1
|
Xie Y, Wang C. Herb-drug interactions between Panax notoginseng or its biologically active compounds and therapeutic drugs: A comprehensive pharmacodynamic and pharmacokinetic review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116156. [PMID: 36754189 DOI: 10.1016/j.jep.2023.116156] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbs, along with the use of herb-drug interactions (HDIs) to combat diseases, are increasing in popularity worldwide. HDIs have two effects: favorable interactions that tend to improve therapeutic outcomes and/or minimize the toxic effects of drugs, and unfavorable interactions aggravating the condition of patients. Panax notoginseng (Burk.) F.H. Chen is a medicinal plant that has long been commonly used in traditional Chinese medicine to reduce swelling, relieve pain, clear blood stasis, and stop bleeding. Numerous studies have demonstrated the existence of intricate pharmacodynamic (PD) and pharmacokinetic (PK) interactions between P. notoginseng and conventional drugs. However, these HDIs have not been systematically summarized. AIM OF THE REVIEW To collect the available literature on the combined applications of P. notoginseng and drugs published from 2005 to 2022 and summarize the molecular mechanisms of interactions to circumvent the potential risks of combination therapy. MATERIALS AND METHODS This work was conducted by searching PubMed, Scopus, Web of Science, and CNKI databases. The search terms included "notoginseng", "Sanqi", "drug interaction," "synergy/synergistic", "combination/combine", "enzyme", "CYP", and "transporter". RESULTS P. notoginseng and its bioactive ingredients interact synergistically with numerous drugs, including anticancer, antiplatelet, and antimicrobial agents, to surmount drug resistance and side effects. This review elaborates on the molecular mechanisms of the PD processed involved. P. notoginseng shapes the PK processes of the absorption, distribution, metabolism, and excretion of other drugs by regulating metabolic enzymes and transporters, mainly cytochrome P450 enzymes and P-glycoprotein. This effect is a red flag for drugs with a narrow therapeutic window. Notably, amphipathic saponins in P. notoginseng act as auxiliary materials in drug delivery systems to enhance drug solubility and absorption and represent a new entry point for studying interactions. CONCLUSION This article provides a comprehensive overview of HDIs by analyzing the results of the in vivo and in vitro studies on P. notoginseng and its bioactive components. The knowledge presented here offers a scientific guideline for investigating the clinical importance of combination therapies. Physicians and patients need information on possible interactions between P. notoginseng and other drugs, and this review can help them make scientific predictions regarding the consequences of combination treatments.
Collapse
Affiliation(s)
- Yujuan Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Shin JW, Lee ER, Noh H, Kwak J, Gal JY, Park HJ, Kim S, Song HK, Seo K, Han BS. Novel Herbal Therapeutic YH23537 Improves Clinical Parameters in Ligature-Induced Periodontal Disease Model in Beagle Dogs. Int J Dent 2023; 2023:8130287. [PMID: 37159594 PMCID: PMC10163972 DOI: 10.1155/2023/8130287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/11/2023] Open
Abstract
Currently, available medicine does not satisfy the clinical unmet needs of periodontal disease. Therefore, novel drugs with improved efficacy profiles are needed. We previously demonstrated that YH14642, water extracts of Notoginseng Radix and Rehmanniae Radix Preparata, improved probing depths in double-blind phase II clinical trial. However, it still has hurdles for commercialization due to the low efficiency of active compound extraction. To resolve this issue, we developed YH23537 through process optimization to extract active compounds efficiently while still achieving the chemical profile of YH14642. In this study, we investigated the therapeutic effects of YH23537 compared with YH14642 using a canine model of ligature-induced periodontitis. Human gingival fibroblast (hGF) cells were treated with various concentrations of YH23537 or YH14642 with lipopolysaccharide (LPS) for 24 hr. IL-6 and IL-8 levels in the conditioned media were determined using Luminex. Sixteen 3-year-old male beagle dogs had their teeth scaled and polished using a piezo-type ultrasonic scaler under general anesthesia and brushed once daily for the following 2 weeks. Two weeks after the scaling procedure, the left upper second premolar (PM2), third premolar (PM3), and fourth premolar (PM4) as well as the left lower PM3, PM4, and first molar (M1) were ligated with silk-wire twisted ligatures. The dogs were fed with soft moistened food to induce periodontitis for 8 weeks, and the ligatures were then removed. YH23537 and YH14642 were administered for 4 weeks, and clinical periodontal parameters such as plaque index (PI), gingival index (GI), probing depth (PD), clinical attachment level (CAL), and bleeding on probing (BoP) were determined before and 1, 2, 3, and 4 weeks after treatment. YH23537 inhibited IL-6 and IL-8 secretion in a dose-dependent manner in hGF cells stimulated with LPS. The IC50 values for YH23537 were 43 and 54 μg/ml for IL-6 and IL-8, respectively, while the values for YH14642 were 104 and 117 μg/ml, respectively. In the animal study, clinical parameters including GI, PD, CAL, and BoP were significantly increased after 8 weeks of ligature-induced periodontitis. The YH23537 300 and YH23537 900 mg groups had significant improvements in CAL from 1 to 4 weeks after treatment in comparison to the placebo group. GR values in the YH23537 900 mg group were decreased throughout the treatment period. GI values were also reduced significantly after 4-week treatment with 300 and 900 mg of YH23537. YH23537 at 300 mg doses showed comparable efficacy for CAL and GR with 1,000 mg of YH14642. YH23537 showed therapeutic efficacy against periodontitis in dogs, mediated by anti-inflammatory effects. These findings indicate that YH23537 has the potential for further development as a new drug for patients suffering from periodontal disease.
