1
|
Harder CB, Miyauchi S, Virágh M, Kuo A, Thoen E, Andreopoulos B, Lu D, Skrede I, Drula E, Henrissat B, Morin E, Kohler A, Barry K, LaButti K, Salamov A, Lipzen A, Merényi Z, Hegedüs B, Baldrian P, Stursova M, Weitz H, Taylor A, Koriabine M, Savage E, Grigoriev IV, Nagy LG, Martin F, Kauserud H. Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations. CELL GENOMICS 2024; 4:100586. [PMID: 38942024 PMCID: PMC11293592 DOI: 10.1016/j.xgen.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/28/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.
Collapse
Affiliation(s)
- Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway; Department of Biology, Microbial Ecology Group, Biology Department, Lund University, Lund, Sweden; University of Copenhagen, Department of Biology, Section of Terrestrial Ecology, 2100 Copenhagen Ø, Denmark.
| | - Shingo Miyauchi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ella Thoen
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Bill Andreopoulos
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dabao Lu
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Inger Skrede
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France; INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martina Stursova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Hedda Weitz
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Andy Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; The James Hutton Institute, Aberdeen, UK
| | - Maxim Koriabine
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France.
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
2
|
Harder CB, Hesling E, Botnen SS, Lorberau KE, Dima B, von Bonsdorff-Salminen T, Niskanen T, Jarvis SG, Ouimette A, Hester A, Hobbie EA, Taylor AFS, Kauserud H. Mycena species can be opportunist-generalist plant root invaders. Environ Microbiol 2023; 25:1875-1893. [PMID: 37188366 DOI: 10.1111/1462-2920.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Traditional strict separation of fungi into ecological niches as mutualist, parasite or saprotroph is increasingly called into question. Sequences of assumed saprotrophs have been amplified from plant root interiors, and several saprotrophic genera can invade and interact with host plants in laboratory growth experiments. However, it is uncertain if root invasion by saprotrophic fungi is a widespread phenomenon and if laboratory interactions mirror field conditions. Here, we focused on the widespread and speciose saprotrophic genus Mycena and performed (1) a systematic survey of their occurrences (in ITS1/ITS2 datasets) in mycorrhizal roots of 10 plant species, and (2) an analysis of natural abundances of 13 C/15 N stable isotope signatures of Mycena basidiocarps from five field locations to examine their trophic status. We found that Mycena was the only saprotrophic genus consistently found in 9 out of 10 plant host roots, with no indication that the host roots were senescent or otherwise vulnerable. Furthermore, Mycena basidiocarps displayed isotopic signatures consistent with published 13 C/15 N profiles of both saprotrophic and mutualistic lifestyles, supporting earlier laboratory-based studies. We argue that Mycena are widespread latent invaders of healthy plant roots and that Mycena species may form a spectrum of interactions besides saprotrophy also in the field.
Collapse
Affiliation(s)
- Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Microbial Ecology, Lund University, Lund, Sweden
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, Denmark
| | - Emily Hesling
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Synnøve S Botnen
- Department of Biosciences, University of Oslo, Oslo, Norway
- Oslo Metropolitan University, Oslo, Norway
| | - Kelsey E Lorberau
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Bálint Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Botany Unit, Finnish Museum of Natural History LUOMUS, University of Helsinki, Helsinki, Finland
| | | | - Tuula Niskanen
- Botany Unit, Finnish Museum of Natural History LUOMUS, University of Helsinki, Helsinki, Finland
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey, UK
| | | | - Andrew Ouimette
- Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA
| | | | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA
| | - Andy F S Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- The James Hutton Institute, Aberdeen, UK
| | | |
Collapse
|
3
|
Cook K, Taylor DL. High diversity and low specificity of fungi associated with seedless epiphytic plants. Biotropica 2022. [DOI: 10.1111/btp.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kel Cook
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - D. Lee Taylor
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| |
Collapse
|
4
|
Schön ME, Abarenkov K, Garnica S. Host generalists dominate fungal communities associated with alpine knotweed roots: a study of Sebacinales. PeerJ 2022; 10:e14047. [PMID: 36217381 PMCID: PMC9547586 DOI: 10.7717/peerj.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/22/2022] [Indexed: 01/19/2023] Open
Abstract
Bistorta vivipara is a widespread herbaceous perennial plant with a discontinuous pattern of distribution in arctic, alpine, subalpine and boreal habitats across the northern Hemisphere. Studies of the fungi associated with the roots of B. vivipara have mainly been conducted in arctic and alpine ecosystems. This study examined the fungal diversity and specificity from root tips of B. vivipara in two local mountain ecosystems as well as on a global scale. Sequences were generated by Sanger sequencing of the internal transcribed spacer (ITS) region followed by an analysis of accurately annotated nuclear segments including ITS1-5.8S-ITS2 sequences available from public databases. In total, 181 different UNITE species hypotheses (SHs) were detected to be fungi associated with B. vivipara, 73 of which occurred in the Bavarian Alps and nine in the Swabian Alps-with one SH shared among both mountains. In both sites as well as in additional public data, individuals of B. vivipara were found to contain phylogenetically diverse fungi, with the Basidiomycota, represented by the Thelephorales and Sebacinales, being the most dominant. A comparative analysis of the diversity of the Sebacinales associated with B. vivipara and other co-occurring plant genera showed that the highest number of sebacinoid SHs were associated with Quercus and Pinus, followed by Bistorta. A comparison of B. vivipara with plant families such as Ericaceae, Fagaceae, Orchidaceae, and Pinaceae showed a clear trend: Only a few species were specific to B. vivipara and a large number of SHs were shared with other co-occurring non-B. vivipara plant species. In Sebacinales, the majority of SHs associated with B. vivipara belonged to the ectomycorrhiza (ECM)-forming Sebacinaceae, with fewer SHs belonging to the Serendipitaceae encompassing diverse ericoid-orchid-ECM-endophytic associations. The large proportion of non-host-specific fungi able to form a symbiosis with other non-B. vivipara plants could suggest that the high fungal diversity in B. vivipara comes from an active recruitment of their associates from the co-occurring vegetation. The non-host-specificity suggests that this strategy may offer ecological advantages; specifically, linkages with generalist rather than specialist fungi. Proximity to co-occurring non-B. vivipara plants can maximise the fitness of B. vivipara, allowing more rapid and easy colonisation of the available habitats.
Collapse
Affiliation(s)
- Max Emil Schön
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Sigisfredo Garnica
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
5
|
Biodiversity and Bioprospecting of Fungal Endophytes from the Antarctic Plant Colobanthus quitensis. J Fungi (Basel) 2022; 8:jof8090979. [PMID: 36135704 PMCID: PMC9504944 DOI: 10.3390/jof8090979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
Microorganisms from extreme environments are considered as a new and valuable reservoir of bioactive molecules of biotechnological interest and are also utilized as tools for enhancing tolerance to (a)biotic stresses in crops. In this study, the fungal endophytic community associated with the leaves of the Antarctic angiosperm Colobanthus quitensis was investigated as a new source of bioactive molecules. We isolated 132 fungal strains and taxonomically annotated 26 representative isolates, which mainly belonged to the Basidiomycota division. Selected isolates of Trametes sp., Lenzites sp., Sistotrema sp., and Peniophora sp. displayed broad extracellular enzymatic profiles; fungal extracts from some of them showed dose-dependent antitumor activity and inhibited the formation of amyloid fibrils of α-synuclein and its pathological mutant E46K. Selected fungal isolates were also able to promote secondary root development and fresh weight increase in Arabidopsis and tomato and antagonize the growth of pathogenic fungi harmful to crops. This study emphasizes the ecological and biotechnological relevance of fungi from the Antarctic ecosystem and provides clues to the bioprospecting of Antarctic Basidiomycetes fungi for industrial, agricultural, and medical applications.
Collapse
|
6
|
Kutos S, Barnes EM, Bhutada A, Lewis JD. Preferential associations of soil fungal taxa under mixed compositions of eastern American tree species. FEMS Microbiol Ecol 2022; 98:6581587. [PMID: 35521705 DOI: 10.1093/femsec/fiac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
Soil fungi are vital to forest ecosystem function, in part through their role mediating tree responses to environmental factors, as well as directly through effects on resource cycling. While the distribution of soil fungi can vary with abiotic factors, plant species identity is also known to affect community composition. However, the particular influence that a plant will have on its soil microbiota remains difficult to predict. Here, we paired amplicon sequencing and enzymatic assays to assess soil fungal composition and function under three tree species, Quercus rubra, Betula nigra, and Acer rubrum, planted individually and in all combinations in a greenhouse. We observed that fungal communities differed between each of the individual planted trees, suggesting at least some fungal taxa may associate preferentially with these tree species. Additionally, fungal community composition under mixed-tree plantings broadly differed from the individual planted trees, suggesting mixing of these distinct soil fungal communities. The data also suggest that there were larger enzymatic activities in the individual plantings as compared to all mixed-tree plantings which may be due to variations in fungal community composition. This study provides further evidence of the importance of tree identity on soil microbiota and functional changes to forest soils.
