1
|
Djoko Tagne CS, Kouamo MFM, Tchouakui M, Muhammad A, Mugenzi LJL, Tatchou-Nebangwa NMT, Thiomela RF, Gadji M, Wondji MJ, Hearn J, Desire MH, Ibrahim SS, Wondji CS. A single mutation G454A in the P450 CYP9K1 drives pyrethroid resistance in the major malaria vector Anopheles funestus reducing bed net efficacy. Genetics 2025; 229:1-40. [PMID: 39509710 PMCID: PMC11708915 DOI: 10.1093/genetics/iyae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Metabolic mechanisms conferring pyrethroid resistance in malaria vectors are jeopardizing the effectiveness of insecticide-based interventions, and identification of their markers is a key requirement for robust resistance management. Here, using a field-lab-field approach, we demonstrated that a single mutation G454A in the P450 CYP9K1 is driving pyrethroid resistance in the major malaria vector Anopheles funestus in East and Central Africa. Drastic reduction in CYP9K1 diversity was observed in Ugandan samples collected in 2014, with the selection of a predominant haplotype (G454A mutation at 90%), which was completely absent in the other African regions. However, 6 years later (2020) the Ugandan 454A-CYP9K1 haplotype was found predominant in Cameroon (84.6%), but absent in Malawi (Southern Africa) and Ghana (West Africa). Comparative in vitro heterologous expression and metabolism assays revealed that the mutant 454A-CYP9K1 (R) allele significantly metabolizes more type II pyrethroid (deltamethrin) compared with the wild G454-CYP9K1 (S) allele. Transgenic Drosophila melanogaster flies expressing 454A-CYP9K1 (R) allele exhibited significantly higher type I and II pyrethroids resistance compared to flies expressing the wild G454-CYP9K1 (S) allele. Furthermore, laboratory testing and field experimental hut trials in Cameroon demonstrated that mosquitoes harboring the resistant 454A-CYP9K1 allele significantly survived pyrethroids exposure (odds ratio = 567, P < 0.0001). This study highlights the rapid spread of pyrethroid-resistant CYP9K1 allele, under directional selection in East and Central Africa, contributing to reduced bed net efficacy. The newly designed DNA-based assay here will add to the toolbox of resistance monitoring and improving its management strategies.
Collapse
Affiliation(s)
- Carlos S Djoko Tagne
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Mersimine F M Kouamo
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Biotechnology Research, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Leon J L Mugenzi
- Syngenta Crop Protection Department, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - Nelly M T Tatchou-Nebangwa
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O Box 63, Buea, Cameroon
| | - Riccado F Thiomela
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Mahamat Gadji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Murielle J Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland’s Rural College (SRUC), RAVIC, Inverness IV2 5NA, UK
| | - Mbouobda H Desire
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Sulaiman S Ibrahim
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria
| | - Charles S Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
2
|
Acford-Palmer H, Andrade AO, Phelan JE, Santana RA, Lopes SCP, Medeiros JF, Clark TG, Araujo MS, Campino S. Application of a targeted amplicon sequencing panel to screen for insecticide resistance mutations in Anopheles darlingi populations from Brazil. Sci Rep 2025; 15:731. [PMID: 39753672 PMCID: PMC11698964 DOI: 10.1038/s41598-024-84432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Large-scale surveillance and informed vector control approaches are urgently needed to ensure that national malaria programs remain effective in reducing transmission and, ultimately, achieving malaria elimination targets. In South America, Anopheles darlingi is the primary malaria vector and is responsible for the majority of Plasmodium species transmission. However, little is known about the molecular markers associated with insecticide resistance in this species. In this study, we developed a low-cost, high throughput amplicon sequencing ("amp-seq") panel, consisting of 11 amplicons targeting genes linked to mosquito species identification (cox-1 and its2) and insecticide resistance (ace-1, GSTe2, vgsc and rdl). When used in tandem with dual-index barcoding of amplicons, this approach permits high numbers of loci and samples to be sequenced in single runs, thereby decreasing costs and increasing efficiency. By screening 200 An. darlingi mosquitoes collected in Brazil, our amp-seq approach identified 10 point mutations leading to amino acid changes in ace-1 (V243I, N294H, S673N, S674N/T) and GSTe2 genes (I114V, D128E, T166I, T179I, and T205A). Overall, our work has demonstrated the utility of amp-seq to provide insights into the genetic diversity of An. darlingi mosquitoes. The amp-seq approach can be applied as a wide-scale insecticide-resistance surveillance technique to better inform vector-control methods.
Collapse
Affiliation(s)
- Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Alice O Andrade
- Plataforma de Produção e Infecção de Vetores da Malária- PIVEM, Laboratório de Entomologia, Fiocruz Rondonia, Porto Velho, RO, Brazil
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Rosa A Santana
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Stefanie C P Lopes
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Instituto Leônidas & Maria Deane, FIOCRUZ, Manaus, AM, Brazil
| | - Jansen F Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária- PIVEM, Laboratório de Entomologia, Fiocruz Rondonia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBIOEXP, Fundação Universidade Federal de Rondonia, Porto Velho, RO, Brazil
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Maisa S Araujo
- Plataforma de Produção e Infecção de Vetores da Malária- PIVEM, Laboratório de Entomologia, Fiocruz Rondonia, Porto Velho, RO, Brazil.
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais - PPGReN, Fundação Universida-de Federal de Rondonia, Porto Velho, RO, Brazil.
- Laboratório de Pesquisa Translacional e Clínica, Centro de Pesquisa em Medicina Tropical, Porto Velho, RO, Brazil.
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
3
|
Oruni A, Tchouakui M, Tagne CSD, Hearn J, Kayondo J, Wondji CS. Temporal evolution of insecticide resistance and bionomics in Anopheles funestus, a key malaria vector in Uganda. Sci Rep 2024; 14:32027. [PMID: 39738472 PMCID: PMC11685729 DOI: 10.1038/s41598-024-83689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Insecticide resistance escalation is decreasing the efficacy of vector control tools. Monitoring vector resistance is paramount in order to understand its evolution and devise effective counter-solutions. In this study, we monitored insecticide resistance patterns, vector population bionomics and genetic variants associated with resistance over 3 years from 2021 to 2023 in Uganda. Anopheles funestus s.s was the predominant species in Mayuge but with evidence of hybridization with other species of the An. funestus group. Sporozoite infection rates were relatively very high with a peak of 20.41% in March 2022. Intense pyrethroid resistance was seen against pyrethroids up to 10-times the diagnostic concentration but partial recovery of susceptibility in PBO synergistic assays. Among bednets, only PBO-based nets (PermaNet 3.0 Top and Olyset Plus) and chlorfenapyr-based net (Interceptor G2) had high mortality rates. Mosquitoes were fully susceptible to chlorfenapyr and organophosphates, moderately resistant to clothianidin and resistant to carbamates. The allele frequency of key P450, CYP9K1, resistance marker was constantly very high but that for CYP6P9A/b were very low. Interestingly, we report the first detection of resistance alleles for Ace1 gene (RS = ~ 13%) and Rdl gene (RS = ~ 21%, RR = ~ 4%) in Uganda. The qRT-PCR revealed that Cytochrome P450s CYP9K1, CYP6P9A, CYP6P9b, CYP6P5 and CYP6M7 were consistently upregulated while a glutathione-S-transferase gene (GSTE2) showed low expression. Our study shows the complexity of insecticide resistance patterns and underlying mechanisms, hence constant and consistent spatial and temporal monitoring is crucial to rapidly detect changing resistance profiles which is key in informing deployment of counter interventions.
Collapse
Affiliation(s)
- Ambrose Oruni
- Entomology Department, Uganda Virus Research Institute, P.O. BOX 49, Entebbe, Uganda.
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon
| | - Carlos S Djoko Tagne
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Centre for Epidemiology and Planetary Health, Scotland's Rural College (SRUC), Inverness, IV2 5NA, UK
| | - Jonathan Kayondo
- Entomology Department, Uganda Virus Research Institute, P.O. BOX 49, Entebbe, Uganda
| | - Charles S Wondji
- Centre for Research in Infectious Diseases, LSTM-Research Unit, P.O BOX 3591, Yaoundé, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
- International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
4
|
Gadji M, Kengne-Ouafo JA, Tchouakui M, Wondji MJ, Mugenzi LMJ, Hearn J, Boyomo O, Wondji CS. Genome-wide association studies unveil major genetic loci driving insecticide resistance in Anopheles funestus in four eco-geographical settings across Cameroon. BMC Genomics 2024; 25:1202. [PMID: 39695386 DOI: 10.1186/s12864-024-11148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Insecticide resistance is jeopardising malaria control efforts in Africa. Deciphering the evolutionary dynamics of mosquito populations country-wide is essential for designing effective and sustainable national and subnational tailored strategies to accelerate malaria elimination efforts. Here, we employed genome-wide association studies through pooled template sequencing to compare four eco-geographically different populations of the major vector, Anopheles funestus, across a South North transect in Cameroon, aiming to identify genomic signatures of adaptive responses to insecticides. RESULTS Our analysis revealed limited population structure within Northern and Central regions (FST<0.02), suggesting extensive gene flow, while populations from the Littoral/Coastal region exhibited more distinct genetic patterns (FST>0.049). Greater genetic differentiation was observed at known resistance-associated loci, resistance-to-pyrethroids 1 (rp1) (2R chromosome) and CYP9 (X chromosome), with varying signatures of positive selection across populations. Allelic variation between variants underscores the pervasive impact of selection pressures, with rp1 variants more prevalent in Central and Northern populations (FST>0.3), and the CYP9 associated variants more pronounced in the Littoral/Coastal region (FST =0.29). Evidence of selective sweeps was supported by negative Tajima's D and reduced genetic diversity in all populations, particularly in Central (Elende) and Northern (Tibati) regions. Genomic variant analysis identified novel missense mutations and signatures of complex genomic alterations such as duplications, deletions, transposable element (TE) insertions, and chromosomal inversions, all associated with selective sweeps. A 4.3 kb TE insertion was fixed in all populations with Njombe Littoral/Coastal population, showing higher frequency of CYP9K1 (G454A), a known resistance allele and TE upstream compared to elsewhere. CONCLUSION Our study uncovered regional variations in insecticide resistance candidate variants, emphasizing the need for a streamlined DNA-based diagnostic assay for genomic surveillance across Africa. These findings will contribute to the development of tailored resistance management strategies crucial for addressing the dynamic challenges of malaria control in Cameroon.
Collapse
Affiliation(s)
- Mahamat Gadji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- The University of Yaoundé 1, P.O BOX 812, Yaoundé, Cameroon.
| | - Jonas A Kengne-Ouafo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Pembroke Place Liverpool L3 5QA UK, Liverpool, UK
| | - Leon M J Mugenzi
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland's Rural College (SRUC), RAVIC, 9 Inverness Campus, Inverness, UK
| | - Onana Boyomo
- The University of Yaoundé 1, P.O BOX 812, Yaoundé, Cameroon
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Liverpool School of Tropical Medicine, Pembroke Place Liverpool L3 5QA UK, Liverpool, UK.
| |
Collapse
|
5
|
Amaya Romero JE, Chenal C, Ben Chehida Y, Miles A, Clarkson CS, Pedergnana V, Wertheim B, Fontaine MC. Mitochondrial Variation in Anopheles gambiae and Anopheles coluzzii: Phylogeographic Legacy and Mitonuclear Associations With Metabolic Resistance to Pathogens and Insecticides. Genome Biol Evol 2024; 16:evae172. [PMID: 39226386 PMCID: PMC11370803 DOI: 10.1093/gbe/evae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Mitochondrial DNA has been a popular marker in phylogeography, phylogeny, and molecular ecology, but its complex evolution is increasingly recognized. Here, we investigated mitochondrial DNA variation in Anopheles gambiae and Anopheles coluzzii, in relation to other species in the Anopheles gambiae complex, by assembling the mitogenomes of 1,219 mosquitoes across Africa. The mitochondrial DNA phylogeny of the Anopheles gambiae complex was consistent with previously reported highly reticulated evolutionary history, revealing important discordances with the species tree. The three most widespread species (An. gambiae, An. coluzzii, and Anopheles arabiensis), known for extensive historical introgression, could not be discriminated based on mitogenomes. Furthermore, a monophyletic clustering of the three saltwater-tolerant species (Anopheles merus, Anopheles melas, and Anopheles bwambae) in the Anopheles gambiae complex also suggested that introgression and possibly selection shaped mitochondrial DNA evolution. Mitochondrial DNA variation in An. gambiae and An. coluzzii across Africa revealed significant partitioning among populations and species. A peculiar mitochondrial DNA lineage found predominantly in An. coluzzii and in the hybrid taxon of the African "far-west" exhibited divergence comparable to the interspecies divergence in the Anopheles gambiae complex, with a geographic distribution matching closely An. coluzzii's geographic range. This phylogeographic relict of the An. coluzzii and An. gambiae split was associated with population and species structure, but not with the rare Wolbachia occurrence. The lineage was significantly associated with single nucleotide polymorphisms in the nuclear genome, particularly in genes associated with pathogen and insecticide resistance. These findings underline potential mitonuclear coevolution history and the role played by mitochondria in shaping metabolic responses to pathogens and insecticides in Anopheles.
Collapse
Affiliation(s)
- Jorge E Amaya Romero
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Clothilde Chenal
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- Institut des Science de l’Évolution de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
6
|
Ibrahim SS, Kouamo MFM, Muhammad A, Irving H, Riveron JM, Tchouakui M, Wondji CS. Functional Validation of Endogenous Redox Partner Cytochrome P450 Reductase Reveals the Key P450s CYP6P9a/- b as Broad Substrate Metabolizers Conferring Cross-Resistance to Different Insecticide Classes in Anopheles funestus. Int J Mol Sci 2024; 25:8092. [PMID: 39125661 PMCID: PMC11311542 DOI: 10.3390/ijms25158092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 08/12/2024] Open
Abstract
The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management.
