1
|
Angela T, Wahyuni S, Halim S. The effect of soaking heat-polymerized acrylic resin denture base in avocado seed extract ( Persea americana Mill.) on the inhibition of denture-plaque microorganisms biofilm growth. F1000Res 2024; 13:933. [PMID: 39925995 PMCID: PMC11806257 DOI: 10.12688/f1000research.152800.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 02/11/2025] Open
Abstract
Background Heat polymerized acrylic (HPA) resins are known to have high porosity that contributes to increased surface roughness and microcrack formation in stress areas. This facilitates the attachment and growth of polymicrobial biofilms contributing to increased antimicrobial resistance. Many research had been carried out on avocado seeds, but no research that studies avocado seeds effect on denture-plaque microorganism biofilm on HPA resin has been found. Methods This study used 144 samples (n=144), namely HPA resin discs covered with mono-species and polymicrobial biofilms. The discs were soaked for 8 hours in the 5%, 10%, 15%, 20% avocado seed extract, positive control (alkaline peroxide), and negative control (aquadest). Each disc was shaken with a vortex mixer for 1 minute, and 100 μL was added into 96-well microplates with three times repetition and incubated for 24 hours. A microtiter plate biofilm formation assay was then conducted The inhibition values were determined from the percentage inhibition value formula which required absorption values from a microplate reader (595 nm). The research data were analyzed using a univariant test, and a one-way ANOVA test, accompanied by Welch ANOVA on non-homogenous data. Results In this research, it was found that the MBIC 50 of avocado seed extract against the mono-species of C. albicans (5%), C. glabrata (5%), A. odontolyticus (15%), S. gordonii (15%), S. aureus (10%), while against polymicrobial was 20%. There was a significant effect of soaking HPA resin in avocado seed extract on the inhibition of mono-species and polymicrobial biofilms with a value of p<0.001 (p<0.05). Conclusion The MBIC 50 of avocado seed extract in polymicrobial biofilm group was higher than that in the mono-species biofilm groups. Although alkaline peroxide showed higher inhibition value than that of the MBIC 50 in polymicrobial biofilm group, 20% avocado seed extract was concluded effective as it inhibited >50% polymicrobial biofilm.
Collapse
Affiliation(s)
- Thalia Angela
- Dental Undergraduate Study Program, Faculty of Dentistry, University of Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Siti Wahyuni
- Department of Prosthodontics, University of Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Susanna Halim
- Faculty of Medicine, Dentistry and Health Sciences, Prima Indonesia University, Medan, North Sumatra, Indonesia
| |
Collapse
|
2
|
de Hoog S, Tang C, Zhou X, Jacomel B, Lustosa B, Song Y, Kandemir H, A Ahmed S, Zhou S, Belmonte-Lopes R, Quan Y, Feng P, A Vicente V, Kang Y. Fungal primary and opportunistic pathogens: an ecological perspective. FEMS Microbiol Rev 2024; 48:fuae022. [PMID: 39118380 PMCID: PMC11409879 DOI: 10.1093/femsre/fuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/02/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024] Open
Abstract
Fungal primary pathogenicity on vertebrates is here described as a deliberate strategy where the host plays a role in increasing the species' fitness. Opportunism is defined as the coincidental survival of an individual strain in host tissue using properties that are designed for life in an entirely different habitat. In that case, the host's infection control is largely based on innate immunity, and the etiologic agent is not transmitted after infection, and thus fungal evolution is not possible. Primary pathogens encompass two types, depending on their mode of transmission. Environmental pathogens have a double life cycle, and tend to become enzootic, adapted to a preferred host in a particular habitat. In contrast, pathogens that have a host-to-host transmission pattern are prone to shift to a neighboring, immunologically naive host, potentially leading to epidemics. Beyond these prototypical life cycles, some environmental fungi are able to make large leaps between dissimilar hosts/habitats, probably due to the similarity of key factors enabling survival in an entirely different niche, and thus allowing a change from opportunistic to primary pathogenicity. Mostly, such factors seem to be associated with extremotolerance.
