1
|
Pineda-Sánchez G, Vázquez-Domínguez E. Desert landscape features influencing the microgeographic genetic structure of Nelson's pocket mouse Chaetodipus nelsoni. Heredity (Edinb) 2024:10.1038/s41437-024-00732-y. [PMID: 39488628 DOI: 10.1038/s41437-024-00732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Elucidating the factors that drive the genetic patterns of natural populations is key in evolutionary biology, ecology and conservation. Hence, it is crucial to understand the role that environmental features play in species genetic diversity and structure. Landscape genetics measures functional connectivity and evaluates the effects of landscape composition, configuration, and heterogeneity on microevolutionary processes. Deserts constitute one of the world's most widespread biomes and exhibit a striking heterogeneity of microhabitats, yet few landscape genetics studies have been performed with rodents in deserts. We evaluated the relationship between landscape and functional connectivity, at a microgeographic scale, of the Nelson's pocket mouse Chaetodipus nelsoni in the Mapimí Biosphere Reserve (Chihuahuan desert). We used single-nucleotide polymorphisms and characterized the landscape based on on-site environmental data and from Landsat satellite images. We identified two distinct genetic clusters shaped by elevation, vegetation and soil. High elevation group showed higher connectivity in the elevated zones (1250-1350 m), with scarce vegetation and predominantly rocky soils; whereas that of Low elevation group was at <1200 m, with denser vegetation and sandy soils. These genetic patterns are likely associated with the species' locomotion type, feeding strategy and building of burrows. Interestingly, we also identified morphological differences, where hind foot size was significantly smaller in individuals from High elevation compared to Low elevation, suggesting the possibility of ecomorphs associated with habitat differences and potential local adaptation processes, which should be explored further. These findings improve our understanding of the genetics and ecology of C. nelsoni and other desert rodents.
Collapse
Affiliation(s)
- Gissella Pineda-Sánchez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1er Piso, Unidad de Posgrado, 04510, Ciudad de México, México
| | - Ella Vázquez-Domínguez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, México.
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), 41092, Sevilla, España.
| |
Collapse
|
2
|
Grünig S, Patsiou T, Parisod C. Ice age-driven range shifts of diploids and expanding autotetraploids of Biscutella laevigata within a conserved niche. THE NEW PHYTOLOGIST 2024; 244:1616-1628. [PMID: 39253771 DOI: 10.1111/nph.20103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Early studies of the textbook mixed-ploidy system Biscutella laevigata highlighted diploids restricted to never-glaciated lowlands and tetraploids at high elevations across the European Alps, promoting the hypothesis that whole-genome duplication (WGD) is advantageous under environmental changes. Here we addressed long-held hypotheses on the role of hybridisation at the origin of the tetraploids, their single vs multiple origins, and whether a shift in climatic niche accompanied WGD. Climatic niche modelling together with spatial genetics and coalescent modelling based on ddRAD-seq genotyping of 17 diploid and 19 tetraploid populations was used to revisit the evolution of this species complex in space and time. Diploids differentiated into four genetic lineages corresponding to allopatric glacial refugia at the onset of the last ice age, whereas tetraploids displaying tetrasomic inheritance formed a uniform group that originated from southern diploids before the last glacial maximum. Derived from diploids occurring at high elevation, autotetraploids likely inherited their adaptation to high elevation rather than having evolved it through or after WGD. They further presented considerable postglacial expansion across the Alps and underwent admixture with diploids. Although the underpinnings of the successful expansion of autotetraploids remain elusive, differentiation in B. laevigata was chiefly driven by the glacial history of the Alps.
Collapse
Affiliation(s)
- Sandra Grünig
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Theofania Patsiou
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Christian Parisod
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| |
Collapse
|
3
|
McGreevy TJ, Crawford NG, Legreneur P, Schneider CJ. Influence of geographic isolation and the environment on gene flow among phenotypically diverse lizards. Heredity (Edinb) 2024; 133:317-330. [PMID: 39266673 PMCID: PMC11528109 DOI: 10.1038/s41437-024-00716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024] Open
Abstract
Lizards in the genus Anolis comprise hundreds of species that display a wide range of phenotypic variation closely related to their environment. One example is the Guadeloupean anole (Anolis marmoratus ssp.) that display extreme phenotypic variation, primarily in adult male color and pattern, with twelve described subspecies on the archipelago. Here we examine the relationship between phenotypic and genetic divergence among five subspecies on the two main islands and test the role of geographic isolation and the environment in reducing gene flow. We also examined two offshore island populations to assess the impact of complete geographic isolation on gene flow. We analyzed color phenotypes by measuring spectral reflectance and genomic diversity using SNPs. Genetic divergence was correlated with dorsolateral head and body color phenotypes, and slope and geographic distance were nearly equivalent at explaining this divergence. There was minimal genome-wide divergence at neutral loci among phenotypically disparate subspecies on the two main islands and their differentiation is consistent with a model of divergence with gene flow. Our spatial visualization of gene flow showed an impact of environmental features consistent with a hypothesis of ecologically driven divergence. Nonetheless, subspecies on the two main islands remain interconnected by substantial gene flow and their phenotypic variation is likely maintained at selection-gene flow equilibrium by divergent selection at loci associated with their color phenotypes. Greater isolation, such as inhabiting a remote island, may be required for reducing gene flow. Our findings highlight the role of the environment, adaptation, and geographic isolation on gene flow.
Collapse
Affiliation(s)
- Thomas J McGreevy
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI, 02881, USA.
| | - Nicholas G Crawford
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | | | | |
Collapse
|
4
|
Rittweg TD, Trueman C, Wiedenbeck M, Fietzke J, Wolter C, Talluto L, Dennenmoser S, Nolte A, Arlinghaus R. Variable habitat use supports fine-scale population differentiation of a freshwater piscivore (northern pike, Esox lucius) along salinity gradients in brackish lagoons. Oecologia 2024:10.1007/s00442-024-05627-7. [PMID: 39424687 DOI: 10.1007/s00442-024-05627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
In mobile animals, selection pressures resulting from spatio-temporally varying ecological factors often drive adaptations in migration behavior and associated physiological phenotypes. These adaptations may manifest in ecologically and genetically distinct ecotypes within populations. We studied a meta-population of northern pike (Esox lucius) in brackish environments and examined intrapopulation divergence along environmental gradients. Behavioral phenotypes in habitat use were characterized via otolith microchemistry in 120 individuals sampled from brackish lagoons and adjacent freshwater tributaries. We genotyped 1514 individual pike at 33 highly informative genetic markers. The relationship between behavioral phenotype and genotype was examined in a subset of 101 pikes for which both phenotypic and genomic data were available. Thermosaline differences between juvenile and adult life stages indicated ontogenetic shifts from warm, low-saline early habitats towards colder, higher-saline adult habitats. Four behavioral phenotypes were found: Freshwater residents, anadromous, brackish residents, and cross-habitat individuals, the latter showing intermediary habitat use between brackish and freshwater areas. Underlying the behavioral phenotypes were four genotypes, putative freshwater, putative anadromous, and two putatively brackish genotypes. Through phenotype-genotype matching, three ecotypes were identified: (i) a brackish resident ecotype, (ii) a freshwater ecotype expressing freshwater residency or anadromy, and (iii) a previously undescribed intermediary cross-habitat ecotype adapted to intermediate salinities, showing limited reliance on freshwater. Life-time growth of all ecotypes was similar, suggesting comparable fitness. By combining genetic data with lifelong habitat use and growth as a fitness surrogate, our study revealed strong differentiation in response to abiotic environmental gradients, primarily salinity, indicating ecotype diversity in coastal northern pike is higher than previously believed.
Collapse
Affiliation(s)
- Timo D Rittweg
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany.
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| | - Clive Trueman
- School of Ocean and Earth Science, University of Southampton Waterfront Campus, European Way, Southampton, SO143ZH, UK
| | - Michael Wiedenbeck
- German Research Center for Geosciences (GFZ) Potsdam, Telegrafenberg, 14473, Potsdam, Brandenburg, Germany
| | - Jan Fietzke
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Schleswig-Holstein, Germany
| | - Christian Wolter
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany
| | - Lauren Talluto
- Research Group Fluvial Ecosystem Ecology, Department of Ecology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Stefan Dennenmoser
- Working Group Ecological Genomics, Institute of Biology and Environmental Sciences, Carl Von Ossietzky Universität Oldenburg, Carl Von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
| | - Arne Nolte
- Working Group Ecological Genomics, Institute of Biology and Environmental Sciences, Carl Von Ossietzky Universität Oldenburg, Carl Von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
| | - Robert Arlinghaus
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
5
|
Wishingrad V, Thomson RC. Testing concordance and conflict in spatial replication of landscape genetics inferences. Mol Ecol 2024; 33:e17104. [PMID: 37602959 DOI: 10.1111/mec.17104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
The degree to which landscape genetics findings can be extrapolated to different areas of a species range is poorly understood. Here, we used a broadly distributed ectothermic lizard (Sceloporus occidentalis, Western Fence lizard) as a model species to evaluate the full role of topography, climate, vegetation, and roads on dispersal and genetic differentiation. We conducted landscape genetics analyses with a total of 119 individuals in five areas within the Sierra Nevada mountain range. Genetic distances calculated from thousands of ddRAD markers were used to optimize landscape resistance surfaces and infer the effects of landscape and topographic features on genetic connectivity. Across study areas, we found a great deal of consistency in the primary environmental gradients impacting genetic connectivity, along with some site-specific differences, and a range in the proportion of genetic variance explained by environmental factors across study sites. High-elevation colder areas were consistently found to be barriers to gene flow, as were areas of high ruggedness and slope. High temperature seasonality and high precipitation during the winter wet season also presented a substantial barrier to gene flow in a majority of study areas. The effect of other landscape variables on genetic differentiation was more idiosyncratic and depended on specific attributes at each site. Across study areas, canyon valleys were always implicated as facilitators to dispersal and key features linking populations and maintaining genetic connectivity, though the relative importance varied in different areas. We emphasize that spatial data layers are complex and multidimensional, and careful consideration of spatial data correlation structure and robust analytic frameworks will be critical to our continued understanding of spatial genetics processes.
Collapse
Affiliation(s)
- Van Wishingrad
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Robert C Thomson
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
6
|
Salamon M, Astorg L, Paccard A, Chain F, Hendry A, Derry A, Barrett R. Limited Migration From Physiological Refugia Constrains the Rescue of Native Gastropods Facing an Invasive Predator. Evol Appl 2024; 17:e70004. [PMID: 39439433 PMCID: PMC11493756 DOI: 10.1111/eva.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/03/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Biological invasions have caused the loss of freshwater biodiversity worldwide. The interplay between adaptive responses and demographic characteristics of populations impacted by invasions is expected to be important for their resilience, but the interaction between these factors is poorly understood. The freshwater gastropod Amnicola limosus is native to the Upper St. Lawrence River and distributed along a water calcium concentration gradient within which high-calcium habitats are impacted by an invasive predator fish (Neogobius melanostomus, round goby), whereas low-calcium habitats provide refuges for the gastropods from the invasive predator. Our objectives were to (1) test for adaptation of A. limosus to the invasive predator and the low-calcium habitats, and (2) investigate if migrant gastropods could move from refuge populations to declining invaded populations (i.e., demographic rescue), which could also help maintain genetic diversity through gene flow (i.e., genetic rescue). We conducted a laboratory reciprocal transplant of wild F0 A. limosus sourced from the two habitat types (high calcium/invaded and low calcium/refuge) to measure adult survival and fecundity in home and transplant treatments of water calcium concentration (low/high) and round goby cue (present/absent). We then applied pooled whole-genome sequencing of 12 gastropod populations from across the calcium/invasion gradient. We identified patterns of life-history traits and genetic differentiation across the habitats that are consistent with local adaptation to low-calcium concentrations in refuge populations and to round goby predation in invaded populations. We also detected restricted gene flow from the low-calcium refugia towards high-calcium invaded populations, implying that the potential for demographic and genetic rescue is limited by natural dispersal. Our study highlights the importance of considering the potentially conflicting effects of local adaptation and gene flow for the resilience of populations coping with invasive predators.