Collapse
Affiliation(s)
- Sulaiman S. Ibrahim
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Mersimine F. M. Kouamo
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
- Center of Biotechnology Research, Bayero University, Kano PMB 3011, Nigeria
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Jacob M. Riveron
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Magellan Tchouakui
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Charles S. Wondji
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| |
Collapse
|
7
|
Hancock PA, Ochomo E, Messenger LA. Genetic surveillance of insecticide resistance in African Anopheles populations to inform malaria vector control. Trends Parasitol 2024; 40:604-618. [PMID: 38760258 DOI: 10.1016/j.pt.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Insecticide resistance in malaria vector populations poses a major threat to malaria control, which relies largely on insecticidal interventions. Contemporary vector-control strategies focus on combatting resistance using multiple insecticides with differing modes of action within the mosquito. However, diverse genetic resistance mechanisms are present in vector populations, and continue to evolve. Knowledge of the spatial distribution of these genetic mechanisms, and how they impact the efficacy of different insecticidal products, is critical to inform intervention deployment decisions. We developed a catalogue of genetic-resistance mechanisms in African malaria vectors that could guide molecular surveillance. We highlight situations where intervention deployment has led to resistance evolution and spread, and identify challenges in understanding and mitigating the epidemiological impacts of resistance.
Collapse
Affiliation(s)
- Penelope A Hancock
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, USA
| |
Collapse
|
8
|
Wangrawa DW, Odero JO, Baldini F, Okumu F, Badolo A. Distribution and insecticide resistance profile of the major malaria vector Anopheles funestus group across the African continent. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:119-137. [PMID: 38303659 DOI: 10.1111/mve.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
There has been significant progress in malaria control in the last 2 decades, with a decline in mortality and morbidity. However, these gains are jeopardised by insecticide resistance, which negatively impacts the core interventions, such as insecticide-treated nets (ITN) and indoor residual spraying (IRS). While most malaria control and research efforts are still focused on Anopheles gambiae complex mosquitoes, Anopheles funestus remains an important vector in many countries and, in some cases, contributes to most of the local transmission. As countries move towards malaria elimination, it is important to ensure that all dominant vector species, including An. funestus, an important vector in some countries, are targeted. The objective of this review is to compile and discuss information related to A. funestus populations' resistance to insecticides and the mechanisms involved across Africa, emphasising the sibling species and their resistance profiles in relation to malaria elimination goals. Data on insecticide resistance in An. funestus malaria vectors in Africa were extracted from published studies. Online bibliographic databases, including Google Scholar and PubMed, were used to search for relevant studies. Articles published between 2000 and May 2023 reporting resistance of An. funestus to insecticides and associated mechanisms were included. Those reporting only bionomics were excluded. Spatial variation in species distribution and resistance to insecticides was recorded from 174 articles that met the selection criteria. It was found that An. funestus was increasingly resistant to the four classes of insecticides recommended by the World Health Organisation for malaria vector control; however, this varied by country. Insecticide resistance appears to reduce the effectiveness of vector control methods, particularly IRS and ITN. Biochemical resistance due to detoxification enzymes (P450s and glutathione-S-transferases [GSTs]) in An. funestus was widely recorded. However, An. funestus in Africa remains susceptible to other insecticide classes, such as organophosphates and neonicotinoids. This review highlights the increasing insecticide resistance of An. funestus mosquitoes, which are important malaria vectors in Africa, posing a significant challenge to malaria control efforts. While An. funestus has shown resistance to the recommended insecticide classes, notably pyrethroids and, in some cases, organochlorides and carbamates, it remains susceptible to other classes of insecticides such as organophosphates and neonicotinoids, providing potential alternative options for vector control strategies. The study underscores the need for targeted interventions that consider the population structure and geographical distribution of An. funestus, including its sibling species and their insecticide resistance profiles, to effectively achieve malaria elimination goals.
Collapse
Affiliation(s)
- Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Département des Sciences de la Vie et de la Terre, Université Norbert Zongo, Koudougou, Burkina Faso
| | - Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
9
|
Wang A, Zhang Y, Liu S, Xue C, Zhao Y, Zhao M, Yang Y, Zhang J. Molecular mechanisms of cytochrome P450-mediated detoxification of tetraniliprole, spinetoram, and emamectin benzoate in the fall armyworm, Spodoptera frugiperda (J.E. Smith). BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-13. [PMID: 38563228 DOI: 10.1017/s000748532300038x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) is a highly damaging invasive omnivorous pest that has developed varying degrees of resistance to commonly used insecticides. To investigate the molecular mechanisms of tolerance to tetraniliprole, spinetoram, and emamectin benzoate, the enzyme activity, synergistic effect, and RNA interference were implemented in S. frugiperda. The functions of cytochrome P450 monooxygenase (P450) in the tolerance to tetraniliprole, spinetoram, and emamectin benzoate in S. frugiperda was determined by analysing changes in detoxification metabolic enzyme activity and the effects of enzyme inhibitors on susceptibility to the three insecticides. 102 P450 genes were screened via transcriptome and genome, of which 67 P450 genes were differentially expressed in response to tetraniliprole, spinetoram, and emamectin benzoate and validated by quantitative real-time PCR. The expression patterns of CYP9A75, CYP340AA4, CYP340AX8v2, CYP340L16, CYP341B15v2, and CYP341B17v2 were analysed in different tissues and at different developmental stages in S. frugiperda. Silencing CYP340L16 significantly increased the susceptibility of S. frugiperda to tetraniliprole, spinetoram, and emamectin benzoate. Furthermore, knockdown of CYP340AX8v2, CYP9A75, and CYP341B17v2 significantly increased the sensitivity of S. frugiperda to tetraniliprole. Knockdown of CYP340AX8v2 and CYP340AA4 significantly increased mortality of S. frugiperda to spinetoram. Knockdown of CYP9A75 and CYP341B15v2 significantly increased the susceptibility of S. frugiperda to emamectin benzoate. These results may help to elucidate the mechanisms of tolerance to tetraniliprole, spinetoram and emamectin benzoate in S. frugiperda.
Collapse
Affiliation(s)
- Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Shaofang Liu
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongxin Zhao
- Shandong Province Yuncheng County Agricultural and Rural Bureau, Yuncheng, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| |
Collapse
|
10
|
Ashu FA, Fouet C, Ambadiang MM, Penlap-Beng V, Kamdem C. Adult mosquitoes of the sibling species Anopheles gambiae and Anopheles coluzzii exhibit contrasting patterns of susceptibility to four neonicotinoid insecticides along an urban-to-rural gradient in Yaoundé, Cameroon. Malar J 2024; 23:65. [PMID: 38431623 PMCID: PMC10909279 DOI: 10.1186/s12936-024-04876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/10/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Neonicotinoids are potential alternatives for controlling pyrethroid-resistant mosquitoes, but their efficacy against malaria vector populations of sub-Saharan Africa has yet to be investigated. The aim of the present study was to test the efficacy of four neonicotinoids against adult populations of the sibling species Anopheles gambiae and Anopheles coluzzii sampled along an urban-to-rural gradient. METHODS The lethal toxicity of three active ingredients for adults of two susceptible Anopheles strains was assessed using concentration-response assays, and their discriminating concentrations were calculated. The discriminating concentrations were then used to test the susceptibility of An. gambiae and An. coluzzii mosquitoes collected from urban, suburban and rural areas of Yaoundé, Cameroon, to acetamiprid, imidacloprid, clothianidin and thiamethoxam. RESULTS Lethal concentrations of neonicotinoids were relatively high suggesting that this class of insecticides has low toxicity against Anopheles mosquitoes. Reduced susceptibility to the four neonicotinoids tested was detected in An. gambiae populations collected from rural and suburban areas. By contrast, adults of An. coluzzii that occurred in urbanized settings were susceptible to neonicotinoids except acetamiprid for which 80% mortality was obtained within 72 h of insecticide exposure. The cytochrome inhibitor, piperonyl butoxide (PBO), significantly enhanced the activity of clothianidin and acetamiprid against An. gambiae mosquitoes. CONCLUSIONS These findings corroborate susceptibility profiles observed in larvae and highlight a significant variation in tolerance to neonicotinoids between An. gambiae and An. coluzzii populations from Yaoundé. Further studies are needed to disentangle the role of exposure to agricultural pesticides and of cross-resistance mechanisms in the development of neonicotinoid resistance in some Anopheles species.
Collapse
Affiliation(s)
- Fred A Ashu
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé 9, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 11 812, Yaoundé, Cameroon
| | - Caroline Fouet
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Marilene M Ambadiang
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé 9, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 11 812, Yaoundé, Cameroon
| | - Véronique Penlap-Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 11 812, Yaoundé, Cameroon
| | - Colince Kamdem
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA.
| |
Collapse
|
11
|
Al-Yazeedi T, Muhammad A, Irving H, Ahn SJ, Hearn J, Wondji CS. Overexpression and nonsynonymous mutations of UDP-glycosyltransferases are potentially associated with pyrethroid resistance in Anopheles funestus. Genomics 2024; 116:110798. [PMID: 38266739 PMCID: PMC10963899 DOI: 10.1016/j.ygeno.2024.110798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
UDP-glycosyltransferases (UGTs) enzymes are pivotal in insecticide resistance by transforming hydrophobic substrates into more hydrophilic forms for efficient cell elimination. This study provides the first comprehensive investigation of Anopheles funestus UGT genes, their evolution, and their association with pyrethroid resistance. We employed a genome-wide association study using pooled sequencing (GWAS-PoolSeq) and transcriptomics on pyrethroid-resistant An. funestus, along with deep-targeted sequencing of UGTs in 80 mosquitoes Africa-wide. UGT310B2 was consistently overexpressed Africa-wide and significant gene-wise Fst differentiation was observed between resistant and susceptible populations: UGT301C2 and UGT302A3 in Malawi, and UGT306C2 in Uganda. Additionally, nonsynonymous mutations in UGT genes were identified. Gene-wise Tajima's D density curves provide insights into population structures within populations across these countries, supporting previous observations. These findings have important implications for current An. funestus control strategies facilitating the prediction of cross-resistance to other UGT-metabolised polar insecticides, thereby guiding more effective and targeted insecticide resistance management efforts.
Collapse
Affiliation(s)
- Talal Al-Yazeedi
- Center for Applied and Translational Genomics (CATG), Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; Liverpool School of Tropical Medicine, Pembroke Pl, Liverpool, UK.
| | | | - Helen Irving
- Liverpool School of Tropical Medicine, Pembroke Pl, Liverpool, UK
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland's Rural College, An Lòchran, Inverness, United Kingdom
| | - Charles S Wondji
- Liverpool School of Tropical Medicine, Pembroke Pl, Liverpool, UK; Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| |
Collapse
|
12
|
Azizi S, Mbewe NJ, Mo H, Edward F, Sumari G, Mwacha S, Msapalla A, Mawa B, Mosha F, Matowo J. Is Anopheles gambiae ( sensu stricto), the principal malaria vector in Africa prone to resistance development against new insecticides? Outcomes from laboratory exposure of An. gambiae ( s.s.) to sub-lethal concentrations of chlorfenapyr and clothianidin. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 5:100172. [PMID: 38444984 PMCID: PMC10912349 DOI: 10.1016/j.crpvbd.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/05/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024]
Abstract
Indiscriminate use of pesticides in the public health and agriculture sectors has contributed to the development of resistance in malaria vectors following exposure to sub-lethal concentrations. To preserve the efficacy of vector control tools and prevent resistance from spreading, early resistance detection is urgently needed to inform management strategies. The introduction of new insecticides for controlling malaria vectors such as clothianidin and chlorfenapyr requires research to identify early markers of resistance which could be used in routine surveillance. This study investigated phenotypic resistance of Anopheles gambiae (sensu stricto) Muleba-Kis strain using both WHO bottle and tube assays following chlorfenapyr, clothianidin, and alpha-cypermethrin selection against larvae and adults under laboratory conditions. High mortality rates were recorded for both chlorfenapyr-selected mosquitoes that were consistently maintained for 10 generations (24-h mortality of 92-100% and 72-h mortality of 98-100% for selected larvae; and 24-h mortality of 95-100% and 72-h mortality of 98-100% for selected adults). Selection with clothianidin at larval and adult stages showed a wide range of mortality (18-91%) compared to unselected progeny where mortality was approximately 99%. On the contrary, mosquitoes selected with alpha-cypermethrin from the adult selection maintained low mortality (28% at Generation 2 and 23% at Generation 4) against discrimination concentration compared to unselected progeny where average mortality was 51%. The observed resistance in the clothianidin-selected mosquitoes needs further investigation to determine the underlying resistance mechanism against this insecticide class. Additionally, further investigation is recommended to develop molecular markers for observed clothianidin phenotypic resistance.
Collapse
Affiliation(s)
- Salum Azizi
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Njelembo J. Mbewe
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hosiana Mo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Felista Edward
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Godwin Sumari
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Silvia Mwacha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Agness Msapalla
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Benson Mawa
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Franklin Mosha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
| | - Johnson Matowo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| |
Collapse
|
13
|
Acford-Palmer H, Campos M, Bandibabone J, N'Do S, Bantuzeko C, Zawadi B, Walker T, Phelan JE, Messenger LA, Clark TG, Campino S. Detection of insecticide resistance markers in Anopheles funestus from the Democratic Republic of the Congo using a targeted amplicon sequencing panel. Sci Rep 2023; 13:17363. [PMID: 37833354 PMCID: PMC10575962 DOI: 10.1038/s41598-023-44457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
Vector control strategies have been successful in reducing the number of malaria cases and deaths globally, but the spread of insecticide resistance represents a significant threat to disease control. Insecticide resistance has been reported across Anopheles (An.) vector populations, including species within the An. funestus group. These mosquitoes are responsible for intense malaria transmission across sub-Saharan Africa, including in the Democratic Republic of the Congo (DRC), a country contributing > 12% of global malaria infections and mortality events. To support the continuous efficacy of vector control strategies, it is essential to monitor insecticide resistance using molecular surveillance tools. In this study, we developed an amplicon sequencing ("Amp-seq") approach targeting An. funestus, and using multiplex PCR, dual index barcoding, and next-generation sequencing for high throughput and low-cost applications. Using our Amp-seq approach, we screened 80 An. funestus field isolates from the DRC across a panel of nine genes with mutations linked to insecticide resistance (ace-1, CYP6P4, CYP6P9a, GSTe2, vgsc, and rdl) and mosquito speciation (cox-1, mtND5, and ITS2). Amongst the 18 non-synonymous mutations detected, was N485I, in the ace-1 gene associated with carbamate resistance. Overall, our panel represents an extendable and much-needed method for the molecular surveillance of insecticide resistance in An. funestus populations.