Collapse
Affiliation(s)
- Sybren de Hoog
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Department of Medical Microbiology, Radboud University of Nijmegen, 6525AJ Nijmegen, The Netherlands
| | - Chao Tang
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Xin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Bruna Jacomel
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Canisius Wilhelmina Hospital, 6532SZ Nijmegen, The Netherlands
| | - Bruno Lustosa
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital,100034 Beijing, China
| | - Hazal Kandemir
- Westerdijk Fungal Biodiversity Center, 3584CT Utrecht, The Netherlands
| | - Sarah A Ahmed
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Shaoqin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Ricardo Belmonte-Lopes
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yu Quan
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Peiying Feng
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Vania A Vicente
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| |
Collapse
|
3
|
Hu Y, Ren B, Cheng L, Deng S, Chen Q. Candida species in periodontitis: A new villain or a new target? J Dent 2024; 148:105138. [PMID: 38906455 DOI: 10.1016/j.jdent.2024.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
OBJECTIVES Recent research indicated that fungi might have a role in periodontitis alongside traditional periodontal pathogens. This state-of-the-art narrative review explores current concepts on the involvement of Candida species in periodontitis, and suggests the potential for ecological management of this disease. DATA, SOURCES AND STUDY SELECTION A literature search was conducted for a narrative review on Web of Science, PubMed, Medline and Scopus about periodontitis associated with Candida species. Published articles, including case reports, case series, observational and interventional clinical trials, and critical appraisals of the literature were retrieved and reviewed. CONCLUSIONS Several factors predispose individuals to periodontitis associated with Candida species. These include systemic diseases that lead to immunosuppression and oral environment changes such as cigarette smoking. While a consistent significant increase in the detection rate of Candida species in patients with periodontitis has not been universally observed, there is evidence linking Candida species to the severity of periodontitis and their potential to worsen the condition. Candida species may participate in the development of periodontitis in various ways, including cross-kingdom interactions with periodontal pathogens, changes in the local or systemic environment favoring the virulence of Candida species, and interactions between Candida-bacteria and host immunity. CLINICAL SIGNIFICANCE Mechanical plaque control is the most common treatment for periodontitis, but its effectiveness may be limited, particularly when dealing with systemic risk factors. Understanding the specific role of Candida in periodontitis illuminates innovative approaches for managing the ecological balance in periodontal health.
Collapse
Affiliation(s)
- Yao Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China; State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China; State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Garcia LGS, Rocha MGD, Freire RS, Nunes PIG, Nunes JVS, Fernandes MR, Pereira-Neto WA, Sidrim JJC, Santos FA, Rocha MFG, Rodrigues LKA, Vieira RS, Brilhante RSN. Chitosan microparticles loaded with essential oils inhibit duo-biofilms of Candida albicans and Streptococcus mutans. J Appl Oral Sci 2023; 31:e20230146. [PMID: 37729259 PMCID: PMC10519671 DOI: 10.1590/1678-7757-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVE Oral candidiasis is a common fungal infection that affects the oral mucosa, and happens when Candida albicans interacts with bacteria in the oral microbiota, such as Streptococcus mutans, causing severe early childhood caries. C. albicans and S. mutans mixed biofilms are challenging to treat with conventional antimicrobial therapies, thus, new anti-infective drugs are required. This study aimed to test a drug delivery system based on chitosan microparticles loaded with geranium and lemongrass essential oils to inhibit C. albicans and S. mutans mixed biofilms. METHODOLOGY Chitosan microparticles loaded with essential oils (CM-EOs) were obtained by spray-drying. Susceptibility of planktonic were performed according CLSI at 4 to 2,048 µg/mL. Mixed biofilms were incubated at 37ºC for 48 h and exposed to CM-EOs at 256 to 4,096 µg/mL. The antimicrobial effect was evaluated using the MTT assay, with biofilm architectural changes analyzed by scanning electron microscopy. RAW 264.7 cell was used to evaluate compound cytotoxicity. RESULTS CM-EOs had better planktonic activity against C. albicans than S. mutans. All samples reduced the metabolic activity of mixed C. albicans and S. mutans biofilms, with encapsulated oils showing better activity than raw chitosan or oils. The microparticles reduced the biofilm on the slides. The essential oils showed cytotoxic effects against RAW 264.7 cells, but encapsulation into chitosan microparticles decreased their toxicity. CONCLUSION This study demonstrates that chitosan loaded with essential oils may provide an alternative method for treating diseases caused by C. albicans and S. mutans mixed biofilm, such as dental caries.
Collapse
Affiliation(s)
| | | | | | - Paulo Iury Gomes Nunes
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Fisiologia e Farmacologia, Laboratório de Produtos Naturais, Ceará, Brasil
| | | | - Mirele Rodrigues Fernandes
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| | - Waldemiro Aquino Pereira-Neto
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| | - José Júlio Costa Sidrim
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| | - Flavia Almeida Santos
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Fisiologia e Farmacologia, Laboratório de Produtos Naturais, Ceará, Brasil
| | | | - Lidiany Karla Azevedo Rodrigues
- Universidade Federal do Ceará, Faculdade de Farmácia, Odontologia e Enfermagem, Departamento de Odontologia Restauradora, Ceará, Brasil
| | | | - Raimunda Sâmia Nogueira Brilhante
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| |
Collapse
|
5
|
Xiong K, Yang P, Wei W, Li J, Cui Y, Li Y, Tang B. Periodontitis contributes to COPD progression via affecting ferroptosis. BMC Oral Health 2023; 23:664. [PMID: 37710216 PMCID: PMC10500905 DOI: 10.1186/s12903-023-03397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Periodontitis has emerged as a potential risk factor for chronic obstructive pulmonary disease (COPD). However, the precise mechanism through which periodontitis influences the progression of COPD requires further investigation. Ferroptosis is one of the crucial pathogenesis of COPD and recent researches suggested that periodontitis was associated with ferroptosis. Nonetheless, the relationship among periodontitis, COPD and ferroptosis remains unclear. This study aimed to elucidate whether periodontitis contributes to COPD exacerbation and to assess the potential impact of ferroptosis on periodontitis affecting COPD. METHODS The severity of COPD was assessed using Hematoxylin and eosin (H&E) staining and lung function tests. Iron assays, malondialdehyde (MDA) measurement and RT-qPCR were used to investigate the potential involvement of ferroptosis in the impact of periodontitis on COPD. Co-cultures of periodontitis associated pathogen Phophyromonas gingivalis (P. gingivalis) and lung tissue cells were used to evaluate the effect of P. gingivalis on inducing the ferroptosis of lung tissue via RT-qPCR analysis. Clinical Bronchoalveolar Lavage Fluid (BALF) samples from COPD patients were collected to further validate the role of ferroptosis in periodontal pathogen-associated COPD. RESULTS Periodontitis aggravated the COPD progression and the promotion was prolonged over time. For the first time, we demonstrated that periodontitis promoted the ferroptosis-associated iron accumulation, MDA contents and gene expressions in the COPD lung with a time-dependent manner. Moreover, periodontitis-associated pathogen P. gingivalis could promote the ferroptosis-associated gene expression in single lung tissue cell suspensions. Clinical BALF sample detection further indicated that ferroptosis played essential roles in the periodontal pathogen-associated COPD. CONCLUSION Periodontitis could contribute to the exacerbation of COPD through up-regulating the ferroptosis in the lung tissue.