Collapse
Affiliation(s)
| | - Louis Astorg
- Université du Québec à MontréalMontrealQuebecCanada
| | | | - Frederic Chain
- University of Massachusetts LowellLowellMassachusettsUSA
| | | | | | | |
Collapse
|
7
|
Burbrink FT, Myers EA, Pyron RA. Understanding species limits through the formation of phylogeographic lineages. Ecol Evol 2024; 14:e70263. [PMID: 39364037 PMCID: PMC11446989 DOI: 10.1002/ece3.70263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
The outcomes of speciation across organismal dimensions (e.g., ecological, genetic, phenotypic) are often assessed using phylogeographic methods. At one extreme, reproductively isolated lineages represent easily delimitable species differing in many or all dimensions, and at the other, geographically distinct genetic segments introgress across broad environmental gradients with limited phenotypic disparity. In the ambiguous gray zone of speciation, where lineages are genetically delimitable but still interacting ecologically, it is expected that these lineages represent species in the context of ontology and the evolutionary species concept when they are maintained over time with geographically well-defined hybrid zones, particularly at the intersection of distinct environments. As a result, genetic structure is correlated with environmental differences and not space alone, and a subset of genes fail to introgress across these zones as underlying genomic differences accumulate. We present a set of tests that synthesize species delimitation with the speciation process. We can thereby assess historical demographics and diversification processes while understanding how lineages are maintained through space and time by exploring spatial and genome clines, genotype-environment interactions, and genome scans for selected loci. Employing these tests in eight lineage-pairs of snakes in North America, we show that six pairs represent 12 "good" species and that two pairs represent local adaptation and regional population structure. The distinct species pairs all have the signature of divergence before or near the mid-Pleistocene, often with low migration, stable hybrid zones of varying size, and a subset of loci showing selection on alleles at the hybrid zone corresponding to transitions between distinct ecoregions. Locally adapted populations are younger, exhibit higher migration, and less ecological differentiation. Our results demonstrate that interacting lineages can be delimited using phylogeographic and population genetic methods that properly integrate spatial, temporal, and environmental data.
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology American Museum of Natural History New York New York USA
| | - Edward A Myers
- Department of Herpetology California Academy of Sciences San Francisco California USA
| | - R Alexander Pyron
- Department of Biological Sciences The George Washington University Washington DC USA
| |
Collapse
|
8
|
Li J, Zhang B, Jiang J, Mao Y, Li K, Liu F. Machine learning provides insights for spatially explicit pest management strategies by integrating information on population connectivity and habitat use in a key agricultural pest. PEST MANAGEMENT SCIENCE 2024; 80:4871-4882. [PMID: 38804731 DOI: 10.1002/ps.8199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Insect pests have garnered increasing interest because of anthropogenic global change, and their sustainable management requires knowledge of population habitat use and spread patterns. To enhance this knowledge for the prevalent tea pest Empoasca onukii, we utilized a random forest algorithm and a bivariate map to develop and integrate models of its habitat suitability and genetic connectivity across China. RESULTS Our modeling revealed heterogeneous spatial patterns in suitability and connectivity despite the common key environmental predictor of isothermality. Analyses indicated that tea cultivation in areas surrounding the Tibetan Plateau and the southern tip of China may be at low risk of population outbreaks because of their predicted low suitability and connectivity. However, regions along the middle and lower reaches of the Yangtze River should consider the high abundance and high recolonization potential of E. onukii, and thus the importance of control measures. Our results also emphasized the need to prevent dispersal from outside regions in the areas north of the Yangtze River and highlighted the effectiveness of internal management efforts in southwestern China and along the southeastern coast. Further projections under future conditions suggested the potential for increased abundance and spread in regions north of the Yangtze River and the southern tip of China, and indicated the importance of long-term monitoring efforts in these areas. CONCLUSION These findings highlighted the significance of combining information on habitat use and spread patterns for spatially explicit pest management planning. In addition, the approaches we used have potential applications in the management of other pest systems and the conservation of endangered biological resources. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinyu Li
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia Jiang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Mao
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Li
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fengjing Liu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
9
|
Liu Y, Dietrich CH, Wei C. The impact of geographic isolation and host shifts on population divergence of the rare cicada Subpsaltria yangi. Mol Phylogenet Evol 2024; 199:108146. [PMID: 38986756 DOI: 10.1016/j.ympev.2024.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The contributions of divergent selection and spatial isolation to population divergence are among the main focuses of evolutionary biology. Here we employed integrated methods to explore genomic divergence, demographic history and calling-song differentiation in the cicada Subpsaltria yangi, and compared the genotype and calling-song phenotype of different populations occurring in distinct habitats. Our results indicate that this species comprises four main lineages with unique sets of haplotypes and calling-song structure, which are distinctly associated with geographic isolation and habitats. The populations occurring on the Loess Plateau underwent substantial expansion at ∼0.130-0.115 Ma during the Last Interglacial. Geographic distance and host shift between pairs of populations predict genomic divergence, with geographic distance and acoustical signal together explaining > 60% of the divergence among populations. Differences in calling songs could reflect adaptation of populations to novel environments with different host plants, habitats and predators, which may have resulted from neutral divergence at the molecular level followed by natural selection. Geomorphic barriers and climate oscillations associated with Pleistocene glaciation may have been primary factors in shaping the population genetic structure of this species. Ultimately this may couple with a host shift in leading toward allopatric speciation in S. yangi, i.e., isolation by distance. Our findings improve understanding of divergence in allopatry of herbivorous insects, and may inform future studies on the molecular mechanisms underlying the association between genetic/phenotypic changes and adaptation of insects to novel niches and host plants.
Collapse
Affiliation(s)
- Yunxiang Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Li Y, Zhao X, Xia M, Wei X, Hou H. Temperature is a cryptic factor shaping the geographical pattern of genetic variation in Ceratophyllum demersum across a subtropical freshwater lake. PLANT DIVERSITY 2024; 46:630-639. [PMID: 39290884 PMCID: PMC11403116 DOI: 10.1016/j.pld.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2024]
Abstract
Macrophyte habitats exhibit remarkable heterogeneity, encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors. Environmental factors are thought to be important drivers shaping the genetic and epigenetic variation of aquatic plants. However, the links among genetic diversity, epigenetic variation, and environmental variables remain largely unclear, especially for clonal aquatic plants. Here, we performed population genetic and epigenetic analyses in conjunction with habitat discrimination to elucidate the environmental factors driving intraspecies genetic and epigenetic variation in hornwort (Ceratophyllum demersum) in a subtropical lake. Environmental factors were highly correlated with the genetic and epigenetic variation of C. demersum, with temperature being a key driver of the genetic variation. Lower temperature was detected to be correlated with greater genetic and epigenetic variation. Genetic and epigenetic variation were positively driven by water temperature, but were negatively affected by ambient air temperature. These findings indicate that the genetic and epigenetic variation of this clonal aquatic herb is not related to the geographic feature but is instead driven by environmental conditions, and demonstrate the effects of temperature on local genetic and epigenetic variation in aquatic systems.
Collapse
Affiliation(s)
- Yixian Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinzeng Wei
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Kuo WH, Zhong L, Wright SJ, Goad DM, Olsen KM. Beyond cyanogenesis: Temperature gradients drive environmental adaptation in North American white clover (Trifolium repens L.). Mol Ecol 2024; 33:e17484. [PMID: 39072878 DOI: 10.1111/mec.17484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Species that repeatedly evolve phenotypic clines across environmental gradients have been highlighted as ideal systems for characterizing the genomic basis of local environmental adaptation. However, few studies have assessed the importance of observed phenotypic clines for local adaptation: conspicuous traits that vary clinally may not necessarily be the most critical in determining local fitness. The present study was designed to fill this gap, using a plant species characterized by repeatedly evolved adaptive phenotypic clines. White clover is naturally polymorphic for its chemical defence cyanogenesis (HCN release with tissue damage); climate-associated cyanogenesis clines have evolved throughout its native and introduced range worldwide. We performed landscape genomic analyses on 415 wild genotypes from 43 locations spanning much of the North American species range to assess the relative importance of cyanogenesis loci vs. other genomic factors in local climatic adaptation. We find clear evidence of local adaptation, with temperature-related climatic variables best describing genome-wide differentiation between sampling locations. The same climatic variables are also strongly correlated with cyanogenesis frequencies and gene copy number variations (CNVs) at cyanogenesis loci. However, landscape genomic analyses indicate no significant contribution of cyanogenesis loci to local adaptation. Instead, several genomic regions containing promising candidate genes for plant response to seasonal cues are identified - some of which are shared with previously identified QTLs for locally adaptive fitness traits in North American white clover. Our findings suggest that local adaptation in white clover is likely determined primarily by genes controlling the timing of growth and flowering in response to local seasonal cues. More generally, this work suggests that caution is warranted when considering the importance of conspicuous phenotypic clines as primary determinants of local adaptation.
Collapse
Affiliation(s)
- Wen-Hsi Kuo
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Limei Zhong
- Jiangxi Key Laboratory of Molecular Biology and Gene Engineering, School of Life Sciences, Nanchang University, Nanchang, China
| | - Sara J Wright
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - David M Goad
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Lind BM, Lotterhos KE. The accuracy of predicting maladaptation to new environments with genomic data. Mol Ecol Resour 2024:e14008. [PMID: 39212146 DOI: 10.1111/1755-0998.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Rapid environmental change poses unprecedented challenges to species persistence. To understand the extent that continued change could have, genomic offset methods have been used to forecast maladaptation of natural populations to future environmental change. However, while their use has become increasingly common, little is known regarding their predictive performance across a wide array of realistic and challenging scenarios. Here, we evaluate the performance of currently available offset methods (gradientForest, the Risk-Of-Non-Adaptedness, redundancy analysis with and without structure correction and LFMM2) using an extensive set of simulated data sets that vary demography, adaptive architecture and the number and spatial patterns of adaptive environments. For each data set, we train models using either all, adaptive or neutral marker sets and evaluate performance using in silico common gardens by correlating known fitness with projected offset. Using over 4,849,600 of such evaluations, we find that (1) method performance is largely due to the degree of local adaptation across the metapopulation (LA), (2) adaptive marker sets provide minimal performance advantages, (3) performance within the species range is variable across gardens and declines when offset models are trained using additional non-adaptive environments and (4) despite (1) performance declines more rapidly in globally novel climates (i.e. a climate without an analogue within the species range) for metapopulations with greater LA than lesser LA. We discuss the implications of these results for management, assisted gene flow and assisted migration.
Collapse
Affiliation(s)
- Brandon M Lind
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| |
Collapse
|
13
|
Hancock ZB, Toczydlowski RH, Bradburd GS. A spatial approach to jointly estimate Wright's neighborhood size and long-term effective population size. Genetics 2024; 227:iyae094. [PMID: 38861403 PMCID: PMC11491530 DOI: 10.1093/genetics/iyae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/11/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Spatially continuous patterns of genetic differentiation, which are common in nature, are often poorly described by existing population genetic theory or methods that assume either panmixia or discrete, clearly definable populations. There is therefore a need for statistical approaches in population genetics that can accommodate continuous geographic structure, and that ideally use georeferenced individuals as the unit of analysis, rather than populations or subpopulations. In addition, researchers are often interested in describing the diversity of a population distributed continuously in space; this diversity is intimately linked to both the dispersal potential and the population density of the organism. A statistical model that leverages information from patterns of isolation by distance to jointly infer parameters that control local demography (such as Wright's neighborhood size), and the long-term effective size (Ne) of a population would be useful. Here, we introduce such a model that uses individual-level pairwise genetic and geographic distances to infer Wright's neighborhood size and long-term Ne. We demonstrate the utility of our model by applying it to complex, forward-time demographic simulations as well as an empirical dataset of the two-form bumblebee (Bombus bifarius). The model performed well on simulated data relative to alternative approaches and produced reasonable empirical results given the natural history of bumblebees. The resulting inferences provide important insights into the population genetic dynamics of spatially structured populations.