Collapse
Affiliation(s)
- Holly Acford-Palmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Monica Campos
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Janvier Bandibabone
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
| | - Sévérin N'Do
- Médecins Sans Frontières (MSF) OCBA, Barcelona, Spain
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Chimanuka Bantuzeko
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
- Université Officielle de Bukavu (UOB), Bukavu, Democratic Republic of the Congo
| | - Bertin Zawadi
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
| | - Thomas Walker
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Jody E Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Louisa A Messenger
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, USA
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
14
|
Badzohre A, Oshaghi MA, Enayati AA, Moosa-Kazemi SH, Nikookar SH, Talebzadeh F, Naseri-Karimi N, Hanafi-Bojd AA, Vatandoost H. Ace-1 Target Site Status and Metabolic Detoxification Associated with Bendiocarb Resistance in the Field Populations of Main Malaria Vector, Anopheles stephensi in Iran. J Arthropod Borne Dis 2023; 17:272-286. [PMID: 38860197 PMCID: PMC11162546 DOI: 10.18502/jad.v17i3.14987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2024] Open
Abstract
Background Anopheles stephensi is the main vector of malaria in Iran. This study aimed to determine the susceptibility of An. stephensi from the south of Iran to bendiocarb and to investigate biochemical and molecular resistance mechanisms in this species. Methods Wild An. stephensi were collected from Hormozgan Province and reared to the adult stage. The susceptibility test was conducted according to the WHO protocols using bendiocarb impregnated papers supplied by WHO. Also, field An. Stephensi specimens were collected from south of Kerman and Sistan and Baluchistan Provinces. To determine the G119S mutation in the acetylcholinesterase (Ace1) gene, PCR-RFLP using AluI restriction enzyme and PCR direct-sequencing were performed for the three field populations and compared with the available GenBank data. Also, biochemical assays were performed to measure alpha and beta esterases, insensitive acetylcholinesterase, and oxidases in the strains. Results The bioassay tests showed that the An. stephensi field strain was resistant to bendiocarb (mortality rate 89%). Ace1 gene analysis revealed no G119S in the three field populations. Blast search of sequences revealed 98-99% identity with the Ace1 gene from Pakistan and India respectively. Also, the results of biochemical tests revealed the high activity of non-sensitive acetylcholinesterase, alpha and beta-esterase in the resistant strain compared to the susceptible strain. No G119S was detected in this study additionally the enhanced enzyme activity of esterases and acetylcholinesterase suggesting that resistance was metabolic. Conclusion The use of alternative malaria control methods and the implementation of resistance management strategies are suggested in the study area.
Collapse
Affiliation(s)
- Abdollah Badzohre
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Hassan Moosa-Kazemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Nikookar
- Department of Medical Entomology and Vector Control, Health Sciences Research Center, Addiction Institute, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fahimeh Talebzadeh
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Naseri-Karimi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute of Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Woyessa D, Morou E, Wipf N, Dada N, Mavridis K, Vontas J, Yewhalaw D. Species composition, infection rate and detection of resistant alleles in Anopheles funestus (Diptera: Culicidae) from Lare, a malaria hotspot district of Ethiopia. Malar J 2023; 22:233. [PMID: 37573300 PMCID: PMC10422748 DOI: 10.1186/s12936-023-04667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Anopheles funestus, which is considered as secondary vector of malaria in Ethiopia, is known to have several morphologically indistinguishable (sibling) species. Accurate identification of sibling species is crucial to understand their biology, behaviour and vector competence. In this study, molecular identification was conducted on the Ethiopian An. funestus populations. Moreover, insecticide resistance mechanism markers were detected, including ace N485I, kdr L1014F, L1014S, and CYP6P9a TaqMan qPCR was used to detect the infective stage of the parasite from field collected adult female An. funestus populations. METHODS Adult female mosquito collection was conducted from Lare, Gambella Regional State of Ethiopia between June 2018 to July 2020 using CDC light traps and HLC. Sub-samples of the morphologically identified An. funestus mosquitoes were molecularly identified using species-specific PCR, and the possible presence of insecticide resistance alleles was investigated using TaqMan qPCR (N485I-Ace-1), PCR-Sanger sequencing (L1014F-kdr), and PCR-RFLP (CYP6P9a resistance allele). Following head/thorax dissection, the TaqMan qPCR assay was used to investigate the presence of the infective stage Plasmodium parasite species. RESULTS A total of 1086 adult female An. funestus mosquitoes were collected during the study period. All sub-samples (N = 20) that were morphologically identified as An. funestus sensu lato (s.l.) were identified as An. funestus sensu stricto (s.s.) using species- specific PCR assay. The PCR-RFLP assay that detects the CYP6P9a resistance allele that confers pyrethroid resistance in An. funestus was applied in N = 30 randomly selected An. funestus s.l. SPECIMENS None of the specimens showed a digestion pattern consistent with the presence of the CYP6P9a resistance allele in contrast to what was observed in the positive control. Consequently, all samples were characterized as wild type. The qPCR TaqMan assay that detects the N485I acetylcholinesterase-1 mutation conferring resistance to organophosphates/carbamates in An. funestus was used in (N = 144) samples. All samples were characterized as wild type. The kdr L1014F and L1014S mutations in the VGSC gene that confer resistance to pyrethroids and DDT were analysed with direct Sanger sequencing after PCR and clean-up of the PCR products were also characterized as wild type. None of the samples (N = 169) were found positive for Plasmodium (P. falciparum/ovale/malariae/vivax) detection. CONCLUSION All An. funestus s.l. samples from Lare were molecularly identified as An. funestus s.s. No CYP6P9, N485I acetylcholinesterase 1, kdr L1014F or L1014S mutations were detected in the An. funestus samples. None of the An. funestus samples were positive for Plasmodium. Although the current study did not detect any insecticide resistant mechanism, it provides a reference for future vector monitoring programmes. Regular monitoring of resistance mechanisms covering wider geographical areas of Ethiopia where this vector is distributed is important for improving the efficacy of vector control programs.
Collapse
Affiliation(s)
- Delelegn Woyessa
- Department of Biology, College of Natural Sciences, Jimma University, P. O. Box 378, Jimma, Ethiopia.
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.
- Tropical and Infectious Diseases Research Centre (TIDRC), P.O. Box 378, Jimma, Ethiopia.
| | - Evangelia Morou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Nadja Wipf
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Nsa Dada
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, USA
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Centre (TIDRC), P.O. Box 378, Jimma, Ethiopia
| |
Collapse
|
16
|
Odero JO, Nambunga IH, Wangrawa DW, Badolo A, Weetman D, Koekemoer LL, Ferguson HM, Okumu FO, Baldini F. Advances in the genetic characterization of the malaria vector, Anopheles funestus, and implications for improved surveillance and control. Malar J 2023; 22:230. [PMID: 37553665 PMCID: PMC10410966 DOI: 10.1186/s12936-023-04662-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Anopheles mosquitoes present a major public health challenge in sub-Saharan Africa; notably, as vectors of malaria that kill over half a million people annually. In parts of the east and southern Africa region, one species in the Funestus group, Anopheles funestus, has established itself as an exceptionally dominant vector in some areas, it is responsible for more than 90% of all malaria transmission events. However, compared to other malaria vectors, the species is far less studied, partly due to difficulties in laboratory colonization and the unresolved aspects of its taxonomy and systematics. Control of An. funestus is also increasingly difficult because it has developed widespread resistance to public health insecticides. Fortunately, recent advances in molecular techniques are enabling greater insights into species identity, gene flow patterns, population structure, and the spread of resistance in mosquitoes. These advances and their potential applications are reviewed with a focus on four research themes relevant to the biology and control of An. funestus in Africa, namely: (i) the taxonomic characterization of different vector species within the Funestus group and their role in malaria transmission; (ii) insecticide resistance profile; (iii) population genetic diversity and gene flow, and (iv) applications of genetic technologies for surveillance and control. The research gaps and opportunities identified in this review will provide a basis for improving the surveillance and control of An. funestus and malaria transmission in Africa.
Collapse
Affiliation(s)
- Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Ismail H Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph ZEBRO, Ouagadougou, Burkina Faso
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph ZEBRO, Ouagadougou, Burkina Faso
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic Parasitic Diseases, Vector Control Reference Laboratory, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Heather M Ferguson
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
- School of Life Science and Biotechnology, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Francesco Baldini
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
17
|
Muthusamy R, Ramkumar G, Kumarasamy S, Chi NTL, Al Obaid S, Alfarraj S, Karuppusamy I. Synergism and toxicity of iron nanoparticles derived from Trigonella foenum-graecum against pyrethriod treatment in S. litura and H. armigera (Lepidoptera: Noctuidae). ENVIRONMENTAL RESEARCH 2023:116079. [PMID: 37156353 DOI: 10.1016/j.envres.2023.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The tobacco cutworm, Spodoptera litura and cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) are important pests of various agricultural crops that cause sevier economic loses throughout the world. Indiscriminate and frequent use of insecticide may lead to development of resistance in these pests. Nanotechnology has given an alternative to manage and overcome insecticide resistance for pest management strategies. In the present study the iron nanoparticles derived from Trigonella foenum-graecum leaf extract (FeNPs) was investigated for its ecofriendly management of pyrethroid resistance in two lepidopteron pest species at 24 h, 48 h and 72 h post treatment. The result showed high mortality (92.83% and 91.41%) of S. litura and H. armigera at 72 h treatment upon FeNPs and fenvalerate (Fen + FeNPs) teratment. Probit analysis revealed high LC50 upon Fen + FeNPs treatment (130.31 and 89.32 mg/L) with a synergism ratio of 1.38 and 1.36. Antifeedant activity of six dofferent concentration of FeNPs revelaed increased antifeedant activity with respect to increasing concentration of nanoparticles ranging from 10 to 90% and 20-95% againt both insects (p<0.05). Detoxification activity of carboxylesterase was elevated at 630 μmol/mg protein/min (p<0.05) in fenvalerate treatment, whereas decreased activity was found (392umole/mg protein/min) in FeNPs and Fen + FeNPs treatment (P<0.001). GST and P450 activity was also increased in fenvalerate treatment, whereas decreased activity was observed in FeNPs and Fen + FeNPs. Esterase isoenzyme banding pattern revealed four bands in fenvalerate treatment and two bans (E3 and E4) in Fen + FeNPs combination. Hence the present study concludes that T. foenum-graecum synthesized iron nanoparticles could be an effective alternate for ecofriendly management of S. litura and H. armigera.
Collapse
Affiliation(s)
- Ranganathan Muthusamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, 635 130, Tamil Nadu, India
| | - Govindaraju Ramkumar
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, 30223, GA, USA
| | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, 635 130, Tamil Nadu, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Indira Karuppusamy
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
18
|
Acford-Palmer H, Phelan JE, Tadesse FG, Kristan M, Collins E, Spadar A, Walker T, Bousema T, Messenger LA, Clark TG, Campino S. Identification of two insecticide resistance markers in Ethiopian Anopheles stephensi mosquitoes using a multiplex amplicon sequencing assay. Sci Rep 2023; 13:5612. [PMID: 37019918 PMCID: PMC10076309 DOI: 10.1038/s41598-023-32336-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/26/2023] [Indexed: 04/07/2023] Open
Abstract
Since its first detection in 2012 in Djibouti, Anopheles stephensi has invaded and established in the Horn of Africa, and more recently Nigeria. The expansion of this vector poses a significant threat to malaria control and elimination efforts. Integrated vector management is the primary strategy used to interrupt disease transmission; however, growing insecticide resistance is threatening to reverse gains in global malaria control. We present a next-generation amplicon-sequencing approach, for high-throughput monitoring of insecticide resistance genes (ace1, GSTe2, vgsc and rdl), species identification and characterization of genetic diversity (its2 and cox1) in An. stephensi. Ninety-five An. stephensi mosquitoes, collected in Ethiopia, were screened, identifying 104 SNPs, including the knock-down mutation L958F (L1014F in Musca domestica), and for the first time in this vector species, the A296S substitution (A301S in Drosophila melanogaster) in the rdl locus. Two other amino acid substitutions (ace1-N177D, GSTe2-V189L) were also identified but have not been previously implicated in insecticide resistance. Genetic diversity in the mitochondrial cox1 gene revealed shared haplotypes between Ethiopian An. stephensi with samples from Pakistan, Sudan, and Djibouti. Overall, we present a reliable, cost-effective strategy using amplicon-sequencing to monitor known insecticide resistance mutations, with the potential to identify new genetic variants, to assist in the high-throughput surveillance of insecticide resistance in An. stephensi populations.
Collapse
Affiliation(s)
- Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fitsum G Tadesse
- Malaria and NTD Directorate, Armauer Hansen Research Institute, ALERT Hospital Compound, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Emma Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Anton Spadar
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas Walker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Louisa A Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, USA
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
19
|
Kweka EJ, Lyaruu LJ, Temba V, Msangi S, Ouma JO, Karanja W, Mahande AM, Himeidan YE. Impact of MiraNet® long-lasting insecticidal net against Anopheles arabiensis wild population of Northern Tanzania. Parasitol Res 2023; 122:1245-1253. [PMID: 36949289 DOI: 10.1007/s00436-023-07827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/20/2023] [Indexed: 03/24/2023]
Abstract
Despite high levels of pyrethroid resistance reported in malaria vectors, long-lasting insecticidal nets (LNs) still play a key role in controlling malaria transmission. This study tested the efficacy of MiraNet®, a pyrethroid-based LN against a wild population of Anopheles arabiensis in northern Tanzania. DuraNet® was used as a positive control in this evaluation. Standard WHO laboratory bioefficacy evaluations of MiraNet and DuraNet that were unwashed or had been washed 20 times indicated optimal knockdown and mortality for both net types against a susceptible strain of Anopheles gambiae s.s. Standard experimental hut evaluations were conducted to evaluate the efficacy of both nets against a wild population of An. arabiensis. The killing effect of MiraNet was 54.5% for unwashed and 50% for 20 times washed while DuraNet achieved 44.4% mortality for unwashed and 47.4% for 20 times washed against wild An. arabiensis. Both DuraNet and MiraNet exhibited significantly higher killing effects (> 44.4%). There was no significant difference in deterrence or induced exophily detected between the treatment arms for either net. Additionally, there were no adverse effects reported among hut sleepers. The results of this study indicate that the pyrethroid net MiraNet can be used effectively against wild populations of An. gambiae s.l. of low to moderate resistant levels from Northern Tanzania.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania.
