1
|
Colominas-Ciuró R, Gray FE, Arikan K, Zahn S, Meier C, Criscuolo F, Bize P. Effects of persistent organic pollutants on telomere dynamics are sex and age-specific in a wild long-lived bird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173785. [PMID: 38851349 DOI: 10.1016/j.scitotenv.2024.173785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Chemical pollution is a major man-made environmental threat to ecosystems and natural animal populations. Of concern are persistent organic pollutants (POPs), which can persist in the environment for many years. While bioaccumulating throughout the lives of wild animals, POPs can affect their health, reproduction, and survival. However, measuring long-term effects of POPs in wild populations is challenging, and therefore appropriate biomarkers are required in wildlife ecotoxicology. One potential target is telomere length, since telomere preservation has been associated to survival and longevity, and stressors as chemical pollution can disrupt its maintenance. Here, we investigated the effects of different classes of POPs on relative telomere length (RTL) and its rate of change (TROC) in wild long-lived Alpine swifts (Tachymarptis melba). As both RTL and TROC are often reported to differ between sexes and with chronological age, we tested for sex- and age-specific (pre-senescent vs. senescent, ≥ 9 age of years, individuals) effects of POPs. Our results showed that senescent females presented longer RTL and elongated telomeres over time compared to pre-senescent females and males. These sex- and age-related differences in RTL and TROC were influenced by POPs, but differently depending on whether they were organochlorine pesticides (OCPs) or industrial polychlorinated biphenyls (PCBs). OCPs (particularly drins) were negatively associated with RTL, with the strongest negative effects being found in senescent females. Conversely, PCBs led to slower rates of telomere shortening, especially in females. Our study indicates diametrically opposed effects of OCPs on RTL and PCBs on TROC, and these effects were more pronounced in females and senescent individuals. The mechanisms behind these effects (e.g., increased oxidative stress by OCPs; upregulation of telomerase activity by PCBs) remain unknown. Our results highlight the importance in wildlife ecotoxicology to account for sex- and age-related effects when investigating the health effects of pollutants on biomarkers such as telomeres.
Collapse
Affiliation(s)
| | | | - Kalender Arikan
- Department of Biology Education, Faculty of Education, Hacettepe University, Turkey
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, France
| | | | | | - Pierre Bize
- Swiss Ornithological Institute, Switzerland.
| |
Collapse
|
2
|
Ravindran S, Underwood SL, Dorrens J, Seeker LA, Watt K, Wilbourn RV, Sparks AM, Sinclair R, Chen Z, Pilkington JG, McNeilly TN, Harrington L, Pemberton JM, Nussey DH, Froy H. No correlative evidence of costs of infection or immunity on leucocyte telomere length in a wild population of Soay sheep. Proc Biol Sci 2024; 291:20232946. [PMID: 38565156 PMCID: PMC10987235 DOI: 10.1098/rspb.2023.2946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Telomere length (TL) is a biomarker hypothesized to capture evolutionarily and ecologically important physiological costs of reproduction, infection and immunity. Few studies have estimated the relationships among infection status, immunity, TL and fitness in natural systems. The hypothesis that short telomeres predict reduced survival because they reflect costly consequences of infection and immune investment remains largely untested. Using longitudinal data from a free-living Soay sheep population, we tested whether leucocyte TL was predicted by infection with nematode parasites and antibody levels against those parasites. Helminth parasite burdens were positively associated with leucocyte TL in both lambs and adults, which is not consistent with TL reflecting infection costs. We found no association between TL and helminth-specific IgG levels in either young or old individuals which suggests TL does not reflect costs of an activated immune response or immunosenescence. Furthermore, we found no support for TL acting as a mediator of trade-offs between infection, immunity and subsequent survival in the wild. Our results suggest that while variation in TL could reflect short-term variation in resource investment or environmental conditions, it does not capture costs of infection and immunity, nor does it behave like a marker of an individual's helminth-specific antibody immune response.