Collapse
Affiliation(s)
- Steve Kutos
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.,Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY 10504, USA
| | - Elle M Barnes
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.,Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY 10504, USA
| | - Arnav Bhutada
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | - J D Lewis
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.,Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY 10504, USA
| |
Collapse
|
7
|
Host phylogeny is the primary determinant of ectomycorrhizal fungal community composition in the permafrost ecosystem of eastern Siberia at a regional scale. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2021.101117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Marian M, Licciardello G, Vicelli B, Pertot I, Perazzolli M. Ecology and potential functions of plant-associated microbial communities in cold environments. FEMS Microbiol Ecol 2022; 98:fiab161. [PMID: 34910139 PMCID: PMC8769928 DOI: 10.1093/femsec/fiab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Complex microbial communities are associated with plants and can improve their resilience under harsh environmental conditions. In particular, plants and their associated communities have developed complex adaptation strategies against cold stress. Although changes in plant-associated microbial community structure have been analysed in different cold regions, scarce information is available on possible common taxonomic and functional features of microbial communities across cold environments. In this review, we discuss recent advances in taxonomic and functional characterization of plant-associated microbial communities in three main cold regions, such as alpine, Arctic and Antarctica environments. Culture-independent and culture-dependent approaches are analysed, in order to highlight the main factors affecting the taxonomic structure of plant-associated communities in cold environments. Moreover, biotechnological applications of plant-associated microorganisms from cold environments are proposed for agriculture, industry and medicine, according to biological functions and cold adaptation strategies of bacteria and fungi. Although further functional studies may improve our knowledge, the existing literature suggest that plants growing in cold environments harbor complex, host-specific and cold-adapted microbial communities, which may play key functional roles in plant growth and survival under cold conditions.
Collapse
Affiliation(s)
- Malek Marian
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Giorgio Licciardello
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Bianca Vicelli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Ilaria Pertot
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
9
|
Host-specificity of moss-associated fungal communities in the Ny-Ålesund region (Svalbard, High Arctic) as revealed by amplicon pyrosequencing. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Yang T, Tedersoo L, Fu X, Zhao C, Liu X, Gao G, Cheng L, Adams JM, Chu H. Saprotrophic fungal diversity predicts ectomycorrhizal fungal diversity along the timberline in the framework of island biogeography theory. ISME COMMUNICATIONS 2021; 1:15. [PMID: 37938216 PMCID: PMC9723781 DOI: 10.1038/s43705-021-00015-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Island biogeography theory (IBT) is one of the most fruitful paradigms in macroecology, positing positive species-area and negative species-isolation relationships for the distribution of organisms. Biotic interactions are also crucial for diversity maintenance on islands. In the context of a timberline tree species (Betula ermanii) as "virtual island", we surveyed ectomycorrhizal (EcM) fungal diversity along a 430-m vertical gradient on the top of Changbai Mountain, China, sampling fine roots and neighboring soils of B. ermanii. Besides elevation, soil properties and plant functional traits, endophytic and saprotrophic fungal diversity were assessed as candidate predictors to construct integrative models. EcM fungal diversity decreased with increasing elevation, and exhibited positive diversity to diameter at breast height and negative diversity to distance from forest edge relationships in both roots and soils. Integrative models further showed that saprotrophic fungal diversity was the strongest predictor of EcM fungal diversity, directly enhancing EcM fungal diversity in roots and soils. Our study supports IBT as a basic framework to explain EcM fungal diversity. The diversity-begets-diversity hypothesis within the fungal kingdom is more predictive for EcM fungal diversity within the IBT framework, which reveals a tight association between saprotrophic and EcM fungal lineages in the timberline ecosystem.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xiao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Zhao
- School of Geography Sciences, Nanjing Normal University, Nanjing, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guifeng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Liang Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jonathan M Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Botnen SS, Mundra S, Kauserud H, Eidesen PB. Glacier retreat in the High Arctic: opportunity or threat for ectomycorrhizal diversity? FEMS Microbiol Ecol 2021; 96:5894921. [PMID: 32816005 DOI: 10.1093/femsec/fiaa171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Climate change causes Arctic glaciers to retreat faster, exposing new areas for colonization. Several pioneer plants likely to colonize recent deglaciated, nutrient-poor areas depend on fungal partners for successful establishment. Little is known about general patterns or characteristics of facilitating fungal pioneers and how they vary with regional climate in the Arctic. The High Arctic Archipelago Svalbard represents an excellent study system to address these questions, as glaciers cover ∼60% of the land surface and recent estimations suggest at least 7% reduction of glacier area since 1960s. Roots of two ectomycorrhizal (ECM) plants (Salix polaris and Bistorta vivipara) were sampled in eight glacier forelands. Associated ECM fungi were assessed using DNA metabarcoding. About 25% of the diversity was unknown at family level, indicating presence of undescribed species. Seven genera dominated based on richness and abundance, but their relative importance varied with local factors. The genus Geopora showed surprisingly high richness and abundance, particularly in dry, nutrient-poor forelands. Such forelands will diminish along with increasing temperature and precipitation, and faster succession. Our results support a taxonomical shift in pioneer ECM diversity with climate change, and we are likely to lose unknown fungal diversity, without knowing their identity or ecological importance.
Collapse
Affiliation(s)
- S S Botnen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway.,The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - S Mundra
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway.,The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway.,Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al-Ain, Abu Dhabi, UAE
| | - H Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - P B Eidesen
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| |
Collapse
|
12
|
Arraiano-Castilho R, Bidartondo MI, Niskanen T, Clarkson JJ, Brunner I, Zimmermann S, Senn-Irlet B, Frey B, Peintner U, Mrak T, Suz LM. Habitat specialisation controls ectomycorrhizal fungi above the treeline in the European Alps. THE NEW PHYTOLOGIST 2021; 229:2901-2916. [PMID: 33107606 DOI: 10.1111/nph.17033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.
Collapse
Affiliation(s)
- Ricardo Arraiano-Castilho
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin I Bidartondo
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tuula Niskanen
- Identification and Naming, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - James J Clarkson
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Stephan Zimmermann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beatrice Senn-Irlet
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020, Austria
| | - Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, 1000, Slovenia
| | - Laura M Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| |
Collapse
|
13
|
Botnen SS, Thoen E, Eidesen PB, Krabberød AK, Kauserud H. Community composition of arctic root-associated fungi mirrors host plant phylogeny. FEMS Microbiol Ecol 2020; 96:fiaa185. [PMID: 32918451 PMCID: PMC7840110 DOI: 10.1093/femsec/fiaa185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
The number of plant species regarded as non-mycorrhizal increases at higher latitudes, and several plant species in the High-Arctic Archipelago Svalbard have been reported as non-mycorrhizal. We used the rRNA ITS2 and 18S gene markers to survey which fungi, as well as other micro-eukaryotes, were associated with roots of 31 arctic plant species not usually regarded as mycorrhizal in Svalbard. We assessed to what degree the root-associated fungi showed any host preference and whether the phylogeny of the plant hosts may mirror the composition of root-associated fungi. Fungal communities were largely structured according to host plant identity and to a less extent by environmental factors. We observed a positive relationship between the phylogenetic distance of host plants and the distance of fungal community composition between samples, indicating that the evolutionary history of the host plants plays a major role for which fungi colonize the plant roots. In contrast to the ITS2 marker, the 18S rRNA gene marker showed that chytrid fungi were prevalently associated with plant roots, together with a wide spectrum of amoeba-like protists and nematodes. Our study confirms that arbuscular mycorrhizal (AM) fungi are present also in arctic environments in low abundance.