Collapse
Affiliation(s)
- Zachary B Hancock
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 481103, USA
| | | | - Gideon S Bradburd
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 481103, USA
| |
Collapse
|
14
|
Bruxaux J, Zhao W, Hall D, Curtu AL, Androsiuk P, Drouzas AD, Gailing O, Konrad H, Sullivan AR, Semerikov V, Wang XR. Scots pine - panmixia and the elusive signal of genetic adaptation. THE NEW PHYTOLOGIST 2024; 243:1231-1246. [PMID: 38308133 DOI: 10.1111/nph.19563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.
Collapse
Affiliation(s)
- Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
- Forestry Research Institute of Sweden (Skogforsk), 918 21, Sävar, Sweden
| | | | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany
| | - Heino Konrad
- Department of Forest Biodiversity and Nature Conservation, Unit of Ecological Genetics, Austrian Research Centre for Forests (BFW), 1140, Vienna, Austria
| | - Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Vladimir Semerikov
- Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, 620144, Ekaterinburg, Russia
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
15
|
Duffy KJ. The enigma of genetic adaptation in a panmictic pine. THE NEW PHYTOLOGIST 2024; 243:830-832. [PMID: 38520184 DOI: 10.1111/nph.19710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
This article is a Commentary on Bruxaux et al. (2024), 243: 1231–1246.
Collapse
Affiliation(s)
- Karl J Duffy
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Naples, 80126, Italy
| |
Collapse
|
16
|
Briscoe Runquist R, Moeller DA. Isolation by environment and its consequences for range shifts with global change: Landscape genomics of the invasive plant common tansy. Mol Ecol 2024; 33:e17462. [PMID: 38993027 DOI: 10.1111/mec.17462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
Invasive species are a growing global economic and ecological problem. However, it is not well understood how environmental factors mediate invasive range expansion. In this study, we investigated the recent and rapid range expansion of common tansy across environmental gradients in Minnesota, USA. We densely sampled individuals across the expanding range and performed reduced representation sequencing to generate a dataset of 3071 polymorphic loci for 176 individuals. We used non-spatial and spatially explicit analyses to determine the relative influences of geographic distance and environmental variation on patterns of genomic variation. We found no evidence for isolation by distance but strong evidence for isolation by environment, indicating that environmental factors may have modulated patterns of range expansion. Land use classification and soils were particularly important variables related to population structure although they operated on different spatial scales; land use classification was related to broad-scale patterns and soils were related to fine-scale patterns. All analyses indicated a distinctive genetic cluster in the most recently invaded portion of the range. Individuals from the far northwestern range margin were separated from the remainder of the range by reduced migration, which was associated with environmental resistance. This portion of the range was invaded primarily in the last 15 years. Ecological niche models also indicated that this cluster was associated with the expansion of the niche. While invasion is often assumed to be primarily influenced by dispersal limitation, our results suggest that ongoing invasion and range shifts with climate change may be strongly affected by environmental heterogeneity.
Collapse
Affiliation(s)
- Ryan Briscoe Runquist
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - David A Moeller
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
17
|
Romero-Báez Ó, Murphy MA, Díaz de la Vega-Pérez AH, Vázquez-Domínguez E. Environmental and anthropogenic factors mediating the functional connectivity of the mesquite lizard along the eastern Trans-Mexican Volcanic Belt. Mol Ecol 2024; 33:e17469. [PMID: 39016177 DOI: 10.1111/mec.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Functional connectivity, the extent to which a landscape facilitates or impedes the dispersal of individuals across the landscape, is a key factor for the survival of species. Anthropogenic activities, such as urbanization, agriculture and roads, negatively impact functional connectivity of most species, particularly low-vagility species like lizards. Here, we examine how a landscape modified by anthropogenic activities affects the functional connectivity, at both broad and fine scales, of a widely distributed generalist lizard Sceloporus grammicus in the eastern Trans-Mexican Volcanic Belt, Mexico. We estimated for the first time the species' genetic structure, gene flow and functional connectivity in agricultural and forest zones using genomic data, a comprehensive landscape characterization and novel methods including gravity models. Our results showed not only marked genetic differentiation across the study region but also that functional connectivity is maintained for tens of kilometres despite S. grammicus low vagility. Specifically, we found that substrate and air temperature facilitated connectivity over broad and fine scales, respectively, while agricultural cover, relative humidity and slope were important for connectivity and gene flow. Contrastingly, forest cover and roads favoured (broad-scale) and limited (fine-scale) connectivity, likely associated with movement facilitated by small forest patches and with thermoregulation. Altogether, these results support that S. grammicus alternates its thermoregulatory behaviour depending on the distance travelled and the habitat environmental conditions, and that it can disperse through relatively modified landscapes, mainly using agricultural zones. The information obtained is crucial to understanding the response of lizards to current anthropogenic pressures and their potential to adapt.
Collapse
Affiliation(s)
- Óscar Romero-Báez
- Laboratorio de Genética y Ecología, Departamento de Ecología de La Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Melanie A Murphy
- Ecosystem Science and Management, Program in Ecology and Evolution, College of Agriculture, Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
| | - Aníbal H Díaz de la Vega-Pérez
- Consejo Nacional de Humanidades Ciencias y Tecnologías-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Ella Vázquez-Domínguez
- Laboratorio de Genética y Ecología, Departamento de Ecología de La Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
18
|
Pavón-Vázquez CJ, Rana Q, Farleigh K, Crispo E, Zeng M, Liliah J, Mulcahy D, Ascanio A, Jezkova T, Leaché AD, Flouri T, Yang Z, Blair C. Gene Flow and Isolation in the Arid Nearctic Revealed by Genomic Analyses of Desert Spiny Lizards. Syst Biol 2024; 73:323-342. [PMID: 38190300 DOI: 10.1093/sysbio/syae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the drivers of isolation in the region. Several geographic features have been proposed as barriers to gene flow, including the Colorado River, Western Continental Divide (WCD), and a hypothetical Mid-Peninsular Seaway in Baja California. However, recent studies suggest that the role of barriers in genetic differentiation may have been overestimated when compared to other mechanisms of divergence. In this study, we infer historical and spatial patterns of connectivity and isolation in Desert Spiny Lizards (Sceloporus magister) and Baja Spiny Lizards (Sceloporus zosteromus), which together form a species complex composed of parapatric lineages with wide distributions in arid western North America. Our analyses incorporate mitochondrial sequences, genomic-scale data, and past and present climatic data to evaluate the nature and strength of barriers to gene flow in the region. Our approach relies on estimates of migration under the multispecies coalescent to understand the history of lineage divergence in the face of gene flow. Results show that the S. magister complex is geographically structured, but we also detect instances of gene flow. The WCD is a strong barrier to gene flow, while the Colorado River is more permeable. Analyses yield conflicting results for the catalyst of differentiation of peninsular lineages in S. zosteromus. Our study shows how large-scale genomic data for thoroughly sampled species can shed new light on biogeography. Furthermore, our approach highlights the need for the combined analysis of multiple sources of evidence to adequately characterize the drivers of divergence.
Collapse
Affiliation(s)
- Carlos J Pavón-Vázquez
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Colonia Los Reyes Ixtacala, Tlalnepantla, Estado de México, C.P. 54090, México
| | - Qaantah Rana
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Keaka Farleigh
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Erika Crispo
- Department of Biology, Pace University, One Pace Plaza, New York, NY 10038, USA
| | - Mimi Zeng
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Jeevanie Liliah
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Daniel Mulcahy
- Collection Future, Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin 10115, Germany
| | - Alfredo Ascanio
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Adam D Leaché
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Tomas Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Christopher Blair
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
- Biology PhD Program, CUNY Graduate Center, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
19
|
Merchant HN, Ivanova A, Hart DW, García C, Bennett NC, Portugal SJ, Faulkes CG. Patterns of Genetic Diversity and Gene Flow Associated With an Aridity Gradient in Populations of Common Mole-rats, Cryptomys hottentotus hottentotus. Genome Biol Evol 2024; 16:evae144. [PMID: 38953183 PMCID: PMC11258414 DOI: 10.1093/gbe/evae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Genetic adaptation is the change of a population toward a phenotype that best fits the present ecological conditions of the environment it inhabits. As environmental conditions change, allele frequencies shift, resulting in different populations of the same species possessing genetic variation and divergent phenotypes. Cooperatively breeding common mole-rats (Cryptomys hottentotus hottentotus) inhabit environments along an aridity gradient in South Africa, which provides an opportunity for local genetic adaptations to occur. Using one mitochondrial gene (cytochrome b) and 3,540 SNP loci across the whole genome, we determined the phylogenetic relationship, population structure and genetic diversity of five populations of C. h. hottentotus located along an aridity gradient. Mitochondrial data identified population-specific clades that were less distinct in the two mesic populations, potentially indicating historical or recent gene flow, or the retention of ancestral haplotypes. Arid and semi-arid populations formed a distinct cluster from the non-arid populations. Genetic diversity and gene flow were higher in arid-dwelling individuals, suggesting greater connectivity and interactions between colonies in arid regions in comparison to mesic ones. Using an Aridity Index, we determined that isolation by environment, rather than isolation by geographical distance, best explains the genetic distance between the populations. Further analyses using target loci may determine if there are differing underlying genetic adaptations among populations of C. h. hottentotus. These analyses could help unravel population differences in response to environmental factors within a subspecies of bathyergid mole-rat and determine the adaptive capacity of this small nonmigratory subterranean rodent species in response to aridification in the face of climate change.
Collapse
Affiliation(s)
- Hana N Merchant
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Anastasia Ivanova
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Daniel W Hart
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Cristina García
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Steven J Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Chris G Faulkes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
20
|
de Lima TM, da Silva SF, Sánchez-Vilas J, Júnior WLS, Mayer JLS, Ribeiro RV, Pinheiro F. Phenotypic plasticity rather than ecotypic differentiation explains the broad realized niche of a Neotropical orchid species. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38958955 DOI: 10.1111/plb.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Local adaptation is common in plant species, and knowing whether a population is locally adapted has fundamental and applied relevance. However, local adaptation in tropical plants remains largely less studied, and covering this gap is not simple since reciprocal transplantation - the gold standard for detecting local adaptation - is not feasible for most species. Here, we combined genetic, climatic and phenotypic data to investigate ecotypic differentiation, an important aspect of local adaptation, in coastal and inland populations of the orchid Epidendrum fulgens Brongn., a long-lived tropical plant for which reciprocal transplantation would not be feasible. We used nine microsatellite markers to estimate genetic divergence between inland and coastal populations. Moreover, occurrence data and climate data were used to test for differences in the realized niche of those populations. Finally, we assessed saturated water content, leaf specific area, height, and stomatal density in common garden and in situ to investigate the effects of ecotypic differentiation and plasticity on the phenotype. Coastal and inland groups' niches do not overlap, the former occupying a wetter and warmer area. However, this differentiation does not seem to be driven by ecotypic differentiation since there was no positive correlation between genetic structure and climate dissimilarity. Moreover, specific leaf area and leaf saturated water content, which are important phenotypic traits related to soil fertility and drought stress, were rather plastic. We conclude that ecotypic differentiation is absent, since phenotypic plasticity is an important mechanism explaining the niche broadness of this species.