Collapse
Affiliation(s)
- Jang-Woo Shin
- Yuhan R&D Institute, 25 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si 446-902, Gyeonggi-do, Republic of Korea
| | - Eui-Ri Lee
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Hyunwoo Noh
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jiyoon Kwak
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Ji-Yeong Gal
- Yuhan R&D Institute, 25 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si 446-902, Gyeonggi-do, Republic of Korea
| | - Hyun-Je Park
- Yuhan Natural Product R&D Center, Yuhan Care Co., Ltd., 25 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seongkyu Kim
- Yuhan R&D Institute, 25 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si 446-902, Gyeonggi-do, Republic of Korea
| | - Hyun-Kyung Song
- Department of Bio Applied Toxicology, Toxicology Research Center, Hoseo University, 20 Hoseo-ro, 79 Beon-gil, Baebang-eup, Asan-si, Chungcheongnam–do, Republic of Korea
| | - Kangmoon Seo
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Beom Seok Han
- Department of Bio Applied Toxicology, Toxicology Research Center, Hoseo University, 20 Hoseo-ro, 79 Beon-gil, Baebang-eup, Asan-si, Chungcheongnam–do, Republic of Korea
| |
Collapse
|
3
|
Florenly F, Sugianto L, Lister INE, Girsang E, Ginting CN, Afifah E, Kusuma H, Rizal R, Widowati W. Protective Effect of Eugenol against Acetaminophen-Induced Hepatotoxicity in Human Hepatocellular Carcinoma Cells via Antioxidant, Anti-Inflammatory, and Anti-Necrotic Potency. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Overdoses acetaminophen (APAP) could cause acute liver failure, even though it used is for analgesics. APAP could cause hepatotoxicity due to multiple mediators of inflammation and oxidative stress. Eugenol has been reported to have anti-inflammatory and antioxidant activity but its hepatoprotective effect has not been widely reported.
AIM: The purpose of this research is to know if eugenol could protect HepG2 cells from APAP.
METHODS: HepG2 that induced by APAP as hepatotoxicity cells model was treated by using eugenol at 6.25 and 25 μg/mL. The protective effects of eugenol toward hepatotoxicity were evaluated by determine tumor necrosis factor-α (TNF-α) concentration, apoptotic activity, reactive oxygen species (ROS) level, also cytochrome (CYP)2E1 and GPX gene expression.
RESULTS: Eugenol at 6.25 and 25 μg/mL concentration can reduce TNF-α concentration, the apoptotic, necrotic, dead cells, and ROS level. Besides it can increase the gene expression (GPX and CYP2E1). The best hepatoprotective effect was found when using the eugenol at 25 μg/mL.
CONCLUSION: Therefore, eugenol can be used to protect HepG2 cells against APAP.