Collapse
Affiliation(s)
- S S Botnen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
- Oslo Metropolitan University, PO Box 4 St. Olavs plass, NO-0130 Oslo, Norway
| | - E Thoen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - P B Eidesen
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - A K Krabberød
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - H Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
14
|
Carøe C, Bohmann K. Tagsteady: A metabarcoding library preparation protocol to avoid false assignment of sequences to samples. Mol Ecol Resour 2020; 20:1620-1631. [PMID: 32663358 DOI: 10.1111/1755-0998.13227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/30/2022]
Abstract
Metabarcoding of environmental DNA (eDNA) and DNA extracted from bulk specimen samples is a powerful tool in studies of biodiversity, diet and ecological interactions as its inherent labelling of amplicons allows sequencing of taxonomically informative genetic markers from many samples in parallel. However, the occurrence of so-called 'tag-jumps' can cause incorrect assignment of sequences to samples and artificially inflate diversity. Two steps during library preparation of pools of 5' nucleotide-tagged amplicons have been suggested to cause tag-jumps: (a) T4 DNA polymerase blunt-ending in the end-repair step and (b) postligation PCR amplification of amplicon libraries. The discovery of tag-jumps has led to recommendations to only carry out metabarcoding PCR amplifications with primers carrying twin-tags to ensure that tag-jumps cannot result in false assignments of sequences to samples. As this increases both cost and workload, a metabarcoding library preparation protocol which circumvents the two steps that causes tag-jumps is needed. Here, we demonstrate Tagsteady, a PCR-free metabarcoding Illumina library preparation protocol for pools of nucleotide-tagged amplicons that enables efficient and cost-effective generation of metabarcoding data with virtually no tag-jumps. We use pools of twin-tagged amplicons to investigate the effect of T4 DNA polymerase blunt-ending and postligation PCR on the occurrence of tag-jumps and demonstrate that both blunt-ending and postligation PCR, alone or together, can result in detrimental amounts of tag-jumps (here, up to ca. 49% of total sequences), while leaving both steps out (the Tagsteady protocol) results in amounts of sequences carrying new combinations of used tags (tag-jumps) comparable to background contamination.
Collapse
Affiliation(s)
- Christian Carøe
- Section for Evolutionary Genomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Bohmann
- Section for Evolutionary Genomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Abrego N, Huotari T, Tack AJM, Lindahl BD, Tikhonov G, Somervuo P, Martin Schmidt N, Ovaskainen O, Roslin T. Higher host plant specialization of root-associated endophytes than mycorrhizal fungi along an arctic elevational gradient. Ecol Evol 2020; 10:8989-9002. [PMID: 32884673 PMCID: PMC7452766 DOI: 10.1002/ece3.6604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
How community-level specialization differs among groups of organisms, and changes along environmental gradients, is fundamental to understanding the mechanisms influencing ecological communities. In this paper, we investigate the specialization of root-associated fungi for plant species, asking whether the level of specialization varies with elevation. For this, we applied DNA barcoding based on the ITS region to root samples of five plant species equivalently sampled along an elevational gradient at a high arctic site. To assess whether the level of specialization changed with elevation and whether the observed patterns varied between mycorrhizal and endophytic fungi, we applied a joint species distribution modeling approach. Our results show that host plant specialization is not environmentally constrained in arctic root-associated fungal communities, since there was no evidence for changing specialization with elevation, even if the composition of root-associated fungal communities changed substantially. However, the level of specialization for particular plant species differed among fungal groups, root-associated endophytic fungal communities being highly specialized on particular host species, and mycorrhizal fungi showing almost no signs of specialization. Our results suggest that plant identity affects associated mycorrhizal and endophytic fungi differently, highlighting the need of considering both endophytic and mycorrhizal fungi when studying specialization in root-associated fungal communities.
Collapse
Affiliation(s)
- Nerea Abrego
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Tea Huotari
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Ayco J. M. Tack
- Department of EcologyEnvironment and Plant SciencesStockholm UniversityStockholmSweden
| | - Björn D. Lindahl
- Department of Soil and EnvironmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Gleb Tikhonov
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Computational Systems Biology groupDepartment of Computer ScienceAalto UniversityEspooFinland
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | | | - Otso Ovaskainen
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Tomas Roslin
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
16
|
Thoen E, Harder CB, Kauserud H, Botnen SS, Vik U, Taylor AFS, Menkis A, Skrede I. In vitro evidence of root colonization suggests ecological versatility in the genus Mycena. THE NEW PHYTOLOGIST 2020; 227:601-612. [PMID: 32171021 DOI: 10.1111/nph.16545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The root-associated habit has evolved on numerous occasions in different fungal lineages, suggesting a strong evolutionary pressure for saprotrophic fungi to switch to symbiotic associations with plants. Species within the ubiquitous, saprotrophic genus Mycena are frequently major components in molecular studies of root-associated fungal communities, suggesting that an evaluation of their trophic status is warranted. Here, we report on interactions between a range of Mycena species and the plant Betula pendula. In all, 17 Mycena species were inoculated onto B. pendula seedlings. Physical interactions between hyphae and fine roots were examined using differential staining and fluorescence microscopy. Physiological interactions were investigated using 14 C and 32 P to show potential transfer between symbionts. All Mycena species associated closely with fine roots, showing hyphal penetration into the roots, which in some cases were intracellular. Seven species formed mantle-like structures around root tips, but none formed a Hartig net. Mycena pura and Mycena galopus both enhanced seedling growth, with M. pura showing significant transfer of 32 P to the seedlings. Our results support the view that several Mycena species can associate closely with plant roots and some may potentially occupy a transitional state between saprotrophy and biotrophy.
Collapse
Affiliation(s)
- Ella Thoen
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
| | - Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
- Department of Plant and Soil Science, Texas Tech University, PO Box 42122, Lubbock, TX, 79409, USA
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
| | - Synnøve S Botnen
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
| | - Unni Vik
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
| | - Andy F S Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7026, SE-75007, Uppsala, Sweden
| | - Inger Skrede
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
| |
Collapse
|
17
|
Izumi H. The proportions of ectomycorrhizal roots are varied depending on the different host plant compositions in Scottish arctic/alpine coastal relict vegetation. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Arraiano-Castilho R, Bidartondo M, Niskanen T, Zimmermann S, Frey B, Brunner I, Senn-Irlet B, Hörandl E, Gramlich S, Suz L. Plant-fungal interactions in hybrid zones: Ectomycorrhizal communities of willows (Salix) in an alpine glacier forefield. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Diversity and Distribution Patterns of Endolichenic Fungi in Jeju Island, South Korea. SUSTAINABILITY 2020. [DOI: 10.3390/su12093769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lichens are symbiotic organisms containing diverse microorganisms. Endolichenic fungi (ELF) are one of the inhabitants living in lichen thalli, and have potential ecological and industrial applications due to their various secondary metabolites. As the function of endophytic fungi on the plant ecology and ecosystem sustainability, ELF may have an influence on the lichen diversity and the ecosystem, functioning similarly to the influence of endophytic fungi on plant ecology and ecosystem sustainability, which suggests the importance of understanding the diversity and community pattern of ELF. In this study, we investigated the diversity and the factors influencing the community structure of ELF in Jeju Island, South Korea by analyzing 619 fungal isolates from 79 lichen samples in Jeju Island. A total of 112 ELF species was identified and the most common species belonged to Xylariales in Sordariomycetes. The richness and community structure of ELF were significantly influenced by the host taxonomy, together with the photobiont types and environmental factors. Our results suggest that various lichen species in more diverse environments need to be analyzed to expand our knowledge of the diversity and ecology of ELF.
Collapse
|
20
|
Billault-Penneteau B, Sandré A, Folgmann J, Parniske M, Pawlowski K. Dryas as a Model for Studying the Root Symbioses of the Rosaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:661. [PMID: 31214211 PMCID: PMC6558151 DOI: 10.3389/fpls.2019.00661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/02/2019] [Indexed: 05/28/2023]
Abstract
The nitrogen-fixing root nodule symbiosis is restricted to four plant orders: Fabales (legumes), Fagales, Cucurbitales and Rosales (Elaeagnaceae, Rhamnaceae, and Rosaceae). Interestingly all of the Rosaceae genera confirmed to contain nodulating species (i.e., Cercocarpus, Chamaebatia, Dryas, and Purshia) belong to a single subfamily, the Dryadoideae. The Dryas genus is particularly interesting from an evolutionary perspective because it contains closely related nodulating (Dryas drummondii) and non-nodulating species (Dryas octopetala). The close phylogenetic relationship between these two species makes Dryas an ideal model genus to study the genetic basis of nodulation by whole genome comparison and classical genetics. Therefore, we established methods for plant cultivation, transformation and DNA extraction for these species. We optimized seed surface sterilization and germination methods and tested growth protocols ranging from pots and Petri dishes to a hydroponic system. Transgenic hairy roots were obtained by adapting Agrobacterium rhizogenes-based transformation protocols for Dryas species. We compared several DNA extraction protocols for their suitability for subsequent molecular biological analysis. Using CTAB extraction, reproducible PCRs could be performed, but CsCl gradient purification was essential to obtain DNA in sufficient purity for high quality de novo genome sequencing of both Dryas species. Altogether, we established a basic toolkit for the culture, transient transformation and genetic analysis of Dryas sp.