Collapse
Affiliation(s)
- Kaixin Xiong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Peng Yang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wei Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Boyu Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Rapala-Kozik M, Surowiec M, Juszczak M, Wronowska E, Kulig K, Bednarek A, Gonzalez-Gonzalez M, Karkowska-Kuleta J, Zawrotniak M, Satała D, Kozik A. Living together: The role of Candida albicans in the formation of polymicrobial biofilms in the oral cavity. Yeast 2023; 40:303-317. [PMID: 37190878 DOI: 10.1002/yea.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The oral cavity of humans is colonized by diversity of microbial community, although dominated by bacteria, it is also constituted by a low number of fungi, often represented by Candida albicans. Although in the vast minority, this usually commensal fungus under certain conditions of the host (e.g., immunosuppression or antibiotic therapy), can transform into an invasive pathogen that adheres to mucous membranes and also to medical or dental devices, causing mucosal infections. This transformation is correlated with changes in cell morphology from yeast-like cells to hyphae and is supported by numerous virulence factors exposed by C. albicans cells at the site of infection, such as multifunctional adhesins, degradative enzymes, or toxin. All of them affect the surrounding host cells or proteins, leading to their destruction. However, at the site of infection, C. albicans can interact with different bacterial species and in its filamentous form may produce biofilms-the elaborated consortia of microorganisms, that present increased ability to host colonization and resistance to antimicrobial agents. In this review, we highlight the modification of the infectious potential of C. albicans in contact with different bacterial species, and also consider the mutual bacterial-fungal relationships, involving cooperation, competition, or antagonism, that lead to an increase in the propagation of oral infection. The mycofilm of C. albicans is an excellent hiding place for bacteria, especially those that prefer low oxygen availability, where microbial cells during mutual co-existence can avoid host recognition or elimination by antimicrobial action. However, these microbial relationships, identified mainly in in vitro studies, are modified depending on the complexity of host conditions and microbial dominance in vivo.
Collapse
Affiliation(s)
- Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satała
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
7
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
8
|
Martorano-Fernandes L, Brito ACM, de Araújo ECF, de Almeida LDFD, Wei XQ, Williams DW, Cavalcanti YW. Epithelial responses and Candida albicans pathogenicity are enhanced in the presence of oral streptococci. Braz Dent J 2023; 34:73-81. [PMID: 37466528 PMCID: PMC10355268 DOI: 10.1590/0103-6440202305420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/11/2023] [Indexed: 07/20/2023] Open
Abstract
Experimental models that consider host-pathogen interactions are relevant for improving knowledge about oral candidiasis. The aim of this study was to assess the epithelial immune responses, Candida penetration of cell monolayers, and virulence during mixed species culture infections. Single species cultures of Candida albicans and mixed cultures (C. albicans, Streptococcus mutans, and Streptococcus sanguinis) were used to infect monolayers of HaCaT and FaDu ATCC HTB-43 cells for 12 h. After infection, IL-18 and IL-34 gene expression was measured to assess epithelial cell immune responses, and lactate dehydrogenase (LDH) activity was measured as an indicator of cell damage. Microscopy determined C. albicans morphology and penetration of fungal cells through the keratinocyte monolayer. Monolayers devoid of infection served as controls. Data were analyzed by an ANOVA one-way test followed by Tukey's post-hoc test (α = 0.05). The results found that IL-18 and IL-34 gene expression and LDH activity were significantly (p < 0.05) upregulated for both cell lines exposed to mixed species cultures compared with C. albicans alone. Candida albicans yeast and hyphae were evident in C. albicans only infections. In contrast, monolayers infected by C. albicans, S. mutans, and S. sanguinis exhibited higher microbial invasion with several hyphal aggregates detected. The presence of streptococci in C. albicans infection enhances the virulence and pathogenicity of the fungus with associated increased immune responses and tissue damage. Extrapolation of these findings to oral infection would indicate the added potential benefit of managing bacterial components of biofilms during treatment.
