1
|
Du H, Yu H, Zhou M, Hui Q, Hou Y, Jiang Y. The effect of STAT1, miR-99b, and MAP2K1 in alcoholic liver disease (ALD) mouse model and hepatocyte. Aging (Albany NY) 2024; 16:4224-4235. [PMID: 38431286 PMCID: PMC10968706 DOI: 10.18632/aging.205579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Alcoholic liver disease (ALD) serves as the leading cause of chronic liver diseases-related morbidity and mortality, which threatens the life of millions of patients in the world. However, the molecular mechanisms underlying ALD progression remain unclear. Here, we applied microarray analysis and experimental approaches to identify miRNAs and related regulatory signaling that associated with ALD. Microarray analysis identified that the expression of miR-99b was elevated in the ALD mouse model. The AML-12 cells were treated with EtOH and the expression of miR-99b was enhanced in the cells. The expression of miR-99b was positively correlated with ALT levels in the ALD mice. The microarray analysis identified the abnormally expressed mRNAs in ALD mice and the overlap analysis was performed with based on the differently expressed mRNAs and the transcriptional factors of miR-99b, in which STAT1 was identified. The elevated expression of STAT1 was validated in ALD mice. Meanwhile, the treatment of EtOH induced the expression of STAT1 in the AML-12 cells. The expression of STAT1 was positively correlated with ALT levels in the ALD mice. The positive correlation of STAT1 and miR-99b expression was identified in bioinformatics analysis and ALD mice. The expression of miR-99b and pri-miR-99b was promoted by the overexpression of STAT1 in AML-12 cells. ChIP analysis confirmed the enrichment of STAT1 on miR-99b promoter in AML-12 cells. Next, we found that the expression of mitogen-activated protein kinase kinase 1 (MAP2K1) was negatively associated with miR-99b. The expression of MAP2K1 was downregulated in ALD mice. Consistently, the expression of MAP2K1 was reduced by the treatment of EtOH in AML-12 cells. The expression of MAP2K1 was negative correlated with ALT levels in the ALD mice. We identified the binding site of MAP2K1 and miR-99b. Meanwhile, the treatment of miR-99b mimic repressed the luciferase activity of MAP2K1 in AML-12 cells. The expression of MAP2K1 was suppressed by miR-99b in the cells. We observed that the expression of MAP2K1 was inhibited by the overexpression of STAT1 in AML-12 cells. Meanwhile, the apoptosis of AML-12 cells was induced by the treatment of EtOH, while miR-99b mimic promoted but the overexpression of MAP2K1 attenuated the effect of EtOH in the cells. In conclusion, we identified the correlation and effect of STAT1, miR-99b, and MAP2K1 in ALD mouse model and hepatocyte. STAT1, miR-99b, and MAP2K1 may serve as potential therapeutic target of ALD.
Collapse
Affiliation(s)
- Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100015, China
| | - Hao Yu
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Meiyue Zhou
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Quan Hui
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100015, China
| | - Yixin Hou
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Yuyong Jiang
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| |
Collapse
|
2
|
Xia H, Akay YM, Akay M. Investigating miRNA-mRNA interactions and gene regulatory networks from VTA dopaminergic neurons following perinatal nicotine and alcohol exposure using Bayesian network analysis. IEEE J Biomed Health Inform 2022; 26:3550-3555. [PMID: 35290190 DOI: 10.1109/jbhi.2022.3158620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
MicroRNAs play an important role in gene regulation for many biological systems, including nicotine and alcohol addiction. However, the underlying mechanism behind miRNAs and mRNA interaction is not well characterized. Microarrays are commonly used to quantify the expression levels of mRNAs and/or miRNAs simultaneously. In this study, we performed a Bayesian network analysis to identify mRNA and miRNA interactions following perinatal exposure to nicotine and/or alcohol. We utilized three sets of microarray data to predict the regulation relationship between mRNA and miRNAs. Following perinatal alcohol exposure, we identified two miRNAs: miR-542-5p and miR-874-3p, that exhibited a strong mutual influence on several mRNA in gene regulatory pathways, mainly Axon guidance and Dopaminergic synapses. Finally, we confirmed our predicted addiction pathways based on the Bayesian network analysis with the widely used Kyoto Encyclopedia of Genes and Genomes (KEGG)-based database and identified comparable relevant miRNA-mRNA pairs. We believe the Bayesian network can provide insight into the complexity biological process related to addiction and can potentially be applied to other diseases.
Collapse
|
3
|
Chen F, Han J, Wang D. Identification of key microRNAs and the underlying molecular mechanism in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021; 9:e11454. [PMID: 34123589 PMCID: PMC8164840 DOI: 10.7717/peerj.11454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Spinal cord ischemia-reperfusion injury (SCII) is a pathological process with severe complications such as paraplegia and paralysis. Aberrant miRNA expression is involved in the development of SCII. Differences in the experimenters, filtering conditions, control selection, and sequencing platform may lead to different miRNA expression results. This study systematically analyzes the available SCII miRNA expression data to explore the key differently expressed miRNAs (DEmiRNAs) and the underlying molecular mechanism in SCII. A systematic bioinformatics analysis was performed on 23 representative rat SCII miRNA datasets from PubMed. The target genes of key DEmiRNAs were predicted on miRDB. The DAVID and TFactS databases were utilized for functional enrichment and transcription factor binding analyses. In this study, 19 key DEmiRNAs involved in SCII were identified, 9 of which were upregulated (miR-144-3p, miR-3568, miR-204, miR-30c, miR-34c-3p, miR-155-3p, miR-200b, miR-463, and miR-760-5p) and 10 downregulated (miR-28-5p, miR-21-5p, miR-702-3p, miR-291a-3p, miR-199a-3p, miR-352, miR-743b-3p, miR-125b-2-3p, miR-129-1-3p, and miR-136). KEGG enrichment analysis on the target genes of the upregulated DEmiRNAs revealed that the involved pathways were mainly the cGMP-PKG and cAMP signaling pathways. KEGG enrichment analysis on the target genes of the downregulated DEmiRNAs revealed that the involved pathways were mainly the Chemokine and MAPK signaling pathways. GO enrichment analysis indicated that the target genes of the upregulated DEmiRNAs were markedly enriched in biological processes such as brain development and the positive regulation of transcription from RNA polymerase II promoter. Target genes of the downregulated DEmiRNAs were mainly enriched in biological processes such as intracellular signal transduction and negative regulation of cell proliferation. According to the transcription factor analysis, the four transcription factors, including SP1, GLI1, GLI2, and FOXO3, had important regulatory effects on the target genes of the key DEmiRNAs. Among the upregulated DEmiRNAs, miR-3568 was especially interesting. While SCII causes severe neurological deficits of lower extremities, the anti-miRNA oligonucleotides (AMOs) of miR-3568 improve neurological function. Cleaved caspase-3 and Bax was markedly upregulated in SCII comparing to the sham group, and miR-3568 AMO reduced the upregulation. Bcl-2 expression levels showed a opposite trend as cleaved caspase-3. The expression of GATA6, GATA4, and RBPJ decreased after SCII and miR-3568 AMO attenuated this upregulation. In conclusion, 19 significant DEmiRNAs in the pathogenesis of SCII were identified, and the underlying molecular mechanisms were validated. The DEmiRNAs could serve as potential intervention targets for SCII. Moreover, inhibition of miR-3568 preserved hind limb function after SCII by reducing apoptosis, possibly through regulating GATA6, GATA4, and RBPJ in SCII.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Jie Han
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Dan Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| |
Collapse
|
4
|
Ye J, Lin Y, Yu Y, Sun D. LncRNA NEAT1/microRNA-129-5p/SOCS2 axis regulates liver fibrosis in alcoholic steatohepatitis. J Transl Med 2020; 18:445. [PMID: 33228663 PMCID: PMC7686721 DOI: 10.1186/s12967-020-02577-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to play an essential role in non-alcoholic fatty liver disease. However, the role of NEAT1 in regulation of alcoholic steatohepatitis (ASH) remains largely unknown. This study aims to explore the role of NEAT1 in ASH by mediating microRNA-129-5p (miR-129-5p) targeting suppressor of cytokine signaling 2 (SOCS2). Methods NEAT1, miR-129-5p and SOCS2 expression in serum of ASH patients were assessed. In the in vitro cellular experiment, we transfected siRNAs, oligonucleotides or plasmids into ethanol-induced AML-12 mouse hepatocytes to alter NEAT1 and miR-129-5p expression, and inflammatory factors and lipid content were determined. In the in vivo animal experiment, we injected lentiviruses carrying siRNAs, oligonucleotides or plasmids onto ASH mice (ASH induced by feeding mice a Lieber-DeCarli ethanol diet) to alter NEAT1 and miR-129-5p expression through the tail vein. Serum liver function, blood lipids and inflammatory factors were detected; liver histopathology, liver cell apoptosis, and fibrosis were observed. The relationship between NEAT1 and miR-129-5p, or between miR-129-5p and SOCS2 was verified. Results MiR-129-5p was reduced while NEAT1 and SOCS2 were elevated in ASH. Inhibited NEAT1 or elevated miR-129-5p suppressed the elevated lipid metabolism and restrained inflammation reaction in ethanol-stimulated AML-12 cells. The promoted miR-129-5p and inhibited NEAT1 could improve the liver function and repress blood lipid, inflammation reaction, hepatocyte apoptosis and liver fibrosis in ethanol-induced ASH mice. Furthermore, NEAT1 could negatively regulate miR-129-5p to target SOCS2. Conclusion We have found that the inhibited NEAT1 could suppress liver fibrosis in ASH mice by promoting miR-129-5p and restraining SOCS2, thereby decelerating the development of ASH.