Collapse
|
4
|
Wang W, Huang L, Thomas ER, Hu Y, Zeng F, Li X. Notoginsenoside R1 Protects Against the Acrylamide-Induced Neurotoxicity via Upregulating Trx-1-Mediated ITGAV Expression: Involvement of Autophagy. Front Pharmacol 2020; 11:559046. [PMID: 32982756 PMCID: PMC7493052 DOI: 10.3389/fphar.2020.559046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023] Open
Abstract
Acrylamide (ACR) is a common chemical used in various industries and it said to have chronic neurotoxic effects. It is produced during tobacco smoking and is also generated in high-starch foods during heat processing. Notoginsenoside R1 (NR1) is a traditional Chinese medicine, which is used to improve the blood circulation and clotting. The objective of this study was to investigate the mechanism of ACR-triggered neurotoxicity and to identify the protective role of NR1 by upregulating thioredoxin-1 (Trx-1). Our results have shown that NR1 could block the spatial and cognitive impairment caused by ACR administration. Bioinformatics analysis revealed that Trx-1 regulated autophagy via Integrin alpha V (ITGAV). NR1 could resist the ACR-induced neurotoxicity by upregulating thioredoxin-1 in PC12 cells and mice. The autophagy-related proteins like autophagy-related gene (ATG) 4B, Cathepsin D, LC3 II, lysosomal-associated membrane protein 2a (LAMP2a), and ITGAV were restored to normal levels by NR1 treatment in both PC12 cells and mice. Besides, we also found that overexpression of Trx-1 resisted ACR-induced autophagy in PC12 cells and downregulation of Trx-1 triggered autophagy induced by ACR in PC12 cells. Therefore, it could be concluded that Trx-1 was involved in the autophagy pathway. Besides, we also found that ITGAV was an intermediate node linking Trx-1 and the autophagy pathway.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China.,Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Lu Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | | | - Yingying Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Hussain S, Ashafaq M, Alshahrani S, Siddiqui R, Ahmed RA, Khuwaja G, Islam F. Cinnamon oil against acetaminophen-induced acute liver toxicity by attenuating inflammation, oxidative stress and apoptosis. Toxicol Rep 2020; 7:1296-1304. [PMID: 33024703 PMCID: PMC7528057 DOI: 10.1016/j.toxrep.2020.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023] Open
Abstract
Acetaminophen (APAP) is used as a primary drug due to its antipyretic and analgesic activity. The mechanism of action of APAP toxicity in the liver is due to the depletion of glutathione which elicited free radicals generation. Therefore, the objective of our work is to investigate the APAP induced liver damage and its repair by free radical scavenging activity of cinnamon oil (CO) in male Wistar rats. To investigate the effects of CO at different doses (50, 100 and 200 mg/kg b.w.), animals were given a single oral dose of CO per day for 14 days between 12:00-1:00 PM. The biochemical changes, imbalance in oxidative markers, interleukins, caspases and histopathological studies were determined for quantifying the hepatoprotective effect of CO. One dose of APAP (2 g/kg b.w.) results in significant hepatotoxicity and marked increase the serum markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, albumin, total protein, content of lipid peroxidation (LPO), interleukins (IL-1β, IL-6), caspase-3, -9 expression, DNA fragmentation and histopathological changes were observed. Significant decrease in the levels of LPO, interleukins IL-1β, IL-6, caspase-3, -9 expressions, qualitative as well as quantitative determination of DNA fragments and histopathological changes were reversed by the administration of CO dose dependently. Furthermore, it also restores the depleted activity of antioxidative enzymes. Our study shows that an imbalance in the oxidative parameter in the liver by APAP is restored by treating the animals with CO.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- ANOVA, analysis of variance
- APAP, N-acetyl-p-aminophenol
- AST, aspartate aminotransferase
- Acetaminophen
- BHA, butylated hydroxyanisole
- CO, cinnamon oil
- Cinnamon oil
- DNA fragmentation
- GPx, glutathione peroxidase
- GR, glutathione reductase
- GSH, glutathione
- Hepatotoxicity
- LPO, lipid peroxidation
- MDA, malondialdehyde
- MEC, molar extinction coefficient
- NAPQI, N-acetyl parabenzoquinoneimine
- Oxidative stress
- PMS, post mitochondrial supernatants
- SOD, superoxide dismutase
Collapse
Affiliation(s)
- Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Mohammed Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Rahimullah Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Saudi Arabia
| | - Fakhrul Islam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Saudi Arabia
| |
Collapse
|
6
|
Yun M, Yi YS. Regulatory roles of ginseng on inflammatory caspases, executioners of inflammasome activation. J Ginseng Res 2019; 44:373-385. [PMID: 32372859 PMCID: PMC7195600 DOI: 10.1016/j.jgr.2019.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an immune response that protects against pathogens and cellular stress. The hallmark of inflammatory responses is inflammasome activation in response to various stimuli. This subsequently activates downstream effectors, that is, inflammatory caspases such as caspase-1, 4, 5, 11, and 12. Extensive efforts have been made on developing effective and safe anti-inflammatory therapeutics, and ginseng has long been traditionally used as efficacious and safe herbal medicine in treating various inflammatory and inflammation-mediated diseases. Many studies have successfully shown that ginseng plays an anti-inflammatory role by inhibiting inflammasomes and inflammasome-activated inflammatory caspases. This review discusses the regulatory roles of ginseng on inflammatory caspases in inflammatory responses and also suggests new research areas on the anti-inflammatory function of ginseng, which provides a novel insight into the development of ginseng as an effective and safe anti-inflammatory herbal medicine.