Collapse
Affiliation(s)
- T M de Lima
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - S F da Silva
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - J Sánchez-Vilas
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building Museum Avenue, Cardiff, UK
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - W L S Júnior
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - J L S Mayer
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - R V Ribeiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - F Pinheiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
21
|
Montalvo LD, Kimball RT, Austin JD, Robinson SK. Unraveling the genomic landscape of Campylorhynchus wrens along western Ecuador's precipitation gradient: Insights into hybridization, isolation by distance, and isolation by the environment. Ecol Evol 2024; 14:e11661. [PMID: 38994212 PMCID: PMC11237350 DOI: 10.1002/ece3.11661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Environmental gradients have the potential to influence genetic differentiation among populations ultimately leading to allopatric speciation. However, environmental gradients can also facilitate hybridization between closely related taxa. We investigated a putative hybrid zone in western Ecuador, involving two polytypic wren species (Aves: Troglodytidae), Campylorhynchus zonatus and C. fasciatus. Our study addressed two primary questions: (1) Is there evidence of population structure and genetic admixture between these taxa in western Ecuador? and (2) What are the relative contributions of isolation by distance and isolation by the environment to the observed genetic differentiation along the environmental gradient in this region? We analyzed 4409 single-nucleotide polymorphisms (SNPs) from 112 blood samples sequenced using ddRadSeq and a de novo assembly. The optimum number of genetic clusters ranged from 2 to 4, aligning with geographic origins, known phylogenetics, and physical or ecological constraints. We observed notable transitions in admixture proportions along the environmental gradient in western Ecuador between C. z. brevirostris and the northern and southern genetic clusters of C. f. pallescens. Genetic differentiation between the two C. f. pallescens populations could be attributed to an unreported potential physical barrier in central western Ecuador, where the proximity of the Andes to the coastline restricts lowland habitats, limiting dispersal and gene flow, especially among dry-habitat specialists. The observed admixture in C. f. pallescens suggests that this subspecies may be a hybrid between C. z. brevirostris and C. fasciatus, with varying degrees of admixture in western Ecuador and northwestern Peru. We found evidence of isolation by distance, while isolation by the environment was less pronounced but still significant for annual mean precipitation and precipitation seasonality. This study enhances our understanding of avian population genomics in tropical regions.
Collapse
Affiliation(s)
- Luis Daniel Montalvo
- Florida Museum of Natural History University of Florida Gainesville Florida USA
- Department of Biology University of Florida Gainesville Florida USA
| | | | - James D Austin
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - Scott K Robinson
- Florida Museum of Natural History University of Florida Gainesville Florida USA
| |
Collapse
|
22
|
Sexton JP, Clemens M, Bell N, Hall J, Fyfe V, Hoffmann AA. Patterns and effects of gene flow on adaptation across spatial scales: implications for management. J Evol Biol 2024; 37:732-745. [PMID: 38888218 DOI: 10.1093/jeb/voae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Gene flow can have rapid effects on adaptation and is an important evolutionary tool available when undertaking biological conservation and restoration. This tool is underused partly because of the perceived risk of outbreeding depression and loss of mean fitness when different populations are crossed. In this article, we briefly review some theory and empirical findings on how genetic variation is distributed across species ranges, describe known patterns of gene flow in nature with respect to environmental gradients, and highlight the effects of gene flow on adaptation in small or stressed populations in challenging environments (e.g., at species range limits). We then present a case study involving crosses at varying spatial scales among mountain populations of a trigger plant (Stylidium armeria: Stylidiaceae) in the Australian Alps to highlight how some issues around gene flow effects can be evaluated. We found evidence of outbreeding depression in seed production at greater geographic distances. Nevertheless, we found no evidence of maladaptive gene flow effects in likelihood of germination, plant performance (size), and performance variance, suggesting that gene flow at all spatial scales produces offspring with high adaptive potential. This case study demonstrates a path to evaluating how increasing sources of gene flow in managed wild and restored populations could identify some offspring with high fitness that could bolster the ability of populations to adapt to future environmental changes. We suggest further ways in which managers and researchers can act to understand and consider adaptive gene flow in natural and conservation contexts under rapidly changing conditions.
Collapse
Affiliation(s)
- Jason P Sexton
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| | - Molly Clemens
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas Bell
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph Hall
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Verity Fyfe
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Wang N, Shan C, Chen D, Hu Y, Sun Y, Wang Y, Liang B, Liang W. "Isolation by Gentes with Asymmetric Migration" shapes the genetic structure of the common cuckoo in China. Integr Zool 2024. [PMID: 38872343 DOI: 10.1111/1749-4877.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Amid coevolutionary arms races between brood parasitic birds and their diverse host species, the formation of host-specific races, or gentes, has drawn significant research focus. Nevertheless, numerous questions about gentes evolutionary patterns persist. Here, we investigated the potential for gentes evolution across multiple common cuckoo (Cuculus canorus) populations parasitizing diverse host species in China. Using maternal (mitochondrial and W-linked DNA) and biparental (autosomal and Z-linked DNA) markers, we found consistent clustering of cuckoo gentes (rather than geographical populations) into distinct clades in matrilineal gene trees, indicating robust differentiation. In contrast, biparental markers indicated intermixing of all gentes, suggesting asymmetric gene flow regardless of geography. Unlike the mitonuclear discordance commonly resulting from incomplete lineage sorting, adaptive introgression, or demographic disparities, the observed pattern in brood parasitic cuckoos might reflect biased host preferences between sexes. We hereby present the "Isolation by Gentes with Asymmetric Migration" model. According to this model, the maternal line differentiation of the common cuckoo in China is potentially driven by host preferences in females, whereas males maintained the integrity of the cuckoo species through random mating. To achieve this, cuckoo males could perform flexible migration among gentes or engage in early copulation with females before reaching the breeding sites, allowing female cuckoos to store sperm from various gentes. Future studies collecting additional samples from diverse cuckoo gentes with overlapping distribution and investigating the migratory and copulation patterns of each sex would enhance our understanding of sex-biased differentiation among cuckoo populations in China.
Collapse
Affiliation(s)
- Ning Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chengbin Shan
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dan Chen
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yunbiao Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuehua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bin Liang
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, Hohhot, China
| | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
24
|
Hendrickson EC, Cruzan MB. Effective dispersal patterns in prairie plant species across human-modified landscapes. Mol Ecol 2024; 33:e17354. [PMID: 38656619 DOI: 10.1111/mec.17354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Effective dispersal among plant populations is dependent on vector behaviour, landscape features and availability of adequate habitats. To capture landscape feature effects on dispersal, studies must be conducted at scales reflecting single-generation dispersal events (mesoscale). Many studies are conducted at large scales where genetic differentiation is due to dispersal occurring over multiple generations, making it difficult to interpret the effects of specific landscape features on vector behaviour. Genetic structure at the mesoscale may be determined by ecological and evolutionary processes, such as the consequences of vector behaviour on patterns of gene flow. We used chloroplast haplotypes and nuclear genome SNP surveys to identify landscape features influencing seed and pollen dispersal at a mesoscale within the Rogue River Valley in southern Oregon. We evaluated biotic and abiotic vector behaviour by contrasting two annual species with differing dispersal mechanisms; Achyrachaena mollis (Asteraceae) is a self-pollinating and anemochoric species, and Plectritis congesta (Caprifoliaceae) is biotically pollinated with barochoric seeds. Using landscape genetics methods, we identified features of the study region that conduct or restrict dispersal. We found chloroplast haplotypes were indicative of historic patterns of gene flow prior to human modification of landscapes. Seed dispersal of A. mollis was best supported by models of isolation by distance, while seed-driven gene flow of P. congesta was determined by the distribution of preserved natural spaces and quality habitat. Nuclear genetic structure was driven by both pollen and seed dispersal, and both species responded to contemporary landscape changes, such as urban and agricultural conversion, and habitat availability.
Collapse
Affiliation(s)
| | - Mitchell B Cruzan
- Department of Biology, Portland State University, Portland, Oregon, USA
| |
Collapse
|
25
|
Monsanto DM, Hedding DW, Durand S, Parbhu SP, Adair MG, Emami‐Khoyi A, Teske PR, Jansen van Vuuren B. The effect of terrain on the fine-scale genetic diversity of sub-Antarctic Collembola: A landscape genetics approach. Ecol Evol 2024; 14:e11519. [PMID: 38895565 PMCID: PMC11183960 DOI: 10.1002/ece3.11519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Biodiversity patterns are shaped by the interplay between geodiversity and organismal characteristics. Superimposing genetic structure onto landscape heterogeneity (i.e., landscape genetics) can help to disentangle their interactions and better understand population dynamics. Previous studies on the sub-Antarctic Prince Edward Islands (located midway between Antarctica and Africa) have highlighted the importance of landscape and climatic barriers in shaping spatial genetic patterns and have drawn attention to the value of these islands as natural laboratories for studying fundamental concepts in biology. Here, we assessed the fine-scale spatial genetic structure of the springtail, Cryptopygus antarcticus travei, which is endemic to Marion Island, in tandem with high-resolution geological data. Using a species-specific suite of microsatellite markers, a fine-scale sampling design incorporating landscape complexity and generalised linear models (GLMs), we examined genetic patterns overlaid onto high-resolution digital surface models and surface geology data across two 1-km sampling transects. The GLMs revealed that genetic patterns across the landscape closely track landscape resistance data in concert with landscape discontinuities and barriers to gene flow identified at a scale of a few metres. These results show that the island's geodiversity plays an important role in shaping biodiversity patterns and intraspecific genetic diversity. This study illustrates that fine-scale genetic patterns in soil arthropods are markedly more structured than anticipated, given that previous studies have reported high levels of genetic diversity and evidence of genetic structing linked to landscape changes for springtail species and considering the homogeneity of the vegetation complexes characteristic of the island at the scale of tens to hundreds of metres. By incorporating fine-scale and high-resolution landscape features into our study, we were able to explain much of the observed spatial genetic patterns. Our study highlights geodiversity as a driver of spatial complexity. More widely, it holds important implications for the conservation and management of the sub-Antarctic islands.
Collapse
Affiliation(s)
- Daniela Marques Monsanto
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| | | | - Sandra Durand
- Department of GeographyUniversity of South AfricaPretoriaSouth Africa
| | - Shilpa Pradeep Parbhu
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| | - Matthew Grant Adair
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| | - Arsalan Emami‐Khoyi
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
- Institute of Wildlife Management and Nature ConservationHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Peter Rodja Teske
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| | - Bettine Jansen van Vuuren
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| |
Collapse
|
26
|
Judson BJ, Kristjánsson BK, Leblanc CA, Ferguson MM. The role of neutral and adaptive evolutionary processes on patterns of genetic diversity across small cave-dwelling populations of Icelandic Arctic charr ( Salvelinus alpinus). Ecol Evol 2024; 14:e11363. [PMID: 38770124 PMCID: PMC11103641 DOI: 10.1002/ece3.11363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Understanding the adaptability of small populations in the face of environmental change is a central problem in evolutionary biology. Solving this problem is challenging because neutral evolutionary processes that operate on historical and contemporary timescales can override the effects of selection in small populations. We assessed the effects of isolation by colonization (IBC), isolation by dispersal limitation (IBDL) as reflected by a pattern of isolation by distance (IBD), and isolation by adaptation (IBA) and the roles of genetic drift and gene flow on patterns of genetic differentiation among 19 cave-dwelling populations of Icelandic Arctic charr (Salvelinus alpinus). We detected evidence of IBC based on the genetic affinity of nearby cave populations and the genetic relationships between the cave populations and the presumed ancestral population in the lake. A pattern of IBD was evident regardless of whether high-level genetic structuring (IBC) was taken into account. Genetic signatures of bottlenecks and lower genetic diversity in smaller populations indicate the effect of drift. Estimates of gene flow and fish movement suggest that gene flow is limited to nearby populations. In contrast, we found little evidence of IBA as patterns of local ecological and phenotypic variation showed little association with genetic differentiation among populations. Thus, patterns of genetic variation in these small populations likely reflect localized gene flow and genetic drift superimposed onto a larger-scale structure that is largely a result of colonization history. Our simultaneous assessment of the effects of neutral and adaptive processes in a tractable and replicated system has yielded novel insights into the evolution of small populations on both historical and contemporary timescales and over a smaller spatial scale than is typically studied.