Collapse
Affiliation(s)
| | - Aline Sandré
- Institute of Genetics, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Jessica Folgmann
- Institute of Genetics, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Martin Parniske
- Institute of Genetics, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Thoen E, Aas AB, Vik U, Brysting AK, Skrede I, Carlsen T, Kauserud H. A single ectomycorrhizal plant root system includes a diverse and spatially structured fungal community. MYCORRHIZA 2019; 29:167-180. [PMID: 30929039 DOI: 10.1007/s00572-019-00889-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/19/2019] [Indexed: 05/11/2023]
Abstract
Although only a relatively small proportion of plant species form ectomycorrhizae with fungi, it is crucial for growth and survival for a number of widespread woody plant species. Few studies have attempted to investigate the fine scale spatial structure of entire root systems of adult ectomycorrhizal (EcM) plants. Here, we use the herbaceous perennial Bistorta vivipara to map the entire root system of an adult EcM plant and investigate the spatial structure of its root-associated fungi. All EcM root tips were sampled, mapped and identified using a direct PCR approach and Sanger sequencing of the internal transcribed spacer region. A total of 32.1% of all sampled root tips (739 of 2302) were successfully sequenced and clustered into 41 operational taxonomic units (OTUs). We observed a clear spatial structuring of the root-associated fungi within the root system. Clusters of individual OTUs were observed in the younger parts of the root system, consistent with observations of priority effects in previous studies, but were absent from the older parts of the root system. This may suggest a succession and fragmentation of the root-associated fungi even at a very fine scale, where competition likely comes into play at different successional stages within the root system.
Collapse
Affiliation(s)
- Ella Thoen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO box 1066, Blindern, 0316, Oslo, Norway.
| | - Anders B Aas
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO box 1066, Blindern, 0316, Oslo, Norway
- Bymiljøetaten Oslo Kommune, PO box 636, Løren, 0507, Oslo, Norway
| | - Unni Vik
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO box 1066, Blindern, 0316, Oslo, Norway
| | - Anne K Brysting
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO box 1066, Blindern, 0316, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO box 1066, Blindern, 0316, Oslo, Norway
| | - Tor Carlsen
- The Natural History museum, University of Oslo, PO box 1172, Blindern, 0318, Oslo, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO box 1066, Blindern, 0316, Oslo, Norway
| |
Collapse
|
22
|
Schön ME, Nieselt K, Garnica S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS One 2018; 13:e0208493. [PMID: 30517179 PMCID: PMC6281267 DOI: 10.1371/journal.pone.0208493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Altitudinal gradients provide valuable information about the effects of environmental variables on changes in species richness and composition as well as the distribution of below ground fungal communities. Since most knowledge in this respect has been gathered on aboveground communities, we focused our study towards the characterization of belowground fungal communities associated with two different ages of Norway spruce (Picea abies) trees along an altitudinal gradient. By sequencing the internal transcribed spacer (ITS) region on the Illumina platform, we investigated the fungal communities in a floristically and geologically relatively well explored forest on the slope of Mt. Iseler of the Bavarian Alps. From fine roots and rhizosphere of a total of 90 of Norway spruce trees from 18 plots we detected 1285 taxa, with a range of 167 to 506 (average 377) taxa per plot. Fungal taxa are distributed over 96 different orders belonging to the phyla Ascomycota, Basidiomycota, Chrytridiomycota, Glomeromycota, and Mucoromycota. Overall the Agaricales (438 taxa) and Tremellales (81 taxa) belonging to the Basidiomycota and the Hypocreales (65 spp.) and Helotiales (61 taxa) belonging to the Ascomycota represented the taxon richest orders. The evaluation of our multivariate generalized mixed models indicate that the altitude has a significant influence on the composition of the fungal communities (p < 0.003) and that tree age determines community diversity (p < 0.05). A total of 47 ecological guilds were detected, of which the ectomycorrhizal and saprophytic guilds were the most taxon-rich. Our ITS amplicon Illumina sequencing approach allowed us to characterize a high fungal community diversity that would not be possible to capture with fruiting body surveys alone. We conclude that it is an invaluable tool for diverse monitoring tasks and inventorying biodiversity, especially in the detection of microorganisms developing very ephemeral and/or inconspicuous fruiting bodies or lacking them all together. Results suggest that the altitude mainly influences the community composition, whereas fungal diversity becomes higher in mature/older trees. Finally, we demonstrate that novel techniques from bacterial microbiome analyses are also useful for studying fungal diversity and community structure in a DNA metabarcoding approach, but that incomplete reference sequence databases so far limit effective identification.
Collapse
Affiliation(s)
- Max E. Schön
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Tübingen, Germany
- University of Tübingen, Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Tübingen, Germany
| | - Kay Nieselt
- University of Tübingen, Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Tübingen, Germany
| | - Sigisfredo Garnica
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Tübingen, Germany
- Universidad Austral de Chile, Instituto de Bioquímica y Microbiología, Casilla, Isla Teja, Valdivia, Chile
| |
Collapse
|
23
|
|
24
|
Botnen SS, Davey ML, Halvorsen R, Kauserud H. Sequence clustering threshold has little effect on the recovery of microbial community structure. Mol Ecol Resour 2018; 18:1064-1076. [PMID: 29673081 DOI: 10.1111/1755-0998.12894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 11/27/2022]
Abstract
Analysis of microbial community structure by multivariate ordination methods, using data obtained by high-throughput sequencing of amplified markers (i.e., DNA metabarcoding), often requires clustering of DNA sequences into operational taxonomic units (OTUs). Parameters for the clustering procedure tend not to be justified but are set by tradition rather than being based on explicit knowledge. In this study, we explore the extent to which ordination results are affected by variation in parameter settings for the clustering procedure. Amplicon sequence data from nine microbial community studies, representing different sampling designs, spatial scales and ecosystems, were subjected to clustering into OTUs at seven different similarity thresholds (clustering thresholds) ranging from 87% to 99% sequence similarity. The 63 data sets thus obtained were subjected to parallel DCA and GNMDS ordinations. The resulting community structures were highly similar across all clustering thresholds. We explain this pattern by the existence of strong ecological structuring gradients and phylogenetically diverse sets of abundant OTUs that are highly stable across clustering thresholds. Removing low-abundance, rare OTUs had negligible effects on community patterns. Our results indicate that microbial data sets with a clear gradient structure are highly robust to choice of sequence clustering threshold.
Collapse
Affiliation(s)
- Synnøve Smebye Botnen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- The University Centre in Svalbard, Longyearbyen, Norway
| | - Marie Louise Davey
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Rune Halvorsen
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Toju H, Sato H. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest. Front Microbiol 2018; 9:433. [PMID: 29593682 PMCID: PMC5858530 DOI: 10.3389/fmicb.2018.00433] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/26/2018] [Indexed: 11/29/2022] Open
Abstract
Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal (Chamaecyparis obtusa) and ectomycorrhizal (Pinus densiflora) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as “generalists,” which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium, and Mortierella. Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula) or Pinus (e.g., Neolecta). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Koizumi T, Hattori M, Nara K. Ectomycorrhizal fungal communities in alpine relict forests of Pinus pumila on Mt. Norikura, Japan. MYCORRHIZA 2018; 28:129-145. [PMID: 29330574 DOI: 10.1007/s00572-017-0817-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Ectomycorrhizal (ECM) symbioses are indispensable for the establishment of host trees, yet available information of ECM symbiosis in alpine forests is scarce. Pinus pumila is a typical ice age relict tree species in Japan and often forms monodominant dwarf vegetation above the tree line in mountains. We studied ECM fungi colonizing P. pumila on Mt. Norikura, Japan, with reference to host developmental stages, i.e., from current-year seedlings to mature trees. ECM fungal species were identified based on rDNA ITS sequences. Ninety-two ECM fungal species were confirmed from a total of 2480 root tips examined. Species in /suillus-rhizopogon and /wilcoxina were dominant in seedling roots. ECM fungal diversity increased with host development, due to the addition of species-rich fungal lineages (/cenococcum, /cortinarius, and /russula-lactarius) in late-successional stages. Such successional pattern of ECM fungi is similar to those in temperate pine systems, suggesting the predominant role of /suillus-rhizopogon in seedling establishment, even in relict alpine habitats fragmented and isolated for a geological time period. Most of the ECM fungi detected were also recorded in Europe or North America, indicating their potential Holarctic distribution and the possibility of their comigration with P. pumila through land bridges during ice ages. In addition, we found significant effects of soil properties on ECM fungal communities, which explained 34.1% of the total variation of the fungal communities. While alpine vegetation is regarded as vulnerable to the ongoing global warming, ECM fungal communities associated with P. pumila could be altered by the edaphic change induced by the warming.