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania.
| | - Lucille J Lyaruu
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| | - Violet Temba
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| | - Shandala Msangi
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| | - Johnson O Ouma
- Africa Technical Research Centre, Vector Health International, P.O. Box 15500, Arusha, Tanzania
| | - Wycliffe Karanja
- Africa Technical Research Centre, Vector Health International, P.O. Box 15500, Arusha, Tanzania
| | - Aneth M Mahande
- Mabogini Field Station, Tanzania Plant Health and Pesticides Authority, Moshi, Tanzania
| | - Yousif E Himeidan
- Africa Technical Research Centre, Vector Health International, P.O. Box 15500, Arusha, Tanzania
| |
Collapse
|
20
|
Mugenzi LMJ, A. Tekoh T, S. Ibrahim S, Muhammad A, Kouamo M, Wondji MJ, Irving H, Hearn J, Wondji CS. The duplicated P450s CYP6P9a/b drive carbamates and pyrethroids cross-resistance in the major African malaria vector Anopheles funestus. PLoS Genet 2023; 19:e1010678. [PMID: 36972302 PMCID: PMC10089315 DOI: 10.1371/journal.pgen.1010678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 04/11/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cross-resistance to insecticides in multiple resistant malaria vectors is hampering resistance management. Understanding its underlying molecular basis is critical to implementation of suitable insecticide-based interventions. Here, we established that the tandemly duplicated cytochrome P450s, CYP6P9a/b are driving carbamate and pyrethroid cross-resistance in Southern African populations of the major malaria vector Anopheles funestus. Transcriptome sequencing revealed that cytochrome P450s are the most over-expressed genes in bendiocarb and permethrin-resistant An. funestus. The CYP6P9a and CYP6P9b genes are overexpressed in resistant An. funestus from Southern Africa (Malawi) versus susceptible An. funestus (Fold change (FC) is 53.4 and 17 respectively), while the CYP6P4a and CYP6P4b genes are overexpressed in resistant An. funestus in Ghana, West Africa, (FC is 41.1 and 17.2 respectively). Other up-regulated genes in resistant An. funestus include several additional cytochrome P450s (e.g. CYP9J5, CYP6P2, CYP6P5), glutathione-S transferases, ATP-binding cassette transporters, digestive enzymes, microRNA and transcription factors (FC<7). Targeted enrichment sequencing strongly linked a known major pyrethroid resistance locus (rp1) to carbamate resistance centering around CYP6P9a/b. In bendiocarb resistant An. funestus, this locus exhibits a reduced nucleotide diversity, significant p-values when comparing allele frequencies, and the most non-synonymous substitutions. Recombinant enzyme metabolism assays showed that both CYP6P9a/b metabolize carbamates. Transgenic expression of CYP6P9a/b in Drosophila melanogaster revealed that flies expressing both genes were significantly more resistant to carbamates than controls. Furthermore, a strong correlation was observed between carbamate resistance and CYP6P9a genotypes with homozygote resistant An. funestus (CYP6P9a and the 6.5kb enhancer structural variant) exhibiting a greater ability to withstand bendiocarb/propoxur exposure than homozygote CYP6P9a_susceptible (e.g Odds ratio = 20.8, P<0.0001 for bendiocarb) and heterozygotes (OR = 9.7, P<0.0001). Double homozygote resistant genotype (RR/RR) were even more able to survive than any other genotype combination showing an additive effect. This study highlights the risk that pyrethroid resistance escalation poses to the efficacy of other classes of insecticides. Available metabolic resistance DNA-based diagnostic assays should be used by control programs to monitor cross-resistance between insecticides before implementing new interventions.
Collapse
Affiliation(s)
- Leon M. J. Mugenzi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Theofelix A. Tekoh
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, Buea, Cameroon
| | - Sulaiman S. Ibrahim
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Department of Biochemistry, Bayero University, Kano, Nigeria
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Mersimine Kouamo
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Murielle J. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College, An Lòchran, 10 Inverness Campus, Inverness, Scotland, United Kingdom
| | - Charles S. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
21
|
Tchouakui M, Assatse T, Tazokong HR, Oruni A, Menze BD, Nguiffo-Nguete D, Mugenzi LMJ, Kayondo J, Watsenga F, Mzilahowa T, Osae M, Wondji CS. Detection of a reduced susceptibility to chlorfenapyr in the malaria vector Anopheles gambiae contrasts with full susceptibility in Anopheles funestus across Africa. Sci Rep 2023; 13:2363. [PMID: 36759650 PMCID: PMC9911381 DOI: 10.1038/s41598-023-29605-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
New insecticides have recently been produced to help control pyrethroid-resistant malaria vectors including the pyrrole, chlorfenapyr. Monitoring the susceptibility of mosquito populations against this new product and potential cross-resistance with current insecticides is vital for better resistance management. In this study, we assessed the resistance status of the major malaria vectors Anopheles gambiae and Anopheles funestus to chlorfenapyr across Africa and explored potential cross-resistance with known pyrethroid resistance markers. Efficacy of chlorfenapyr 100 µg/ml against An. gambiae and An. funestus from five Cameroonian locations, the Democratic Republic of Congo, Ghana, Uganda, and Malawi was assessed using CDC bottle assays. Synergist assays were performed with PBO (4%), DEM (8%) and DEF (0.25%) and several pyrethroid-resistant markers were genotyped in both species to assess potential cross-resistance between pyrethroids and chlorfenapyr. Resistance to chlorfenapyr was detected in An. gambiae populations from DRC (Kinshasa) (mortality rate: 64.3 ± 7.1%) Ghana (Obuasi) (65.9 ± 7.4%), Cameroon (Mangoum; 75.2 ± 7.7% and Nkolondom; 86.1 ± 7.4). In contrast, all An. funestus populations were fully susceptible. A negative association was observed between the L1014F-kdr mutation and chlorfenapyr resistance with a greater frequency of homozygote resistant mosquitoes among the dead mosquitoes after exposure compared to alive (OR 0.5; P = 0.02) whereas no association was found between GSTe2 (I114T in An. gambiae; L119F in An. funestus) and resistance to chlorfenapyr. A significant increase of mortality to chlorfenapyr 10 µg/ml was observed in An. funestus after to PBO, DEM and DEF whereas a trend for a decreased mortality was observed in An. gambiae after PBO pre-exposure. This study reveals a greater risk of chlorfenapyr resistance in An. gambiae populations than in An. funestus. However, the higher susceptibility in kdr-resistant mosquitoes points to higher efficacy of chlorfenapyr against the widespread kdr-based pyrethroid resistance.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
| | - Tatiane Assatse
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Hervé R Tazokong
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Ambrose Oruni
- Entomology Department, Uganda Virus Research Institute (UVRI), P.O.Box 49, Entebbe, Uganda
| | - Benjamin D Menze
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Daniel Nguiffo-Nguete
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Leon M J Mugenzi
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Jonathan Kayondo
- Entomology Department, Uganda Virus Research Institute (UVRI), P.O.Box 49, Entebbe, Uganda
| | - Francis Watsenga
- Institut National de Recherche Biomédicale, P.O Box 1197, Kinshasa, Democratic Republic of Congo
| | - Themba Mzilahowa
- Entomology Department, Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), P.O Box 265, Blantyre, Malawi
| | - Michael Osae
- Radiation Entomology and Pest Management Centre, Ghana Atomic Energy Commission, Legon, PO Box LG80, Accra, Ghana
| | - Charles S Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.
- International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
22
|
Mugenzi LMJ, Akosah-Brempong G, Tchouakui M, Menze BD, Tekoh TA, Tchoupo M, Nkemngo FN, Wondji MJ, Nwaefuna EK, Osae M, Wondji CS. Escalating pyrethroid resistance in two major malaria vectors Anopheles funestus and Anopheles gambiae (s.l.) in Atatam, Southern Ghana. BMC Infect Dis 2022; 22:799. [PMID: 36284278 PMCID: PMC9597992 DOI: 10.1186/s12879-022-07795-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aggravation of insecticide resistance in malaria vectors is threatening the efforts to control malaria by reducing the efficacy of insecticide-based interventions hence needs to be closely monitored. This study investigated the intensity of insecticide resistance of two major malaria vectors An. funestus sensu stricto (s.s.) and An. gambiae sensu lato (s.l.) collected in southern Ghana and assessed the bio-efficacy of several long-lasting insecticidal nets (LLINs) against these mosquito populations. METHODS The insecticide susceptibility profiles of Anopheles funestus s.s. and Anopheles gambiae s.l. populations from Obuasi region (Atatam), southern Ghana were characterized and the bio-efficacy of some LLINs was assessed to determine the impact of insecticide resistance on the effectiveness of these tools. Furthermore, molecular markers associated with insecticide resistance in both species were characterized in the F0 and F1 populations using PCR and qPCR methods. RESULTS Anopheles funestus s.s. was the predominant species and was resistant to pyrethroids, organochlorine and carbamate insecticides, but fully susceptible to organophosphates. An. gambiae s.l. was resistant to all four insecticide classes. High intensity of resistance to 5 × and 10 × the discriminating concentration (DC) of pyrethroids was observed in both species inducing a considerable loss of efficacy of long-lasting insecticidal nets (LLINs). Temporal expression analysis revealed a massive 12-fold increase in expression of the CYP6P4a cytochrome P450 gene in An. funestus s.s., initially from a fold change of 41 (2014) to 500 (2021). For both species, the expression of candidate genes did not vary according to discriminating doses. An. gambiae s.l. exhibited high frequencies of target-site resistance including Vgsc-1014F (90%) and Ace-1 (50%) while these mutations were absent in An. funestus s.s. CONCLUSIONS The multiple and high intensity of resistance observed in both malaria vectors highlights the need to implement resistance management strategies and the introduction of new insecticide chemistries.
Collapse
Affiliation(s)
- Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
| | - Gabriel Akosah-Brempong
- African Regional Postgraduate Program in Insect Science, University of Ghana, Legon, Accra, Ghana
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Benjamin D Menze
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Theofelix A Tekoh
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Micareme Tchoupo
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Francis N Nkemngo
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Ekene K Nwaefuna
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | - Michael Osae
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
23
|
Nolden M, Paine MJI, Nauen R. Sequential phase I metabolism of pyrethroids by duplicated CYP6P9 variants results in the loss of the terminal benzene moiety and determines resistance in the malaria mosquito Anopheles funestus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103813. [PMID: 35870762 DOI: 10.1016/j.ibmb.2022.103813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Pyrethroid resistance in Anopheles funestus is threatening the eradication of malaria. One of the major drivers of pyrethroid resistance in An. funestus are cytochrome P450 monooxygenases CYP6P9a and CYP6P9b, which are found upregulated in resistant An. funestus populations from Sub-Saharan Africa and are known to metabolise pyrethroids. Here, we have functionally expressed CYP6P9a and CYP6P9b variants and investigated their interactions with azole-fungicides and pyrethroids. Some azole fungicides such as prochloraz inhibited CYP6P9a and CYP6P9b at nanomolar concentrations, whereas pyrethroids were weak inhibitors (>100 μM). Amino acid sequence comparisons suggested that a valine to isoleucine substitution at position 310 in the active site cavity of CYP6P9a and CYP6P9b, respectively, might affect substrate binding and metabolism. We therefore swapped the residues by site directed mutagenesis to produce CYP6P9aI310V and CYP6P9bV310I. CYP6P9bV310I produced stronger metabolic activity towards coumarin substrates and pyrethroids, particularly permethrin. The V310I mutation was previously also detected in a pyrethroid resistant field population of An. funestus in Benin. Additionally, we found the first metabolite of permethrin and deltamethrin after hydroxylation, 4'OH permethrin and 4'OH deltamethrin, were also suitable substrates for CYP6P9-variants, and were depleted by both enzymes to a higher extent than as their respective parent compounds (approximately 20% more active). Further, we found that both metabolites were toxic against An. funestus FANG (pyrethroid susceptible) but not towards FUMOZ-R (pyrethroid resistant) mosquitoes, the latter suggesting detoxification by overexpressed CYP6P9a and CYP6P9b. We confirmed by mass-spectrometric analysis that CYP6P9a and CYP6P9b are capable of cleaving phenoxybenzyl-ethers in type I pyrethroid permethrin and type II pyrethroid deltamethrin and that both enzymes preferentially metabolise trans-permethrin. This provides new insight into the metabolism of pyrethroids and a greater understanding of the molecular mechanisms of pyrethroid resistance in An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany.
| |
Collapse
|
24
|
Sonhafouo-Chiana N, Nkahe LD, Kopya E, Awono-Ambene PH, Wanji S, Wondji CS, Antonio-Nkondjio C. Rapid evolution of insecticide resistance and patterns of pesticides usage in agriculture in the city of Yaoundé, Cameroon. Parasit Vectors 2022; 15:186. [PMID: 35655243 PMCID: PMC9164381 DOI: 10.1186/s13071-022-05321-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The practice of agriculture in urban settings contributes to the rapid expansion of insecticide resistance in malaria vectors. However, there is still not enough information on pesticide usage in most urban settings. The present study aims to assess the evolution of Anopheles gambiae (s.l.) population susceptibility to insecticides and patterns of pesticide usage in agriculture in the city of Yaoundé, Cameroon. METHODS WHO susceptibility tests and synergist PBO bioassays were conducted on adult An. gambiae (s.l.) mosquitoes aged 3 to 5 days emerging from larvae collected from the field. Seven insecticides (deltamethrin, permethrin, DDT, bendiocarb, propoxur, fenitrothion and malathion) were evaluated. The presence of target site mutation conferring knockdown (kdr) resistance was investigated using TaqMan assay, and mosquito species were identified using SINE-PCR. Surveys on 81 retailers and 232 farmers were conducted to assess general knowledge and practices regarding agricultural pesticide usage. RESULTS High resistance intensity to pyrethroids was observed with a high frequency of the kdr allele 1014F and low frequency of the kdr 1014S allele. The level of susceptibility of An. gambiae (s.l.) to pyrethroids and carbamates was found to decrease with time (from > 34% in 2017 to < 23% in 2019 for deltamethrin and permethrin and from 97% in 2017 to < 86% in 2019 for bendiocarb). Both An. gambiae (s.s.) and An. coluzzii were recorded. Over 150 pesticides and fertilizers were sold by retailers for agricultural purposes in the city of Yaoundé. Most farmers do not respect safety practices. Poor practices including extensive and inappropriate application of pesticides as well as poor management of perished pesticides and empty pesticide containers were also documented. CONCLUSIONS The study indicated rapid evolution of insecticide resistance and uncontrolled usage of pesticides by farmers in agriculture. There is an urgent need to address these gaps to improve the management of insecticide resistance.
