humans
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/surgery
- Liver Neoplasms/virology
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- Prognosis
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transfection
- Viral Regulatory and Accessory Proteins
Collapse
Affiliation(s)
- Qi Zhao
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Tao Li
- Department of Infectious Diseases, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Juan Liu
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengyong Qin
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
35
|
Cheng C, Huang C, Ma TT, Xu T, Wang YR, Zhang L, Jun L. New surprises of suppressor of cytokine signalling in liver fibrosis. Expert Opin Ther Targets 2014; 18:415-26. [DOI: 10.1517/14728222.2014.885953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Expression and function of methylthioadenosine phosphorylase in chronic liver disease. PLoS One 2013; 8:e80703. [PMID: 24324622 PMCID: PMC3855635 DOI: 10.1371/journal.pone.0080703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022] Open
Abstract
To study expression and function of methylthioadenosine phosphorylase (MTAP), the rate-limiting enzyme in the methionine and adenine salvage pathway, in chronic liver disease.
Collapse
|