Collapse
Affiliation(s)
- Takahiko Koizumi
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| | - Masahira Hattori
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
27
|
Brunner I, Frey B, Hartmann M, Zimmermann S, Graf F, Suz LM, Niskanen T, Bidartondo MI, Senn-Irlet B. Ecology of Alpine Macrofungi - Combining Historical with Recent Data. Front Microbiol 2017; 8:2066. [PMID: 29123508 PMCID: PMC5662630 DOI: 10.3389/fmicb.2017.02066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/09/2017] [Indexed: 11/13/2022] Open
Abstract
Historical datasets of living communities are important because they can be used to document creeping shifts in species compositions. Such a historical data set exists for alpine fungi. From 1941 to 1953, the Swiss geologist Jules Favre visited yearly the region of the Swiss National Park and recorded the occurring fruiting bodies of fungi >1 mm (so-called “macrofungi”) in the alpine zone. Favre can be regarded as one of the pioneers of alpine fungal ecology not least because he noted location, elevation, geology, and associated plants during his numerous excursions. However, some relevant information is only available in his unpublished field-book. Overall, Favre listed 204 fungal species in 26 sampling sites, with 46 species being previously unknown. The analysis of his data revealed that the macrofungi recorded belong to two major ecological groups, either they are symbiotrophs and live in ectomycorrhizal associations with alpine plant hosts, or they are saprotrophs and decompose plant litter and soil organic matter. The most frequent fungi were members of Inocybe and Cortinarius, which form ectomycorrhizas with Dryas octopetala or the dwarf alpine Salix species. The scope of the present study was to combine Favre's historical dataset with more recent data, either with the “SwissFungi” database or with data from major studies of the French and German Alps, and with the data from novel high-throughput DNA sequencing techniques of soils from the Swiss Alps. Results of the latter application revealed, that problems associated with these new techniques are manifold and species determination remains often unclear. At this point, the fungal taxa collected by Favre and deposited as exsiccata at the “Conservatoire et Jardin Botaniques de la Ville de Genève” could be used as a reference sequence dataset for alpine fungal studies. In conclusion, it can be postulated that new improved databases are urgently necessary for the near future, particularly, with regard to investigating fungal communities from alpine regions using new techniques.
Collapse
Affiliation(s)
- Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Hartmann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stephan Zimmermann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Frank Graf
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
| | - Laura M Suz
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Tuula Niskanen
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Martin I Bidartondo
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Beatrice Senn-Irlet
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
28
|
Grau O, Geml J, Pérez-Haase A, Ninot JM, Semenova-Nelsen TA, Peñuelas J. Abrupt changes in the composition and function of fungal communities along an environmental gradient in the high Arctic. Mol Ecol 2017; 26:4798-4810. [PMID: 28664999 DOI: 10.1111/mec.14227] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
Abstract
Fungi play a key role in soil-plant interactions, nutrient cycling and carbon flow and are essential for the functioning of arctic terrestrial ecosystems. Some studies have shown that the composition of fungal communities is highly sensitive to variations in environmental conditions, but little is known about how the conditions control the role of fungal communities (i.e., their ecosystem function). We used DNA metabarcoding to compare taxonomic and functional composition of fungal communities along a gradient of environmental severity in Northeast Greenland. We analysed soil samples from fell fields, heaths and snowbeds, three habitats with very contrasting abiotic conditions. We also assessed within-habitat differences by comparing three widespread microhabitats (patches with high cover of Dryas, Salix, or bare soil). The data suggest that, along the sampled mesotopographic gradient, the greatest differences in both fungal richness and community composition are observed amongst habitats, while the effect of microhabitat is weaker, although still significant. Furthermore, we found that richness and community composition of fungi are shaped primarily by abiotic factors and to a lesser, though still significant extent, by floristic composition. Along this mesotopographic gradient, environmental severity is strongly correlated with richness in all fungal functional groups: positively in saprotrophic, pathogenic and lichenised fungi, and negatively in ectomycorrhizal and root endophytic fungi. Our results suggest complex interactions amongst functional groups, possibly due to nutrient limitation or competitive exclusion, with potential implications on soil carbon stocks. These findings are important in the light of the environmental changes predicted for the Arctic.
Collapse
Affiliation(s)
- Oriol Grau
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain.,CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - József Geml
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Aaron Pérez-Haase
- Institute for Research in Biodiversity (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Josep M Ninot
- Institute for Research in Biodiversity (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Tatiana A Semenova-Nelsen
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain.,CREAF, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
29
|
Lorberau KE, Botnen SS, Mundra S, Aas AB, Rozema J, Eidesen PB, Kauserud H. Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)? MYCORRHIZA 2017; 27:513-524. [PMID: 28349216 DOI: 10.1007/s00572-017-0767-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/28/2017] [Indexed: 05/21/2023]
Abstract
Climate change may alter mycorrhizal communities, which impact ecosystem characteristics such as carbon sequestration processes. These impacts occur at a greater magnitude in Arctic ecosystems, where the climate is warming faster than in lower latitudes. Cassiope tetragona (L.) D. Don is an Arctic plant species in the Ericaceae family with a circumpolar range. C. tetragona has been reported to form ericoid mycorrhizal (ErM) as well as ectomycorrhizal (ECM) symbioses. In this study, the fungal taxa present within roots of C. tetragona plants collected from Svalbard were investigated using DNA metabarcoding. In light of ongoing climate change in the Arctic, the effects of artificial warming by open-top chambers (OTCs) on the fungal root community of C. tetragona were evaluated. We detected only a weak effect of warming by OTCs on the root-associated fungal communities that was masked by the spatial variation between sampling sites. The root fungal community of C. tetragona was dominated by fungal groups in the Basidiomycota traditionally classified as either saprotrophic or ECM symbionts, including the orders Sebacinales and Agaricales and the genera Clavaria, Cortinarius, and Mycena. Only a minor proportion of the operational taxonomic units (OTUs) could be annotated as ErM-forming fungi. This indicates that C. tetragona may be forming mycorrhizal symbioses with typically ECM-forming fungi, although no characteristic ECM root tips were observed. Previous studies have indicated that some saprophytic fungi may also be involved in biotrophic associations, but whether the saprotrophic fungi in the roots of C. tetragona are involved in biotrophic associations remains unclear. The need for more experimental and microscopy-based studies to reveal the nature of the fungal associations in C. tetragona roots is emphasized.
Collapse
Affiliation(s)
- Kelsey Erin Lorberau
- University of Oslo, P.O. Box 1072, Blindern, 0316, Oslo, Norway.
- University Centre in Svalbard, P.O. Box 156, 9171, Longyearbyen, Norway.
| | - Synnøve Smebye Botnen
- University of Oslo, P.O. Box 1072, Blindern, 0316, Oslo, Norway
- University Centre in Svalbard, P.O. Box 156, 9171, Longyearbyen, Norway
| | - Sunil Mundra
- University of Oslo, P.O. Box 1072, Blindern, 0316, Oslo, Norway
- University Centre in Svalbard, P.O. Box 156, 9171, Longyearbyen, Norway
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Seckenberganlage, 25, 60325, Frankfurt am Main, Germany
| | | | - Jelte Rozema
- VU University (Vrije Universiteit) Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | | | - Håvard Kauserud
- University of Oslo, P.O. Box 1072, Blindern, 0316, Oslo, Norway
| |
Collapse
|
30
|
Koizumi T, Nara K. Communities of Putative Ericoid Mycorrhizal Fungi Isolated from Alpine Dwarf Shrubs in Japan: Effects of Host Identity and Microhabitat. Microbes Environ 2017; 32:147-153. [PMID: 28529264 PMCID: PMC5478538 DOI: 10.1264/jsme2.me16180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/29/2017] [Indexed: 01/26/2023] Open
Abstract
Dwarf shrubs of the family Ericaceae are common in arctic and alpine regions. Many of these plants are associated with ericoid mycorrhizal (ERM) fungi, which allow them to take nutrients and water from the soil under harsh environmental conditions and, thus, affect host plant survival. Despite the importance of ERM fungi to alpine plant communities, limited information is available on the effects of microhabitat and host identity on ERM fungal communities. We investigated the communities of putative ERM fungi isolated from five dwarf shrub species (Arcterica nana, Diapensia lapponica, Empetrum nigrum, Loiseleuria procumbens, and Vaccinium vitis-idaea) that co-occur in an alpine region of Japan, with reference to distinct microhabitats provided by large stone pine (Pinus pumila) shrubs (i.e. bare ground, the edge of stone pine shrubs, and the inside of stone pine shrubs). We obtained 703 fungal isolates from 222 individual plants. These isolates were classified into 55 operational taxonomic units (OTUs) based on the sequencing of internal transcribed spacer regions in ribosomal DNA. These putative ERM fungal communities were dominated by Helotiales fungi for all host species. Cistella and Trimmatostroma species, which have rarely been detected in ERM roots in previous studies, were abundant. ERM fungal communities were significantly different among microhabitats (R2=0.28), while the host effect explained less variance in the fungal communities after excluding the microhabitat effect (R2=0.17). Our results suggest that the host effect on ERM fungal communities is minor and the distributions of hosts and fungal communities may be assessed based on microhabitat conditions.