Collapse
Affiliation(s)
- Sanjana Ravindran
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sarah L. Underwood
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jennifer Dorrens
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Luise A. Seeker
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kathryn Watt
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Rachael V. Wilbourn
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alexandra M. Sparks
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Rona Sinclair
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Zhulin Chen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jill G. Pilkington
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Tom N. McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Lea Harrington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada H3C 3J7
| | - Josephine M. Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Daniel H. Nussey
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Hannah Froy
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
3
|
Taylor GT, McQueen A, Eastwood JR, Dupoué A, Wong BBM, Verhulst S, Peters A. No effect of testosterone or sexual ornamentation on telomere dynamics: A case study and meta-analyses. Ecol Evol 2024; 14:e11088. [PMID: 38435019 PMCID: PMC10905238 DOI: 10.1002/ece3.11088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Life-history theory predicts that reproductive investments are traded-off against self-maintenance. Telomeres, the protective caps on the ends of chromosomes, offer a promising avenue for assessing life-history trade-offs, as they shorten in response to stressors and are predictive of the remaining lifespan. In males, testosterone frequently mediates life-history trade-offs, in part, through its effects on sexual ornamentation, which is an important aspect of reproductive investment. However, studies of within-individual associations between telomere dynamics and sexual ornamentation are limited in number and have produced mixed results. Furthermore, most such studies have been observational, making it difficult to discern the nature of any causal relationship. To address this, we used short-acting testosterone implants in free-living male superb fairy-wrens (Malurus cyaneus) to stimulate the production of a sexual ornament: early moult into a costly blue breeding plumage. We found no evidence that elevated testosterone, and the consequent earlier moult into breeding plumage, accelerated telomere shortening. We therefore followed up with a systematic review and two meta-analyses (28 studies, 54 effect sizes) exploring the associations between telomeres and (1) testosterone and (2) sexual ornamentation. In line with our experimental findings, neither meta-analysis showed an overall correlation of testosterone or sexual ornamentation with telomere length or telomere dynamics. However, meta-regression showed that experimental, compared to observational, studies reported greater evidence of trade-offs. Our meta-analyses highlight the need for further experimental studies to better understand potential responses of telomere length or telomere dynamics to testosterone or sexual ornamentation.
Collapse
Affiliation(s)
- Gregory T. Taylor
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Alexandra McQueen
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
- Present address:
Centre for Integrative EcologyDeakin UniversityBurwoodVictoriaAustralia
| | | | - Andréaz Dupoué
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
- Present address:
CNRS Sorbonne Université, UMR 7618, iEES ParisUniversité Pierre et Marie CurieParisFrance
| | - Bob B. M. Wong
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Anne Peters
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
4
|
Hou X, Li R, Wang J, Wei D, Yang X, Liao W, Yuchi Y, Liu X, Huo W, Mao Z, Liu J, Wang C, Hou J. Gender-specific associations between mixture of polycyclic aromatic hydrocarbons and telomere length. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9583-9598. [PMID: 37773482 DOI: 10.1007/s10653-023-01752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Evidence shows the relationships of individual environmental PAHs by their urinary metabolites with relative telomere length (RTL), which may be affected by biological gender differences. Since plasma parent PAHs are not metabolized, it may reflect human exposure to PAHs more realistically in daily life. Thus, exploring joint associations between plasma parent PAHs and RTL is urgent, which may identify the major contributor to its adverse effect. In this study, 2577 participants were obtained from the Henan Rural Cohort. The level of PAHs in blood samples was detected by gas chromatography coupled with tandem mass spectrometry. RTL in blood samples was detected by quantitative polymerase chain reaction. Generalized linear models or quantile g-computation were performed to evaluate the associations between the individual or a mixture of PAHs and RTL. Results from generalized linear models showed that each unit increment in BghiP value corresponded to a 0.098 (95%CI: 0.067, 0.129) increment in RTL for men; each unit increment in BaP, BghiP and Flu value corresponded to a 0.041 (95%CI: 0.014, 0.068), 0.081 (95%CI: 0.055, 0.107) and 0.016 (95%CI: 0.005, 0.027) increment in RTL for women. Results from quantile-g computation revealed that each one-quantile increment in the mixture of 10 PAHs corresponded to a 0.057 (95%CI: 0.021, 0.094) and 0.047 (95%CI: 0.003, 0.091) increment in RTL values of women and men, but these associations were mainly ascribed to three PAHs for women (BaP, Flu and BghiP) and men (BaP, BghiP and Pyr), respectively. Similar results were found in smoking men and cooking women without smoking. Our study found that exposure to 10 PAHs mixture was positively associated with RTL across gender, mainly attributed to Flu, BaP and BghiP, implicating that gender-specific associations may be ascribed to tobacco and cooking smoke pollution. The findings provided clues for effective measures to control PAHs pollutants-related aging disease.Clinical trial registration The Henan Rural Cohort Study has been registered at the Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375 .