Collapse
Affiliation(s)
- Braden J. Judson
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| | | | | | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
27
|
Fetherston SC, Lonsinger RC, Perkins LB, Lehman CP, Adams JR, Waits LP. Genetic analysis of harvest samples reveals population structure in a highly mobile generalist carnivore. Ecol Evol 2024; 14:e11411. [PMID: 38799390 PMCID: PMC11116766 DOI: 10.1002/ece3.11411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Delineating wildlife population boundaries is important for effective population monitoring and management. The bobcat (Lynx rufus) is a highly mobile generalist carnivore that is ecologically and economically important. We sampled 1225 bobcats harvested in South Dakota, USA (2014-2019), of which 878 were retained to assess genetic diversity and infer population genetic structure using 17 microsatellite loci. We assigned individuals to genetic clusters (K) using spatial and nonspatial Bayesian clustering algorithms and quantified differentiation (F ST and G ST ″ ) among clusters. We found support for population genetic structure at K = 2 and K = 4, with pairwise F ST and G ST ″ values indicating weak to moderate differentiation, respectively, among clusters. For K = 2, eastern and western clusters aligned closely with historical bobcat management units and were consistent with a longitudinal suture zone for bobcats previously identified in the Great Plains. We did not observe patterns of population genetic structure aligning with major rivers or highways. Genetic divergence observed at K = 4 aligned roughly with ecoregion breaks and may be associated with environmental gradients, but additional sampling with more precise locational data may be necessary to validate these patterns. Our findings reveal that cryptic population structure may occur in highly mobile and broadly distributed generalist carnivores, highlighting the importance of considering population structure when establishing population monitoring programs or harvest regulations. Our study further demonstrates that for elusive furbearers, harvest can provide an efficient, broad-scale sampling approach for genetic population assessments.
Collapse
Affiliation(s)
- Stuart C. Fetherston
- Natural Resource ManagementSouth Dakota State UniversityBrookingsSouth DakotaUSA
- Present address:
U.S. Fish and Wildlife Service, Texas Fish and Wildlife Conservation OfficeSan MarcosTexasUSA
| | - Robert C. Lonsinger
- U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research UnitOklahoma State UniversityStillwaterOklahomaUSA
| | - Lora B. Perkins
- Natural Resource ManagementSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Chadwick P. Lehman
- South Dakota Department of Game, Fish and Parks, Custer State ParkCusterSouth DakotaUSA
| | | | | |
Collapse
|
28
|
Wooldridge B, Orland C, Enbody E, Escalona M, Mirchandani C, Corbett-Detig R, Kapp JD, Fletcher N, Cox-Ammann K, Raimondi P, Shapiro B. Limited genomic signatures of population collapse in the critically endangered black abalone (Haliotis cracherodii). Mol Ecol 2024:e17362. [PMID: 38682494 PMCID: PMC11518883 DOI: 10.1111/mec.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
The black abalone, Haliotis cracherodii, is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the closure of all U.S. black abalone fisheries since 1993. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation-based recovery contentious. Additionally, the current prevalence of WS remains unknown. To address these uncertainties, we sequenced and analysed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Outside the inversion, genetic differentiation between sites is minimal and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Demographic inference does indicate a severe population bottleneck beginning just 15 generations in the past, but this decline is short lived, with present-day size far exceeding the pre-bottleneck status quo. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of population genetic structure, uniform diversity and prevalence of WS bacteria indicates that translocation could be a valid and low-risk means of population restoration for black abalone species' recovery.
Collapse
Affiliation(s)
- Brock Wooldridge
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Chloé Orland
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Erik Enbody
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Cade Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Joshua D. Kapp
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Nathaniel Fletcher
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Karah Cox-Ammann
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Peter Raimondi
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Beth Shapiro
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| |
Collapse
|
29
|
Springer AL, Gompert Z. Considerable genetic diversity and structure despite narrow endemism and limited ecological specialization in the Hayden's ringlet, Coenonympha haydenii. Mol Ecol 2024; 33:e17310. [PMID: 38441401 DOI: 10.1111/mec.17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Understanding the processes that underlie the development of population genetic structure is central to the study of evolution. Patterns of genetic structure, in turn, can reveal signatures of isolation by distance (IBD), barriers to gene flow, or even the genesis of speciation. However, it is unclear how severe range restriction might impact the processes that dominate the development of genetic structure. In narrow endemic species, is population structure likely to be adaptive in nature, or rather the result of genetic drift? In this study, we investigated patterns of genetic diversity and structure in the narrow endemic Hayden's ringlet butterfly. Specifically, we asked to what degree genetic structure in the Hayden's ringlet can be explained by IBD, isolation by resistance (IBR) (in the form of geographic or ecological barriers to migration between populations), and isolation by environment (in the form of differences in host plant availability and preference). We employed a genotyping-by-sequencing (GBS) approach coupled with host preference assays, Bayesian modelling, and population genomic analyses to answer these questions. Our results suggest that despite their restricted range, levels of genetic diversity in the Hayden's ringlet are comparable to those seen in more widespread butterfly species. Hayden's ringlets showed a strong preference for feeding on grasses relative to sedges, but neither larval preference nor potential host availability at sampling sites correlated with genetic structure. We conclude that geography, in the form of IBR and simple IBD, was the major driver of contemporary patterns of differentiation in this narrow endemic species.
Collapse
Affiliation(s)
- Amy L Springer
- Department of Biology, Utah State University, Logan, Utah, USA
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, Utah, USA
- Ecology Center, Utah State University, Logan, Utah, USA
| |
Collapse
|
30
|
Maxwell LM, Clark JD, Walsh J, Conway M, Olsen BJ, Kovach AI. Ecological characteristics explain neutral genetic variation of three coastal sparrow species. Mol Ecol 2024; 33:e17316. [PMID: 38481075 DOI: 10.1111/mec.17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
Eco-phylogeographic approaches to comparative population genetic analyses allow for the inclusion of intrinsic influences as drivers of intraspecific genetic structure. This insight into microevolutionary processes, including changes within a species or lineage, provides better mechanistic understanding of species-specific interactions and enables predictions of evolutionary responses to environmental change. In this study, we used single nucleotide polymorphisms (SNPs) identified from reduced representation sequencing to compare neutral population structure, isolation by distance (IBD), genetic diversity and effective population size (Ne) across three closely related and co-distributed saltmarsh sparrow species differing along a specialization gradient-Nelson's (Ammospiza nelsoni subvirgata), saltmarsh (A. caudacuta) and seaside sparrows (A. maritima maritima). Using an eco-phylogeographic lens within a conservation management context, we tested predictions about species' degree of evolutionary history and ecological specialization to tidal marshes, habitat, current distribution and population status on population genetic metrics. Population structure differed among the species consistent with their current distribution and habitat factors, rather than degree of ecological specialization: seaside sparrows were panmictic, saltmarsh sparrows showed hierarchical structure and Nelson's sparrows were differentiated into multiple, genetically distinct populations. Neutral population genetic theory and demographic/evolutionary history predicted patterns of genetic diversity and Ne rather than degree of ecological specialization. Patterns of population variation and evolutionary distinctiveness (Shapely metric) suggest different conservation measures for long-term persistence and evolutionary potential in each species. Our findings contribute to a broader understanding of the complex factors influencing genetic variation, beyond specialist-generalist status and support the role of an eco-phylogeographic approach in population and conservation genetics.
Collapse
Affiliation(s)
- Logan M Maxwell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Jonathan D Clark
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Jennifer Walsh
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Ithaca, New York, USA
| | - Meaghan Conway
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Brian J Olsen
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
31
|
Liu Y, Cai L, Sun W. Transcriptome data analysis provides insights into the conservation of Michelia lacei, a plant species with extremely small populations distributed in Yunnan province, China. BMC PLANT BIOLOGY 2024; 24:200. [PMID: 38500068 PMCID: PMC10949798 DOI: 10.1186/s12870-024-04892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Michelia lacei W.W.Smith (Magnoliaceae), was classified as a Plant Species with Extremely Small Populations (PSESP) by the Yunnan Provincial Government in both action plans of 2012 and 2021. This evergreen tree is known for its high ornamental and scientific value, but it faces significant threats due to its extremely small population size and narrow geographical distribution. The study aims to understand the genetic structure, diversity, and demographic history of this species to inform its conservation strategies. RESULTS The analysis of transcriptome data from 64 individuals across seven populations of M. lacei identified three distinct genetic clusters and generated 104,616 single-nucleotide polymorphisms (SNPs). The KM ex-situ population, originating from Longling County, exhibited unique genetic features, suggesting limited gene flow. The genetic diversity was substantial, with significant differences between populations, particularly between the KM lineage and the OTHER lineage. Demographic history inferred from the data indicated population experienced three significant population declines during glaciations, followed by periods of recovery. We estimated the effective population size (Ne) of the KM and OTHER lineages 1,000 years ago were 85,851 and 416,622, respectively. Gene flow analysis suggested past gene flow between populations, but the KM ex-situ population showed no recent gene flow. A total of 805 outlier SNPs, associated with four environmental factors, suggest potential local adaptation and showcase the species' adaptive potential. Particularly, the BZ displayed 515 adaptive loci, highlighting its strong potential for adaptation within this group. CONCLUSIONS The comprehensive genomic analysis of M. lacei provides valuable insights into its genetic background and highlights the urgent need for conservation efforts. The study underscores the importance of ex-situ conservation methods, such as seed collection and vegetative propagation, to safeguard genetic diversity and promote population restoration. The preservation of populations like MC and BZ is crucial for maintaining the species' genetic diversity. In-situ conservation measures, including the establishment of in-situ conservation sites and community engagement, are essential to enhance protection awareness and ensure the long-term survival of this threatened plant species.
Collapse
Affiliation(s)
- Yang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
32
|
Bolívar‐Leguizamón SD, Bocalini F, Silveira LF, Bravo GA. The role of biogeographical barriers on the historical dynamics of passerine birds with a circum-Amazonian distribution. Ecol Evol 2024; 14:e10860. [PMID: 38450322 PMCID: PMC10915597 DOI: 10.1002/ece3.10860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 03/08/2024] Open
Abstract
Common distributional patterns have provided the foundations of our knowledge of Neotropical biogeography. A distinctive pattern is the "circum-Amazonian distribution", which surrounds Amazonia across the forested lowlands south and east of the basin, the Andean foothills, the Venezuelan Coastal Range, and the Tepuis. The underlying evolutionary and biogeographical mechanisms responsible for this widespread pattern of avian distribution have yet to be elucidated. Here, we test the effects of biogeographical barriers in four species in the passerine family Thamnophilidae by performing comparative demographic analyses of genome-scale data. Specifically, we used flanking regions of ultraconserved regions to estimate population historical parameters and genealogical trees and tested demographic models reflecting contrasting biogeographical scenarios explaining the circum-Amazonian distribution. We found that taxa with circum-Amazonian distribution have at least two main phylogeographical clusters: (1) Andes, often extending into Central America and the Tepuis; and (2) the remaining of their distribution. These clusters are connected through corridors along the Chaco-Cerrado and southeastern Amazonia, allowing gene flow between Andean and eastern South American populations. Demographic histories are consistent with Pleistocene climatic fluctuations having a strong influence on the diversification history of circum-Amazonian taxa, Refugia played a crucial role, enabling both phenotypic and genetic differentiation, yet maintaining substantial interconnectedness to keep considerable levels of gene flow during different dry/cool and warm/humid periods. Additionally, steep environmental gradients appear to play a critical role in maintaining both genetic and phenotypic structure.