Collapse
Affiliation(s)
- Takahiko Koizumi
- Department of Natural Environmental Studies, Graduate School of Frontier Science, The University of Tokyo5–1–5 Kashiwanoha, Kashiwa, Chiba, 277–8563Japan
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Science, The University of Tokyo5–1–5 Kashiwanoha, Kashiwa, Chiba, 277–8563Japan
| |
Collapse
|
31
|
|
32
|
|
33
|
Mundra S, Bahram M, Eidesen PB. Alpine bistort (Bistorta vivipara) in edge habitat associates with fewer but distinct ectomycorrhizal fungal species: a comparative study of three contrasting soil environments in Svalbard. MYCORRHIZA 2016; 26:809-818. [PMID: 27325524 DOI: 10.1007/s00572-016-0716-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Bistorta vivipara is a widespread arctic-alpine ectomycorrhizal (ECM) plant species. Recent findings suggest that fungal communities associated with B. vivipara roots appear random over short distances, but at larger scales, environmental filtering structure fungal communities. Habitats in highly stressful environments where specialist species with narrower niches may have an advantage represent unique opportunity to test the effect of environmental filtering. We utilised high-throughput amplicon sequencing to identify ECM communities associated with B. vivipara in Svalbard. We compared ECM communities in a core habitat where B. vivipara is frequent (Dryas-heath) with edge habitats representing extremes in terms of nutrient availability where B. vivipara is less frequent (bird-manured meadow and a nutrient-depleted mine tilling). Our analysis revealed that soil conditions in edge habitats favour less diverse but more distinct ECM fungal communities with functional traits adapted to local conditions. ECM richness was overall lower in both edge habitats, and the taxonomic compositions of ECM fungi were in line with our functional expectations. Stress-tolerant genera such as Laccaria and Hebeloma were abundant in nutrient-poor mine site whereas functional competitors genera such as Lactarius and Russula were dominant in the nutrient-rich bird-cliff site. Our results suggest that ECM communities in rare edge habitats are most likely not subsets of the larger pool of ECM fungi found in natural tundra, and they may represent a significant contribution to the overall diversity of ECM fungi in the Arctic.
Collapse
Affiliation(s)
- Sunil Mundra
- The University Centre in Svalbard, P.O. Box 156, Longyearbyen, NO-9171, Norway.
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, Oslo, NO-0316, Norway.
| | - Mohammad Bahram
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE 75236, Sweden
- Institute of Ecology and Earth Sciences, Tartu University, 14A Ravila, Tartu, 50411, Estonia
| | | |
Collapse
|
34
|
Yang T, Sun H, Shen C, Chu H. Fungal Assemblages in Different Habitats in an Erman's Birch Forest. Front Microbiol 2016; 7:1368. [PMID: 27625646 PMCID: PMC5003828 DOI: 10.3389/fmicb.2016.01368] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022] Open
Abstract
Recent meta-analyses of fungal diversity using deeply sequenced marker genes suggest that most fungal taxa are locally distributed. However, little is known about the extent of overlap and niche partitions in total fungal communities or functional guilds within distinct habitats on a local forest scale. Here, we compared fungal communities in endosphere (leaf interior), phyllosphere (leaf interior and associated surface area) and soil samples from an Erman's birch forest in Changbai Mountain, China. Community structures were significantly differentiated in terms of habitat, with soil having the highest fungal richness and phylogenetic diversity. Endophytic and phyllosphere fungi of Betula ermanii were more phylogenetically clustered compared with the corresponding soil fungi, indicating the ability of that host plants to filter and select their fungal partners. Furthermore, the majority of soil fungal taxa were soil specialists, while the dominant endosphere and phyllosphere taxa were aboveground generalists, with soil and plant foliage only sharing <8.2% fungal taxa. Most of the fungal taxa could be assigned to different functional guilds; however, the assigned guilds showed significant habitat specificity with variation in relative abundance. Collectively, the fungal assemblages in this Erman's birch forest were strictly niche specialized and constrained by weak migration among habitats. The findings suggest that phylogenetic relatedness and functional guilds' assignment can effectively interpret the certain ecological processes.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Huaibo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| |
Collapse
|
35
|
Mundra S, Halvorsen R, Kauserud H, Bahram M, Tedersoo L, Elberling B, Cooper EJ, Eidesen PB. Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic. Microbiologyopen 2016; 5:856-869. [PMID: 27255701 PMCID: PMC5061721 DOI: 10.1002/mbo3.375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 11/24/2022] Open
Abstract
Changing climate is expected to alter precipitation patterns in the Arctic, with consequences for subsurface temperature and moisture conditions, community structure, and nutrient mobilization through microbial belowground processes. Here, we address the effect of increased snow depth on the variation in species richness and community structure of ectomycorrhizal (ECM) and saprotrophic fungi. Soil samples were collected weekly from mid‐July to mid‐September in both control and deep snow plots. Richness of ECM fungi was lower, while saprotrophic fungi was higher in increased snow depth plots relative to controls. [Correction added on 23 September 2016 after first online publication: In the preceding sentence, the richness of ECM and saprotrophic fungi were wrongly interchanged and have been fixed in this current version.] ECM fungal richness was related to soil NO3‐N, NH4‐N, and K; and saprotrophic fungi to NO3‐N and pH. Small but significant changes in the composition of saprotrophic fungi could be attributed to snow treatment and sampling time, but not so for the ECM fungi. Delayed snow melt did not influence the temporal variation in fungal communities between the treatments. Results suggest that some fungal species are favored, while others are disfavored resulting in their local extinction due to long‐term changes in snow amount. Shifts in species composition of fungal functional groups are likely to affect nutrient cycling, ecosystem respiration, and stored permafrost carbon.
Collapse
Affiliation(s)
- Sunil Mundra
- The University Centre in Svalbard, P.O. Box 156, NO-9171, Longyearbyen, Norway. , .,Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway. ,
| | - Rune Halvorsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, Tartu University, 14A Ravila, 50411, Tartu, Estonia.,Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, SE 75236, Uppsala, Sweden
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14A Ravila, 50411, Tartu, Estonia
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1350, Copenhagen, Denmark
| | - Elisabeth J Cooper
- Department of Arctic and Marine Biology, Institute of Biosciences Fisheries and Economics, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | | |
Collapse
|
36
|
Zepeda-Mendoza ML, Bohmann K, Carmona Baez A, Gilbert MTP. DAMe: a toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses. BMC Res Notes 2016; 9:255. [PMID: 27142414 PMCID: PMC4855357 DOI: 10.1186/s13104-016-2064-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/26/2016] [Indexed: 01/23/2023] Open
Abstract
Background DNA metabarcoding is an approach for identifying multiple taxa in an environmental sample using specific genetic loci and taxa-specific primers. When combined with high-throughput sequencing it enables the taxonomic characterization of large numbers of samples in a relatively time- and cost-efficient manner. One recent laboratory development is the addition of 5′-nucleotide tags to both primers producing double-tagged amplicons and the use of multiple PCR replicates to filter erroneous sequences. However, there is currently no available toolkit for the straightforward analysis of datasets produced in this way. Results We present DAMe, a toolkit for the processing of datasets generated by double-tagged amplicons from multiple PCR replicates derived from an unlimited number of samples. Specifically, DAMe can be used to (i) sort amplicons by tag combination, (ii) evaluate PCR replicates dissimilarity, and (iii) filter sequences derived from sequencing/PCR errors, chimeras, and contamination. This is attained by calculating the following parameters: (i) sequence content similarity between the PCR replicates from each sample, (ii) reproducibility of each unique sequence across the PCR replicates, and (iii) copy number of the unique sequences in each PCR replicate. We showcase the insights that can be obtained using DAMe prior to taxonomic assignment, by applying it to two real datasets that vary in their complexity regarding number of samples, sequencing libraries, PCR replicates, and used tag combinations. Finally, we use a third mock dataset to demonstrate the impact and importance of filtering the sequences with DAMe. Conclusions DAMe allows the user-friendly manipulation of amplicons derived from multiple samples with PCR replicates built in a single or multiple sequencing libraries. It allows the user to: (i) collapse amplicons into unique sequences and sort them by tag combination while retaining the sample identifier and copy number information, (ii) identify sequences carrying unused tag combinations, (iii) evaluate the comparability of PCR replicates of the same sample, and (iv) filter tagged amplicons from a number of PCR replicates using parameters of minimum length, copy number, and reproducibility across the PCR replicates. This enables an efficient analysis of complex datasets, and ultimately increases the ease of handling datasets from large-scale studies. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2064-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Lisandra Zepeda-Mendoza
- Evogenomics, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.