Collapse
Affiliation(s)
- Junfeng Ye
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yuanqiang Lin
- Department of Ultrasonography, China-Japan Union Hospital, Jilin University, Changchun , 130021, Jilin, People's Republic of China
| | - Ying Yu
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Di Sun
- Department of Colorectal & Anal Surgery, First Hospital, Jilin University, No. 71 Xinmin street, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
5
|
The miR-21 potential of serving as a biomarker for liver diseases in clinical practice. Biochem Soc Trans 2020; 48:2295-2305. [PMID: 33119045 DOI: 10.1042/bst20200653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
The role of miR-21 in the pathogenesis of various liver diseases, together with the possibility of detecting microRNA in the circulation, makes miR-21 a potential biomarker for noninvasive detection. In this review, we summarize the potential utility of extracellular miR-21 in the clinical management of hepatic disease patients and compared it with the current clinical practice. MiR-21 shows screening and prognostic value for liver cancer. In liver cirrhosis, miR-21 may serve as a biomarker for the differentiating diagnosis and prognosis. MiR-21 is also a potential biomarker for the severity of hepatitis. We elucidate the disease condition under which miR-21 testing can reach the expected performance. Though miR-21 is a key regulator of liver diseases, microRNAs coordinate with each other in the complex regulatory network. As a result, the performance of miR-21 is better when combined with other microRNAs or classical biomarkers under certain clinical circumstances.
Collapse
|
6
|
Li X, Wang X, Liu YS, Wang XD, Zhou J, Zhou H. Downregulation of miR-3568 Protects Against Ischemia/Reperfusion-Induced Cardiac Dysfunction in Rats and Apoptosis in H9C2 Cardiomyocytes Through Targeting TRIM62. Front Pharmacol 2020; 11:17. [PMID: 32116696 PMCID: PMC7031202 DOI: 10.3389/fphar.2020.00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
microRNA-3568 (miR-3568) has been reported to be associated with atherosclerosis. Only few data describe the expression and underlying mechanism of miR-3568 in regulating cardiac ischemia-reperfusion (I/R) injury such as apoptosis. In this study, we therefore sought to investigate the potential function of miR-3568 in simulated I/R-induced apoptosis in H9C2 cardiomyocytes and related signaling pathways involved. Flow cytometry was performed to examine the cell apoptosis. The expression of miR-3568, Survivin, Bcl-2, ERK, JNK, p38, AKT, and STAT3 was measured by western blot and quantitative real-time PCR. The correlation between TRIM62 and p-STAT3 was measured by co-immunoprecipitation and ubiquitination. We found that miR-3568 expression in simulated I/R-induced H9C2 cardiomyocytes was increased in a time-dependent manner. miR-3568 mimic transfection in H9C2 cardiomyocytes significantly enhanced cell apoptosis, decreased the expression of Bcl-2 and Survivin, and activated STAT3 signaling, which were reversed by miR-3568 inhibitor. The direct interaction between miR-3568 and the 3'-untranslated region (UTR) of TRIM62 mRNA was confirmed by dual-luciferase reporter assay. TRIM62 overexpression or AG490, a selective inhibitor of JAK2/STAT3 significantly, significantly inhibited I/R and miR-3568 mimic induced cell apoptosis and STAT3 activation. TRIM62 was found to interact with and induce ubiquitination of p-STAT3. The facilitating role of miR-3568 in I/R injury was also observed in our in vivo rat models. In conclusion, our study suggests that miR-3568 promotes simulated I/R-induced apoptosis in H9C2 cardiomyocytes through targeting TRIM62.
Collapse
Affiliation(s)
- Xin Li
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Wang
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan-Sheng Liu
- Department of Cardiovascular Medicine, Ji'AN Hospital, Shanghai East Hospital, Ji'ani, China
| | - Xiao-Dong Wang
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Zhou
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Circulating MiR-210 and MiR-1246 as Potential Biomarkers for Differentiating Hepatocellular Carcinoma from Metastatic Tumors in the Liver. J Med Biochem 2019; 38:109-117. [PMID: 30867638 PMCID: PMC6411000 DOI: 10.2478/jomb-2018-0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022] Open
Abstract
Background To date few reports have pointed out the role of circulating miRNAs in discriminating metastatic liver tumors from primary hepatocellular (HCC) tumors. Such discrimination will have significant therapeutic and prognostic implications. The purpose of this study was to evaluate the potential value of a panel of HCC-related circulating miRNAs (miR-142, miR-182, miR-200a, mir-210, miR-211, miR-302b, miR-324, miR-338, miR-340 and miR-1246) as noninvasive biomarkers for discriminating primary HCC from metastatic tumors in the liver. Methods The expression level of the selected miRNAs was quantified by quantitative real time PCR in 33 patients with HCC, 22 patients with metastatic tumors in the liver, and 30 healthy volunteers as control. Mann-Whitney U test was used to evaluate the difference in miRNAs expression between primary and metastatic liver tumors and to study the associations between their relative expression levels and the clinicopathological factors. Receiver operating characteristic curve was used to evaluate the diagnostic value of the individual miRNAs. Results Statistical analyses revealed a differential expression in the level of serum miR-210 and miR-1246 between the two groups of patients. The sensitivity and specificity of miR-210, for differentiating HCC from metastatic malignancies in the liver were found to be 73.7% and 64.28%, respectively. Whilst, of miR-1246 were 72.2% and 67.8%, respectively. In addition, the differential expression of the two miRNAs was also found to be associated with clinicopathological parameters in the two studied groups. Conclusions Serum miR-210 and miR-1246 have some diagnostic value for discriminating patients with metastatic tumors to patients with primary HCC
Collapse
|
8
|
Jones KR, Nabinger SC, Lee S, Sahu SS, Althouse S, Saxena R, Johnson MS, Chalasani N, Gawrieh S, Kota J. Lower expression of tumor microRNA-26a is associated with higher recurrence in patients with hepatocellular carcinoma undergoing surgical treatment. J Surg Oncol 2018; 118:431-439. [PMID: 30076741 DOI: 10.1002/jso.25156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Hepatocellular carcinoma (HCC) in patients with hepatitis B virus (HBV) exhibit lower tumor microRNA-26a (miR-26a) expression which is associated with worse outcomes. It is unknown if similar miR-26a loss occurs in HCC developed in other liver diseases. We examined tumor miR-26a expression and its impact on recurrence and mortality in a North American HCC cohort. METHODS MiR-26a levels from tumor and surrounding nontumor liver tissue in 186 subjects were collected. We defined lower tumor expression of miR-26a as <1-fold that of the adjacent nontumor liver tissue. RESULTS Viral hepatitis (42%; 40% hepatitis C and 2% HBV), alcohol (19%), and nonalcoholic fatty liver disease (NAFLD) (18%) were the most common causes of liver disease. The prevalence of lower tumor miR-26a expression was 68%, and it was evident in HCCs arising in all etiologies (viral hepatitis 60%, alcohol 61%, and NAFLD 76%). Subjects with lower tumor miR-26a expression had significantly higher tumor recurrence (hazard ratio [HR], 2.45; 95% confidence interval [CI], 1.18 to 5.1; P = 0.016) and higher mortality of borderline significance (HR, 1.51; 95% CI, 0.94 to 2.41; P = 0.086). CONCLUSION Reduced miR-26a expression is a common phenomenon in HCC arising in North American patients with different underlying liver diseases and may increase recurrence and mortality after surgery.