Collapse
Affiliation(s)
- Sergio D. Bolívar‐Leguizamón
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
- Laboratório de Zoologia de Vertebrados, Departamento de Ciências Biológicas, Escola Superior de Agricultura “Luiz de Queiroz” –ESALQ–Universidade de São PauloPiracicabaBrazil
| | - Fernanda Bocalini
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
| | - Luís F. Silveira
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
| | - Gustavo A. Bravo
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
- Sección de Ornitología, Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von HumboldtClaustro de San AgustínVilla de Leyva, BoyacáColombia
- Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
33
|
Megía-Palma R, Palomar G, Martínez J, Antunes B, Dudek K, Žagar A, Serén N, Carretero MA, Babik W, Merino S. Lizard host abundances and climatic factors explain phylogenetic diversity and prevalence of blood parasites on an oceanic island. Mol Ecol 2024; 33:e17276. [PMID: 38243603 DOI: 10.1111/mec.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Host abundance might favour the maintenance of a high phylogenetic diversity of some parasites via rapid transmission rates. Blood parasites of insular lizards represent a good model to test this hypothesis because these parasites can be particularly prevalent in islands and host lizards highly abundant. We applied deep amplicon sequencing and analysed environmental predictors of blood parasite prevalence and phylogenetic diversity in the endemic lizard Gallotia galloti across 24 localities on Tenerife, an island in the Canary archipelago that has experienced increasing warming and drought in recent years. Parasite prevalence assessed by microscopy was over 94%, and a higher proportion of infected lizards was found in warmer and drier locations. A total of 33 different 18s rRNA parasite haplotypes were identified, and the phylogenetic analyses indicated that they belong to two genera of Adeleorina (Apicomplexa: Coccidia), with Karyolysus as the dominant genus. The most important predictor of between-locality variation in parasite phylogenetic diversity was the abundance of lizard hosts. We conclude that a combination of climatic and host demographic factors associated with an insular syndrome may be favouring a rapid transmission of blood parasites among lizards on Tenerife, which may favour the maintenance of a high phylogenetic diversity of parasites.
Collapse
Affiliation(s)
- Rodrigo Megía-Palma
- Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, Parasitology Unit, Alcalá de Henares, Spain
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Gemma Palomar
- Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, Parasitology Unit, Alcalá de Henares, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Javier Martínez
- Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, Parasitology Unit, Alcalá de Henares, Spain
| | - Bernardo Antunes
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anamarija Žagar
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- NIB, National Institute of Biology, Ljubljana, Slovenia
| | - Nina Serén
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Miguel A Carretero
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Santiago Merino
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| |
Collapse
|
34
|
Jiao X, Wu L, Zhang D, Wang H, Dong F, Yang L, Wang S, Amano HE, Zhang W, Jia C, Rheindt FE, Lei F, Song G. Landscape Heterogeneity Explains the Genetic Differentiation of a Forest Bird across the Sino-Himalayan Mountains. Mol Biol Evol 2024; 41:msae027. [PMID: 38318973 PMCID: PMC10919924 DOI: 10.1093/molbev/msae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.
Collapse
Affiliation(s)
- Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Le Yang
- Tibet Plateau Institute of Biology, Lhasa 850000, China
| | - Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Weiwei Zhang
- Center for Wildlife Resources Conservation Research, Jiangxi Agricultural University, Nanchang, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Folkertsma R, Charbonnel N, Henttonen H, Heroldová M, Huitu O, Kotlík P, Manzo E, Paijmans JLA, Plantard O, Sándor AD, Hofreiter M, Eccard JA. Genomic signatures of climate adaptation in bank voles. Ecol Evol 2024; 14:e10886. [PMID: 38455148 PMCID: PMC10918726 DOI: 10.1002/ece3.10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024] Open
Abstract
Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.
Collapse
Affiliation(s)
- Remco Folkertsma
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Comparative Cognition Unit, Messerli Research InstituteUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Marta Heroldová
- Department of Forest Ecology, FFWTMendel University in BrnoBrnoCzech Republic
| | - Otso Huitu
- Natural Resources Institute FinlandHelsinkiFinland
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and GeneticsCzech Academy of SciencesLiběchovCzech Republic
| | - Emiliano Manzo
- Fondazione Ethoikos, Convento dell'OsservanzaRadicondoliItaly
| | - Johanna L. A. Paijmans
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Present address:
Evolutionary Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Attila D. Sándor
- HUN‐RENClimate Change: New Blood‐Sucking Parasites and Vector‐Borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and ZoologyUniversity of Veterinary MedicineBudapestHungary
- Department of Parasitology and Parasitic DiseasesUniversity of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
| | - Jana A. Eccard
- Animal Ecology, Institute for Biochemistry and Biology, Faculty of ScienceBerlin‐Brandenburg Institute for Biodiversity ResearchUniversity of PotsdamPotsdamGermany
| |
Collapse
|
36
|
Dang Z, Li J, Liu Y, Song M, Lockhart PJ, Tian Y, Niu M, Wang Q. RADseq-based population genomic analysis and environmental adaptation of rare and endangered recretohalophyte Reaumuria trigyna. THE PLANT GENOME 2024; 17:e20303. [PMID: 36740755 DOI: 10.1002/tpg2.20303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Genetic diversity reflects the survival potential, history, and population dynamics of an organism. It underlies the adaptive potential of populations and their response to environmental change. Reaumuria trigyna is an endemic species in the Eastern Alxa and West Ordos desert regions in China. The species has been considered a good candidate to explore the unique survival strategies of plants that inhabit this area. In this study, we performed population genomic analyses based on restriction-site associated DNA sequencing to understand the genetic diversity, population genetic structure, and differentiation of the species. Analyses of 92,719 high-quality single-nucleotide polymorphisms (SNPs) indicated that overall genetic diversity of R. trigyna was low (HO = 0.249 and HE = 0.208). No significant genetic differentiation was observed among the investigated populations. However, a subtle population genetic structure was detected. We suggest that this might be explained by adaptive diversification reinforced by the geographical isolation of populations. Overall, 3513 outlier SNPs were located in 243 gene-coding sequences in the R. trigyna transcriptome. Potential sites under diversifying selection occurred in genes (e.g., AP2/EREBP, E3 ubiquitin-protein ligase, FLS, and 4CL) related to phytohormone regulation and synthesis of secondary metabolites which have roles in adaptation of species. Our genetic analyses provide scientific criteria for evaluating the evolutionary capacity of R. trigyna and the discovery of unique adaptions. Our findings extend knowledge of refugia, environmental adaption, and evolution of germplasm resources that survive in the Ordos area.
Collapse
Affiliation(s)
- Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiabin Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yanan Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Miaomiao Song
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Peter J Lockhart
- School of Natural Sciences, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Yunyun Tian
- Ministry of Education Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Miaomiao Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qinglang Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
37
|
Karin BR, Lough-Stevens M, Lin TE, Reilly SB, Barley AJ, Das I, Iskandar DT, Arida E, Jackman TR, McGuire JA, Bauer AM. The natural and human-mediated expansion of a human-commensal lizard into the fringes of Southeast Asia. BMC Ecol Evol 2024; 24:25. [PMID: 38378475 PMCID: PMC10880348 DOI: 10.1186/s12862-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Human-commensal species often display deep ancestral genetic structure within their native range and founder-effects and/or evidence of multiple introductions and admixture in newly established areas. We investigated the phylogeography of Eutropis multifasciata, an abundant human-commensal scincid lizard that occurs across Southeast Asia, to determine the extent of its native range and to assess the sources and signatures of human introduction outside of the native range. We sequenced over 350 samples of E. multifasciata for the mitochondrial ND2 gene and reanalyzed a previous RADseq population genetic dataset in a phylogenetic framework. RESULTS Nuclear and mitochondrial trees are concordant and show that E. multifasciata has retained high levels of genetic structure across Southeast Asia despite being frequently moved by humans. Lineage boundaries in the native range roughly correspond to several major biogeographic barriers, including Wallace's Line and the Isthmus of Kra. Islands at the outer fringe of the range show evidence of founder-effects and multiple introductions. CONCLUSIONS Most of enormous range of E. multifasciata across Southeast Asia is native and it only displays signs of human-introduction or recent expansion along the eastern and northern fringe of its range. There were at least three events of human-introductions to Taiwan and offshore islands, and several oceanic islands in eastern Indonesia show a similar pattern. In Myanmar and Hainan, there is a founder-effect consistent with post-warming expansion after the last glacial maxima or human introduction.
Collapse
Affiliation(s)
- Benjamin R Karin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
- Department of Biology, Villanova University, Villanova, PA, 19085, USA.
| | - Michael Lough-Stevens
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Te-En Lin
- Endemic Species Research Institute, 1, Minsheng E Rd., Jiji Township, Nantou County, 55244, Taiwan
| | - Sean B Reilly
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Anthony J Barley
- Department of Evolution and Ecology, University of California, 2320 Storer Hall, Davis, CA, 95616, USA
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Djoko T Iskandar
- School of Life Sciences and Technology, Bandung Institute of Technology, 10 Jalan Ganesa, Bandung, 40132, Indonesia
- Basic Sciences Commission, Indonesian Academy of Sciences, 11 Jalan Medan Merdeka Selatan, Jakarta, 10110, Indonesia
| | - Evy Arida
- Research Center for Ecology and Ethnobiology, Badan Riset dan Inovasi Nasional (BRIN), Cibinong Science Center, Jalan Raya Jakarta-Bogor km 46, Cibinong, 16911, Indonesia
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Aaron M Bauer
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| |
Collapse
|
38
|
Andraca-Gómez G, Ordano M, Lira-Noriega A, Osorio-Olvera L, Domínguez CA, Fornoni J. Climatic and soil characteristics account for the genetic structure of the invasive cactus moth Cactoblastis cactorum, in its native range in Argentina. PeerJ 2024; 12:e16861. [PMID: 38361769 PMCID: PMC10868523 DOI: 10.7717/peerj.16861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Background Knowledge of the physical and environmental conditions that may limit the migration of invasive species is crucial to assess the potential for expansion outside their native ranges. The cactus moth, Cactoblastis cactorum, is native to South America (Argentina, Paraguay, Uruguay and Brazil) and has been introduced and invaded the Caribbean and southern United States, among other regions. In North America there is an ongoing process of range expansion threatening cacti biodiversity of the genus Opuntia and the commercial profits of domesticated Opuntia ficus-indica. Methods To further understand what influences the distribution and genetic structure of this otherwise important threat to native and managed ecosystems, in the present study we combined ecological niche modeling and population genetic analyses to identify potential environmental barriers in the native region of Argentina. Samples were collected on the host with the wider distribution range, O. ficus-indica. Results Significant genetic structure was detected using 10 nuclear microsatellites and 24 sampling sites. At least six genetic groups delimited by mountain ranges, salt flats and wetlands were mainly located to the west of the Dry Chaco ecoregion. Niche modeling supports that this region has high environmental suitability where the upper soil temperature and humidity, soil carbon content and precipitation were the main environmental factors that explain the presence of the moth. Environmental filters such as the upper soil layer may be critical for pupal survival and consequently for the establishment of populations in new habitats, whereas the presence of available hosts is a necessary conditions for insect survival, upper soil and climatic characteristics will determine the opportunities for a successful establishment.