Collapse
Affiliation(s)
- Loyse Martorano-Fernandes
- Graduate Program in Dentistry. Federal University of Paraíba.
Cidade Universitária, João Pessoa, Paraiba, Brazil
| | - Arella Cristina Muniz Brito
- Graduate Program in Dentistry. Federal University of Paraíba.
Cidade Universitária, João Pessoa, Paraiba, Brazil
| | | | | | - Xiao-Qing Wei
- Oral and Biomedical Sciences, School of Dentistry, Cardiff
University, Cardiff , Wales, United Kingdom
| | - David Wynne Williams
- Graduate Program in Dentistry. Federal University of Paraíba.
Cidade Universitária, João Pessoa, Paraiba, Brazil
| | - Yuri Wanderley Cavalcanti
- Department of Clinic and Social Dentistry. Federal University of
Paraíba. Cidade Universitária, João Pessoa, Paraiba, Brazil
| |
Collapse
|
9
|
Teixeira ABV, Valente MLDC, Sessa JPN, Gubitoso B, Schiavon MA, dos Reis AC. Adhesion of biofilm, surface characteristics, and mechanical properties of antimicrobial denture base resin. J Adv Prosthodont 2023; 15:80-92. [PMID: 37153005 PMCID: PMC10154147 DOI: 10.4047/jap.2023.15.2.80] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
PURPOSE This study incorporated the nanomaterial, nanostructured silver vanadate decorated with silver nanoparticles (AgVO3), into heat-cured resin (HT) at concentrations of 2.5%, 5%, and 10% and compared the adhesion of multispecies biofilms, surface characteristics, and mechanical properties with conventional heat-cured (HT 0%) and printed resins. MATERIALS AND METHODS AgVO3 was incorporated in mass into HT powder. A denture base resin was used to obtain printed samples. Adhesion of a multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans was evaluated by colony-forming units per milliliter (CFU/mL) and metabolic activity. Wettability, roughness, and scanning electron microscopy (SEM) were used to assess the physical characteristics of the surface. The mechanical properties of flexural strength and elastic modulus were tested. RESULTS HT 10%-AgVO3 showed efficacy against S. mutans; however, it favored C. albicans CFU/mL (P < .05). The printed resin showed a higher metabolically active biofilm than HT 0% (P < .05). There was no difference in wettability or roughness between groups (P > .05). Irregularities on the printed resin surface and pores in HT 5%-AgVO3 were observed by SEM. HT 0% showed the highest flexural strength, and the resins incorporated with AgVO3 had the highest elastic modulus (P < .05). CONCLUSION The incorporation of 10% AgVO3 into heat-cured resin provided antimicrobial activity against S. mutans in a multispecies biofilm did not affect the roughness or wettability but reduced flexural strength and increased elastic modulus. Printed resin showed higher irregularity, an active biofilm, and lower flexural strength and elastic modulus than heat-cured resin.
Collapse
Affiliation(s)
| | | | | | - Bruna Gubitoso
- Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Marco Antonio Schiavon
- Natural Sciences Department, Federal University of São João Del-Rei, São João Del-Rei, Brazil
| | | |
Collapse
|
10
|
Morrison AG, Sarkar S, Umar S, Lee STM, Thomas SM. The Contribution of the Human Oral Microbiome to Oral Disease: A Review. Microorganisms 2023; 11:318. [PMID: 36838283 PMCID: PMC9962706 DOI: 10.3390/microorganisms11020318] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The oral microbiome is an emerging field that has been a topic of discussion since the development of next generation sequencing and the implementation of the human microbiome project. This article reviews the current literature surrounding the oral microbiome, briefly highlighting most recent methods of microbiome characterization including cutting edge omics, databases for the microbiome, and areas with current gaps in knowledge. This article also describes reports on microorganisms contained in the oral microbiome which include viruses, archaea, fungi, and bacteria, and provides an in-depth analysis of their significant roles in tissue homeostasis. Finally, we detail key bacteria involved in oral disease, including oral cancer, and the current research surrounding their role in stimulation of inflammatory cytokines, the role of gingival crevicular fluid in periodontal disease, the creation of a network of interactions between microorganisms, the influence of the planktonic microbiome and cospecies biofilms, and the implications of antibiotic resistance. This paper provides a comprehensive literature analysis while also identifying gaps in knowledge to enable future studies to be conducted.
Collapse
Affiliation(s)
- Austin Gregory Morrison
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Shahid Umar
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- 1717 Claflin Road, 136 Ackert Hall, Manhattan, KS 66506, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Departments of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- 3901 Rainbow Blvd., 4031 Wahl Hall East, MS 3040, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Du Q, Ren B, Zhou X, Zhang L, Xu X. Cross-kingdom interaction between Candida albicans and oral bacteria. Front Microbiol 2022; 13:911623. [PMID: 36406433 PMCID: PMC9668886 DOI: 10.3389/fmicb.2022.911623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Candida albicans is a symbiotic fungus that commonly colonizes on oral mucosal surfaces and mainly affects immuno-compromised individuals. Polymicrobial interactions between C. albicans and oral microbes influence the cellular and biochemical composition of the biofilm, contributing to change clinically relevant outcomes of biofilm-related oral diseases, such as pathogenesis, virulence, and drug-resistance. Notably, the symbiotic relationships between C. albicans and oral bacteria have been well-documented in dental caries, oral mucositis, endodontic and periodontal diseases, implant-related infections, and oral cancer. C. albicans interacts with co-existing oral bacteria through physical attachment, extracellular signals, and metabolic cross-feeding. This review discusses the bacterial-fungal interactions between C. albicans and different oral bacteria, with a particular focus on the underlying mechanism and its relevance to the development and clinical management of oral diseases.