Collapse
Affiliation(s)
- Nadège Sonhafouo-Chiana
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Leslie Diane Nkahe
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Edmond Kopya
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Parfait Herman Awono-Ambene
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
| | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Vector Biology, Liverpool School of Tropical medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Vector Biology, Liverpool School of Tropical medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
25
|
Alvarez MVN, Alonso DP, Kadri SM, Rufalco-Moutinho P, Bernardes IAF, de Mello ACF, Souto AC, Carrasco-Escobar G, Moreno M, Gamboa D, Vinetz JM, Conn JE, Ribolla PEM. Nyssorhynchus darlingi genome-wide studies related to microgeographic dispersion and blood-seeking behavior. Parasit Vectors 2022; 15:106. [PMID: 35346342 PMCID: PMC8961893 DOI: 10.1186/s13071-022-05219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Brazil, malaria is concentrated in the Amazon Basin, where more than 99% of the annual cases are reported. The main goal of this study was to investigate the population structure and genetic association of the biting behavior of Nyssorhynchus (also known as Anopheles) darlingi, the major malaria vector in the Amazon region of Brazil, using low-coverage genomic sequencing data. METHODS Samples were collected in the municipality of Mâncio Lima, Acre state, Brazil between 2016 and 2017. Different approaches using genotype imputation and no gene imputation for data treatment and low-coverage sequencing genotyping were performed. After the samples were genotyped, population stratification analysis was performed. RESULTS Weak but statistically significant stratification signatures were identified between subpopulations separated by distances of approximately 2-3 km. Genome-wide association studies (GWAS) were performed to compare indoor/outdoor biting behavior and blood-seeking at dusk/dawn. A statistically significant association was observed between biting behavior and single nucleotide polymorphism (SNP) markers adjacent to the gene associated with cytochrome P450 (CYP) 4H14, which is associated with insecticide resistance. A statistically significant association between blood-seeking periodicity and SNP markers adjacent to genes associated with the circadian cycle was also observed. CONCLUSION The data presented here suggest that low-coverage whole-genome sequencing with adequate processing is a powerful tool to genetically characterize vector populations at a microgeographic scale in malaria transmission areas, as well as for use in GWAS. Female mosquitoes entering houses to take a blood meal may be related to a specific CYP4H14 allele, and female timing of blood-seeking is related to circadian rhythm genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares Y Moleculares, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT USA
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, NY USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY USA
| | | |
Collapse
|
26
|
Nolden M, Brockmann A, Ebbinghaus-Kintscher U, Brueggen KU, Horstmann S, Paine MJI, Nauen R. Towards understanding transfluthrin efficacy in a pyrethroid-resistant strain of the malaria vector Anopheles funestus with special reference to cytochrome P450-mediated detoxification. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100041. [PMID: 35284893 PMCID: PMC8906121 DOI: 10.1016/j.crpvbd.2021.100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Malaria vector control interventions rely heavily on the application of insecticides against anopheline mosquitoes, in particular the fast-acting pyrethroids that target insect voltage-gated sodium channels (VGSC). Frequent applications of pyrethroids have resulted in resistance development in the major malaria vectors including Anopheles funestus, where resistance is primarily metabolic and driven by the overexpression of microsomal cytochrome P450 monooxygenases (P450s). Here we examined the pattern of cross-resistance of the pyrethroid-resistant An. funestus strain FUMOZ-R towards transfluthrin and multi-halogenated benzyl derivatives, permethrin, cypermethrin and deltamethrin in comparison to the susceptible reference strain FANG. Transfluthrin and two multi-fluorinated derivatives exhibited micromolar potency - comparable to permethrin - to functionally expressed dipteran VGSC in a cell-based cation influx assay. The activity of transfluthrin and its derivatives on VGSC was strongly correlated with their contact efficacy against strain FUMOZ-R, although no such correlation was obtained for the other pyrethroids due to their rapid detoxification by the resistant strain. The low resistance levels for transfluthrin and derivatives in strain FUMOZ-R were only weakly synergized by known P450 inhibitors such as piperonyl butoxide (PBO), triflumizole and 1-aminobenzotriazole (1-ABT). In contrast, deltamethrin toxicity in FUMOZ-R was synergized > 100-fold by all three P450 inhibitors. The biochemical profiling of a range of fluorescent resorufin and coumarin compounds against FANG and FUMOZ-R microsomes identified 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC) as a highly sensitive probe substrate for P450 activity. BOMFC was used to develop a fluorescence-based high-throughput screening assay to measure the P450 inhibitory action of potential synergists. Azole fungicides prochloraz and triflumizole were identified as extremely potent nanomolar inhibitors of microsomal P450s, strongly synergizing deltamethrin toxicity in An. funestus. Overall, the present study contributed to the understanding of transfluthrin efficacy at the molecular and organismal level and identified azole compounds with potential to synergize pyrethroid efficacy in malaria vectors. Transfluthrin and derivatives lack cross-resistance in resistant Anopheles funestus. Pyrethroid resistance in An. funestus is strongly synergized by azole fungicides. BOMFC is a highly active fluorescent probe substrate for microsomal cytochrome P450 monooxygenases in An. funestus. Azole fungicides are nanomolar inhibitors of microsomal cytochrome P450 monooxygenases in An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Andreas Brockmann
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113, Bonn, Germany
| | | | - Kai-Uwe Brueggen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| | - Sebastian Horstmann
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| |
Collapse
|
27
|
Nolden M, Paine MJI, Nauen R. Biochemical profiling of functionally expressed CYP6P9 variants of the malaria vector Anopheles funestus with special reference to cytochrome b 5 and its role in pyrethroid and coumarin substrate metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105051. [PMID: 35249659 DOI: 10.1016/j.pestbp.2022.105051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are well studied enzymes catalyzing the oxidative metabolism of xenobiotics in insects including mosquitoes. Their duplication and upregulation in agricultural and public health pests such as anopheline mosquitoes often leads to an enhanced metabolism of insecticides which confers resistance. In the laboratory strain Anopheles funestus FUMOZ-R the duplicated P450s CYP6P9a and CYP6P9b are highly upregulated and proven to confer pyrethroid resistance. Microsomal P450 activity is regulated by NADPH cytochrome P450 oxidoreductase (CPR) required for electron transfer, whereas the modulatory role of cytochrome b5 (CYB5) on insect P450 activity is less clear. In previous studies CYP6P9a and CYP6P9b were recombinantly expressed in tandem with An. gambiae CPR using E. coli-expression systems and CYB5 added to the reaction mix to enhance activity. However, the precise role of CYB5 on substrate turn-over when combined with CYP6P9a and CYP6P9b remains poorly investigated, thus one objective of our study was to address this knowledge gap. In contrast to the CYP6P9 variants, the expression levels of both CYB5 and CPR were not upregulated in the pyrethroid resistant FUMOZ-R strain when compared to the susceptible FANG strain, suggesting no immediate regulatory role of these genes in pyrethroid resistance in FUMOZ-R. Here, for the first time we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus in a baculovirus expression system using High-5 insect cells. Co-expression of each enzyme with CPR from either An. gambiae or An. funestus did not reveal noteworthy differences in catalytic capacity. Whereas the co-expression of An. funestus CYB5 - tested at different multiplicity of infection (MOI) ratios - resulted in a significantly higher metabolization of coumarin substrates as measured by fluorescence assays. This was confirmed by Michaelis-Menten kinetics using the most active substrate, 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC). We observed a similar increase in coumarin substrate turnover by adding human CYB5 to the reaction mix. Finally, we compared by UPLC-MS/MS analysis the depletion rate of deltamethrin and the formation of 4'OH-deltamethrin by recombinantly expressed CYP6P9a and CYP6P9b with and without CYB5 and detected no difference in the extent of deltamethrin metabolism. Our results suggest that co-expression (or addition) of CYB5 with CYP6P9 variants, recombinantly expressed in insect cells, can significantly enhance their metabolic capacity to oxidize coumarins, but not deltamethrin.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
28
|
Matowo J, Weetman D, Pignatelli P, Wright A, Charlwood JD, Kaaya R, Shirima B, Moshi O, Lukole E, Mosha J, Manjurano A, Mosha F, Rowland M, Protopopoff N. Expression of pyrethroid metabolizing P450 enzymes characterizes highly resistant Anopheles vector species targeted by successful deployment of PBO-treated bednets in Tanzania. PLoS One 2022; 17:e0249440. [PMID: 35073324 PMCID: PMC8786186 DOI: 10.1371/journal.pone.0249440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Long lasting insecticidal nets (LLINs) are a proven tool to reduce malaria transmission, but in Africa efficacy is being reduced by pyrethroid resistance in the major vectors. A previous study that was conducted in Muleba district, Tanzania indicated possible involvement of cytochrome P450 monooxygenases in a pyrethroid resistance in An. gambiae population where pre-exposure to piperonyl butoxide (PBO) followed by permethrin exposure in CDC bottle bioassays led to partial restoration of susceptibility. PBO is a synergist that can block pyrethroid-metabolizing enzymes in a mosquito. Insecticide resistance profiles and underlying mechanisms were investigated in Anopheles gambiae and An. funestus from Muleba during a cluster randomized trial. Diagnostic dose bioassays using permethrin, together with intensity assays, suggest pyrethroid resistance that is both strong and very common, but not extreme. Transcriptomic analysis found multiple P450 genes over expressed including CYP6M2, CYP6Z3, CYP6P3, CYP6P4, CYP6AA1 and CYP9K1 in An. gambiae and CYP6N1, CYP6M7, CYP6M1 and CYP6Z1 in An. funestus. Indeed, very similar suites of P450 enzymes commonly associated with resistant populations elsewhere in Africa were detected as over expressed suggesting a convergence of mechanisms across Sub-Saharan African malaria vectors. The findings give insight into factors that may correlate with pyrethroid PBO LLIN success, broadly supporting model predictions, but revision to guidelines previously issued by the World Health Organization is warranted.
Collapse
Affiliation(s)
- Johnson Matowo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Patricia Pignatelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alexandra Wright
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jacques D. Charlwood
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert Kaaya
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Boniface Shirima
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Oliva Moshi
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Eliud Lukole
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Jacklin Mosha
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Alphaxard Manjurano
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Franklin Mosha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Natacha Protopopoff
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
29
|
Wondji CS, Hearn J, Irving H, Wondji MJ, Weedall G. RNAseq-based gene expression profiling of the Anopheles funestus pyrethroid-resistant strain FUMOZ highlights the predominant role of the duplicated CYP6P9a/b cytochrome P450s. G3 (BETHESDA, MD.) 2022; 12:jkab352. [PMID: 34718535 PMCID: PMC8727960 DOI: 10.1093/g3journal/jkab352] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/10/2021] [Indexed: 12/04/2022]
Abstract
Insecticide-based interventions, notably long-lasting insecticidal nets, against mosquito vectors of malaria are currently threatened by pyrethroid resistance. Here, we contrasted RNAseq-based gene expression profiling of laboratory-resistant (FUMOZ) and susceptible (FANG) strains of the major malaria vector Anopheles funestus. Cytochrome P450 genes were the predominant over-expressed detoxification genes in FUMOZ, with high expression of the duplicated CYP6P9a (fold-change of 82.23 vs FANG) and CYP6P9b (FC 11.15). Other over-expressed P450s belonged to the same cluster of P450s corresponding to the resistance to pyrethroid 1 (rp1) quantitative trait loci (QTL) on chromosome 2R. Several Epsilon class glutathione S-transferases were also over-expressed in FUMOZ, as was the ATP-binding cassette transporter AFUN019220 (ABCA) which also exhibited between-strain alternative splicing events at exon 7. Significant differences in single-nucleotide polymorphism frequencies between strains occurred in resistance QTLs rp1 (CYP6P9a/b and CYP6AA1), rp2 on chromosome 2L (CYP6Z1, CYP6M7, and CYP6Z3), and rp3 on chromosome 3R (CYP9J5, CYP9J4, and CYP9J3). Differences were also detected in CYP4G17 and CYP4G16 genes on the X chromosome, both of which are associated with cuticular resistance in Anopheles gambiae. A close analysis of nonsynonymous diversity at the CYP6P9a/b loci revealed a drastic loss of diversity in FUMOZ with only a single polymorphism and 2 haplotypes vs 18 substitutions and 8 haplotypes in FANG. By contrast, a lowly expressed cytochrome P450 (CYP4C36) did not exhibit diversity differences between strains. We also detected the known pyrethroid resistance conferring amino acid change N384S in CYP6P9b. This study further elucidates the molecular bases of resistance in An. funestus, informing strategies to better manage widespread resistance across Africa.