Collapse
Key Words
- AIM2, Absent in melanoma 2
- ASC, Apoptosis-associated speck-like protein containing CARD
- CARD, C-terminal caspase recruit domain
- COX-2, Cyclooxygenase-2
- Caspase, Cysteine aspartate–specific protease
- DAMP, Danger-associated molecular pattern
- FIIND, Functional-to-find domain
- GSDMD, Gasdermin D
- Ginseng
- Ginsenoside
- HIN, Hematopoietic interferon-inducible nuclear protein
- IL, Interleukin
- Inflammasome
- Inflammation
- Inflammatory caspase
- LPS, Lipopolysaccharide
- LRR, Leucine-rich repeat
- NACHT, Nucleotide-binding and oligomerization domain
- NF-κB, Nuclear factor-kappa B
- NLR, Nucleotide-binding oligomerization domain-like receptor
- NO, Nitric oxide
- PAMP, Pathogen-associated molecular pattern
- PGE2, Prostaglandin E2
- PRR, Pattern-recognition receptor
- PYD, N-terminal pyrin domain
- RGE, Korean Red Ginseng
- ROS, Reactive oxygen species
Collapse
Affiliation(s)
- Miyong Yun
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, Republic of Korea
| | - Young-Su Yi
- Department of Life Science, Kyonggi University, Suwon, Republic of Korea
| |
Collapse
|
7
|
Xu XY, Wang Z, Ren S, Leng J, Hu JN, Liu Z, Chen C, Li W. Improved protective effects of American ginseng berry against acetaminophen-induced liver toxicity through TNF-α-mediated caspase-3/-8/-9 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:128-138. [PMID: 30466610 DOI: 10.1016/j.phymed.2018.09.234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/23/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Similar to the leaves of P. Quinquefolius, American ginseng berry (AGB) is another important part of P. Quinquefolius with alternative therapeutic potential. The liver protection capabilities of the former have been demonstrated previously, however, the later has not yet been evaluated. PURPOSE Based on our previous observation, the present work was designed to evaluate the hepatic protective effects for novel mechanisms of AGB in acetaminophen (APAP)-induced liver injury in vivo. STUDY DESIGN/METHODS All mice were divided into four groups as follows: normal group, APAP group and APAP + AGB (150 mg/kg and 300 mg/kg) groups. AGB were orally administered for one week before exposure to APAP (250 mg/kg). Severe liver injury was observed and hepatotoxicity was evaluated after 24 h through evaluating the biochemical markers, protein expressions levels and liver histopathology. RESULTS Our study results clearly demonstrated that AGB pretreatment ameliorated APAP-induced hepatic injury as evidenced by decreasing plasma alanine aminotransferase (ALT), aspartate transaminase (AST), tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) compared to the APAP group. Western blotting analysis showed that pretreatment with AGB decreased the expressions levels of TNF-α and nuclear transcription factor-κB (NF-κB p65) in liver tissues. Meanwhile, the protein expression levels of caspases, cytochrome c, and Bax were elevated by AGB treatment for seven days, while the protein expression level of Bcl-2 was inhibited comparison with that in APAP group. Furthermore, supplement of AGB resulted in increase of superoxide dismutase (SOD) and glutathione (GSH), while decrease of malondialdehyde (MDA) content and the expression levels of 4-hydroxynonenal (4-HNE) and cytochrome P450 E1 (CYP2E1). The results of histopathological staining demonstrated that AGB pretreatment inhibited APAP-induced hepatocyte infiltration, congestion, and necrosis. CONCLUSION The present study demonstrated that AGB pretreatment protected liver cells against APAP-induced hepatotoxicity through inhibition of oxidative stress, inflammation responses via TNF-α-mediated caspase-3/-8/-9 signaling pathways.
Collapse
Affiliation(s)
- Xing-Yue Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Leng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| |
Collapse
|
8
|
Subramanya SB, Venkataraman B, Meeran MFN, Goyal SN, Patil CR, Ojha S. Therapeutic Potential of Plants and Plant Derived Phytochemicals against Acetaminophen-Induced Liver Injury. Int J Mol Sci 2018; 19:ijms19123776. [PMID: 30486484 PMCID: PMC6321362 DOI: 10.3390/ijms19123776] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/02/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Acetaminophen (APAP), which is also known as paracetamol or N-acetyl-p-aminophenol is a safe and potent drug for fever, pain and inflammation when used at its normal therapeutic doses. It is available as over-the-counter drug and used by all the age groups. The overdose results in acute liver failure that often requires liver transplantation. Current clinical therapy for APAP-induced liver toxicity is the administration of N-acetyl-cysteine (NAC), a sulphydryl compound an approved drug which acts by replenishing cellular glutathione (GSH) stores in the liver. Over the past five decades, several studies indicate that the safety and efficacy of herbal extracts or plant derived compounds that are used either as monotherapy or as an adjunct therapy along with conventional medicines for hepatotoxicity have shown favorable responses. Phytochemicals mitigate necrotic cell death and protect against APAP-induced liver toxicityby restoring cellular antioxidant defense system, limiting oxidative stress and subsequently protecting mitochondrial dysfunction and inflammation. Recent experimental evidences indicat that these phytochemicals also regulate differential gene expression to modulate various cellular pathways that are implicated in cellular protection. Therefore, in this review, we highlight the role of the phytochemicals, which are shown to be efficacious in clinically relevant APAP-induced hepatotoxicity experimental models. In this review, we have made comprehensive attempt to delineate the molecular mechanism and the cellular targets that are modulated by the phytochemicals to mediate the cytoprotective effect against APAP-induced hepatotoxicity. In this review, we have also defined the challenges and scope of phytochemicals to be developed as drugs to target APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sandeep B Subramanya
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Sameer N Goyal
- Department of Pharmacology, SVKM's Institute of Pharmacy, Dhule, Maharashtra 424 001, India.