Collapse
Affiliation(s)
- Qian Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Li H, Miao MX, Jia CL, Cao YB, Yan TH, Jiang YY, Yang F. Interactions between Candida albicans and the resident microbiota. Front Microbiol 2022; 13:930495. [PMID: 36204612 PMCID: PMC9531752 DOI: 10.3389/fmicb.2022.930495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/31/2022] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is a prevalent, opportunistic human fungal pathogen. It usually dwells in the human body as a commensal, however, once in its pathogenic state, it causes diseases ranging from debilitating superficial to life-threatening systemic infections. The switch from harmless colonizer to virulent pathogen is, in most cases, due to perturbation of the fungus-host-microbiota interplay. In this review, we focused on the interactions between C. albicans and the host microbiota in the mouth, gut, blood, and vagina. We also highlighted important future research directions. We expect that the evaluation of these interplays will help better our understanding of the etiology of fungal infections and shed new light on the therapeutic approaches.
Collapse
Affiliation(s)
- Hao Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-xing Miao
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-lin Jia
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-hua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,*Correspondence: Tian-hua Yan,
| | - Yuan-ying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Yuan-ying Jiang,
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Feng Yang,
| |
Collapse
|
13
|
The Arginine Biosynthesis Pathway of Candida albicans Regulates Its Cross-Kingdom Interaction with Actinomyces viscosus to Promote Root Caries. Microbiol Spectr 2022; 10:e0078222. [PMID: 35862976 PMCID: PMC9430244 DOI: 10.1128/spectrum.00782-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cross-kingdom interactions between Candida albicans and Actinomyces viscosus play critical roles in root caries. However, the key pathway by which C. albicans regulates its interactions with A. viscosus is unclear. Here, we first employed 39 volunteers with root caries and 37 caries-free volunteers, and found that the abundances of C. albicans and A. viscosus were significantly increased in the individuals with root caries and showed a strong positive correlation. Their dual-species combination synergistically promoted biofilm formation and root caries in rats. The arginine biosynthesis pathway of C. albicans was significantly upregulated in dual-species biofilms and dental plaques from another 10 root caries volunteers compared with the 10 caries-free volunteers. The exogenous addition of arginine increased the cariogenicity of the dual-species biofilm. The C. albicansARG4, a key gene from the arginine biosynthesis pathway, null mutant failed to promote dual-species biofilm formation and root caries in rats; however, the addition of arginine restored its synergistic actions with A. viscosus. Our results identified the critical roles of the C. albicans arginine biosynthesis pathway in its cross-kingdom interactions with A. viscosus for the first time and indicated that targeting this pathway was a practical way to treat root caries caused by multiple species. IMPORTANCE Root caries is a critical problem that threatens the oral health of the elderly population. Our results identified the essential roles of the C. albicans arginine biosynthesis pathway in its cross-kingdom interactions with A. viscosus in root caries for the first time and indicated that targeting this pathway was a practical way to treat root caries caused by multiple species.
Collapse
|
14
|
Sadiq FA, Hansen MF, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, Zhang H. Towards understanding mechanisms and functional consequences of bacterial interactions with members of various kingdoms in complex biofilms that abound in nature. FEMS Microbiol Rev 2022; 46:6595875. [PMID: 35640890 DOI: 10.1093/femsre/fuac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
The microbial world represents a phenomenal diversity of microorganisms from different kingdoms of life which occupy an impressive set of ecological niches. Most, if not all, microorganisms once colonise a surface develop architecturally complex surface-adhered communities which we refer to as biofilms. They are embedded in polymeric structural scaffolds serve as a dynamic milieu for intercellular communication through physical and chemical signalling. Deciphering microbial ecology of biofilms in various natural or engineered settings has revealed co-existence of microorganisms from all domains of life, including Bacteria, Archaea and Eukarya. The coexistence of these dynamic microbes is not arbitrary, as a highly coordinated architectural setup and physiological complexity show ecological interdependence and myriads of underlying interactions. In this review, we describe how species from different kingdoms interact in biofilms and discuss the functional consequences of such interactions. We highlight metabolic advances of collaboration among species from different kingdoms, and advocate that these interactions are of great importance and need to be addressed in future research. Since trans-kingdom biofilms impact diverse contexts, ranging from complicated infections to efficient growth of plants, future knowledge within this field will be beneficial for medical microbiology, biotechnology, and our general understanding of microbial life in nature.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Private Bag, 11222, Palmerston North, New Zealand
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Competition for Iron during Polymicrobial Infections May Increase Antifungal Drug Susceptibility-How Will It Impact Treatment Options? Infect Immun 2022; 90:e0005722. [PMID: 35289634 DOI: 10.1128/iai.00057-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interaction between microbes may influence antimicrobial susceptibility of one or more of the microbes, with studies pointing to increased resistance in these scenarios. Hattab et al. provided a novel perspective by identifying synergism between fluconazole and bacterial antagonism in the context of Candida albicans-Pseudomonas aeruginosa co-infection. Further research is required to translate these findings to the clinical setting, especially in the era of increasing antifungal resistance.