Collapse
Affiliation(s)
- Keaton R Jones
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sarah C Nabinger
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sangbin Lee
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Smiti Snigdha Sahu
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sandra Althouse
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mathew S Johnson
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Janaiah Kota
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
9
|
Cheng XY, Liu JD, Lu XY, Yan X, Huang C, Meng XM, Li J. miR-203 Inhibits Alcohol-Induced Hepatic Steatosis by Targeting Lipin1. Front Pharmacol 2018; 9:275. [PMID: 29670525 PMCID: PMC5893905 DOI: 10.3389/fphar.2018.00275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
Alcoholic liver disease (ALD) is a global liver disease which characterized by liver inflammation, fatty liver, alcoholic hepatitis, or liver cirrhosis. Alcohol abuse is one of the main reasons for liver disease. Alcoholic fatty liver (AFL) disease is the early stage of ALD and associated with the excessive lipids accumulation in hepatocytes as well as oxidative stress. MicroRNA-203 (miR-203) is known to suppress the proliferation and metastasis of hepatocellular carcinoma, but the role in the progression of alcoholic liver disease is not clear and is warranted for further investigation. In the present study, we have found the expression of miR-203 is down-regulated in Gao-Binge alcoholic mice model and ethanol-induced AML-12 cell lines in vitro. Furthermore, over-expression of miR-203 decrease the lipids accumulation in liver and ethanol-induced AML-12 cells. Mechanistically, we identified that Lipin1 is a key regulator of hepatic lipid metabolism, and acts as a downstream target for miR-203. In summary, our results suggested that over-expression of miR-203 inhibited the liver lipids accumulation and the progression of AFL by targeting Lipin1.
Collapse
Affiliation(s)
- Xiao-Yu Cheng
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun-Da Liu
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin-Yi Lu
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xing Yan
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, Institute for Liver Diseases, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Obad A, Peeran A, Little JI, Haddad GE, Tarzami ST. Alcohol-Mediated Organ Damages: Heart and Brain. Front Pharmacol 2018; 9:81. [PMID: 29487525 PMCID: PMC5816804 DOI: 10.3389/fphar.2018.00081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
Alcohol is one of the most commonly abused substances in the United States. Chronic consumption of ethanol has been responsible for numerous chronic diseases and conditions globally. The underlying mechanism of liver injury has been studied in depth, however, far fewer studies have examined other organs especially the heart and the central nervous system (CNS). The authors conducted a narrative review on the relationship of alcohol with heart disease and dementia. With that in mind, a complex relationship between inflammation and cardiovascular disease and dementia has been long proposed but inflammatory biomarkers have gained more attention lately. In this review we examine some of the consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver. The article reviews the potential role of inflammatory markers such as TNF-α in predicting dementia and/or cardiovascular disease. It was found that TNF-α could promote and accelerate local inflammation and damage through autocrine/paracrine mechanisms. Unraveling the mechanisms linking chronic alcohol consumption with proinflammatory cytokine production and subsequent inflammatory signaling pathways activation in the heart and CNS, is essential to improve our understanding of the disease and hopefully facilitate the development of new remedies.
Collapse
Affiliation(s)
| | | | | | | | - Sima T. Tarzami
- Department of Physiology and Biophysics, Howard University, Washington, DC, United States
| |
Collapse
|
11
|
Liu Y, Qian K, Li C, Ma Y, Chen X. Roles of microRNA-539 and osteopontin in rheumatoid arthritis. Exp Ther Med 2017; 15:2681-2687. [PMID: 29467860 DOI: 10.3892/etm.2017.5665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 06/05/2017] [Indexed: 01/16/2023] Open
Abstract
The present study aimed to investigate the role and mechanism of microRNA-539 (miR-539) in rheumatoid arthritis (RA). A total of 68 RA patients and 46 osteoarthritis patients were enrolled into the current study. Peripheral blood and joint fluid were collected prior to treatment. Reverse transcription-quantitative polymerase chain reaction was performed to detect osteopontin (OPN) mRNA and miR-539 expression levels, while ELISA and western blot analysis were applied to detect OPN protein expression. In addition, bioinformatics analysis predicted that miR-539 directly targeted OPN, while dual-luciferase assay was used to validate this finding. Furthermore, agomiR-539 transfection and OPN knockdown by siRNA were conducted in MH7A cells, and MTT assay was used to detect MH7A cell proliferation. The results indicated that OPN was significantly increased in the blood and joint fluid of RA patients, while miR-539 expression was significantly decreased in the two types of specimens (P<0.05). Subsequent to silencing OPN by siRNA, the proliferation of MH7A cells was decreased (P<0.05). Following upregulation of miR-539, OPN expression was significantly decreased and cell proliferation was inhibited. Dual-luciferase assay revealed that miR-539 regulated OPN expression through complementary binding to 3'-untranslated region. OPN was also significantly increased in the blood and joint fluid of RA patients, which may be associated with the downregulation of miR-539. Thus, miR-539 may promote the development and progression of RA through regulating OPN.
Collapse
Affiliation(s)
- Yan Liu
- Department of Rheumatology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Kai Qian
- Department of Rheumatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Chunmei Li
- Department of Rheumatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yi Ma
- Department of Rheumatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xingguo Chen
- Department of Rheumatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
12
|
Chen F, Zhang H, Li J, Tian Y, Xu J, Chen L, Wei J, Zhao N, Yang X, Zhang W, Lu L. Identification of differentially expressed miRNAs in the fatty liver of Landes goose (Anser anser). Sci Rep 2017; 7:16296. [PMID: 29176640 PMCID: PMC5701175 DOI: 10.1038/s41598-017-16632-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022] Open
Abstract
Unlike mammals, in palmipedes de novo lipogenesis from diet takes place mostly in the liver. The French Landes Goose is famous for its high capacity and susceptibility to fatty liver production. While miRNAs play a critical role in the posttranscriptional regulation of gene expression, miRNAs that are involved in the regulation of goose hepatic steatosis have yet to be elucidated. Using high-throughput sequencing, we analyzed miRNAs expression profile of Landes goose liver after overfeeding for 21 days. Aan-miR-122-5p was the most frequently sequenced known miRNA, but it was unchanged after overfeeding. Compared with normal liver, we identified that 16 conserved miRNAs were up-regulated while the other 9 conserved miRNAs were down-regulated in fatty livers. Many of their predicted target genes played key roles in metabolic pathways leading to the development of hepatic steatosis in the goose by KEGG pathways analysis. ACSL1 and ELOVL6 were critical genes in hepatic lipid metabolism and had opposite expression patterns with aan-miR-203a and aan-miR-125b-5p, respectively. And we validated that aan-miR-203a and aan-miR-125b-5p might involve in the regulation of hepatic lipid metabolism by targeting ACSL1 and ELOVL6, respectively. These results add to our current understanding of the regulation network in goose lipid metabolism.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, PR China.,Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, PR China.,Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Jinjun Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Yong Tian
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Jing Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, PR China
| | - Na Zhao
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, PR China
| | - Xuehai Yang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, PR China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, PR China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| |
Collapse
|
13
|
do Amaral AE, Cisilotto J, Creczynski-Pasa TB, de Lucca Schiavon L. Circulating miRNAs in nontumoral liver diseases. Pharmacol Res 2017; 128:274-287. [PMID: 29037479 DOI: 10.1016/j.phrs.2017.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022]
Abstract
In recent years, there has been increasing interest in finding new biomarkers for diagnosis and prognostication of liver diseases. MicroRNAs (miRNAs) are small noncoding RNA molecules involved in the regulation of gene expression and have been studied in relation to several conditions, including liver disease. Mature miRNAs can reach the bloodstream by passive release or by incorporation into lipoprotein complexes or microvesicles, and have stable and reproducible concentrations among individuals. In this review, we summarize studies involving circulating miRNAs sourced from the serum or plasma of patients with nontumoral liver diseases in attempt to bring insights in the use of miRNAs as biomarkers for diagnosis, as well as for prognosis of such diseases. In addition, we present pre-analytical aspects involving miRNA analysis and strategies for normalization of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) data related to the studies evaluated.