Collapse
Affiliation(s)
- Xiaoyu Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaohuan Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yinghao Yuchi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Junlin Liu
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
5
|
Le Clercq LS, Kotzé A, Grobler JP, Dalton DL. Biological clocks as age estimation markers in animals: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2023; 98:1972-2011. [PMID: 37356823 DOI: 10.1111/brv.12992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Various biological attributes associated with individual fitness in animals change predictably over the lifespan of an organism. Therefore, the study of animal ecology and the work of conservationists frequently relies upon the ability to assign animals to functionally relevant age classes to model population fitness. Several approaches have been applied to determining individual age and, while these methods have proved useful, they are not without limitations and often lack standardisation or are only applicable to specific species. For these reasons, scientists have explored the potential use of biological clocks towards creating a universal age-determination method. Two biological clocks, tooth layer annulation and otolith layering have found universal appeal. Both methods are highly invasive and most appropriate for post-mortem age-at-death estimation. More recently, attributes of cellular ageing previously explored in humans have been adapted to studying ageing in animals for the use of less-invasive molecular methods for determining age. Here, we review two such methods, assessment of methylation and telomere length, describing (i) what they are, (ii) how they change with age, and providing (iii) a summary and meta-analysis of studies that have explored their utility in animal age determination. We found that both attributes have been studied across multiple vertebrate classes, however, telomere studies were used before methylation studies and telomere length has been modelled in nearly twice as many studies. Telomere length studies included in the review often related changes to stress responses and illustrated that telomere length is sensitive to environmental and social stressors and, in the absence of repair mechanisms such as telomerase or alternative lengthening modes, lacks the ability to recover. Methylation studies, however, while also detecting sensitivity to stressors and toxins, illustrated the ability to recover from such stresses after a period of accelerated ageing, likely due to constitutive expression or reactivation of repair enzymes such as DNA methyl transferases. We also found that both studied attributes have parentally heritable features, but the mode of inheritance differs among taxa and may relate to heterogamy. Our meta-analysis included more than 40 species in common for methylation and telomere length, although both analyses included at least 60 age-estimation models. We found that methylation outperforms telomere length in terms of predictive power evidenced from effect sizes (more than double that observed for telomeres) and smaller prediction intervals. Both methods produced age correlation models using similar sample sizes and were able to classify individuals into young, middle, or old age classes with high accuracy. Our review and meta-analysis illustrate that both methods are well suited to studying age in animals and do not suffer significantly from variation due to differences in the lifespan of the species, genome size, karyotype, or tissue type but rather that quantitative method, patterns of inheritance, and environmental factors should be the main considerations. Thus, provided that complex factors affecting the measured trait can be accounted for, both methylation and telomere length are promising targets to develop as biomarkers for age determination in animals.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
6
|
Zhang N, Baker EC, Welsh TH, Riley DG. Telomere Dynamics in Livestock. BIOLOGY 2023; 12:1389. [PMID: 37997988 PMCID: PMC10669808 DOI: 10.3390/biology12111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Telomeres are repeated sequences of nucleotides at the end of chromosomes. They deteriorate across mitotic divisions of a cell. In Homo sapiens this process of lifetime reduction has been shown to correspond with aspects of organismal aging and exposure to stress or other insults. The early impetus to characterize telomere dynamics in livestock related to the concern that aged donor DNA would result in earlier cell senescence and overall aging in cloned animals. Telomere length investigations in dairy cows included breed effects, estimates of additive genetic control (heritability 0.12 to 0.46), and effects of external stressors on telomere degradation across animal life. Evaluation of telomeres with respect to aging has also been conducted in pigs and horses, and there are fewer reports of telomere biology in beef cattle, sheep, and goats. There were minimal associations of telomere length with animal productivity measures. Most, but not all, work in livestock has documented an inverse relationship between peripheral blood cell telomere length and age; that is, a longer telomere length was associated with younger age. Because livestock longevity affects productivity and profitability, the role of tissue-specific telomere attrition in aging may present alternative improvement strategies for genetic improvement while also providing translational biomedical knowledge.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (N.Z.); (T.H.W.J.)
| | - Emilie C. Baker
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA;
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (N.Z.); (T.H.W.J.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (N.Z.); (T.H.W.J.)