Collapse
Affiliation(s)
- Guadalupe Andraca-Gómez
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Mariano Ordano
- CONICET-UNT, Fundación Miguel Lillo-Instituto de Ecología Regional, San Miguel de Tucumán, Tucumán, Argentina
| | - Andrés Lira-Noriega
- Instituto de Ecología, A.C., CONAHCYT Research Fellow, Xalapa, Veracrúz, México
| | - Luis Osorio-Olvera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - César A. Domínguez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Juan Fornoni
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
39
|
Terasaki Hart DE, Wang IJ. Genomic architecture controls multivariate adaptation to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17179. [PMID: 38403891 DOI: 10.1111/gcb.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
As climate change advances, environmental gradients may decouple, generating novel multivariate environments that stress wild populations. A commonly invoked mechanism of evolutionary rescue is adaptive gene flow tracking climate shifts, but gene flow from populations inhabiting similar conditions on one environmental axis could cause maladaptive introgression when populations are adapted to different environmental variables that do not shift together. Genomic architecture can play an important role in determining the effectiveness and relative magnitudes of adaptive gene flow and in situ adaptation. This may have direct consequences for how species respond to climate change but is often overlooked. Here, we simulated microevolutionary responses to environmental change under scenarios defined by variation in the polygenicity, linkage, and genetic redundancy of two independent traits, one of which is adapted to a gradient that shifts under climate change. We used these simulations to examine how genomic architecture influences evolutionary outcomes under climate change. We found that climate-tracking (up-gradient) gene flow, though present in all scenarios, was strongly constrained under scenarios of lower linkage and higher polygenicity and redundancy, suggesting in situ adaptation as the predominant mechanism of evolutionary rescue under these conditions. We also found that high polygenicity caused increased maladaptation and demographic decline, a concerning result given that many climate-adapted traits may be polygenic. Finally, in scenarios with high redundancy, we observed increased adaptive capacity. This finding adds to the growing recognition of the importance of redundancy in mediating in situ adaptive capacity and suggests opportunities for better understanding the climatic vulnerability of real populations.
Collapse
Affiliation(s)
- Drew E Terasaki Hart
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- The Nature Conservancy, Arlington, Virginia, USA
- CSIRO Environment, Brisbane, Queensland, Australia
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
40
|
Friis G, Smith EG, Lovelock CE, Ortega A, Marshell A, Duarte CM, Burt JA. Rapid diversification of grey mangroves (Avicennia marina) driven by geographic isolation and extreme environmental conditions in the Arabian Peninsula. Mol Ecol 2024; 33:e17260. [PMID: 38197286 DOI: 10.1111/mec.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Biological systems occurring in ecologically heterogeneous and spatially discontinuous habitats provide an ideal opportunity to investigate the relative roles of neutral and selective factors in driving lineage diversification. The grey mangroves (Avicennia marina) of Arabia occur at the northern edge of the species' range and are subject to variable, often extreme, environmental conditions, as well as historic large fluctuations in habitat availability and connectivity resulting from Quaternary glacial cycles. Here, we analyse fully sequenced genomes sampled from 19 locations across the Red Sea, the Arabian Sea and the Persian/Arabian Gulf (PAG) to reconstruct the evolutionary history of the species in the region and to identify adaptive mechanisms of lineage diversification. Population structure and phylogenetic analyses revealed marked genetic structure correlating with geographic distance and highly supported clades among and within the seas surrounding the Arabian Peninsula. Demographic modelling showed times of divergence consistent with recent periods of geographic isolation and low marine connectivity during glaciations, suggesting the presence of (cryptic) glacial refugia in the Red Sea and the PAG. Significant migration was detected within the Red Sea and the PAG, and across the Strait of Hormuz to the Arabian Sea, suggesting gene flow upon secondary contact among populations. Genetic-environment association analyses revealed high levels of adaptive divergence and detected signs of multi-loci local adaptation driven by temperature extremes and hypersalinity. These results support a process of rapid diversification resulting from the combined effects of historical factors and ecological selection and reveal mangrove peripheral environments as relevant drivers of lineage diversity.
Collapse
Affiliation(s)
- Guillermo Friis
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Edward G Smith
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Catherine E Lovelock
- School of Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Alejandra Ortega
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John A Burt
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
41
|
Beer MA, Proft KM, Veillet A, Kozakiewicz CP, Hamilton DG, Hamede R, McCallum H, Hohenlohe PA, Burridge CP, Margres MJ, Jones ME, Storfer A. Disease-driven top predator decline affects mesopredator population genomic structure. Nat Ecol Evol 2024; 8:293-303. [PMID: 38191839 DOI: 10.1038/s41559-023-02265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024]
Abstract
Top predator declines are pervasive and often have dramatic effects on ecological communities via changes in food web dynamics, but their evolutionary consequences are virtually unknown. Tasmania's top terrestrial predator, the Tasmanian devil, is declining due to a lethal transmissible cancer. Spotted-tailed quolls benefit via mesopredator release, and they alter their behaviour and resource use concomitant with devil declines and increased disease duration. Here, using a landscape community genomics framework to identify environmental drivers of population genomic structure and signatures of selection, we show that these biotic factors are consistently among the top variables explaining genomic structure of the quoll. Landscape resistance negatively correlates with devil density, suggesting that devil declines will increase quoll genetic subdivision over time, despite no change in quoll densities detected by camera trap studies. Devil density also contributes to signatures of selection in the quoll genome, including genes associated with muscle development and locomotion. Our results provide some of the first evidence of the evolutionary impacts of competition between a top predator and a mesopredator species in the context of a trophic cascade. As top predator declines are increasing globally, our framework can serve as a model for future studies of evolutionary impacts of altered ecological interactions.
Collapse
Affiliation(s)
- Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Kirstin M Proft
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Anne Veillet
- Hilo Core Genomics Facility, University of Hawaii at Hilo, Hilo, HI, USA
| | - Christopher P Kozakiewicz
- Department of Integrative Biology, Michigan State University, W.K. Kellogg Biological Station, Hickory Corners, MI, USA
| | - David G Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, USA
| | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
42
|
Batalha-Filho H, Barreto SB, Silveira MHB, Miyaki CY, Afonso S, Ferrand N, Carneiro M, Sequeira F. Disentangling the contemporary and historical effects of landscape on the population genomic variation of two bird species restricted to the highland forest enclaves of northeastern Brazil. Heredity (Edinb) 2024; 132:77-88. [PMID: 37985738 PMCID: PMC10844224 DOI: 10.1038/s41437-023-00662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Investigating the impact of landscape features on patterns of genetic variation is crucial to understand spatially dependent evolutionary processes. Here, we assess the population genomic variation of two bird species (Conopophaga cearae and Sclerurus cearensis) through the Caatinga moist forest enclaves in northeastern Brazil. To infer the evolutionary dynamics of bird populations through the Late Quaternary, we used genome-wide polymorphism data obtained from double-digestion restriction-site-associated DNA sequencing (ddRADseq), and integrated population structure analyses, historical demography models, paleodistribution modeling, and landscape genetics analyses. We found the population differentiation among enclaves to be significantly related to the geographic distance and historical resistance across the rugged landscape. The climate changes at the end of the Pleistocene to the Holocene likely triggered synchronic population decline in all enclaves for both species. Our findings revealed that both geographic distance and historical connectivity through highlands are important factors that can explain the current patterns of genetic variation. Our results further suggest that levels of population differentiation and connectivity cannot be explained purely on the basis of contemporary environmental conditions. By combining historical demographic analyses and niche modeling predictions in a historical framework, we provide strong evidence that climate fluctuations of the Quaternary promoted population differentiation and a high degree of temporal synchrony among population size changes in both species.
Collapse
Affiliation(s)
- Henrique Batalha-Filho
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Silvia Britto Barreto
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil
| | - Mario Henrique Barros Silveira
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil
| | - Cristina Yumi Miyaki
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
| | - Nuno Ferrand
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
| | - Fernando Sequeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
43
|
Wooldridge B, Orland C, Enbody E, Escalona M, Mirchandani C, Corbett-Detig R, Kapp JD, Fletcher N, Ammann K, Raimondi P, Shapiro B. Limited genomic signatures of population collapse in the critically endangered black abalone ( Haliotis cracherodii). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577275. [PMID: 38352393 PMCID: PMC10862700 DOI: 10.1101/2024.01.26.577275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
The black abalone, Haliotis cracherodii, is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the species' designation as critically endangered. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation-based recovery contentious. Additionally, the current prevalence of WS is unknown. To address these uncertainties, we sequenced and analyzed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Genetic divergence between sites is minimal, and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Despite this, however, demographic inference confirms a severe population bottleneck beginning around the time of WS onset, highlighting the temporal offset that may occur between a population collapse and its potential impact on genetic diversity. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of genetic structure, uniform diversity, and prevalence of WS bacteria indicates that translocation could be a valid and low-risk means of population restoration for black abalone species' recovery.
Collapse
Affiliation(s)
- Brock Wooldridge
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Chloé Orland
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Erik Enbody
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Cade Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Joshua D Kapp
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Nathaniel Fletcher
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Karah Ammann
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Peter Raimondi
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Beth Shapiro
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| |
Collapse
|
44
|
Poljak I, Vidaković A, Benić L, Tumpa K, Idžojtić M, Šatović Z. Patterns of Leaf and Fruit Morphological Variation in Marginal Populations of Acer tataricum L. subsp. tataricum. PLANTS (BASEL, SWITZERLAND) 2024; 13:320. [PMID: 38276777 PMCID: PMC10818317 DOI: 10.3390/plants13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Marginal populations are usually smaller and more isolated and grow in less favourable conditions than those at the distribution centre. The variability of these populations is of high importance, as it can support the adaptations needed for the conditions that they grow in. In this research, the morphological variability of eight Tatar maple (Acer tataricum L. subsp. tataricum) populations was analysed. Tatar maple is an insect-pollinated and wind-dispersed shrub/tree, whose northwestern distribution edge is in southeastern Europe. Morphometric methods were used to analyse the variability of the populations using leaf and fruit morphology. The research revealed significant differences between and within populations. Furthermore, differences in the distribution of the total variability were noted, which suggest that different evolutionarily factors affect different plant traits. Correlation analysis confirmed a weak dependency between the vegetative and generative traits. In addition, no evidence was found for the presence of isolation by environment (IBE). However, the Mantel test for isolation by distance (IBD) was significant for the leaf morphometric traits and non-significant for the fruit morphometric traits. Being the marginal leading-edge populations, they are younger and were less likely to have had time for adaptation to local environments, which would have resulted in the development of IBE. Overall, edge populations of Tatar maple were characterised by great morphological variability, which helps these populations in their response to the intensive selective pressures they face in their environment.