Collapse
|
16
|
Pohl CH. Recent Advances and Opportunities in the Study of Candida albicans Polymicrobial Biofilms. Front Cell Infect Microbiol 2022; 12:836379. [PMID: 35252039 PMCID: PMC8894716 DOI: 10.3389/fcimb.2022.836379] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
It is well known that the opportunistic pathogenic yeast, Candida albicans, can form polymicrobial biofilms with a variety of bacteria, both in vitro and in vivo, and that these polymicrobial biofilms can impact the course and management of disease. Although specific interactions are often described as either synergistic or antagonistic, this may be an oversimplification. Polymicrobial biofilms are complex two-way interacting communities, regulated by inter-domain (inter-kingdom) signaling and various molecular mechanisms. This review article will highlight advances over the last six years (2016-2021) regarding the unique biology of polymicrobial biofilms formed by C. albicans and bacteria, including regulation of their formation. In addition, some of the consequences of these interactions, such as the influence of co-existence on antimicrobial susceptibility and virulence, will be discussed. Since the aim of this knowledge is to inform possible alternative treatment options, recent studies on the discovery of novel anti-biofilm compounds will also be included. Throughout, an attempt will be made to identify ongoing challenges in this area.
Collapse
|
17
|
Satala D, Gonzalez-Gonzalez M, Smolarz M, Surowiec M, Kulig K, Wronowska E, Zawrotniak M, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Role of Candida albicans Virulence Factors in the Formation of Multispecies Biofilms With Bacterial Periodontal Pathogens. Front Cell Infect Microbiol 2022; 11:765942. [PMID: 35071033 PMCID: PMC8766842 DOI: 10.3389/fcimb.2021.765942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontal disease depends on the presence of different microorganisms in the oral cavity that during the colonization of periodontal tissues form a multispecies biofilm community, thus allowing them to survive under adverse conditions or facilitate further colonization of host tissues. Not only numerous bacterial species participate in the development of biofilm complex structure but also fungi, especially Candida albicans, that often commensally inhabits the oral cavity. C. albicans employs an extensive armory of various virulence factors supporting its coexistence with bacteria resulting in successful host colonization and propagation of infection. In this article, we highlight various aspects of individual fungal virulence factors that may facilitate the collaboration with the associated bacterial representatives of the early colonizers of the oral cavity, the bridging species, and the late colonizers directly involved in the development of periodontitis, including the “red complex” species. In particular, we discuss the involvement of candidal cell surface proteins—typical fungal adhesins as well as originally cytosolic “moonlighting” proteins that perform a new function on the cell surface and are also present within the biofilm structures. Another group of virulence factors considered includes secreted aspartic proteases (Sap) and other secreted hydrolytic enzymes. The specific structure of the candidal cell wall, dynamically changing during morphological transitions of the fungus that favor the biofilm formation, is equally important and discussed. The non-protein biofilm-composing factors also show dynamic variability upon the contact with bacteria, and their biosynthesis processes could be involved in the stability of mixed biofilms. Biofilm-associated changes in the microbe communication system using different quorum sensing molecules of both fungal and bacterial cells are also emphasized in this review. All discussed virulence factors involved in the formation of mixed biofilm pose new challenges and influence the successful design of new diagnostic methods and the application of appropriate therapies in periodontal diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.,Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Smolarz
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
18
|
Tsutsumi-Arai C, Arai Y, Terada-Ito C, Imamura T, Tatehara S, Ide S, Wakabayashi N, Satomura K. Microbicidal effect of 405-nm blue LED light on Candida albicans and Streptococcus mutans dual-species biofilms on denture base resin. Lasers Med Sci 2021; 37:857-866. [PMID: 33931832 DOI: 10.1007/s10103-021-03323-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/20/2021] [Indexed: 12/01/2022]
Abstract
This study investigated: (1) the microbicidal effect of 405-nm blue LED light irradiation on biofilm formed by Candida albicans hyphae and Streptococcus mutans under dual-species condition on denture base resin, (2) the generation of intracellular reactive oxygen species (ROS) induced by irradiation, and (3) the existence of intracellular porphyrins, which act as a photosensitizer. Denture base resin specimens were prepared and C. albicans and S. mutans dual-species biofilms were allowed to form on the specimens. The biofilms were irradiated with 405-nm blue LED light and analyzed using the colony-forming unit assay, fluorescence microscopy, and scanning electron microscopy (SEM). Single-species biofilms of C. albicans and S. mutans formed on the specimens were irradiated with 405-nm blue LED light. After the irradiation, the intracellular ROS levels in C. albicans and S. mutans cells were measured. In addition, the level of intracellular porphyrins in C. albicans and S. mutans were measured. Irradiation for more than 30 min significantly inhibited the colony formation ability of C. albicans and S. mutans. Fluorescence microscopy revealed that almost all C. albicans and S. mutans cells were killed by irradiation. SEM images showed various cell damage patterns. Irradiation led to the generation of intracellular ROS and porphyrins were present in both C. albicans and S. mutans cells. In conclusion, irradiation with 405-nm blue light-emitting diode light for 40 min effectively disinfect C. albicans hyphae and S. mutans dual-species biofilms and possibly react with intracellular porphyrins resulting in generation of ROS in each microorganism.