Collapse
Affiliation(s)
- Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, P.O. Box 1359, Cameroon
- Entomology Unit, International Institute of Tropical Agriculture (IITA), Yaoundé, P.O. Box 2008, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Murielle J Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, P.O. Box 1359, Cameroon
| | - Gareth Weedall
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
30
|
Messenger LA, Impoinvil LM, Derilus D, Yewhalaw D, Irish S, Lenhart A. A whole transcriptomic approach provides novel insights into the molecular basis of organophosphate and pyrethroid resistance in Anopheles arabiensis from Ethiopia. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103655. [PMID: 34562591 DOI: 10.1016/j.ibmb.2021.103655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The development of insecticide resistance in malaria vectors is of increasing concern in Ethiopia because of its potential implications for vector control failure. To better elucidate the specificity of resistance mechanisms and to facilitate the design of control strategies that minimize the likelihood of selecting for cross-resistance, a whole transcriptomic approach was used to explore gene expression patterns in a multi-insecticide resistant population of Anopheles arabiensis from Oromia Region, Ethiopia. This field population was resistant to the diagnostic doses of malathion (average mortality of 71.9%) and permethrin (77.4%), with pools of survivors and unexposed individuals analyzed using Illumina RNA-sequencing, alongside insecticide susceptible reference strains. This population also demonstrated deltamethrin resistance but complete susceptibility to alpha-cypermethrin, bendiocarb and propoxur, providing a phenotypic basis for detecting insecticide-specific resistance mechanisms. Transcriptomic data revealed overexpression of genes including cytochrome P450s, glutathione-s-transferases and carboxylesterases (including CYP4C36, CYP6AA1, CYP6M2, CYP6M3, CYP6P4, CYP9K1, CYP9L1, GSTD3, GSTE2, GSTE3, GSTE4, GSTE5, GSTE7 and two carboxylesterases) that were shared between malathion and permethrin survivors. We also identified nineteen highly overexpressed cuticular-associated proteins (including CYP4G16, CYP4G17 and chitinase) and eighteen salivary gland proteins (including D7r4 short form salivary protein), which may be contributing to a non-specific resistance phenotype by either enhancing the cuticular barrier or promoting binding and sequestration of insecticides, respectively. These findings provide novel insights into the molecular basis of insecticide resistance in this lesser well-characterized major malaria vector species.
Collapse
Affiliation(s)
- Louisa A Messenger
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA; American Society for Microbiology, 1752 N Street, NW Washington, DC, 20036, USA; Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA
| | - Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia; Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Seth Irish
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA; President's Malaria Initiative, Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA.
| |
Collapse
|
31
|
Wamba ANR, Ibrahim SS, Kusimo MO, Muhammad A, Mugenzi LMJ, Irving H, Wondji MJ, Hearn J, Bigoga JD, Wondji CS. The cytochrome P450 CYP325A is a major driver of pyrethroid resistance in the major malaria vector Anopheles funestus in Central Africa. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103647. [PMID: 34530119 DOI: 10.1016/j.ibmb.2021.103647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The overexpression and overactivity of key cytochrome P450s (CYP450) genes are major drivers of metabolic resistance to insecticides in African malaria vectors such as Anopheles funestus s.s. Previous RNAseq-based transcription analyses revealed elevated expression of CYP325A specific to Central African populations but its role in conferring resistance has not previously been demonstrated. In this study, RT-qPCR consistently confirmed that CYP325A is highly over-expressed in pyrethroid-resistant An. funestus from Cameroon, compared with a control strain and insecticide-unexposed mosquitoes. A synergist bioassay with PBO significantly recovered susceptibility for permethrin and deltamethrin indicating P450-based metabolic resistance. Analyses of the coding sequence of CYP325A Africa-wide detected high-levels of polymorphism, but with no predominant alleles selected by pyrethroid resistance. Geographical amino acid changes were detected notably in Cameroon. In silico homology modelling and molecular docking simulations predicted that CYP325A binds and metabolises type I and type II pyrethroids. Heterologous expression of recombinant CYP325A and metabolic assays confirmed that the most-common Cameroonian haplotype metabolises both type I and type II pyrethroids with depletion rate twice that the of the DR Congo haplotype. Analysis of the 1 kb putative promoter of CYP325A revealed reduced diversity in resistant mosquitoes compared to susceptible ones, suggesting a potential selective sweep in this region. The establishment of CYP325A as a pyrethroid resistance metabolising gene further explains pyrethroid resistance in Central African populations of An. funestus. Our work will facilitate future efforts to detect the causative resistance markers in the promoter region of CYP325A to design field applicable DNA-based diagnostic tools.
Collapse
Affiliation(s)
- Amelie N R Wamba
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Faculty of Science, Department of Biochemistry, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Department of Biochemistry, Bayero University, PMB, 3011, Kano, Nigeria.
| | - Michael O Kusimo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Centre for Biotechnology Research, Bayero University, Kano, PMB, 3011, Kano Nigeria.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jude D Bigoga
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Laboratory for Vector Biology and Control, National Reference Unit for Vector Control, The Biotechnology Centre, Nkolbisson - University of Yaoundé I, P.O. Box 3851, Messa, Yaoundé, Cameroon.
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
32
|
You C, Shan C, Ma Z, Zhang Y, Zhao R, Gao X. The overexpression and variant of CYP6G4 associated with propoxur resistance in the housefly, Musca domestica L. PEST MANAGEMENT SCIENCE 2021; 77:4321-4330. [PMID: 33942965 DOI: 10.1002/ps.6461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The control of the housefly, Musca domestica, heavily relies on the application of insecticides. Propoxur, a carbamate, has been widely used for vector control. The housefly populations with high propoxur resistance display point mutations and overexpression of acetylcholinesterase. However, the roles of cytochrome P450 monoxygenases (P450s), as important detoxification enzymes, remain poorly understand in the housefly resistant to propoxur. RESULTS P450s were implied to contribute to propoxur resistance based on the synergism of piperonyl butoxide (PBO) and the increase of P450 enzyme activity in the near-isogenic line propoxur resistant strain (N-PRS). Five P450 genes (CYP6G4, CYP6A25, CYP304A1, CYP6D3, and CYP6A1) by RNA-sequencing comparison were significantly up-regulated in the N-PRS strain with >1035-fold resistance to propoxur. A total of 13 non-synonymous mutations of three P450 genes (CYP6G4, CYP6D3, and CYP6D8) were found in the N-PRS strain. The amino acid substitutions of CYP6D3 and CYP6D8 were probably not resistance-associated single nucleotide polymorphisms (SNPs) because they were also found in the aabys susceptible strain. However, CYP6G4 variant in the N-PRS strain was not found in the aabys strain. The conjoint analysis of mutations and a series of genetic crosses exhibited that the housefly propoxur resistance was strongly associated with the mutations of CYP6G4 gene. CONCLUSION Our results suggested that a combination of up-regulated transcript levels and mutations of CYP6G4 contributed to propoxur resistance in the housefly. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunmei You
- Department of Entomology, China Agricultural University, Beijing, China
| | - Chao Shan
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zhuo Ma
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yi Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Rui Zhao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Kareemi TI, Mishra AK, Chand SK, Nirankar JK, Vishwakarma AK, Tiwari A, Bharti PK. Analysis of the insecticide resistance mechanism in Anopheles culicifacies sensu lato from a malaria-endemic state in India. Trans R Soc Trop Med Hyg 2021; 116:252-260. [PMID: 34423836 DOI: 10.1093/trstmh/trab110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/26/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Understanding the dynamics and mechanisms of insecticide resistance in malaria vectors is crucial for vector control activities. The present study investigates the level of insecticide resistance in Anopheles culicifacies and explores the role of two main mechanisms in conferring resistance target site insensitivity and metabolic resistance. METHODS A. culicifacies mosquitoes were collected and the voltage-gated sodium channel (VGSC) gene was amplified and sequenced to analyse the knockdown resistance (kdr) mutations. Further, a non-experimental homology model was generated to investigate the effect of kdr mutations on the conformation of protein. Metabolic resistance was determined using bioassay-based resistant and susceptible mosquitoes and the expression levels of the genes CYP6Z1 and GSTe2 were compared between the two groups. RESULTS Sequence analysis of the VGSC gene revealed the presence of L1014F (n=48 [17%]), L1014S and V1010L (n=5 [1.7%]) mutations in the study area. In gene expression studies, a significant upregulation of CYP6Z1 in deltamethrin-resistant (fold change 243.62; p=0.02) mosquitoes and that of GSTe2 in dichlorodiphenyltrichloroethane (fold change 403.45; p=0.01) and alpha-cypemethrin resistant (fold change 217.51; p=0.0005) mosquitoes was observed. CONCLUSIONS The study revealed that expression of the genes (CYP6Z1 and GSTe2) conferring metabolic resistance play a key role in insecticide resistance in A. culicifacies populations in central India. However, mutations L101F, L10104S and V10101L also have a role to some extent in spreading resistance. GeneBank accession numbers: MW559058, MW559059 and MW559060 Cover Image: Workflow of Chimera-Modeller interface. In the top window of Chimera's multi-align viewer the sequence alignment of VGSC proteins of human (pdb id_6AGF), cockroach (pdb id 5XOM) and A. culicifacies (ACT176122.1) is shown. The dialog box in the middle is of the comparative modelling tool of Modeller. The A. culicifacies sequence is designated as the target while human and cockroach sequences are templates. Upon selection of the template sequences in the dialog box, the structures of the respective proteins are displayed in the Chimera window. As the run is completed, the results are displayed in the form of a list of models with their scores in a table.
Collapse
Affiliation(s)
- Tazeen I Kareemi
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, 482003, Madhya Pradesh, India.,School of Biotechnology, Rajeev Gandhi Technical University, Airport Bypass Road, Bhopal, 462033, Madhya Pradesh, India
| | - Ashok K Mishra
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, 482003, Madhya Pradesh, India
| | - Sunil K Chand
- Division of Vector Borne Diseases, ICMR-National Institute of Malaria Research, Field Unit, Nagpur Road, Garha Jabalpur, 482003, Madhya Pradesh, India
| | - Jitendra K Nirankar
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, 482003, Madhya Pradesh, India
| | - Anup K Vishwakarma
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, 482003, Madhya Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajeev Gandhi Technical University, Airport Bypass Road, Bhopal, 462033, Madhya Pradesh, India
| | - Praveen K Bharti
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, 482003, Madhya Pradesh, India
| |
Collapse
|
34
|
Tian K, Feng J, Zhu J, Cheng J, Li M, Qiu X. Pyrethrin-resembling pyrethroids are metabolized more readily than heavily modified ones by CYP9As from Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104871. [PMID: 34119216 DOI: 10.1016/j.pestbp.2021.104871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The cotton bollworm, Helicoverpa armigera, is a polyphagous pest threatening many economically important crops worldwide. Until recently, synthetic pyrethroids remain in wide use for controlling pest insects including the cotton bollworm. Understanding the metabolic mechanism of pyrethroids in a given pest can provide significant implication for a smart choice of insecticides, and such information is useful for the development of novel selective and safe insecticides. In this study, we used complexes of recombinant H. armigera cytochrome P450 CYP9A and NADPH-dependent cytochrome P450 reductase to investigate the capacity of three CYP9A paralogs in the transformation of seven structurally different pyrethroids by metabolism assays. The results showed that the three paralogous CYP9As were able to metabolize multiple pyrethroids. Interestingly, all the three CYP9As transformed pyrethrin-resembling pyrethroids (e.g. bioallethrin) more efficiently than the heavily modified ones (e.g. bifenthrin). These findings suggest that herbivorous insects can cope with synthetic insecticides using their physiological systems that initially evolved to survive exposure to the defensive chemicals in their host plants, adding support to the pre-adaptation hypothesis.
Collapse
Affiliation(s)
- Kai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Feng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiagao Cheng
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
35
|
Black WC, Snell TK, Saavedra-Rodriguez K, Kading RC, Campbell CL. From Global to Local-New Insights into Features of Pyrethroid Detoxification in Vector Mosquitoes. INSECTS 2021; 12:insects12040276. [PMID: 33804964 PMCID: PMC8063960 DOI: 10.3390/insects12040276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023]
Abstract
The threat of mosquito-borne diseases continues to be a problem for public health in subtropical and tropical regions of the world; in response, there has been increased use of adulticidal insecticides, such as pyrethroids, in human habitation areas over the last thirty years. As a result, the prevalence of pyrethroid-resistant genetic markers in natural mosquito populations has increased at an alarming rate. This review details recent advances in the understanding of specific mechanisms associated with pyrethroid resistance, with emphasis on features of insecticide detoxification and the interdependence of multiple cellular pathways. Together, these advances add important context to the understanding of the processes that are selected in resistant mosquitoes. Specifically, before pyrethroids bind to their targets on motoneurons, they must first permeate the outer cuticle and diffuse to inner tissues. Resistant mosquitoes have evolved detoxification mechanisms that rely on cytochrome P450s (CYP), esterases, carboxyesterases, and other oxidation/reduction (redox) components to effectively detoxify pyrethroids to nontoxic breakdown products that are then excreted. Enhanced resistance mechanisms have evolved to include alteration of gene copy number, transcriptional and post-transcriptional regulation of gene expression, as well as changes to cellular signaling mechanisms. Here, we outline the variety of ways in which detoxification has been selected in various mosquito populations, as well as key gene categories involved. Pathways associated with potential new genes of interest are proposed. Consideration of multiple cellular pathways could provide opportunities for development of new insecticides.
Collapse
|
36
|
Assessing cross-resistance within the pyrethroids in terms of their interactions with key cytochrome P450 enzymes and resistance in vector populations. Parasit Vectors 2021; 14:115. [PMID: 33602297 PMCID: PMC7893915 DOI: 10.1186/s13071-021-04609-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/23/2021] [Indexed: 01/21/2023] Open
Abstract
Background It is important to understand whether the potential impact of pyrethroid resistance on malaria control can be mitigated by switching between different pyrethroids or whether cross-resistance within this insecticide class precludes this approach. Methods Here we assess the relationships among pyrethroids in terms of their binding affinity to, and depletion by, key cytochrome P450 enzymes (hereafter P450s) that are known to confer metabolic pyrethroid resistance in Anopheles gambiae (s.l.) and An. funestus, in order to identify which pyrethroids may diverge from the others in their vulnerability to resistance. We then investigate whether these same pyrethroids also diverge from the others in terms of resistance in vector populations. Results We found that the type I and II pyrethroids permethrin and deltamethrin, respectively, are closely related in terms of binding affinity to key P450s, depletion by P450s and resistance within vector populations. Bifenthrin, which lacks the common structural moiety of most pyrethroids, diverged from the other pyrethroids tested in terms of both binding affinity to key P450s and depletion by P450s, but resistance to bifenthrin has rarely been tested in vector populations and was not analysed here. Etofenprox, which also lacks the common structural moiety of most pyrethroids, diverged from the more commonly deployed pyrethroids in terms of binding affinity to key P450s and resistance in vector populations, but did not diverge from these pyrethroids in terms of depletion by the P450s. The analysis of depletion by the P450s indicated that etofenprox may be more vulnerable to metabolic resistance mechanisms in vector populations. In addition, greater resistance to etofenprox was found across Aedes aegypti populations, but greater resistance to this compound was not found in any of the malaria vector species analysed. The results for pyrethroid depletion by anopheline P450s in the laboratory were largely not repeated in the findings for resistance in malaria vector populations. Conclusion Importantly, the prevalence of resistance to the pyrethroids α-cypermethrin, cyfluthrin, deltamethrin, λ-cyhalothrin and permethrin was correlated across malaria vector populations, and switching between these compounds as a tool to mitigate against pyrethroid resistance is not advised without strong evidence supporting a true difference in resistance.![]()
Collapse
|
37
|
Vontas J, Katsavou E, Mavridis K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104666. [PMID: 32980073 DOI: 10.1016/j.pestbp.2020.104666] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Despite the substantial progress achieved in the characterization of cytochrome P450 (CYP) -based resistance mechanisms in mosquitoes, a number of questions remain unanswered. These include: (i) the regulation and physiology of resistance conferring CYPs; (ii) the actual contribution of CYPs in resistance alone or in combination with other detoxification partners or other resistance mechanisms; (iii) the association between overexpression levels and allelic variation, with the catalytic activity and the intensity of resistance and (iv) the true value of molecular diagnostics targeting CYP markers, for driving decision making in the frame of Insecticide Resistance Management applications. Furthermore, the translation of CYP - based insecticide resistance research in mosquitoes into practical applications, is being developed, but it is not fully exploited, as yet. Examples include the production of high throughput platforms for screening the liability (stability) or inhibition potential of novel insecticidal leads and synergists (add-ons), as well as the exploration of the negative cross resistance concept (i.e. detoxification of certain insecticides, but activation of others pro-insecticides). The goal of this review is to critically summarise the current knowledge and the gaps of the CYP-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors. The progress and limitations of the protein and the reverse/forward genetic approaches, the understanding and importance of molecular and physiological aspects, as well as the current and future exploitation routes of CYP research are discussed.