Collapse
Affiliation(s)
- Alex Evangelista do Amaral
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Júlia Cisilotto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Leonardo de Lucca Schiavon
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Maria Flora Pausewang Street, 88036-800 Florianopolis, SC, Brazil.
| |
Collapse
|
14
|
Jin X, Yu MS, Huang Y, Xiang Z, Chen YP. MiR-30e-UCP2 pathway regulates alcoholic hepatitis progress by influencing ATP and hydrogen peroxide expression. Oncotarget 2017; 8:64294-64302. [PMID: 28969071 PMCID: PMC5610003 DOI: 10.18632/oncotarget.19729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
To investigate the expression of miR-30e-UCP2 pathway in different stages of alcoholic liver disease (ALD) and its capacity and mechanism in regulating alcoholic hepatitis (AH) progress. C57BL/6 mice were fed with Lieber-DeCaril (LD) diet for 4 and 12 weeks to establish models of alcoholic fat infiltration (AFI) and AH. Based on AFI feeding, the alcoholic hepatic fibrosis (AHF) was set up with additional 4 weeks 5% carbon tetrachloride intra-abdominal injection twice per week. Serum lipid and inflammation related makers were detected while H-E staining for hepatic steatosis/ inflammation and Sirius staining for hepatic fibrosis were conducted. The apoptosis degree was tested by TUNEL plot while the hydrogen peroxide (H2O2) and ATP levels were tested by colorimetric method. MiR-30e and UCP2 over-expression were carried out by synthesizing miR-30e mimic and inserting UCP2 sequence into pCDNA3.1 plasmid. Different stages of ALD were established as indicated by increased serum TG, Tch, ALT, AST, apoptosis degree and hyaluronic acid levels as well as the typical lipid deposition, inflammatory cell infiltration and fibrosis formation in AFI, AH and AHF stages. A stepwise decreased miR-30e and increased UCP2 level was identified from AFI to AHF (p<0.05). MiR-30e over-expression significantly decreased UCP2 level. After successful miR-30e over-expression in AH, its inflammation level was decreased, followed by significantly increased ATP and H2O2 levels. Therefore, MiR-30e-UCP2 pathway participates in different stages of ALD and its therapeutic effect on AH may be through influencing oxidative stress and energy metabolism.
Collapse
Affiliation(s)
- Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mo-Sang Yu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Huang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zun Xiang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Peng Chen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Elemeery MN, Badr AN, Mohamed MA, Ghareeb DA. Validation of a serum microRNA panel as biomarkers for early diagnosis of hepatocellular carcinoma post-hepatitis C infection in Egyptian patients. World J Gastroenterol 2017; 23:3864-3875. [PMID: 28638226 PMCID: PMC5467072 DOI: 10.3748/wjg.v23.i21.3864] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the prospective importance of serum micro (mi)RNAs (miR-125b, miR-138b, miR-1269, miR-214-5p, miR-494, miR375 and miR-145) as early biomarkers for the diagnosis of hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC).
METHODS Two-hundred and fifty HCV4a patients, 224 HCV4a-HCC patients, and 84 healthy controls were enrolled in the study. Expression levels of miR214-5p, miR-125b, miR-1269 and miR-375 were quantified using quantitative real-time PCR.
RESULTS Expression of the selected miRNAs in serum was significantly lower in HCC patients than in the healthy controls, except for miR-1269 and miR-494. There was a significant difference between HCC and HCV patients, in particular for HCC and late stage fibrosis, rather than HCV patients and early fibrosis. It is obvious that miR-1269 was significantly upregulated in HCC cases compared to hepatic fibrosis cases. Each miRNA can show HCC progression. Multivariate logistic regression analysis indicated that the tested panel of miRNAs (miR214-5p, miR-125b, miR-1269 and miR-375) represent accurate and specific indictors of HCC development.
CONCLUSION This study presents a panel of miRNAs with strong power as putative diagnostic and prognostic biomarkers for HCV-induced HCC. Moreover, miR-214-5p and miR-1269 could be considered as early biomarkers for tracking the progress of liver fibrosis to HCC.
Collapse
|
16
|
Zhu HT, Liu RB, Liang YY, Hasan AME, Wang HY, Shao Q, Zhang ZC, Wang J, He CY, Wang F, Shao JY. Serum microRNA profiles as diagnostic biomarkers for HBV-positive hepatocellular carcinoma. Liver Int 2017; 37:888-896. [PMID: 28061012 DOI: 10.1111/liv.13356] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The discovery of effective and reliable biomarkers to detect hepatitis B virus (HBV)-positive hepatocellular carcinoma (HCC) at an early stage may improve the survival of HCC. The aim of this study was to establish serum microRNA (miRNA) profiles as diagnostic biomarkers for HBV-positive HCC. METHODS We used deep sequencing to screen serum miRNAs in a discovery cohort (n=100). Quantitative polymerase chain reaction (qPCR) assays were then applied to evaluate the expression of selected miRNAs. A diagnostic 2-miRNA panel was established by a logistic regression model using a training cohort (n=182). The predicted probability of being detected as HCC was used to construct the receiver operating characteristic (ROC) curve. Area under the ROC curve (AUC) was used to assess the diagnostic performance of the selected miRNA panel. RESULTS The predicted probability of being detected as HCC by the 2-miRNA panel was calculated by: logit P=-2.988 + 1.299 × miR-27b-3p + 1.245 × miR-192-5p. These results were further confirmed in a validation cohort (n=246).The miRNA panel provided a high diagnostic accuracy of HCC (AUC=0.842, P<.0001 for training set; AUC=0.836, P<.0001 for validation set respectively). In addition, the miRNA panel showed better prediction of HCC diagnosis than did alpha-foetoprotein (AFP). The miRNA panel also differentiated HCC from healthy (AUC=0.823, P<.0001), and cirrhosis patients (AUC=0.859, P<.0001) respectively. CONCLUSIONS Differentially expressed serum miRNAs may have considerable clinical value in HCC diagnosis, and be particularly helpful for AFP-negative HCC.