Collapse
Affiliation(s)
- Chiaki Tsutsumi-Arai
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan.
| | - Yuki Arai
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Chika Terada-Ito
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Takahiro Imamura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Seiko Tatehara
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Shinji Ide
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| | - Noriyuki Wakabayashi
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kazuhito Satomura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Kanagawa, 230-8501, Japan
| |
Collapse
|
19
|
de Castro DT, Teixeira ABV, do Nascimento C, Alves OL, de Souza Santos E, Agnelli JAM, Dos Reis AC. Comparison of oral microbiome profile of polymers modified with silver and vanadium base nanomaterial by next-generation sequencing. Odontology 2021; 109:605-614. [PMID: 33481145 DOI: 10.1007/s10266-020-00582-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/13/2020] [Indexed: 11/25/2022]
Abstract
This study aimed to evaluate two methods of the incorporation of nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) into acrylic resin and characterize the profile of early and late microbial communities in class and family taxonomic level by pyrosequencing. The specimens were made by adding different concentrations of AgVO3 (1, 2.5, and 5%) to the heat-activated acrylic resin by two methods: vacuum spatulation (VS) and polymeric film (PF). A control group (0%) without AgVO3 was also obtained for both methods. After 24 h and 7 days of incubation in human saliva, biofilm samples were collected, DNA was extracted, and 16S rRNA genes were sequenced by the 454-Roche sequencing platform. Seventeen classes and 51 families of bacteria were identified. The abundance of Bacteroidia, Bacilli, Negativicutes, Fusobacteria and Betaproteobacteria classes decreased after 7 days of incubation, and Clostridia, Gammaproteobacteria, and unclassified bacteria increased. The Negativicutes and Betaproteobacteria classes were more abundant when the PF method was used, and Gammaproteobacteria was more abundant when VS was used. The incorporation of 5% AgVO3 promoted a reduction in the prevalence of Bacilli, Clostridia, Negativicutes, Betaproteobacteria, and unclassified bacteria, and increased Gammaproteobacteria. The addition of AgVO3 to acrylic resin altered the early and mature microbiome formed on the specimen surface, and the PF method presented a more favorable microbial profile than the VS method.
Collapse
Affiliation(s)
- Denise Tornavoi de Castro
- Departament of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Prêto, SP, 14040-904, Brazil
| | - Ana Beatriz Vilela Teixeira
- Departament of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Prêto, SP, 14040-904, Brazil
| | - Cássio do Nascimento
- Departament of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Prêto, SP, 14040-904, Brazil
| | - Oswaldo Luiz Alves
- Laboratory of Solid State Chemistry, Institute of Chemistry, University of Campinas (Unicamp), Cidade Universitária Barão Geraldo, Campinas, SP, 13083-970, Brazil
| | - Emerson de Souza Santos
- Department of Clinical Toxicological and Bromatologic Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Prêto, SP, 14040-903, Brazil
| | | | - Andréa Cândido Dos Reis
- Departament of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Prêto, SP, 14040-904, Brazil.
| |
Collapse
|
20
|
Alqahtani F. Role of oral yeasts in the etiopathogenesis of peri-implantitis: An evidence-based literature review of clinical studies. Arch Oral Biol 2020; 111:104650. [DOI: 10.1016/j.archoralbio.2020.104650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
|
21
|
Hosseini SS, Joshaghani H, Shokohi T, Ahmadi A, Mehrbakhsh Z. Antifungal Activity of ZnO Nanoparticles and Nystatin and Downregulation of SAP1-3 Genes Expression in Fluconazole-Resistant Candida albicans Isolates from Vulvovaginal Candidiasis. Infect Drug Resist 2020; 13:385-394. [PMID: 32104010 PMCID: PMC7025901 DOI: 10.2147/idr.s226154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose Antifungal resistance and virulence properties of Candida albicans (C. albicans) are growing health problems worldwide. The present study aims to investigate the effect of Zinc Oxide (ZnO) nanoparticles and Nystatin on SAP1-3 genes expression in C. albicans isolates of females with Vulvovaginal Candidiasis (VVC) isolated from Sayad Shirazi Obstetrics and Gynecology Hospital in Northeastern Iran during 2017–2018. Patients and Methods In this descriptive-analytic study, vaginal samples were collected from 280 VVC women. 196 (70%) of C. albicans isolates were identified by phenotypic and ITS genotypic methods. Susceptibility to Fluconazole C. albicans isolates was determined by the disk diffusion method. Detection of ERG11 gene was done by RT-PCR technique. Results It was revealed that PCR amplified the ERG11 gene in all of the Fluconazole-resistant isolates. Real-time PCR was used to survey the effects of 3±1.7µg/mL concentrations of ZnO nanoparticles and Nystatin on expression of SAP1-3 genes before and after treatment. 186 (95%) susceptible C. albicans and 10 (5%) Fluconazole-resistant C. albicans isolates from VVC were exposed to sub-minimum inhibitory concentrations (Sub-MIC) of ZnO-np (range=0.02–12 μg/mL). Sub-MIC concentration was used for each strain, which reduced the expression of SAP1-3 genes to 1.8 MIC in the vaginal swabs. The observed reduction in gene expression was significant for both ZnO nanoparticles and Nystatin (P=0.01 and P=0.07, respectively). Conclusion ZnO as antifungal agent can well reduce the growth and gene expression of SAP1-3 in the pathogenesis of VVC.