Collapse
Affiliation(s)
- John Vontas
- Foundation for Research and Technology (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Department of Crop Science, Agricultural University of Athens, Iera Odos 875, 11855, Athens, Greece.
| | - Eva Katsavou
- Department of Crop Science, Agricultural University of Athens, Iera Odos 875, 11855, Athens, Greece
| | - Konstantinos Mavridis
- Foundation for Research and Technology (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| |
Collapse
|
38
|
Mugenzi LMJ, Menze BD, Tchouakui M, Wondji MJ, Irving H, Tchoupo M, Hearn J, Weedall GD, Riveron JM, Cho-Ngwa F, Wondji CS. A 6.5-kb intergenic structural variation enhances P450-mediated resistance to pyrethroids in malaria vectors lowering bed net efficacy. Mol Ecol 2020; 29:4395-4411. [PMID: 32974960 DOI: 10.1111/mec.15645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/01/2020] [Indexed: 01/21/2023]
Abstract
Elucidating the complex evolutionary armory that mosquitoes deploy against insecticides is crucial to maintain the effectiveness of insecticide-based interventions. Here, we deciphered the role of a 6.5-kb structural variation (SV) in driving cytochrome P450-mediated pyrethroid resistance in the malaria vector, Anopheles funestus. Whole-genome pooled sequencing detected an intergenic 6.5-kb SV between duplicated CYP6P9a/b P450s in pyrethroid-resistant mosquitoes through a translocation event. Promoter analysis revealed a 17.5-fold higher activity (p < .0001) for the SV- carrying fragment than the SV- free one. Quantitative real-time PCR expression profiling of CYP6P9a/b for each SV genotype supported its role as an enhancer because SV+/SV+ homozygote mosquitoes had a significantly greater expression for both genes than heterozygotes SV+/SV- (1.7- to 2-fold) and homozygotes SV-/SV- (4-to 5-fold). Designing a PCR assay revealed a strong association between this SV and pyrethroid resistance (SV+/SV+ vs. SV-/SV-; odds ratio [OR] = 2,079.4, p < .001). The 6.5-kb SV is present at high frequency in southern Africa (80%-100%) but absent in East/Central/West Africa. Experimental hut trials revealed that homozygote SV mosquitoes had a significantly greater chance to survive exposure to pyrethroid-treated nets (OR 27.7; p < .0001) and to blood feed than susceptible mosquitoes. Furthermore, mosquitoes homozygote-resistant at the three loci (SV+/CYP6P9a_R/CYP6P9b_R) exhibited a higher resistance level, leading to a far superior ability to survive exposure to nets than those homozygotes susceptible at the three loci, revealing a strong additive effect. This study highlights the important role of structural variations in the development of insecticide resistance in malaria vectors and their detrimental impact on the effectiveness of pyrethroid-based nets.
Collapse
Affiliation(s)
- Leon M J Mugenzi
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Benjamin D Menze
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | | | - Murielle J Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Micareme Tchoupo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Gareth D Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,School of Natural Sciences and Psychology, Liverpool, John Moores University, Liverpool, UK
| | - Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Fidelis Cho-Ngwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| |
Collapse
|
39
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Atoyebi SM, Tchigossou GM, Akoton R, Riveron JM, Irving H, Weedall G, Tossou E, Djegbe I, Oyewole IO, Bakare AA, Wondji CS, Djouaka R. Investigating the molecular basis of multiple insecticide resistance in a major malaria vector Anopheles funestus (sensu stricto) from Akaka-Remo, Ogun State, Nigeria. Parasit Vectors 2020; 13:423. [PMID: 32811561 PMCID: PMC7436991 DOI: 10.1186/s13071-020-04296-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Understanding the mechanisms used by Anopheles mosquitoes to survive insecticide exposure is key to manage existing insecticide resistance and develop more suitable insecticide-based malaria vector control interventions as well as other alternative integrated tools. To this regard, the molecular basis of permethrin, DDT and dieldrin resistance in Anopheles funestus (sensu stricto) at Akaka-Remo was investigated. METHODS Bioassays were conducted on 3-5-day-old adult An. funestus (s.s.) mosquitoes for permethrin, DDT and dieldrin susceptibility test. The molecular mechanisms of mosquito resistance to these insecticides were investigated using microarray and reverse transcriptase PCR techniques. The voltage-gated sodium channel region of mosquitoes was also screened for the presence of knockdown resistance mutations (kdr west and east) by sequencing method. RESULTS Anopheles funestus (s.s.) population was resistant to permethrin (mortality rate of 68%), DDT (mortality rate of 10%) and dieldrin (mortality rate of 8%) insecticides. Microarray and RT-PCR analyses revealed the overexpression of glutathione S-transferase genes, cytochrome P450s, esterase, trypsin and cuticle proteins in resistant mosquitoes compared to control. The GSTe2 was the most upregulated detoxification gene in permethrin-resistant (FC = 44.89), DDT-resistant (FC = 57.39) and dieldrin-resistant (FC = 41.10) mosquitoes compared to control population (FC = 22.34). The cytochrome P450 gene, CYP6P9b was also upregulated in both permethrin- and DDT-resistant mosquitoes. The digestive enzyme, trypsin (hydrolytic processes) and the cuticle proteins (inducing cuticle thickening leading to reduced insecticides penetration) also showed high involvement in insecticide resistance, through their overexpression in resistant mosquitoes compared to control. The kdr east and west were absent in all mosquitoes analysed, suggesting their non-involvement in the observed mosquito resistance. CONCLUSIONS The upregulation of metabolic genes, especially the GSTe2 and trypsin, as well as the cuticle proteins is driving insecticide resistance of An. funestus (s.s.) population. However, additional molecular analyses, including functional metabolic assays of these genes as well as screening for a possible higher cuticular hydrocarbon and lipid contents, and increased procuticle thickness in resistant mosquitoes are needed to further describe their distinct roles in mosquito resistance.
Collapse
Affiliation(s)
- Seun M. Atoyebi
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- Cell Biology & Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Genevieve M. Tchigossou
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Romaric Akoton
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Jacob M. Riveron
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
- Insecticide Bioscience Department, Syngenta, Toulouse, UK
| | - Helen Irving
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Gareth Weedall
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
- Liverpool John Moores University, Liverpool, L3 3AF UK
| | - Eric Tossou
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Innocent Djegbe
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
- National University of Sciences, Technologies, Engineering and Mathematics, Ecole Normale Supérieure de Natitingou, BP 123, Natitingou, Benin
| | - Isaac O. Oyewole
- Biology Department, Babcock University, Ilisan Remo, Ogun State Nigeria
| | - Adekunle A. Bakare
- Cell Biology & Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Charles S. Wondji
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
- Centre for Research in Infectious Diseases (CRID), Yaounde, Cameroon
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin
| |
Collapse
|
41
|
Keïta M, Kané F, Thiero O, Traoré B, Zeukeng F, Sodio AB, Traoré SF, Djouaka R, Doumbia S, Sogoba N. Acetylcholinesterase (ace-1 R) target site mutation G119S and resistance to carbamates in Anopheles gambiae (sensu lato) populations from Mali. Parasit Vectors 2020; 13:283. [PMID: 32503614 PMCID: PMC7275337 DOI: 10.1186/s13071-020-04150-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The long-lasting insecticidal nets (LLINs) and indoor residual spraying of insecticide (IRS) are major malaria vector control strategies in Mali. The success of control strategies depends on a better understanding of the status of malaria vectors with respect to the insecticides used. In this study we evaluate the level of resistance of Anopheles gambiae (sensu lato) to bendiocarb and the molecular mechanism that underlies it. METHODS Larvae of An. gambiae (s.l.) were collected from breeding habitats encountered in the three study sites and bioassayed with bendiocarb. The ace-1 target site substitution G119S was genotyped using a TaqMan assay. RESULTS The three species of the An. gambiae complex in Mali, i.e. An. arabiensis, An. coluzzii and An. gambiae (s.s.) were found in sympatry in the three surveyed localities with different frequencies. We observed a resistance and suspicious resistance of the three species to bendiocarb with a mortality rate ranging from 37% to 86%. The allelic frequency of the G119S mutation was higher in An. gambiae (s.s.) compared to the other two species; 42.86%, 25.61% and 16.67% respectively in Dangassa, Koula, and Karadié. The allelic frequency of G119S in An. coluzzii ranged from 4.5% to 8.33% and from 1.43% to 21.15% for An. arabiensis. After exposure to bendiocarb, the G119S mutation was found only in survivors. The survival of Anopheles gambiae (s.l) populations from the three surveyed localities was associated with the presence of the mutation. CONCLUSIONS The study highlights the implication of G119S mutation in bendiocarb resistance in An. gambiae (s.s.), An. arabiensis and An. coluzzii populations from the three surveyed localities.
Collapse
Affiliation(s)
- Moussa Keïta
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.
| | - Fousseyni Kané
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Oumar Thiero
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Boissé Traoré
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Francis Zeukeng
- The AgroEcohealth Platform, International Institute of Tropical Agriculture (IITA-Benin), 08 Tripostal, P.O. Box 0932, Cotonou, Benin
| | - Ambiélè Bernard Sodio
- Faculty of Science and Technique, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sekou Fantamady Traoré
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Rousseau Djouaka
- The AgroEcohealth Platform, International Institute of Tropical Agriculture (IITA-Benin), 08 Tripostal, P.O. Box 0932, Cotonou, Benin
| | - Seydou Doumbia
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Nafomon Sogoba
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
42
|
Weedall GD, Riveron JM, Hearn J, Irving H, Kamdem C, Fouet C, White BJ, Wondji CS. An Africa-wide genomic evolution of insecticide resistance in the malaria vector Anopheles funestus involves selective sweeps, copy number variations, gene conversion and transposons. PLoS Genet 2020; 16:e1008822. [PMID: 32497040 PMCID: PMC7297382 DOI: 10.1371/journal.pgen.1008822] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/16/2020] [Accepted: 05/01/2020] [Indexed: 01/05/2023] Open
Abstract
Insecticide resistance in malaria vectors threatens to reverse recent gains in malaria control. Deciphering patterns of gene flow and resistance evolution in malaria vectors is crucial to improving control strategies and preventing malaria resurgence. A genome-wide survey of Anopheles funestus genetic diversity Africa-wide revealed evidences of a major division between southern Africa and elsewhere, associated with different population histories. Three genomic regions exhibited strong signatures of selective sweeps, each spanning major resistance loci (CYP6P9a/b, GSTe2 and CYP9K1). However, a sharp regional contrast was observed between populations correlating with gene flow barriers. Signatures of complex molecular evolution of resistance were detected with evidence of copy number variation, transposon insertion and a gene conversion between CYP6P9a/b paralog genes. Temporal analyses of samples before and after bed net scale up suggest that these genomic changes are driven by this control intervention. Multiple independent selective sweeps at the same locus in different parts of Africa suggests that local evolution of resistance in malaria vectors may be a greater threat than trans-regional spread of resistance haplotypes. Malaria control currently relies heavily on insecticide-based vector control interventions. Unfortunately, resistance to insecticides is threatening their continued effectiveness. Metabolic resistance has the greatest operational significance, yet it remains unclear how mosquito populations evolutionarily respond to the massive selection pressure from control interventions including insecticide-treated nets. Deciphering patterns of gene flow between populations of major malaria vectors such as Anopheles funestus and elucidating genomic signature of resistance evolution are crucial for designing resistance management strategies and preventing malaria resurgence. Here, we performed a genome-wide survey of An. funestus genetic diversity from across its continental range using reduced-genome representation (ddRADseq) and whole genome (PoolSeq) approaches revealing evidence of significant barriers to gene flow impacting the spread of insecticide resistance alleles. This study detected signatures of strong selective sweeps occurring in genomic regions controlling cytochrome P450-based and glutathione s-transferase metabolic resistance to insecticides in this species. Fine-scale analysis of the major pyrethroid resistance-associated genomic regions revealed complex molecular evolution with evidence of copy number variation, transposon insertion and gene conversion highlighting the risk that if this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.