| | - Kristine Bohmann
- Evogenomics, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Aldo Carmona Baez
- Evogenomics, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark.,Undergraduate Program on Genomic Sciences, Center for Genomic Sciences, National Autonomous University of Mexico (UNAM), Av. Universidad s/n Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - M Thomas P Gilbert
- Evogenomics, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| |
Collapse
|
37
|
David AS, Seabloom EW, May G. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem. MICROBIAL ECOLOGY 2016; 71:912-926. [PMID: 26626912 DOI: 10.1007/s00248-015-0712-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities.
Collapse
Affiliation(s)
- Aaron S David
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA.
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
- Department of Plant Biology, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| |
Collapse
|
38
|
Zhang T, Wang NF, Zhang YQ, Liu HY, Yu LY. Diversity and Distribution of Aquatic Fungal Communities in the Ny-Ålesund Region, Svalbard (High Arctic): Aquatic Fungi in the Arctic. MICROBIAL ECOLOGY 2016; 71:543-554. [PMID: 26492897 DOI: 10.1007/s00248-015-0689-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
We assessed the diversity and distribution of fungi in 13 water samples collected from four aquatic environments (stream, pond, melting ice water, and estuary) in the Ny-Ålesund Region, Svalbard (High Arctic) using 454 pyrosequencing with fungi-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Aquatic fungal communities in this region showed high diversity, with a total of 43,061 reads belonging to 641 operational taxonomic units (OTUs) being found. Of these OTUs, 200 belonged to Ascomycota, 196 to Chytridiomycota, 120 to Basidiomycota, 13 to Glomeromycota, and 10 to early diverging fungal lineages (traditional Zygomycota), whereas 102 belonged to unknown fungi. The major orders were Helotiales, Eurotiales, and Pleosporales in Ascomycota; Chytridiales and Rhizophydiales in Chytridiomycota; and Leucosporidiales and Sporidiobolales in Basidiomycota. The common fungal genera Penicillium, Rhodotorula, Epicoccum, Glaciozyma, Holtermanniella, Betamyces, and Phoma were identified. Interestingly, the four aquatic environments in this region harbored different aquatic fungal communities. Salinity, conductivity, and temperature were important factors in determining the aquatic fungal diversity and community composition. The results suggest the presence of diverse fungal communities and a considerable number of potentially novel fungal species in Arctic aquatic environments, which can provide reliable data for studying the ecological and evolutionary responses of fungi to climate change in the Arctic ecosystem.
Collapse
Affiliation(s)
- Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Neng-Fei Wang
- Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| | - Yu-Qin Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Hong-Yu Liu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Li-Yan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
39
|
Yang T, Weisenhorn P, Gilbert JA, Ni Y, Sun R, Shi Y, Chu H. Carbon constrains fungal endophyte assemblages along the timberline. Environ Microbiol 2016; 18:2455-69. [DOI: 10.1111/1462-2920.13153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science Chinese Academy of Sciences 71 East Beijing Road Nanjing 210008 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pamela Weisenhorn
- Argonne National Laboratory Institute for Genomics and Systems Biology Argonne IL 60439 USA
| | - Jack A. Gilbert
- Argonne National Laboratory Institute for Genomics and Systems Biology Argonne IL 60439 USA
- Departments of Ecology and Evolution
- Surgery University of Chicago Chicago IL 60637 USA
- Marine Biological Laboratory 7 MBL Street Woods Hole MA 02543 USA
- College of Environmental and Resource Sciences Zhejiang University Hangzhou 310058 China
| | - Yingying Ni
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science Chinese Academy of Sciences 71 East Beijing Road Nanjing 210008 China
| | - Ruibo Sun
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science Chinese Academy of Sciences 71 East Beijing Road Nanjing 210008 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science Chinese Academy of Sciences 71 East Beijing Road Nanjing 210008 China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science Chinese Academy of Sciences 71 East Beijing Road Nanjing 210008 China
| |
Collapse
|
40
|
Mundra S, Bahram M, Tedersoo L, Kauserud H, Halvorsen R, Eidesen PB. Temporal variation of Bistorta vivipara-associated ectomycorrhizal fungal communities in the High Arctic. Mol Ecol 2015; 24:6289-302. [PMID: 26547806 DOI: 10.1111/mec.13458] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 01/24/2023]
Abstract
Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing-season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time-points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing-season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter-active fungal community. Significant month × year interactions were observed both for fungal richness and community composition, indicating unpredictable between-year variation. Our study indicates that addressing seasonal changes requires replication over several years.
Collapse
Affiliation(s)
- Sunil Mundra
- The University Centre in Svalbard, P.O. Box 156, Longyearbyen, NO-9171, Norway.,Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, NO-0316, Norway
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, Tartu University, 14A Ravila, Tartu, 50411, Estonia.,Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE 75236, Sweden
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14A Ravila, Tartu, 50411, Estonia
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, NO-0316, Norway
| | - Rune Halvorsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
41
|
Zhang T, Fei Wang N, Qin Zhang Y, Yu Liu H, Yan Yu L. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci Rep 2015; 5:14524. [PMID: 26494429 PMCID: PMC4615975 DOI: 10.1038/srep14524] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/24/2015] [Indexed: 11/21/2022] Open
Abstract
This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.
Collapse
Affiliation(s)
- Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Neng Fei Wang
- Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, P.R. China
| | - Yu Qin Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Hong Yu Liu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Li Yan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
42
|
Taudiere A, Munoz F, Lesne A, Monnet AC, Bellanger JM, Selosse MA, Moreau PA, Richard F. Beyond ectomycorrhizal bipartite networks: projected networks demonstrate contrasted patterns between early- and late-successional plants in Corsica. FRONTIERS IN PLANT SCIENCE 2015; 6:881. [PMID: 26539201 PMCID: PMC4612159 DOI: 10.3389/fpls.2015.00881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/05/2015] [Indexed: 05/31/2023]
Abstract
The ectomycorrhizal (ECM) symbiosis connects mutualistic plants and fungal species into bipartite networks. While links between one focal ECM plant and its fungal symbionts have been widely documented, systemic views of ECM networks are lacking, in particular, concerning the ability of fungal species to mediate indirect ecological interactions between ECM plant species (projected-ECM networks). We assembled a large dataset of plant-fungi associations at the species level and at the scale of Corsica using molecular data and unambiguously host-assigned records to: (i) examine the correlation between the number of fungal symbionts of a plant species and the average specialization of these fungal species, (ii) explore the structure of the plant-plant projected network and (iii) compare plant association patterns in regard to their position along the ecological succession. Our analysis reveals no trade-off between specialization of plants and specialization of their partners and a saturation of the plant projected network. Moreover, there is a significantly lower-than-expected sharing of partners between early- and late-successional plant species, with fewer fungal partners for early-successional ones and similar average specialization of symbionts of early- and late-successional plants. Our work paves the way for ecological readings of Mediterranean landscapes that include the astonishing diversity of below-ground interactions.