Collapse
Affiliation(s)
- Hao-Tu Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong-Bin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya-Yong Liang
- Department of paediatrics, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Abdulbaqi M E Hasan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiong Shao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Chen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cai-Yun He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Yong Shao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
17
|
Kwekel JC, Vijay V, Han T, Moland CL, Desai VG, Fuscoe JC. Sex and age differences in the expression of liver microRNAs during the life span of F344 rats. Biol Sex Differ 2017; 8:6. [PMID: 28174625 PMCID: PMC5291947 DOI: 10.1186/s13293-017-0127-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022] Open
Abstract
Background Physiological factors such as age and sex have been shown to be risk factors for adverse effects in the liver, including liver diseases and drug-induced liver injury. Previously, we have reported age- and sex-related significant differences in hepatic basal gene expression in rats during the life span that may be related to susceptibility to such adverse effects. However, the underlying mechanisms of the gene expression changes were not fully understood. In recent years, increasing evidence for epigenetic mechanisms of gene regulation has fueled interest in the role of microRNAs (miRNAs) in toxicogenomics and biomarker discovery. We therefore proposed that significant age and sex differences exist in baseline liver miRNA expression, and that comprehensive profiling of miRNAs will provide insights into the epigenetic regulation of gene expression in rat liver. Methods To address this, liver tissues from male and female F344 rats were examined at 2, 5, 6, 8, 15, 21, 52, 78, and 104 weeks of age for the expression of 677 unique miRNAs. Following data processing, predictive pathway analysis was performed on selected miRNAs that exhibited prominent age and/or sex differences in expression. Results Of the 314 miRNAs found to be expressed, 214 were differentially expressed; 65 and 212 miRNAs showed significant (false discovery rate (FDR) <5% and ≥1.5-fold change) sex- and age-related differences in expression, respectively. Thirty-eight miRNAs showed 2-week-specific expression, of which 31 miRNAs were found to be encoded within the Dlk1-Dio3 cluster located on chromosome 6. This cluster has been associated with tissue proliferation and differentiation, and liver energy homeostasis in postnatal development. Predictive pathway analysis linked sex-biased miRNA expression with sexually dimorphic molecular functions and toxicological functions that may reflect sex differences in hepatic physiology and disease. The expression of miRNAs (miR-18a, miR-99a, and miR-203, miR-451) was also found to associate with specific sexually dimorphic hepatic histopathology. The expression of miRNAs involved in regulating cell death, cell proliferation, and cell cycle was found to change as the rats matured from adult to old age. Conclusions Overall, significant age- and sex-related differences in liver miRNA expression were identified and linked to histopathological findings and predicted functional pathways that may underlie susceptibilities to liver toxicity and disease. Electronic supplementary material The online version of this article (doi:10.1186/s13293-017-0127-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua C Kwekel
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA.,Present address: Department of Math & Science, Central Baptist College, Conway, AR USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - Carrie L Moland
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - Varsha G Desai
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| |
Collapse
|
18
|
Raitoharju E, Seppälä I, Lyytikäinen LP, Viikari J, Ala-Korpela M, Soininen P, Kangas AJ, Waldenberger M, Klopp N, Illig T, Leiviskä J, Loo BM, Oksala N, Kähönen M, Hutri-Kähönen N, Laaksonen R, Raitakari O, Lehtimäki T. Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism-The Young Finns Study. Sci Rep 2016; 6:38262. [PMID: 27917915 PMCID: PMC5137183 DOI: 10.1038/srep38262] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are involved in disease development and may be utilized as biomarkers. We investigated the association of blood miRNA levels and a) fatty liver (FL), b) lipoprotein and lipid pathways involved in liver lipid accumulation and c) levels of predicted mRNA targets in general population based cohort. Blood microRNA profiling (TaqMan OpenArray), genome-wide gene expression arrays and nuclear magnetic resonance metabolomics were performed for Young Finns Study participants aged 34–49 years (n = 871). Liver fat status was assessed ultrasonographically. Levels of hsa-miR-122-5p and -885-5p were up-regulated in individuals with FL (fold change (FC) = 1.55, p = 1.36 * 10−14 and FC = 1.25, p = 4.86 * 10−4, respectively). In regression model adjusted with age, sex and BMI, hsa-miR-122-5p and -885-5p predicted FL (OR = 2.07, p = 1.29 * 10−8 and OR = 1.41, p = 0.002, respectively). Together hsa-miR-122-5p and -885-5p slightly improved the detection of FL beyond established risk factors. These miRNAs may be associated with FL formation through the regulation of lipoprotein metabolism as hsa-miR-122-5p levels associated with small VLDL, IDL, and large LDL lipoprotein subclass components, while hsa-miR-885-5p levels associated inversely with XL HDL cholesterol levels. Hsa-miR-885-5p levels correlated inversely with oxysterol-binding protein 2 (OSBPL2) expression (r = −0.143, p = 1.00 * 10−4) and suppressing the expression of this lipid receptor and sterol transporter could link hsa-miR-885-5p with HDL cholesterol levels.
Collapse
Affiliation(s)
- Emma Raitoharju
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Jorma Viikari
- Division of Medicine Turku University Hospital and Department of Medicine, University of Turku, Turku, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Computational Medicine, School of Social and Community Medicine and the Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Jaana Leiviskä
- Department of Health, National Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Britt-Marie Loo
- Department of Health, National Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Niku Oksala
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland.,Division of Vascular Surgery, Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and School of Medicine, University of Tampere, Tampere, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Reijo Laaksonen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Olli Raitakari
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| |
Collapse
|
19
|
Chang L, Li K, Guo T. miR-26a-5p suppresses tumor metastasis by regulating EMT and is associated with prognosis in HCC. Clin Transl Oncol 2016; 19:695-703. [PMID: 27864783 DOI: 10.1007/s12094-016-1582-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine the role of miR-26a-5p in tumor invasion and metastasis in hepatocellular carcinoma (HCC). METHODS We evaluated miR-26a-5p expression in HCC tissues by quantitative PCR and then analyzed its clinical significance using a Cox regression model. Transwell and nude mouse models were used to examine tumor metastasis in vitro and in vivo, respectively. The relationship between miR-26a-5p and epithelial-mesenchymal transition was also investigated by q-PCR and western blot. RESULTS Strong downregulation of miR-26a-5p was observed in tumor tissues compared to paired adjacent normal tissues. Moreover, patients with low miR-26a-5p expression had a significantly poorer prognosis than those with high expression. The multivariate analysis indicated that miR-26a-5p expression was an independent prognostic indicator. The experimental transwell model and athymic mouse model revealed that miR-26a-5p depressed tumor metastasis in vitro and in vivo, respectively. In addition, the decreased miR-26a-5p level observed in HCC was associated with reduced E-cadherin expression and upregulation of vimentin, which affects the molecular mechanism of EMT. CONCLUSION Downregulation of miR-26a-5p promotes tumor metastasis by targeting EMT and influences the prognosis of HCC patients. Therefore, miR-26a-5p has potential as a new biomarker and therapeutic target.
Collapse
Affiliation(s)
- L Chang
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, 430071, Wuhan, People's Republic of China
| | - K Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, 430071, Wuhan, People's Republic of China
| | - T Guo
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, 430071, Wuhan, People's Republic of China.
| |
Collapse
|
20
|
MicroRNAs as Biomarkers for Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:280. [PMID: 26927063 PMCID: PMC4813144 DOI: 10.3390/ijms17030280] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 01/19/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
Serum levels of liver enzymes, such as alanine transaminase, aspartate transaminase, and α-fetoprotein, provide insight into liver function and are used during treatment of liver disease, but such information is limited. In the case of hepatocellular carcinoma (HCC), which is often not detected until an advanced stage, more sensitive biomarkers may help to achieve earlier detection. Serum also contains microRNAs, a class of small non-coding RNAs that play an important role in regulating gene expression. miR-122 is specific to the liver and correlates strongly with liver enzyme levels and necroinflammatory activity, and other microRNAs are correlated with the degree of fibrosis. miR-122 has also been found to be required for hepatitis C virus (HCV) infection, whereas other microRNAs have been shown to play antiviral roles. miR-125a-5p and miR-1231 have been shown to directly target hepatitis B virus (HBV) transcripts, and others are up- or down-regulated in infected individuals. MicroRNA profiles also differ in the case of HBV and HCV infection as well as between HBeAg-positive and negative patients, and in patients with occult versus active HBV infection. In such patients, monitoring of changes in microRNA profiles might provide earlier warning of neoplastic changes preceding HCC.