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| |
Collapse
|
9
|
Lee BW, Jeon BS, Yoon BI. Exogenous recombinant human thioredoxin-1 prevents acetaminophen-induced liver injury by scavenging oxidative stressors, restoring the thioredoxin-1 system and inhibiting receptor interacting protein-3 overexpression. J Appl Toxicol 2018; 38:1008-1017. [PMID: 29512171 DOI: 10.1002/jat.3609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
Thioredoxin-1 (Trx-1) is a potent therapeutic agent against a variety of diseases because of its actions as an antioxidant and regulator of apoptosis. N-acetyl-p-aminophenol (APAP), commonly known as acetaminophen, generates excessive oxidative stress and triggers hepatocyte cell death, exemplified by regulated necrosis. In the present study, we investigated whether APAP-induced liver injury in a mouse model is associated with "necroptosis," and if pretreatment with recombinant Trx-1 prevents the hepatic injury caused by APAP overdose. We also explored the mechanism underlying the preventive action of Trx-1 against APAP-induced hepatic injury. In a prevention study, C3H/he mice received different doses (0, 10, 50 or 100 mg kg-1 body weight) of recombinant human Trx-1 intraperitoneally, followed by a single oral dose of 300 mg kg-1 of APAP. In this experimental paradigm, liver injury and lethality were markedly decreased in rhTrx-1-pretreated mice. In survival experiments, mice received rhTrx-1 followed by oral administration of a lethal dose of APAP. APAP overdose caused a series of liver toxicity-associated events, beginning with overexpression of c-fos, excessive production of reactive oxygen species and reactive nitrogen species (RNS) and leading to decreased endogenous Trx-1 expression and activation of JNK signaling pathways. Pretreatment with rhTrx-1 inhibited all of these toxicological manifestations of APAP. In addition, rhTrx-1 significantly reduced the expression of RIP-3, a critical necrosome component. Taken together, our findings indicate that rhTrx-1 prevents APAP-induced liver injury through multiple action mechanisms, including scavenging reactive oxygen species and reactive nitrogen species, restoring endogenous Trx-1 levels and inhibiting RIP-3 overexpression.
Collapse
Affiliation(s)
- Byung-Woo Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
- Biotoxtech Co., 53 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28115, Republic of Korea
| | - Byung-Suk Jeon
- Biotoxtech Co., 53 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28115, Republic of Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
| |
Collapse
|
10
|
Xu Y, Tan HY, Li S, Wang N, Feng Y. Panax notoginseng for Inflammation-Related Chronic Diseases: A Review on the Modulations of Multiple Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:971-996. [DOI: 10.1142/s0192415x18500519] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Panax notoginseng (P. notoginseng) is a well-known and commonly used Chinese herbal medicine in Asian countries. As one of the major species in the Panax genus, it has a distinct chemical composition and medical application compared with other species. P. notoginseng attracts attention and interest due to its potential therapeutic effects not only on blood diseases, but also other kinds of human chronic disorders. This paper critically reviewed the latest advance of knowledge on the pharmacological effects of P. notoginseng on a variety of chronic diseases including inflammatory bowel disease, arthritis, ischemia, atherosclerosis, Alzheimer disease and trauma, as well as hyperlipidemia, diabetes, and so on. As inflammation is considered the fundamental factor involved in the pathogenesis of chronic diseases, our review therefore focuses on understanding the involvement of classical inflammatory pathways underlying the mechanism of action of P. notoginseng. Potential clinical application was also discussed. Furthermore, by combining with network pharmacology, we introduced the major bioactive components of P. notoginseng, analyzed their cellular targets and associated signaling pathways. In conclusion, this review identified inflammatory pathway as the key signaling for determining the efficacy of P. notoginseng on chronic diseases. It is speculated that P. notoginseng is a multi-targeted agent with an anti-inflammatory property in the adjuvant and alternative treatment of human chronic diseases.