Collapse
Affiliation(s)
- Seyededeh Sedigheh Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Gorgan University of Medical Sciences, Gorgan, Iran
| | - Hamidreza Joshaghani
- Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Tahereh Shokohi
- Department of Medical Mycology and Parasitology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Mehrbakhsh
- Department of Biostatistics and Epidemiology, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
22
|
Azevedo MJ, Pereira MDL, Araujo R, Ramalho C, Zaura E, Sampaio-Maia B. Influence of delivery and feeding mode in oral fungi colonization - a systematic review. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:36-45. [PMID: 32025512 PMCID: PMC6993125 DOI: 10.15698/mic2020.02.706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Postnatal acquisition of microorganisms from maternal and environmental sources contributes to the child microbiome development. Several studies showed that the mode of delivery and breastfeeding may have impact on the oral bacterial colonization, however, the influence on oral fungal colonization is still unknown. We performed a systematic literature review on mother to child oral fungi transmission, namely regarding the association between the mode of delivery and breastfeeding in oral yeast colonization. Our analysis revealed no significant differences between the oral mycobiome of breastfed and bottle-fed children. As for the delivery mode, the majority of studies found a relation between fungal colonization and vaginal delivery. Candida albicans was the most commonly isolated fungi species. Our analysis suggests that maternal breastfeeding does not seem to influence oral mycology, but vaginal delivery appears to promote oral yeast colonization in early life.
Collapse
Affiliation(s)
- Maria Joao Azevedo
- Faculdade de Medicina Dentária, Universidade do Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Maria de Lurdes Pereira
- Faculdade de Medicina Dentária, Universidade do Porto, Portugal
- EpiUnit- Instituto de Saúde Pública, Universidade do Porto
| | - Ricardo Araujo
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Dept. Medical Biotechnology, College of Medicine and Public Health, Flinders University of South Australia
| | - Carla Ramalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Portugal
- Centro Hospitalar São João, Porto, Portugal
| | - Egija Zaura
- Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Benedita Sampaio-Maia
- Faculdade de Medicina Dentária, Universidade do Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
23
|
Morse DJ, Smith A, Wilson MJ, Marsh L, White L, Posso R, Bradshaw DJ, Wei X, Lewis MAO, Williams DW. Molecular community profiling of the bacterial microbiota associated with denture-related stomatitis. Sci Rep 2019; 9:10228. [PMID: 31308427 PMCID: PMC6629705 DOI: 10.1038/s41598-019-46494-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
Denture-associated stomatitis (DS) affects over two-thirds of denture-wearers. DS presents as erythema of the palatal mucosa in areas where denture-surface associated polymicrobial biofilms containing the fungus Candida albicans exist. The contribution of the oral bacterial microbiota toward the infection is unknown. Therefore, this study characterised the bacterial microbiota of sites within the oral cavity to identify potential associations with occurrence of DS. Denture-wearing patients were recruited (denture stomatitis (DS) n = 8; non-denture stomatitis (NoDS) n = 11) and the oral bacterial microbiota of the tongue, palate and denture-fitting surface was characterised using next-generation sequencing. Operational taxonomic units (OTUs) were identified to bacterial genera and species, and presence/absence and relative abundances were examined. A significant (P = 0.007) decrease in the number of OTUs and thus, diversity of the microbiota was observed in tongue samples of DS patients (vs non-DS). The microbiota of denture-fitting surfaces and palatal mucosae were similar. Large differences in the abundance of bacterial genera and species were observed at each sample site, and unique presence/absence of bacteria was noted. Presence/absence and relative abundance of specific bacteria associated with DS warrants further in vitro and in vivo evaluation, particularly as our previous work has shown C. albicans virulence factor modulation by oral bacteria.
Collapse
Affiliation(s)
- Daniel J Morse
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Ann Smith
- School of Medicine, Cardiff University, Cardiff, UK
| | - Melanie J Wilson
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Lucy Marsh
- School of Medicine, Cardiff University, Cardiff, UK
| | - Lewis White
- UKCMN Regional Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, Cardiff, UK
| | - Raquel Posso
- UKCMN Regional Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, Cardiff, UK
| | | | - Xiaoqing Wei
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Michael A O Lewis
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - David W Williams
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| |
Collapse
|