Collapse
Affiliation(s)
- Igor Poljak
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (I.P.); (A.V.); (L.B.); (K.T.); (M.I.)
| | - Antonio Vidaković
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (I.P.); (A.V.); (L.B.); (K.T.); (M.I.)
| | - Luka Benić
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (I.P.); (A.V.); (L.B.); (K.T.); (M.I.)
| | - Katarina Tumpa
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (I.P.); (A.V.); (L.B.); (K.T.); (M.I.)
| | - Marilena Idžojtić
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (I.P.); (A.V.); (L.B.); (K.T.); (M.I.)
| | - Zlatko Šatović
- Department for Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia
| |
Collapse
|
45
|
Iwasa-Arai T, Siqueira SGL, Sobral-Souza T, Leite FPP, Andrade SCS. Continent-island boundary and environment-shaped evolution in the marine amphipod Ampithoe marcuzzii complex (Crustacea: Eumalacostraca: Ampithoidae). Sci Rep 2024; 14:608. [PMID: 38182880 PMCID: PMC10770051 DOI: 10.1038/s41598-023-51049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Marine amphipods are crustaceans that lack a larval phase and consequently have low dispersion rates. Despite that, these crustaceans present a remarkable ability to be transported by rafting on natural floating substrata, especially macroalgae, where they find shelter, food and a mating ground. The species Ampithoe marcuzzii is widely distributed throughout the western Atlantic Ocean. Here, it was used as a model to study seascape genomics and phylogeography in invertebrates with low dispersion capacities. We anticipated that the lineages would present isolation-by-distance patterns. However, surface currents and other abiotic variables could facilitate connectivity among distant sites. Based on mitochondrial and nuclear genes, SNPs, and environmental associations, we observed the presence of a species complex within A. marcuzzii, separating mainland and insular populations. Each species showed an independent evolutionary history, with a strong latitudinal population structure and evidence of isolation-by-distance and isolation-by-environment, characterizing the 'continent' species. Historical expansion and environmental variables were observed associated with the southeastern population, and ecological niche modeling corroborated the region as a paleorefuge. Conversely, populations from 'islands' presented complicated evolutionary histories, with closer localities genetically isolated and distant localities connected. These findings indicate that insular populations with low dispersion capacity might be more susceptible to spatial connectivity by floating substrata and to changes in surface currents. In contrast, mainland populations might be more vulnerable to local climate changes due to lack of gene flow.
Collapse
Affiliation(s)
- Tammy Iwasa-Arai
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Silvana G L Siqueira
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Thadeu Sobral-Souza
- Departamento de Botânica e Ecologia, Universidade Federal do Mato Grosso, Cuiabá, Brazil
| | - Fosca P P Leite
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Beninde J, Wittische J, Frantz AC. Quantifying uncertainty in inferences of landscape genetic resistance due to choice of individual-based genetic distance metric. Mol Ecol Resour 2024; 24:e13831. [PMID: 37475166 DOI: 10.1111/1755-0998.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
Estimates of gene flow resulting from landscape resistance inferences frequently inform conservation management decision-making processes. Therefore, results must be robust across approaches and reflect real-world gene flow instead of methodological artefacts. Here, we tested the impact of 32 individual-based genetic distance metrics on the robustness and accuracy of landscape resistance modelling results. We analysed three empirical microsatellite datasets and 36 simulated datasets that varied in landscape resistance and genetic spatial autocorrelation. We used ResistanceGA to generate optimised multi-feature resistance surfaces for each of these datasets using 32 different genetic distance metrics. Results of the empirical dataset demonstrated that the choice of genetic distance metric can have strong impacts on inferred optimised resistance surfaces. Simulations showed accurate parametrisation of resistance surfaces across most genetic distance metrics only when a small number of environmental features was impacting gene flow. Landscape scenarios with many features impacting gene flow led to a generally poor recovery of true resistance surfaces. Simulation results also emphasise that choosing a genetic distance metric should not be based on marginal R2 -based model fit. Until more robust methods are available, resistance surfaces can be optimised with different genetic distance metrics and the convergence of results needs to be assessed via pairwise matrix correlations. Based on the results presented here, high correlation coefficients across different genetic distance categories likely indicate accurate inference of true landscape resistance. Most importantly, empirical results should be interpreted with great caution, especially when they appear counter-intuitive in light of the ecology of a species.
Collapse
Affiliation(s)
- Joscha Beninde
- LA Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- IUCN WCPA Connectivity Conservation Specialist Group, Gland, Switzerland
- Amsterdam Institute for Life and Environment (A-LIFE), Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Julian Wittische
- Musée National d'Histoire Naturelle, Luxembourg City, Luxembourg
- The Fondation Faune-Flore, Luxembourg City, Luxembourg
| | - Alain C Frantz
- Musée National d'Histoire Naturelle, Luxembourg City, Luxembourg
- The Fondation Faune-Flore, Luxembourg City, Luxembourg
- The University of Sheffield, Sheffield, UK
| |
Collapse
|
47
|
Pyron RA, Kakkera A, Beamer DA, O'Connell KA. Discerning structure versus speciation in phylogeographic analysis of Seepage Salamanders (Desmognathus aeneus) using demography, environment, geography, and phenotype. Mol Ecol 2024; 33:e17219. [PMID: 38015012 DOI: 10.1111/mec.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Numerous mechanisms can drive speciation, including isolation by adaptation, distance, and environment. These forces can promote genetic and phenotypic differentiation of local populations, the formation of phylogeographic lineages, and ultimately, completed speciation. However, conceptually similar mechanisms may also result in stabilizing rather than diversifying selection, leading to lineage integration and the long-term persistence of population structure within genetically cohesive species. Processes that drive the formation and maintenance of geographic genetic diversity while facilitating high rates of migration and limiting phenotypic differentiation may thereby result in population genetic structure that is not accompanied by reproductive isolation. We suggest that this framework can be applied more broadly to address the classic dilemma of "structure" versus "species" when evaluating phylogeographic diversity, unifying population genetics, species delimitation, and the underlying study of speciation. We demonstrate one such instance in the Seepage Salamander (Desmognathus aeneus) from the southeastern United States. Recent studies estimated up to 6.3% mitochondrial divergence and four phylogenomic lineages with broad admixture across geographic hybrid zones, which could potentially represent distinct species supported by our species-delimitation analyses. However, while limited dispersal promotes substantial isolation by distance, microhabitat specificity appears to yield stabilizing selection on a single, uniform, ecologically mediated phenotype. As a result, climatic cycles promote recurrent contact between lineages and repeated instances of high migration through time. Subsequent hybridization is apparently not counteracted by adaptive differentiation limiting introgression, leaving a single unified species with deeply divergent phylogeographic lineages that nonetheless do not appear to represent incipient species.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Anvith Kakkera
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, USA
| | - David A Beamer
- Office of Research, Economic Development and Engagement, East Carolina University, Greenville, North Carolina, USA
| | - Kyle A O'Connell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
- Deloitte Consulting LLP, Health and Data AI, Arlington, Virginia, USA
| |
Collapse
|
48
|
Parvizi E, Vaughan AL, Dhami MK, McGaughran A. Genomic signals of local adaptation across climatically heterogenous habitats in an invasive tropical fruit fly (Bactrocera tryoni). Heredity (Edinb) 2024; 132:18-29. [PMID: 37903919 PMCID: PMC10798995 DOI: 10.1038/s41437-023-00657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/21/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Local adaptation plays a key role in the successful establishment of pest populations in new environments by enabling them to tolerate novel biotic and abiotic conditions experienced outside their native range. However, the genomic underpinnings of such adaptive responses remain unclear, especially for agriculturally important pests. We investigated population genomic signatures in the tropical/subtropical Queensland fruit fly, Bactrocera tryoni, which has an expanded range encompassing temperate and arid zones in Australia, and tropical zones in the Pacific Islands. Using reduced representation sequencing data from 28 populations, we detected allele frequency shifts associated with the native/invasive status of populations and identified environmental factors that have likely driven population differentiation. We also determined that precipitation, temperature, and geographic variables explain allelic shifts across the distribution range of B. tryoni. We found spatial heterogeneity in signatures of local adaptation across various climatic conditions in invaded areas. Specifically, disjunct invasive populations in the tropical Pacific Islands and arid zones of Australia were characterised by multiple significantly differentiated single nucleotide polymorphisms (SNPs), some of which were associated with genes with well-understood function in environmental stress (e.g., heat and desiccation) response. However, invasive populations in southeast Australian temperate zones showed higher gene flow with the native range and lacked a strong local adaptive signal. These results suggest that population connectivity with the native range has differentially affected local adaptive patterns in different invasive populations. Overall, our findings provide insights into the evolutionary underpinnings of invasion success of an important horticultural pest in climatically distinct environments.
Collapse
Affiliation(s)
- Elahe Parvizi
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Amy L Vaughan
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
49
|
Zbinden ZD, Douglas MR, Chafin TK, Douglas ME. Riverscape community genomics: A comparative analytical approach to identify common drivers of spatial structure. Mol Ecol 2023; 32:6743-6765. [PMID: 36461662 DOI: 10.1111/mec.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Genetic differentiation among local groups of individuals, that is, genetic β-diversity, is a key component of population persistence related to connectivity and isolation. However, most genetic investigations of natural populations focus on a single species, overlooking opportunities for multispecies conservation plans to benefit entire communities in an ecosystem. We present an approach to evaluate genetic β-diversity within and among many species and demonstrate how this riverscape community genomics approach can be applied to identify common drivers of genetic structure. Our study evaluated genetic β-diversity in 31 co-distributed native stream fishes sampled from 75 sites across the White River Basin (Ozarks, USA) using SNP genotyping (ddRAD). Despite variance among species in the degree of genetic divergence, general spatial patterns were identified corresponding to river network architecture. Most species (N = 24) were partitioned into discrete subpopulations (K = 2-7). We used partial redundancy analysis to compare species-specific genetic β-diversity across four models of genetic structure: Isolation by distance (IBD), isolation by barrier (IBB), isolation by stream hierarchy (IBH), and isolation by environment (IBE). A significant proportion of intraspecific genetic variation was explained by IBH (x̄ = 62%), with the remaining models generally redundant. We found evidence for consistent spatial modularity in that gene flow is higher within rather than between hierarchical units (i.e., catchments, watersheds, basins), supporting the generalization of the stream hierarchy model. We discuss our conclusions regarding conservation and management and identify the 8-digit hydrologic unit (HUC) as the most relevant spatial scale for managing genetic diversity across riverine networks.
Collapse
Affiliation(s)
- Zachery D Zbinden
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Marlis R Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyler K Chafin
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Michael E Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
50
|
Rodriguez-Sanchez AC, Gónzalez-Salazar LA, Rodriguez-Orduña L, Cumsille Á, Undabarrena A, Camara B, Sélem-Mojica N, Licona-Cassani C. Phylogenetic classification of natural product biosynthetic gene clusters based on regulatory mechanisms. Front Microbiol 2023; 14:1290473. [PMID: 38029100 PMCID: PMC10663231 DOI: 10.3389/fmicb.2023.1290473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The natural products (NPs) biosynthetic gene clusters (BGCs) represent the adapting biochemical toolkit for microorganisms to thrive different microenvironments. Despite their high diversity, particularly at the genomic level, detecting them in a shake-flask is challenging and remains the primary obstacle limiting our access to valuable chemicals. Studying the molecular mechanisms that regulate BGC expression is crucial to design of artificial conditions that derive on their expression. Here, we propose a phylogenetic analysis of regulatory elements linked to biosynthesis gene clusters, to classify BGCs to regulatory mechanisms based on protein domain information. We utilized Hidden Markov Models from the Pfam database to retrieve regulatory elements, such as histidine kinases and transcription factors, from BGCs in the MIBiG database, focusing on actinobacterial strains from three distinct environments: oligotrophic basins, rainforests, and marine environments. Despite the environmental variations, our isolated microorganisms share similar regulatory mechanisms, suggesting the potential to activate new BGCs using activators known to affect previously characterized BGCs.
Collapse
Affiliation(s)
| | - Luz A. Gónzalez-Salazar
- Centro de Biotecnologia FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Lorena Rodriguez-Orduña
- Centro de Biotecnologia FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Ándres Cumsille
- Centro de Biotecnología Daniel Alkalay, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Agustina Undabarrena
- Centro de Biotecnología Daniel Alkalay, Universidad Técnica Federico Santa María, Valparaíso, Chile
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Beatriz Camara
- Centro de Biotecnología Daniel Alkalay, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | - Cuauhtemoc Licona-Cassani
- Centro de Biotecnologia FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
- Integrative Biology Unit, The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|