Collapse
|
21
|
Natarajan SK, Pachunka JM, Mott JL. Role of microRNAs in Alcohol-Induced Multi-Organ Injury. Biomolecules 2015; 5:3309-38. [PMID: 26610589 PMCID: PMC4693280 DOI: 10.3390/biom5043309] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Alcohol consumption and its abuse is a major health problem resulting in significant healthcare cost in the United States. Chronic alcoholism results in damage to most of the vital organs in the human body. Among the alcohol-induced injuries, alcoholic liver disease is one of the most prevalent in the United States. Remarkably, ethanol alters expression of a wide variety of microRNAs that can regulate alcohol-induced complications or dysfunctions. In this review, we will discuss the role of microRNAs in alcoholic pancreatitis, alcohol-induced liver damage, intestinal epithelial barrier dysfunction, and brain damage including altered hippocampus structure and function, and neuronal loss, alcoholic cardiomyopathy, and muscle damage. Further, we have reviewed the role of altered microRNAs in the circulation, teratogenic effects of alcohol, and during maternal or paternal alcohol consumption.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Joseph M Pachunka
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
22
|
Zarfeshani A, Ngo S, Sheppard AM. MicroRNA Expression Relating to Dietary-Induced Liver Steatosis and NASH. J Clin Med 2015; 4:1938-50. [PMID: 26580662 PMCID: PMC4663477 DOI: 10.3390/jcm4111938] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
Health issues associated with excessive caloric intake and sedentary lifestyle are driving a modern “epidemic” of liver disease. Initially presenting in the clinic as an excessive accumulation of fat within hepatocyte cells (steatosis), the progression to more severe non-alcoholic steatohepatitis (NASH) in which liver damage and inflammation are overt features, is becoming increasingly common. Often developing as a sequela of obesity, non-alcoholic fatty liver disease (NAFLD) arises in almost one-third of people initially carrying excess hepatic fat and is likely the result of the liver’s limited capacity to cope with the modern-day levels of dietary fatty acids circulating in the blood. While routine imaging can readily assess the presence and level of “extra-hepatic fat”, a proper diagnosis of disease progression to NASH is currently only possible by liver biopsy. A general reluctance to undergo such screening means that the prevalence of NASH is likely to be under reported and, thus, risk assessment for future metabolic syndrome (MetS) markedly compromised. The seemingly inevitable progression to overt insulin resistance that characterizes MetS may in part be the consequence of the body’s attempt to cope with NAFLD by driving systemic insulin sensitivity and, thus, fatty acid breakdown. The potential significance of miRNAs in both physiological homeostasis and pathogenesis is increasingly appreciated and in the liver may contribute specifically to the regulation of lipid pathways and NAFLD progression. As such, they may have utility as molecular indicators for the accurate profiling of both initial risk and disease progression from simple steatosis to NASH, and further to fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Aida Zarfeshani
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| | - Sherry Ngo
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| | - Allan M Sheppard
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
23
|
Lv LY, Wang YZ, Zhang Q, Zang HR, Wang XJ. miR-539 induces cell cycle arrest in nasopharyngeal carcinoma by targeting cyclin-dependent kinase 4. Cell Biochem Funct 2015; 33:534-40. [PMID: 26559153 DOI: 10.1002/cbf.3152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Ling-yan Lv
- Department of Otolaryngology; Affiliated Liaocheng Second People Hospital, Taishan Medical College; Liaocheng China
| | - Yu-zhi Wang
- Department of Otolaryngology; Affiliated Liaocheng Second People Hospital, Taishan Medical College; Liaocheng China
| | - Qian Zhang
- Department of Spinal Surgery; Affiliated Liaocheng Second People Hospital, Taishan Medical College; Liaocheng China
| | - Hong-rui Zang
- Department of Otolaryngology; Beijing Tongren Hospital; Beijing China
| | - Xing-jie Wang
- Department of Otolaryngology; Affiliated Liaocheng Second People Hospital, Taishan Medical College; Liaocheng China
| |
Collapse
|
24
|
Wang Y, Liu Z, Zou W, Hong H, Fang H, Tong W. Molecular regulation of miRNAs and potential biomarkers in the progression of hepatic steatosis to NASH. Biomark Med 2015; 9:1189-200. [DOI: 10.2217/bmm.15.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that microRNAs regulate diverse biological functions in the liver and play a very important function in metabolic-related disorders such as nonalcoholic fatty liver disease via regulating their target genes expression. In this review, we summarized the most recent progress in identification of miRNAs involving in the progression of liver steatosis and discussed the possible mechanisms by which miRNAs contribute to the diverse pathogenic liver injuries. We provide insights into the functional network of miRNAs by connecting miRNAs, their targets and biological pathways associated to hepatic steatosis and fibrosis, with important implications for our understanding of phenotypic-based disease pathogenesis. We also discuss the possible roles and challenges of miRNAs as biomarkers for drug-induced liver injury.
Collapse
Affiliation(s)
- Yuping Wang
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Zhichao Liu
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Wen Zou
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Huixiao Hong
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Hong Fang
- Office of Scientific Coordination, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Weida Tong
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079, USA
| |
Collapse
|
25
|
Tan Y, Ge G, Pan T, Wen D, Gan J. Serum MiRNA panel as potential biomarkers for chronic hepatitis B with persistently normal alanine aminotransferase. Clin Chim Acta 2015; 451:232-9. [PMID: 26483130 DOI: 10.1016/j.cca.2015.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 02/09/2023]
Abstract
BACKGROUND Circulating miRNAs, a family of miRNAs existing in plasma and serum, have a great potential to serve as novel biomarkers in body fluids for non-invasive diagnosis and prognosis of many diseases. METHODS A multistage, case-control study was designed to establish a panel of serum miRNAs that could be surrogate markers for chronic hepatitis B with persistently normal alanine aminotransferase (ALT). A total of 295 CHB patients presenting persistently normal ALT levels with significant histological features (SPNALT group), 243 CHB patients presenting persistently normal ALT levels with no significant histological features (NSPNALT group), and 178 healthy controls (healthy group) were enrolled in the study. An initial screening of miRNAs was performed by Illumina sequencing using serum samples pooled from SPNALT patients and controls. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) assay was performed to evaluate the expression of selected miRNAs. A logistic regression model was constructed using a training cohort (n=380) and validated using a cohort (n=258). The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. RESULTS We identified 9 miRNAs (hsa-miR-885-5p, hsa-miR-122-5p, hsa-miR-10a-5p, hsa-miR-511-5p, hsa-miR-574-5p, hsa-miR-98-5p, hsa-miR-26a-5p, hsa-miR-192-5p, hsa-miR-30b-5p) and established 3 miRNA panels that provided high diagnostic accuracy for SPNALT. The AUC of miRNA panels for SPNALT vs. healthy was 0.882 (95% CI=0.839 to 0.925), for SPNALT vs. NSPNALT was 0.894 (95% CI=0.857 to 0.930), and for SPNALT vs. control was 0.860 (95% CI=0.821 to 0.899). CONCLUSIONS We constructed serum miRNA panels with considerable clinical value in diagnosing PNALT.
Collapse
Affiliation(s)
- Youwen Tan
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China.
| | - Guohong Ge
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Tengli Pan
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Danfeng Wen
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Jianhe Gan
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| |
Collapse
|
26
|
Xu Y, Zhao C, Sun X, Liu Z, Zhang J. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise. Biochem Biophys Res Commun 2015; 467:103-8. [PMID: 26408907 DOI: 10.1016/j.bbrc.2015.09.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C2C12 myocytes by targeting the 3'-UTR of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise.
Collapse
Affiliation(s)
- Yanli Xu
- Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei, China
| | - Chaoxian Zhao
- Medical College of Hebei Engineering University, Handan, 056002, Hebei, China
| | - Xuewen Sun
- Medical College of Hebei Engineering University, Handan, 056002, Hebei, China
| | - Zhijun Liu
- Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei, China.
| | - Jianzhong Zhang
- National Institute for Communicable Disease Control and Prevention (ICDC), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
| |
Collapse
|
27
|
Dai W, Zhao J, Tang N, Zeng X, Wu K, Ye C, Shi J, Lu C, Ning B, Zhang J, Lin Y. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously preventing EMT process and ERK1 signalling pathway. Liver Int 2015; 35:1234-43. [PMID: 25142507 DOI: 10.1111/liv.12660] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/13/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Epithelial-mesenchymal transition (EMT) process and extracellular signal-regulated kinase 1 (ERK1) signalling pathway play pivotal roles in hepatic stellate cell (HSC) activation, which is associated with the altered expression patterns of microRNAs (miRNAs). miR-155 is considered a typical multifunctional miRNA to regulate many biological processes. However, little attention has been given to the contributions of miR-155 to simultaneous regulation of EMT process and ERK1 pathway during HSC activation. METHODS Differential expression of miR-155 was assessed in activated HSC, sera and liver tissues from cirrhotic patients. Whether miR-155 could directly interact with 3'-untranslated region (3'-UTR) of T cell factor 4 (TCF4) and angiotensin II receptor type 1 (AGTR1) respectively was detected by luciferase reporter assay. The effects of enhanced miR-155 on EMT process and ERK1 pathway, cell apoptosis in HSC activation were also evaluated. RESULTS A significant decrease in miR-155 expression was observed in activated HSC, sera or liver tissues of cirrhotic patients. MiR-155 was found to simultaneously interact with 3'-UTR of TCF4 and AGTR1 mRNAs, which are known as important regulators associated with EMT and ERK1 pathway repectively. Inhibiting miR-155 expression could stimulate the EMT state and ERK1 pathway activity, thus contributing to HSC activation. Forced miR-155 expression markedly decreased the mesenchymal markers and phosphorylated ERK1 level, and enhanced E-cadherin expression, leading to the synchronous inhibitory effect on EMT and ERK1 pathway and inducing HSC apoptosis. CONCLUSIONS Our results implicate that miR-155 plays an important role in regulating the pathological network involving EMT process and ERK1 pathway during HSC activation.