Collapse
Affiliation(s)
- Yu Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
11
|
Kong SZ, Lin GS, Liu JJ, Su LY, Zeng L, Luo DD, Su ZR, Wang HF. Hepatoprotective Effect of Ultrafine Powder of Dendrobium officinale against Acetaminophen-Induced Liver Injury in Mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Song-Zhi Kong
- Guangdong Ocean University, Faculty of Chemistry and Environmental Science
| | - Guo-Sheng Lin
- Guangzhou University of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine
- Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine
| | - Jing-Jing Liu
- Guangzhou University of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine
- Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine
| | - Ling-Ye Su
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization
- Guangdong Academy of Forestry
| | - Lei Zeng
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization
- Guangdong Academy of Forestry
| | - Dan-Dan Luo
- Guangzhou University of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine
- Guangdong Academy of Forestry
| | - Zi-Ren Su
- Guangzhou University of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine
- Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine
| | - Hong-Feng Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization
- Guangdong Academy of Forestry
| |
Collapse
|
12
|
Wang Z, Hu JN, Yan MH, Xing JJ, Liu WC, Li W. Caspase-Mediated Anti-Apoptotic Effect of Ginsenoside Rg5, a Main Rare Ginsenoside, on Acetaminophen-Induced Hepatotoxicity in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9226-9236. [PMID: 28965396 DOI: 10.1021/acs.jafc.7b03361] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Frequent overdose of acetaminophen (APAP) is one of the most common and important incentives of acute hepatotoxicity. Prior to this work, our research group confirmed that black ginseng (Panax ginseng, BG) showed powerful protective effects on APAP-induced ALI. However, it is not clear which kind of individual ginsenoside from BG plays such a liver protection effect. The objective of the current investigation was to evaluate whether ginsenoside Rg5 (G-Rg5) protected against APAP-induced hepatotoxicity and the involved action mechanisms. Mice were administrated with G-Rg5 at two dosages of 10 or 20 mg/kg for 7 consecutive days. After the last treatment, all of the animals that received a single intraperitoneal injection of APAP (250 mg/kg) showed severe liver toxicity after 24 h, and the liver protection effects of G-Rg5 were examined. The results clearly indicated that pretreatment with G-Rg5 remarkably inhibited the production of serum tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) compared with the APAP group. Meanwhile, G-Rg5 decreased the hepatic malondialdehyde (MDA) content, the protein expression levels of 4-hydroxynonenal (4-HNE) and cytochrome P450 2E1 (CYP2E1) in the liver tissues. G-Rg5 decreased APAP caused the hepatic overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Furthermore, analysis of immunohistochemistry and Western blotting also indicated that G-Rg5 pretreatment inhibited activation of apoptotic pathways mainly via increasing the expression of Bcl-2 protein, decreasing the expression of Bax protein, proliferating cell nuclear antigen (PCNA), cytochrome c, caspase-3, caspase-8, and caspase-9. Liver histopathological observation provided further evidence that pretreatment with G-Rg5 could significantly inhibit hepatocyte necrosis, inflammatory cell infiltration, and apoptosis caused by APAP. In conclusion, the present study clearly demonstrates that G-Rg5 exerts a liver protection effect against APAP-induced acute hepatotoxicity mainly via a caspase-mediated anti-apoptotic effect.
Collapse
Affiliation(s)
- Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Meng-Han Yan
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Jing-Jing Xing
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Wen-Cong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| |
Collapse
|
13
|
Hu JN, Xu XY, Li W, Wang YM, Liu Y, Wang Z, Wang YP. Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis. J Ginseng Res 2017; 43:10-19. [PMID: 30662289 PMCID: PMC6323149 DOI: 10.1016/j.jgr.2017.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/21/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background Frequent overdose of paracetamol (APAP) has become the major cause of acute liver injury. The present study was designed to evaluate the potential protective effects of ginsenoside Rk1 on APAP-induced hepatotoxicity and investigate the underlying mechanisms for the first time. Methods Mice were treated with Rk1 (10 mg/kg or 20 mg/kg) by oral gavage once per d for 7 d. On the 7th d, all mice treated with 250 mg/kg APAP exhibited severe liver injury after 24 h, and hepatotoxicity was assessed. Results Our results showed that pretreatment with Rk1 significantly decreased the levels of serum alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor, and interleukin-1β compared with the APAP group. Meanwhile, hepatic antioxidants, including superoxide dismutase and glutathione, were elevated compared with the APAP group. In contrast, a significant decrease in levels of the lipid peroxidation product malondialdehyde was observed in the ginsenoside Rk1-treated group compared with the APAP group. These effects were associated with a significant increase of cytochrome P450 E1 and 4-hydroxynonenal levels in liver tissues. Moreover, ginsenoside Rk1 supplementation suppressed activation of apoptotic pathways by increasing Bcl-2 and decreasing Bax protein expression levels, which was shown using western blotting analysis. Histopathological observation also revealed that ginsenoside Rk1 pretreatment significantly reversed APAP-induced necrosis and inflammatory infiltration in liver tissues. Biological indicators of nitrative stress, such as 3-nitrotyrosine, were also inhibited after pretreatment with Rk1 compared with the APAP group. Conclusion The results clearly suggest that the underlying molecular mechanisms in the hepatoprotection of ginsenoside Rk1 in APAP-induced hepatotoxicity may be due to its antioxidation, antiapoptosis, anti-inflammation, and antinitrative effects.