Collapse
Affiliation(s)
- Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail: (GDW); (CSW)
| | - Jacob M. Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- LSTM Research Unit at CRID, Yaoundé, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
| | - Colince Kamdem
- LSTM Research Unit at CRID, Yaoundé, Cameroon
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Caroline Fouet
- LSTM Research Unit at CRID, Yaoundé, Cameroon
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Bradley J. White
- Department of Entomology, University of California, Riverside, California, United States of America
- Verily Life Sciences, South San Francisco, California, United States of America
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- LSTM Research Unit at CRID, Yaoundé, Cameroon
- * E-mail: (GDW); (CSW)
| |
Collapse
|
43
|
Brown F, Paton DG, Catteruccia F, Ranson H, Ingham VA. A steroid hormone agonist reduces female fitness in insecticide-resistant Anopheles populations. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103372. [PMID: 32276112 PMCID: PMC10569452 DOI: 10.1016/j.ibmb.2020.103372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Insecticide based vector control tools such as insecticide treated bednets and indoor residual spraying represent the cornerstones of malaria control programs. Resistance to chemistries used in these programs is now widespread and represents a significant threat to the gains seen in reducing malaria-related morbidity and mortality. Recently, disruption of the 20-hydroxyecdysone steroid hormone pathway was shown to reduce Plasmodium development and significantly reduce both longevity and egg production in a laboratory susceptible Anopheles gambiae population. Here, we demonstrate that disruption of this pathway by application of the dibenzoylhydrazine, methoxyfenozide (DBH-M), to insecticide resistant An. coluzzii, An. gambiae sl and An. funestus populations significantly reduces egg production in both topical and tarsal application. Moreover, DBH-M reduces adult longevity when applied topically, and tarsally after blood feeding. As the cytochrome p450s elevated in pyrethroid resistant Anopheles only bind DBH-M very weakly, this compound is unlikely to be subject to cross-resistance in a field-based setting. Manipulation of this hormonal signalling pathway therefore represents a potential complementary approach to current malaria control strategies, particularly in areas where high levels of insecticide resistance are compromising existing tools.
Collapse
Affiliation(s)
- Faye Brown
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Douglas G Paton
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Victoria A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.
| |
Collapse
|
44
|
Minetti C, Ingham VA, Ranson H. Effects of insecticide resistance and exposure on Plasmodium development in Anopheles mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2020; 39:42-49. [PMID: 32109860 DOI: 10.1016/j.cois.2019.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 05/10/2023]
Abstract
The spread of insecticide resistance in anopheline mosquitoes is a serious threat to the success of malaria control and prospects of elimination, but the potential impact(s) of insecticide resistance or sublethal insecticide exposure on Plasmodium-Anopheles interactions are poorly understood. Only a few studies have attempted to investigate such interactions, despite their clear epidemiological significance for malaria transmission. This short review provides an update on our understanding of the interactions between insecticide resistance and exposure and Plasmodium development, focusing on the mechanisms which might underpin any interactions, and identifying some key knowledge gaps.
Collapse
Affiliation(s)
- Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, United Kingdom
| | - Victoria A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, United Kingdom
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, United Kingdom.
| |
Collapse
|
45
|
Exploring the Mechanisms of Multiple Insecticide Resistance in a Highly Plasmodium-Infected Malaria Vector Anopheles funestus Sensu Stricto from Sahel of Northern Nigeria. Genes (Basel) 2020; 11:genes11040454. [PMID: 32331386 PMCID: PMC7230678 DOI: 10.3390/genes11040454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
The Nigerian Government is scaling up the distribution of insecticide-treated bed nets for malaria control, but the lack of surveillance data, especially in the Sudan/Sahel region of the country, may hinder targeting priority populations. Here, the vectorial role and insecticide resistance profile of a population of a major malaria vector Anopheles funestus sensu stricto from Sahel of Nigeria was characterised. An. funestus s.s. was the only vector found, with a high human blood index (100%) and a biting rate of 5.3/person/night. High Plasmodium falciparum infection was discovered (sporozoite rate = 54.55%). The population is resistant to permethrin (mortality = 48.30%, LT50 = 65.76 min), deltamethrin, DDT (dichlorodiphenyltrichloroethane) and bendiocarb, with mortalities of 29.44%, 56.34% and 54.05%, respectively. Cone-bioassays established loss of efficacy of the pyrethroid-only long-lasting insecticidal nets (LLINs); but 100% recovery of susceptibility was obtained for piperonylbutoxide (PBO)-containing PermaNet®3.0. Synergist bioassays with PBO and diethyl maleate recovered susceptibility, implicating CYP450s (permethrin mortality = 78.73%, χ2 = 22.33, P < 0.0001) and GSTs (DDT mortality = 81.44%, χ2 = 19.12, P < 0.0001). A high frequency of 119F GSTe2 mutation (0.84) was observed (OR = 16, χ2 = 3.40, P = 0.05), suggesting the preeminent role of metabolic resistance. These findings highlight challenges associated with deployment of LLINs and indoor residual spraying (IRS) in Nigeria.
Collapse
|
46
|
Weedall GD, Mugenzi LMJ, Menze BD, Tchouakui M, Ibrahim SS, Amvongo-Adjia N, Irving H, Wondji MJ, Tchoupo M, Djouaka R, Riveron JM, Wondji CS. A cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector, reducing insecticide-treated bednet efficacy. Sci Transl Med 2020; 11:11/484/eaat7386. [PMID: 30894503 DOI: 10.1126/scitranslmed.aat7386] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/09/2018] [Indexed: 11/02/2022]
Abstract
Metabolic resistance to insecticides such as pyrethroids in mosquito vectors threatens control of malaria in Africa. Unless it is managed, recent gains in reducing malaria transmission could be lost. To improve monitoring and assess the impact of insecticide resistance on malaria control interventions, we elucidated the molecular basis of pyrethroid resistance in the major African malaria vector, Anopheles funestus We showed that a single cytochrome P450 allele (CYP6P9a_R) in A. funestus reduced the efficacy of insecticide-treated bednets for preventing transmission of malaria in southern Africa. Expression of key insecticide resistance genes was detected in populations of this mosquito vector throughout Africa but varied according to the region. Signatures of selection and adaptive evolutionary traits including structural polymorphisms and cis-regulatory transcription factor binding sites were detected with evidence of selection due to the scale-up of insecticide-treated bednet use. A cis-regulatory polymorphism driving the overexpression of the major resistance gene CYP6P9a allowed us to design a DNA-based assay for cytochrome P450-mediated resistance to pyrethroid insecticides. Using this assay, we tracked the spread of pyrethroid resistance and found that it was almost fixed in mosquitoes from southern Africa but was absent from mosquitoes collected elsewhere in Africa. Furthermore, a field study in experimental huts in Cameroon demonstrated that mosquitoes carrying the resistance CYP6P9a_R allele survived and succeeded in blood feeding more often than did mosquitoes that lacked this allele. Our findings highlight the need to introduce a new generation of insecticide-treated bednets for malaria control that do not rely on pyrethroid insecticides.
Collapse
Affiliation(s)
- Gareth D Weedall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, U.K
| | - Leon M J Mugenzi
- LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Benjamin D Menze
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Sulaiman S Ibrahim
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria
| | - Nathalie Amvongo-Adjia
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Centre for Medical Research, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaoundé, Cameroon
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Murielle J Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Micareme Tchoupo
- LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture (IITA), Cotonou 08 BP 0932, Benin
| | - Jacob M Riveron
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK. .,LSTM Research Unit at the Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| |
Collapse
|
47
|
Lin Z, Zhang W, Pang S, Huang Y, Mishra S, Bhatt P, Chen S. Current Approaches to and Future Perspectives on Methomyl Degradation in Contaminated Soil/Water Environments. Molecules 2020; 25:E738. [PMID: 32046287 PMCID: PMC7036768 DOI: 10.3390/molecules25030738] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 01/10/2023] Open
Abstract
Methomyl is a broad-spectrum oxime carbamate commonly used to control arthropods, nematodes, flies, and crop pests. However, extensive use of this pesticide in agricultural practices has led to environmental toxicity and human health issues. Oxidation, incineration, adsorption, and microbial degradation methods have been developed to remove insecticidal residues from soil/water environments. Compared with physicochemical methods, biodegradation is considered to be a cost-effective and ecofriendly approach to the removal of pesticide residues. Therefore, micro-organisms have become a key component of the degradation and detoxification of methomyl through catabolic pathways and genetic determinants. Several species of methomyl-degrading bacteria have been isolated and characterized, including Paracoccus, Pseudomonas, Aminobacter, Flavobacterium, Alcaligenes, Bacillus, Serratia, Novosphingobium, and Trametes. The degradation pathways of methomyl and the fate of several metabolites have been investigated. Further in-depth studies based on molecular biology and genetics are needed to elaborate their role in the evolution of novel catabolic pathways and the microbial degradation of methomyl. In this review, we highlight the mechanism of microbial degradation of methomyl along with metabolic pathways and genes/enzymes of different genera.
Collapse
Affiliation(s)
- Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
48
|
Transcriptomic analysis of insecticide resistance in the lymphatic filariasis vector Culex quinquefasciatus. Sci Rep 2019; 9:11406. [PMID: 31388075 PMCID: PMC6684662 DOI: 10.1038/s41598-019-47850-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
Culex quinquefasciatus plays an important role in transmission of vector-borne diseases of public health importance, including lymphatic filariasis (LF), as well as many arboviral diseases. Currently, efforts to tackle C. quinquefasciatus vectored diseases are based on either mass drug administration (MDA) for LF, or insecticide-based interventions. Widespread and intensive insecticide usage has resulted in increased resistance in mosquito vectors, including C. quinquefasciatus. Herein, the transcriptome profile of Ugandan bendiocarb-resistant C. quinquefasciatus was explored to identify candidate genes associated with insecticide resistance. High levels of insecticide resistance were observed for five out of six insecticides tested, with the lowest mortality (0.97%) reported to permethrin, while for DDT, lambdacyhalothrin, bendiocarb and deltamethrin the mortality rate ranged from 1.63-3.29%. Resistance to bendiocarb in exposed mosquitoes was marked, with 2.04% mortality following 1 h exposure and 58.02% after 4 h. Genotyping of the G119S Ace-1 target site mutation detected a highly significant association (p < 0.0001; OR = 25) between resistance and Ace1-119S. However, synergist assays using the P450 inhibitor PBO, or the esterase inhibitor TPP resulted in markedly increased mortality (to ≈80%), suggesting a role of metabolic resistance in the resistance phenotype. Using a novel, custom 60 K whole-transcriptome microarray 16 genes significantly overexpressed in resistant mosquitoes were detected, with the P450 Cyp6z18 showing the highest differential gene expression (>8-fold increase vs unexposed controls). These results provide evidence that bendiocarb resistance in Ugandan C. quinquefasciatus is mediated by both target-site mechanisms and over-expression of detoxification enzymes.
Collapse
|
49
|
Riveron JM, Huijben S, Tchapga W, Tchouakui M, Wondji MJ, Tchoupo M, Irving H, Cuamba N, Maquina M, Paaijmans K, Wondji CS. Escalation of Pyrethroid Resistance in the Malaria Vector Anopheles funestus Induces a Loss of Efficacy of Piperonyl Butoxide-Based Insecticide-Treated Nets in Mozambique. J Infect Dis 2019; 220:467-475. [PMID: 30923819 PMCID: PMC6603977 DOI: 10.1093/infdis/jiz139] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Insecticide resistance poses a serious threat to insecticide-based interventions in Africa. There is a fear that resistance escalation could jeopardize malaria control efforts. Monitoring of cases of aggravation of resistance intensity and its impact on the efficacy of control tools is crucial to predict consequences of resistance. METHODS The resistance levels of an Anopheles funestus population from Palmeira, southern Mozambique, were characterized and their impact on the efficacy of various insecticide-treated nets established. RESULTS A dramatic loss of efficacy of all long-lasting insecticidal nets (LLINs), including piperonyl butoxide (PBO)-based nets (Olyset Plus), was observed. This An. funestus population consistently (2016, 2017, and 2018) exhibited a high degree of pyrethroid resistance. Molecular analyses revealed that this resistance escalation was associated with a massive overexpression of the duplicated cytochrome P450 genes CYP6P9a and CYP6P9b, and also the fixation of the resistance CYP6P9a_R allele in this population in 2016 (100%) in contrast to 2002 (5%). However, the low recovery of susceptibility after PBO synergist assay suggests that other resistance mechanisms could be involved. CONCLUSIONS The loss of efficacy of pyrethroid-based LLINs with and without PBO is a concern for the effectiveness of insecticide-based interventions, and action should be taken to prevent the spread of such super-resistance.
Collapse
Affiliation(s)
- Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
- ISGlobal, Barcelona, Spain
| | - Williams Tchapga
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | | | - Murielle J Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Micareme Tchoupo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
| | | | - Mara Maquina
- Centro de Investigação em Saúde da Manhiça, Mozambique
| | - Krijn Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
- ISGlobal, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça, Mozambique
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| |
Collapse
|
50
|
Tsakireli D, Riga M, Kounadi S, Douris V, Vontas J. Functional characterization of CYP6A51, a cytochrome P450 associated with pyrethroid resistance in the Mediterranean fruit fly Ceratitis capitata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:196-203. [PMID: 31153469 DOI: 10.1016/j.pestbp.2019.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Overexpression of the cytochrome P450 monooxygenase CYP6A51 has been previously associated with pyrethroid resistance in the Mediterranean fruit fly (medfly) Ceratitis capitata, an important pest species worldwide; however, this association has not been functionally validated. We expressed CYP6A51 gene in Escherichia coli and produced a functional enzyme with preference for the chemiluminescent substrate Luciferin-ME EGE. In vitro metabolism assays revealed that CYP6A51 is capable of metabolizing two insecticides that share the same mode of action, λ-cyhalothrin and deltamethrin, whereas no metabolism or substrate depletion was observed in the presence of spinosad or malathion. We further expressed CYP6A51 in vivo via a GAL4/UAS system in Drosophila melanogaster flies, driving expression with detoxification tissue-specific drivers. Toxicity bioassays indicated that CYP6A51 confers knock-down resistance to both λ-cyhalothrin and deltamethrin. Detection of CYP6A51 - associated pyrethroid resistance in field populations may be important for efficient Insecticide Resistance Management (IRM) strategies.
Collapse
Affiliation(s)
- Dimitra Tsakireli
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Laboratory of Molecular Entomology, Department of Biology, University of Crete, GR-700 13, Heraklion, Crete, Greece
| | - Maria Riga
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece
| | - Stella Kounadi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Laboratory of Molecular Entomology, Department of Biology, University of Crete, GR-700 13, Heraklion, Crete, Greece
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece.
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece.
| |
Collapse
|