Collapse
Affiliation(s)
- Weiping Dai
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tan Y, Pan T, Ye Y, Ge G, Chen L, Wen D, Zou S. Serum microRNAs as potential biomarkers of primary biliary cirrhosis. PLoS One 2014; 9:e111424. [PMID: 25347847 PMCID: PMC4210265 DOI: 10.1371/journal.pone.0111424] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Circulating microRNAs (miRNAs), which are extremely stable and protected from RNAse-mediated degradation in body fluids, have emerged as candidate biomarkers for many diseases. The present study aimed to identify a serum microRNA (miRNA) expression profile that could serve as a novel diagnostic biomarker for primary biliary cirrhosis (PBC). METHODS Serum miRNA expression was investigated using four cohorts comprising 380 participants (healthy controls and patients with PBC) recruited between August 2010 and June 2013. miRNA expression was initially analyzed by Illumina sequencing using serum samples pooled from 3 patients and 3 controls. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was then used to evaluate the expression of selected miRNAs in a screening set (n = 40). A logistic regression model was then constructed using a training cohort (n = 192) and validated using another cohort (n = 142). The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. RESULTS We identified a miRNA panel (hsa-miR-122-5p, hsa-miR-141-3p, and hsa-miR-26b-5p) with a high diagnostic accuracy for PBC (AUC = 0.905, 95% confidence interval (CI) = 0.857 to 0.953; sensitivity = 80.5%, specificity = 88.3%). There was a significant difference between AUC values of the miRNA panel and those of alkaline phosphatase (ALP) (AUC = 0.537, difference between areas = 0.314, 95% CI = 0.195 to 0.434, P<0.001), and those of antinuclear antibody (ANA) (AUC = 0.739, difference between areas = 0.112, 95% CI = 0.012 to 0.213, P = 0.0282). CONCLUSION We identified a serum microRNA panel with considerable clinical value in PBC diagnosis. The results indicate that the miRNA panel is a more sensitive and specific biomarker for PBC than ALP and ANA.
Collapse
Affiliation(s)
- Youwen Tan
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Tengli Pan
- Department of Infection, The People’s Hospital of Bozhou, Bozhou, China
| | - Yun Ye
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Guohong Ge
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Li Chen
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Danfeng Wen
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Shengqiang Zou
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| |
Collapse
|
29
|
Zhao J, Tang N, Wu K, Dai W, Ye C, Shi J, Zhang J, Ning B, Zeng X, Lin Y. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One 2014; 9:e108005. [PMID: 25303175 PMCID: PMC4193742 DOI: 10.1371/journal.pone.0108005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 08/24/2014] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNA-21 (miR-21) plays an important role in the pathogenesis and progression of liver fibrosis. Here, we determined the serum and hepatic content of miR-21 in patients with liver cirrhosis and rats with dimethylnitrosamine-induced hepatic cirrhosis and examined the effects of miR-21 on SPRY2 and HNF4α in modulating ERK1 signaling in hepatic stellate cells (HSCs) and epithelial-mesenchymal transition (EMT) of hepatocytes. Methods Quantitative RT-PCR was used to determine miR-21 and the expression of SPRY2, HNF4α and other genes. Immunoblotting assay was carried out to examine the expression of relevant proteins. Luciferase reporter assay was performed to assess the effects of miR-21 on its predicted target genes SPRY2 and HNF4α. Primary HSCs and hepatocytes were treated with miR-21 mimics/inhibitors or appropriate adenoviral vectors to examine the relation between miR-21 and SPRY2 or HNF4α. Results The serum and hepatic content of miR-21 was significantly higher in cirrhotic patients and rats. SPRY2 and HNF4α mRNA levels were markedly lower in the cirrhotic liver. MiR-21 overexpression was associated with enhanced ERK1 signaling and EMT in liver fibrosis. Luciferase assay revealed suppressed SPRY2 and HNF4α expression by miR-21. Ectopic miR-21 stimulated ERK1 signaling in HSCs and induced hepatocyte EMT by targeting SPRY2 or HNF4α. Downregulating miR-21 suppressed ERK1 signaling, inhibited HSC activation, and blocked EMT in TGFβ1-treated hepatocytes. Conclusions MiR-21 modulates ERK1 signaling and EMT in liver fibrosis by regulating SPRY2 and HNF4α expression. MiR-21 may serve as a potentially biomarker as well as intervention target for hepatic cirrhosis.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Nan Tang
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kaiming Wu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weiping Dai
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Changhong Ye
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Shi
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junping Zhang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Beifang Ning
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xin Zeng
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (YL); (XZ)
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (YL); (XZ)
| |
Collapse
|
30
|
Tan Y, Ge G, Pan T, Wen D, Chen L, Yu X, Zhou X, Gan J. A serum microRNA panel as potential biomarkers for hepatocellular carcinoma related with hepatitis B virus. PLoS One 2014; 9:e107986. [PMID: 25238238 PMCID: PMC4169601 DOI: 10.1371/journal.pone.0107986] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/16/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The identification of new high-sensitivity and high-specificity markers for HCC are essential. We aimed to identify serum microRNAs (miRNAs) as biomarkers to be used in diagnosing hepatitis B virus (HBV) -related hepatocellular carcinoma (HCC). METHODS We investigated serum miRNA expression in (261 HCC patients, 233 cirrhosis patients, and 173 healthy controls), recruited between August 2010 and June 2013. An initial screening of miRNA expression by Illumina sequencing was performed using serum samples pooled from HCC patients and controls. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was used to evaluate the expression of selected miRNAs. A logistic regression model was constructed using a training cohort (n = 357) and then validated using an independent cohort (n = 241). The area under the receiver operating characteristic curve (AUC) was used to evaluate the accuracy of the use of the biomarkers for disease diagnosis. RESULTS We identified 8 miRNAs (hsa-miR-206, hsa-miR-141-3p, hsa-miR-433-3p, hsa-miR-1228-5p, hsa-miR-199a-5p, hsa-miR-122-5p, hsa-miR-192-5p, and hsa-miR-26a-5p) and constructed an miRNA set that provided high diagnostic accuracy for HCC (AUC = 0.887 and 0.879 for training and validation sets, respectively). The miRNAs could also be used to differentiate HCC patients from healthy (AUC = 0.893) and cirrhosis (AUC = 0.892) patients. CONCLUSIONS We identified a serum of miRNA panel that has considerable clinical value in HCC diagnosis.
Collapse
Affiliation(s)
- Youwen Tan
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- * E-mail:
| | - Guohong Ge
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Tengli Pan
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Danfeng Wen
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Li Chen
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Xuejun Yu
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Xinbei Zhou
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Jianhe Gan
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Tan Y, Ge G, Pan T, Wen D, Gan J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS One 2014; 9:e105192. [PMID: 25141008 PMCID: PMC4139327 DOI: 10.1371/journal.pone.0105192] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/19/2014] [Indexed: 12/12/2022] Open
Abstract
Background The invasive nature of liver biopsy makes the histopathological diagnosis of non-alcoholic fatty liver disease (NAFLD) difficult and its diagnostic performance unsatisfactory. The present study aimed to identify a serum microRNA (miRNA) expression profile that could serve as a novel diagnostic biomarker for NAFLD. Methods Serum miRNA expression was investigated using three cohorts comprising 465 participants (healthy controls and NAFLD patients) recruited between August 2010 and June 2013. miRNA expression was initially screened by Illumina sequencing using serum samples pooled from 20 patients and 20 controls. Quantitative reverse transcriptase polymerase chain reaction assay was then used to evaluate the expression of selected miRNAs. A logistic regression model was constructed using a training cohort (n = 242) and validated using another cohort (n = 183). The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. Results We identified an miRNA panel (hsa-miR-122-5p, hsa-miR-1290, hsa-miR-27b-3p, and hsa-miR-192-5p) with a high diagnostic accuracy for NAFLD. The satisfactory diagnostic performance of the miRNA panel remained regardless of the NAFLD activity score (NAS) status. There was significant difference between the AUC values of the miRNA panel and those of ALT (AUC = 0.786, 95% CI = 0.717–0.855; P = 0.142) and FIB-4 (AUC = 0.795, 95% CI = 0.730–0.860; sensitivity = 69.9%, specificity = 83.7%. Conclusion We identified a serum microRNA panel with considerable clinical value in NAFLD diagnosis. The results indicate that the miRNA panel is a more sensitive and specific biomarker for NAFLD than ALT and FIB-4.