Collapse
Affiliation(s)
- Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xing-Yue Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Institute of Special Wild Economic Animals and Plant, CAAS, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Yi-Ming Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ying Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Republic of Korea
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Ying-Ping Wang
- Institute of Special Wild Economic Animals and Plant, CAAS, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
14
|
Xu XY, Hu JN, Liu Z, Zhang R, He YF, Hou W, Wang ZQ, Yang G, Li W. Saponins (Ginsenosides) from the Leaves of Panax quinquefolius Ameliorated Acetaminophen-Induced Hepatotoxicity in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3684-3692. [PMID: 28429935 DOI: 10.1021/acs.jafc.7b00610] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acetaminophen (APAP) overdose is one of the most common inducements of drug-induced liver injury (DILI) in the world. The main purpose of this paper was to investigate the liver protection activity of saponins (ginsenosides) from the leaves of Panax quinquefolius (PQS) against APAP-induced hepatotoxicity, and the involved mechanisms were demonstrated for the first time. Mice were pretreated with PQS (150 and 300 mg/kg) by oral gavage for 7 days before being treated with 250 mg/kg APAP. Severe liver injury was exerted at 24 h post-APAP, and hepatotoxicity was assessed. Our results showed that pretreatment with PQS significantly decreased the serum alanine aminotransferase (ALT), aspartate transaminase (AST), tumor necrosis factor (TNF-α), and interleukin-1β (IL-1β) levels in a dose-dependent manner as compared to the APAP administration. Meanwhile, compared with that in the APAP group, PQS decreased hepatic malondialdehyde (MDA) contents and 4-hydroxynonenal (4-HNE) expression and restored reduced glutathione (GSH) content and superoxide dismutase (SOD) activity in livers of mice. PQS inhibited the overexpression of pro-inflammatory factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the liver tissues. Furthermore, Western blotting analysis revealed that PQS pretreatment inhibited the activation of apoptotic signaling pathways via increase of Bcl-2 and decrease of Bax and caspase-3 protein expression levels. Liver histopathological observation provided further evidence that PQS pretreatment significantly inhibited APAP-induced hepatocyte necrosis, inflammatory cell infiltration, and congestion. Biological indicators of nitrative stress such as 3-nitrotyrosine (3-NT) were inhibited after PQS pretreatment, compared to the APAP group. The present study clearly demonstrates that PQS exerts a protective effect against APAP-induced hepatic injury because of its antioxidant, anti-apoptotic, and anti-inflammatory activities. The findings from the present investigation show that PQS might be a promising candidate treatment agent against drug-induced ALI.
Collapse
Affiliation(s)
- Xing-Yue Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Rui Zhang
- Institute of Special Wild Economic Animals and Plants, CAAS , Changchun 132109, China
| | - Yu-Fang He
- Jilin Academy of Chinese Medicine Sciences , Changchun 130012, China
| | - Wei Hou
- Institute of Special Wild Economic Animals and Plants, CAAS , Changchun 132109, China
| | - Zhi-Qing Wang
- Institute of Special Wild Economic Animals and Plants, CAAS , Changchun 132109, China
| | - Ge Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University , Changchun 130118, China
| |
Collapse
|
15
|
Ameliorative Effects and Possible Molecular Mechanism of Action of Black Ginseng (Panax ginseng) on Acetaminophen-Mediated Liver Injury. Molecules 2017; 22:molecules22040664. [PMID: 28430162 PMCID: PMC6154718 DOI: 10.3390/molecules22040664] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Frequent overdosing of acetaminophen (APAP) has become the major cause of acute liver injury (ALI). The present study aimed to evaluate the potential hepatoprotective effects of black ginseng (BG) on APAP-induced mice liver injuries and the underlying mechanisms of action were further investigated for the first time. Methods: Mice were treated with BG (300, 600 mg/kg) by oral gavage once a day for seven days. On the 7th day, all mice were treated with 250 mg/kg APAP which caused severe liver injury after 24 h and hepatotoxicity was assessed. Results: Our results showed that pretreatment with BG significantly decreased the levels of serum alanine aminotransferase (ALT) and aspartate transaminase (AST) compared with the APAP group. Meanwhile, hepatic antioxidant including glutathione (GSH) was elevated compared with the APAP group. In contrast, a significant decrease of the levels of the lipid peroxidation product malondialdehyde (MDA) was observed in the BG-treated groups compared with the APAP group. These effects were associated with significant increases of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) levels in liver tissues. Moreover, BG supplementation suppressed activation of apoptotic pathways through increasing Bcl-2 and decreasing Bax protein expression levels according to western blotting analysis. Histopathological examination revealed that BG pretreatment significantly inhibited APAP-induced necrosis and inflammatory infiltration in liver tissues. Biological indicators of nitrative stress like 3-nitrotyrosine (3-NT) were also inhibited after pretreatment with BG, compared with the APAP group. Conclusions: The results clearly suggest that the underlying molecular mechanisms of action of BG-mediated alleviation of APAP-induced hepatotoxicity may involve its anti-oxidant, anti-apoptotic, anti-inflammatory and anti-nitrative effects.