Collapse
Affiliation(s)
- Adrien Taudiere
- UMR 5175, CEFE – CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE – INSERMMontpellier, France
| | - François Munoz
- UM2, UMR AMAPMontpellier, France
- French Institute of PondicherryPondicherry, India
| | - Annick Lesne
- CNRS, LPTMC UMR 7600, Université Pierre et Marie Curie-Paris 6, Sorbonne UniversitésParis, France
- CNRS, IGMM UMR 5535, Université de MontpellierMontpellier, France
| | - Anne-Christine Monnet
- UMR 5175, CEFE – CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE – INSERMMontpellier, France
| | - Jean-Michel Bellanger
- UMR 5175, CEFE – CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE – INSERMMontpellier, France
| | - Marc-André Selosse
- CNRS, Muséum National d’Histoire Naturelle, UMR 7205, Origine, Structure et Evolution de la BiodiversitéParis, France
| | - Pierre-Arthur Moreau
- Département de Botanique, Faculté des Sciences Pharmaceutiques et Biologiques, Université LilleLille, France
| | - Franck Richard
- UMR 5175, CEFE – CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE – INSERMMontpellier, France
| |
Collapse
|
43
|
Zhang T, Wei XL, Zhang YQ, Liu HY, Yu LY. Diversity and distribution of lichen-associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing. Sci Rep 2015; 5:14850. [PMID: 26463847 PMCID: PMC4604449 DOI: 10.1038/srep14850] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/20/2015] [Indexed: 12/02/2022] Open
Abstract
This study assessed the diversity and distribution of fungal communities associated with seven lichen species in the Ny-Ålesund Region (Svalbard, High Arctic) using Roche 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Lichen-associated fungal communities showed high diversity, with a total of 42,259 reads belonging to 370 operational taxonomic units (OTUs) being found. Of these OTUs, 294 belonged to Ascomycota, 54 to Basidiomycota, 2 to Zygomycota, and 20 to unknown fungi. Leotiomycetes, Dothideomycetes, and Eurotiomycetes were the major classes, whereas the dominant orders were Helotiales, Capnodiales, and Chaetothyriales. Interestingly, most fungal OTUs were closely related to fungi from various habitats (e.g., soil, rock, plant tissues) in the Arctic, Antarctic and alpine regions, which suggests that living in association with lichen thalli may be a transient stage of life cycle for these fungi and that long-distance dispersal may be important to the fungi in the Arctic. In addition, host-related factors shaped the lichen-associated fungal communities in this region. Taken together, these results suggest that lichens thalli act as reservoirs of diverse fungi from various niches, which may improve our understanding of fungal evolution and ecology in the Arctic.
Collapse
Affiliation(s)
- Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xin-Li Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Qin Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Hong-Yu Liu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Li-Yan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| |
Collapse
|
44
|
Zhang T, Yao YF. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific. PLoS One 2015; 10:e0130051. [PMID: 26067836 PMCID: PMC4466372 DOI: 10.1371/journal.pone.0130051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/16/2015] [Indexed: 11/24/2022] Open
Abstract
This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi-Feng Yao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Schnell IB, Bohmann K, Gilbert MTP. Tag jumps illuminated--reducing sequence-to-sample misidentifications in metabarcoding studies. Mol Ecol Resour 2015; 15:1289-303. [PMID: 25740652 DOI: 10.1111/1755-0998.12402] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
Abstract
Metabarcoding of environmental samples on second-generation sequencing platforms has rapidly become a valuable tool for ecological studies. A fundamental assumption of this approach is the reliance on being able to track tagged amplicons back to the samples from which they originated. In this study, we address the problem of sequences in metabarcoding sequencing outputs with false combinations of used tags (tag jumps). Unless these sequences can be identified and excluded from downstream analyses, tag jumps creating sequences with false, but already used tag combinations, can cause incorrect assignment of sequences to samples and artificially inflate diversity. In this study, we document and investigate tag jumping in metabarcoding studies on Illumina sequencing platforms by amplifying mixed-template extracts obtained from bat droppings and leech gut contents with tagged generic arthropod and mammal primers, respectively. We found that an average of 2.6% and 2.1% of sequences had tag combinations, which could be explained by tag jumping in the leech and bat diet study, respectively. We suggest that tag jumping can happen during blunt-ending of pools of tagged amplicons during library build and as a consequence of chimera formation during bulk amplification of tagged amplicons during library index PCR. We argue that tag jumping and contamination between libraries represents a considerable challenge for Illumina-based metabarcoding studies, and suggest measures to avoid false assignment of tag jumping-derived sequences to samples.
Collapse
Affiliation(s)
- Ida Baerholm Schnell
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350, Copenhagen K, Denmark.,Center for Zoo and Wild Animal Health, Copenhagen Zoo, 2000, Frederiksberg, Denmark
| | - Kristine Bohmann
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350, Copenhagen K, Denmark.,School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350, Copenhagen K, Denmark.,Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6102, Australia
| |
Collapse
|
46
|
Bahram M, Peay KG, Tedersoo L. Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. THE NEW PHYTOLOGIST 2015; 205:1454-1463. [PMID: 25767850 DOI: 10.1111/nph.13206] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knowledge of spatiotemporal patterns in species distribution is fundamental to understanding the ecological and evolutionary processes shaping communities. The emergence of DNA-based tools has expanded the geographic and taxonomic scope of studies examining spatial and temporal distribution of mycorrhizal fungi. However, the nature of spatiotemporal patterns documented and subsequent interpretation of ecological processes can vary significantly from study to study. In order to look for general patterns we synthesize the available data across different sampling scales and mycorrhizal types. The results of this analysis shed light on the relative importance of space, time and vertical soil structure on community variability across different mycorrhizal types. Although we found no significant trend in spatiotemporal variation amongmycorrhizal types, the vertical community variation was distinctly greater than the spatial and temporal variability in mycorrhizal fungal communities. Both spatial and temporal variability of communities was greater in topsoil compared with lower horizons, suggesting that greater environmental heterogeneity drives community variation on a fine scale. This further emphasizes the importance of both niche differentiation and environmental filtering in maintaining diverse fungal communities.
Collapse
|
47
|
Mundra S, Halvorsen R, Kauserud H, Müller E, Vik U, Eidesen PB. Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the aboveground vegetation. THE NEW PHYTOLOGIST 2015; 205:1587-1597. [PMID: 25483568 DOI: 10.1111/nph.13216] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Soil conditions and microclimate are important determinants of the fine-scale distribution of plant species in the Arctic, creating locally heterogeneous vegetation. We hypothesize that root-associated fungal (RAF) communities respond to the same fine-scale environmental gradients as the aboveground vegetation, creating a coherent pattern between aboveground vegetation and RAF. We explored how RAF communities of the ectomycorrhizal (ECM) plant Bistorta vivipara and aboveground vegetation structure of arctic plants were affected by biotic and abiotic variables at 0.3-3.0-m scales. RAF communities were determined using pyrosequencing. Composition and spatial structure of RAF and aboveground vegetation in relation to collected biotic and abiotic variables were analysed by ordination and semi-variance analyses. The vegetation was spatially structured along soil C and N gradients, whereas RAF lacked significant spatial structure. A weak relationship between RAF community composition and the cover of two ECM plants, B. vivipara and S. polaris, was found, and RAF richness increased with host root length and root weight. Results suggest that the fine-scale spatial structure of RAF communities of B. vivipara and the aboveground vegetation are driven by different factors. At fine spatial scales, neighbouring ECM plants may affect RAF community composition, whereas soil nutrients gradients structure the vegetation.
Collapse
Affiliation(s)
- Sunil Mundra
- The University Centre in Svalbard (UNIS), PO Box 156, N-9171, Longyearbyen (Svalbard), Norway
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Rune Halvorsen
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Eike Müller
- The University Centre in Svalbard (UNIS), PO Box 156, N-9171, Longyearbyen (Svalbard), Norway
| | - Unni Vik
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Pernille B Eidesen
- The University Centre in Svalbard (UNIS), PO Box 156, N-9171, Longyearbyen (Svalbard), Norway
| |
Collapse
|
48
|
Verbruggen E, Rillig MC, Wehner J, Hegglin D, Wittwer R, van der Heijden MGA. Sebacinales, but not total root associated fungal communities, are affected by land-use intensity. THE NEW PHYTOLOGIST 2014; 203:1036-1040. [PMID: 24893575 DOI: 10.1111/nph.12884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Erik Verbruggen
- Institut für Biologie, Freie, Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie, Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Jeannine Wehner
- Institut für Biologie, Freie, Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Django Hegglin
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, Reckenholzstrasse 191, CH 8046, Zürich, Switzerland
| | - Raphael Wittwer
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, Reckenholzstrasse 191, CH 8046, Zürich, Switzerland
| | - Marcel G A van der Heijden
- Plant-Soil Interactions, Institute for Sustainability Sciences, Agroscope, Reckenholzstrasse 191, CH 8046, Zürich, Switzerland
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurestrasse 190, CH 8057, Zürich, Switzerland
- Plant-Microbe Interactions, Faculty of Science, Institute of Environmental Biology, Utrecht University, 3508 TC, Utrecht, the Netherlands
| |
Collapse
|