Collapse
Affiliation(s)
- Youwen Tan
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Guohong Ge
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Tengli Pan
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Danfeng Wen
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Jianhe Gan
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
32
|
Francis H, McDaniel K, Han Y, Liu X, Kennedy L, Yang F, McCarra J, Zhou T, Glaser S, Venter J, Huang L, Levine P, Lai JM, Liu CG, Alpini G, Meng F. Regulation of the extrinsic apoptotic pathway by microRNA-21 in alcoholic liver injury. J Biol Chem 2014; 289:27526-39. [PMID: 25118289 DOI: 10.1074/jbc.m114.602383] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IL-6/Stat3 is associated with the regulation of transcription of key cellular regulatory genes (microRNAs) during different types of liver injury. This study evaluated the role of IL-6/Stat3 in regulating miRNA and miR-21 in alcoholic liver disease. By microarray, we identified that ethanol feeding significantly up-regulated 0.8% of known microRNAs in mouse liver compared with controls, including miR-21. Similarly, the treatment of normal human hepatocytes (N-Heps) and hepatic stellate cells (HSCs) with ethanol and IL-6 significantly increased miR-21 expression. Overexpression of miR-21 decreased ethanol-induced apoptosis in both N-Heps and HSCs. The expression level of miR-21 was significantly increased after Stat3 activation in N-Heps and HSCs, in support of the concept that the 5'-promoter region of miR-21 is regulated by Stat3. Using real time PCR, we confirmed that miR-21 activation is associated with ethanol-linked Stat3 binding of the miR-21 promoter. A combination of bioinformatics, PCR array, dual-luciferase reporter assay, and Western blot analysis revealed that Fas ligand (TNF superfamily, member 6) (FASLG) and death receptor 5 (DR5) are the direct targets of miR-21. Furthermore, inhibition of miR-21 by specific Vivo-Morpholino and knock-out of IL-6 in ethanol-treated mice also increased the expression of DR5 and FASLG in vivo during alcoholic liver injury. The identification of miR-21 as an important regulator of hepatic cell survival, transformation, and remodeling in vitro, as well as its upstream modulators and downstream targets, will provide insight into the involvement of altered miRNA expression in contributing to alcoholic liver disease progression and testing novel therapeutic approaches for human alcoholic liver diseases.
Collapse
Affiliation(s)
- Heather Francis
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Kelly McDaniel
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Yuyan Han
- the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Xiuping Liu
- the Department of Experimental Therapeutics, Division of Cancer Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Lindsey Kennedy
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Fuquan Yang
- the Department of Hepatobiliary Surgery, Shengjing Hospital, China Medical University, Shenyang 100004, China, and
| | - Jennifer McCarra
- the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Tianhao Zhou
- the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Shannon Glaser
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Julie Venter
- the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Li Huang
- the Department of Hepatobiliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Phillip Levine
- the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504
| | - Jia-Ming Lai
- the Department of Hepatobiliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chang-Gong Liu
- the Department of Experimental Therapeutics, Division of Cancer Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Gianfranco Alpini
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504,
| | - Fanyin Meng
- From the Research, Central Texas Veterans Health Care System and the Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center College of Medicine and Scott & White Hospital, Temple, Texas 76504,
| |
Collapse
|
33
|
Li L, Lu DZ, Li YM, Zhang XQ, Zhou XX, Jin X. Proteomic analysis of liver mitochondria from rats with nonalcoholic steatohepatitis. World J Gastroenterol 2014; 20:4778-4786. [PMID: 24782632 PMCID: PMC4000516 DOI: 10.3748/wjg.v20.i16.4778] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/07/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore mitochondrial dysfunction in nonalcoholic steatohepatitis (NASH) by analyzing the proteome of liver mitochondria from a NASH model.
METHODS: The NASH rat model was established by feeding rats a fat-rich diet for 24 wk and was confirmed using hematoxylin and eosin staining of liver tissue and by changes in the levels of serum alanine transaminase, aspartate aminotransferase, triglyceride, total cholesterol and other markers. Liver mitochondria from each group were isolated using differential centrifugation. The mitochondrial samples were lyzed, purified and further analyzed using two-dimensional electrophoresis combined with matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Bioinformatic analyses of assigned gene ontology and biological pathway was used to study functional enrichments in the abundant proteomic data.
RESULTS: Eight up-regulated and sixteen down-regulated proteins were identified that showed greater than 1.5-fold differences between the controls and the NASH group. These dysregulated proteins were predicted to be involved in different metabolic processes including fatty acid β-oxidation processes, lipid metabolic processes, cell-cycle arrest, cell polarity maintenance, and adenosine triphosphate/sex hormone metabolic processes. Novel proteins that may be involved in NASH pathogenesis including the trifunctional enzyme Hadha, thyroxine, prohibitin, aldehyde dehydrogenase ALDH1L2, UDP-glucuronosyltransferase 2B31, and carbamoyl-phosphate synthase were identified using bioinformatics tools. The decreased expression of Hadha in NASH liver was verified by Western blotting, which was used as a complementary technique to confirm the proteomic results.
CONCLUSION: This novel report on the liver mitochondrial proteome of a NASH model may provide a reservoir of information on the pathogenesis and treatment of NASH.
Collapse
|
34
|
Huang J, Sun Z, Yan W, Zhu Y, Lin Y, Chen J, Shen B, Wang J. Identification of microRNA as sepsis biomarker based on miRNAs regulatory network analysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:594350. [PMID: 24809055 PMCID: PMC3997997 DOI: 10.1155/2014/594350] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/03/2014] [Indexed: 11/17/2022]
Abstract
Sepsis is regarded as arising from an unusual systemic response to infection but the physiopathology of sepsis remains elusive. At present, sepsis is still a fatal condition with delayed diagnosis and a poor outcome. Many biomarkers have been reported in clinical application for patients with sepsis, and claimed to improve the diagnosis and treatment. Because of the difficulty in the interpreting of clinical features of sepsis, some biomarkers do not show high sensitivity and specificity. MicroRNAs (miRNAs) are small noncoding RNAs which pair the sites in mRNAs to regulate gene expression in eukaryotes. They play a key role in inflammatory response, and have been validated to be potential sepsis biomarker recently. In the present work, we apply a miRNA regulatory network based method to identify novel microRNA biomarkers associated with the early diagnosis of sepsis. By analyzing the miRNA expression profiles and the miRNA regulatory network, we obtained novel miRNAs associated with sepsis. Pathways analysis, disease ontology analysis, and protein-protein interaction network (PIN) analysis, as well as ROC curve, were exploited to testify the reliability of the predicted miRNAs. We finally identified 8 novel miRNAs which have the potential to be sepsis biomarkers.
Collapse
Affiliation(s)
- Jie Huang
- Systems Sepsis Biology Team, Soochow University Affiliated Children's Hospital, Suzhou 215003, China
| | - Zhandong Sun
- Systems Sepsis Biology Team, Soochow University Affiliated Children's Hospital, Suzhou 215003, China
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Wenying Yan
- Center for Systems Biology, Soochow University, Suzhou 215006, China
- Suzhou Zhengxing Translational Biomedical Informatics Ltd., Taicang 215400, China
- Taicang Center for Translational Bioinformatics, Taicang 215400, China
| | - Yujie Zhu
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Jiajai Chen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
- Taicang Center for Translational Bioinformatics, Taicang 215400, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Jian Wang
- Systems Sepsis Biology Team, Soochow University Affiliated Children's Hospital, Suzhou 215003, China
| |
Collapse
|
35
|
Kato I, Startup J, Ram JL. Fecal Biomarkers for Research on Dietary and Lifestyle Risk Factors in Colorectal Cancer Etiology. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0195-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|