Collapse
|
16
|
Kim TW. Ginseng for Liver Injury: Friend or Foe? MEDICINES (BASEL, SWITZERLAND) 2016; 3:E33. [PMID: 28930143 PMCID: PMC5456240 DOI: 10.3390/medicines3040033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
Abstract
Panax sp., including Panax ginseng Meyer, Panax quiquifolius L., or Panax notoginseng (Burk.) FH Chen, have been used as functional foods or for traditional Chinese medicine for diabetes, inflammation, stress, aging, hepatic injury, and cancer. In recent decades, a number of both in vitro and in vivo experiments as well as human studies have been conducted to investigate the efficacy and safety of various types of ginseng samples and their components. Of these, the hepatoprotective and hepatotoxic effects of ginseng and their ginsenosides and polysaccharides are reviewed and summarized.
Collapse
Affiliation(s)
- Tae-Woo Kim
- Graduate School of Medicine, School of Medicine, CHA University, Seongnam-shi, Gyunggi-do 13488, Korea.
| |
Collapse
|
17
|
Igami K, Shimojo Y, Ito H, Miyazaki T, Kashiwada Y. Hepatoprotective effect of fermented ginseng and its major constituent compound K in a rat model of paracetamol (acetaminophen)-induced liver injury. J Pharm Pharmacol 2014; 67:565-72. [DOI: 10.1111/jphp.12342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/19/2014] [Indexed: 12/26/2022]
Abstract
Abstract
Objectives
This work aimed at evaluating the effect of fermented ginseng (FG) and fermented red ginseng (FRG) against rat liver injury caused by paracetamol (acetaminophen (APAP)).
Methods
Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum and histopathological changes in the liver were analysed to determine the degree of liver injury. Deoxyribonucleic acid (DNA) microarray analysis was performed to compare gene expression levels altered in the rat livers. Phosphorylated Jun-N-terminal kinase (JNK) in human hepatocellular carcinoma (HepG2) cells were detected using western blot analysis to investigate the anti-inflammatory activity of compound K.
Key findings
Pretreatment with FG, containing compound K at high concentration, attenuated AST as well as ALT levels in rats, while no obvious effect was observed in the group that received FRG, whose content of compound K was lower than that of FG. In addition, the results of our histopathological analysis were consistent with changes in the serum biochemical analysis. DNA microarray analysis indicated that JNK- and glutathione S-transferase (GST)-related genes were involved in the hepatotoxicity. Notably, compound K, a major ginsenoside in FG, inhibited the phosphorylation of JNK in HepG2 cells.
Conclusions
FG was shown to possess hepatoprotective activity against paracetamol (APAP)-induced liver injury better than FRG. Compound K might play an important role for an anti-inflammatory activity of FG by inhibiting JNK signalling in the liver.
Collapse
Affiliation(s)
- Kentaro Igami
- Research & Development Center, Nagase and CO., LTD, Kobe, Hyogo, Japan
| | - Yosuke Shimojo
- Research & Development Center, Nagase and CO., LTD, Kobe, Hyogo, Japan
| | - Hisatomi Ito
- Research & Development Center, Nagase and CO., LTD, Kobe, Hyogo, Japan
| | | | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi, Tokushima, Japan
| |
Collapse
|
18
|
Kelava T, Cavar I. Hepatoprotective action of Panaxatriol saponins against acetaminophen-induced liver injury: what is the mechanism? Liver Int 2014; 34:644-5. [PMID: 24314316 DOI: 10.1111/liv.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/01/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb-HR, Croatia; Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb-HR, Croatia
| | | |
Collapse
|