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
7
|
Meesters M, Van Eetvelde M, Martens DS, Nawrot TS, Dewulf M, Govaere J, Opsomer G. Prenatal environment impacts telomere length in newborn dairy heifers. Sci Rep 2023; 13:4672. [PMID: 36949104 PMCID: PMC10033676 DOI: 10.1038/s41598-023-31943-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/20/2023] [Indexed: 03/24/2023] Open
Abstract
Telomere length is associated with longevity and survival in multiple species. In human population-based studies, multiple prenatal factors have been described to be associated with a newborn's telomere length. In the present study, we measured relative leukocyte telomere length in 210 Holstein Friesian heifers, within the first ten days of life. The dam's age, parity, and milk production parameters, as well as environmental factors during gestation were assessed for their potential effect on telomere length. We found that for both primi- and multiparous dams, the telomere length was 1.16% shorter for each day increase in the calf's age at sampling (P = 0.017). The dam's age at parturition (P = 0.045), and the median temperature-humidity index (THI) during the third trimester of gestation (P = 0.006) were also negatively associated with the calves' TL. Investigating multiparous dams separately, only the calf's age at sampling was significantly and negatively associated with the calves' TL (P = 0.025). Results of the present study support the hypothesis that in cattle, early life telomere length is influenced by prenatal factors. Furthermore, the results suggest that selecting heifers born in winter out of young dams might contribute to increased longevity in dairy cattle.
Collapse
Affiliation(s)
- Maya Meesters
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Mieke Van Eetvelde
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Research Unit Environment and Health, Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Manon Dewulf
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan Govaere
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
8
|
Tobler M, Gómez-Blanco D, Hegemann A, Lapa M, Neto JM, Tarka M, Xiong Y, Hasselquist D. Telomeres in ecology and evolution: A review and classification of hypotheses. Mol Ecol 2022; 31:5946-5965. [PMID: 34865259 DOI: 10.1111/mec.16308] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 01/31/2023]
Abstract
Research on telomeres in the fields of ecology and evolution has been rapidly expanding over the last two decades. This has resulted in the formulation of a multitude of, often name-given, hypotheses related to the associations between telomeres and life-history traits or fitness-facilitating processes (and the mechanisms underlying them). However, the differences (or similarities) between the various hypotheses, which can originate from different research fields, are often not obvious. Our aim here is therefore to give an overview of the hypotheses that are of interest in ecology and evolution and to provide two frameworks that help discriminate among them. We group the hypotheses (i) based on their association with different research questions, and (ii) using a hierarchical approach that builds on the assumptions they make, such as about causality of telomere length/shortening and/or the proposed functional consequences of telomere shortening on organism performance. Both our frameworks show that there exist parallel lines of thoughts in different research fields. Moreover, they also clearly illustrate that there are in many cases competing hypotheses within clusters, and that some of these even have contradictory assumptions and/or predictions. We also touch upon two topics in telomere research that would benefit from further conceptualization. This review should help researchers, both those familiar with and those new to the subject, to identify future avenues of research.
Collapse
Affiliation(s)
| | | | - Arne Hegemann
- Department of Biology, Lund University, Lund, Sweden
| | - Mariana Lapa
- Department of Biology, Lund University, Lund, Sweden
| | - Júlio M Neto
- Department of Biology, Lund University, Lund, Sweden
| | - Maja Tarka
- Department of Biology, Lund University, Lund, Sweden
| | - Ye Xiong
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
9
|
Kauzálová T, Tomášek O, Mulder E, Verhulst S, Albrecht T. Telomere length is highly repeatable and shorter in individuals with more elaborate sexual ornamentation in a short-lived passerine. Mol Ecol 2022; 31:6172-6183. [PMID: 35150467 DOI: 10.1111/mec.16397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 01/31/2023]
Abstract
Quantifying an individual's state as a fitness proxy has proven challenging, but accumulating evidence suggests that telomere length and attrition may indicate individual somatic state and success at self-maintenance, respectively. Sexual ornamentation is also thought to signal phenotypic quality, but links between telomeres and sexual ornamentation have been little explored. To address this issue, we examined whether telomere length and dynamics are predicted by the expression of a sexually selected ornament, the length of the outermost tail feathers (streamers), using longitudinal data from a population of European barn swallows (Hirundo rustica). In 139 adult individuals, each measured twice, we further assessed associations of telomere length with age, sex, breeding status and survival. Telomere length showed high individual repeatability (R = .97) across years while shortening with age in both sexes. Telomere length and dynamics were not significantly associated with survival to the next year, remaining lifespan or reproduction status (comparing breeding and nonbreeding yearlings). Tail streamer length, a sexually selected trait in barn swallows, was negatively associated with telomere length, independent of sex. Thus, telomere length may reflect the costs of carrying an elaborated sexual ornament, although ornament size did not significantly predict telomere shortening. In conclusion, telomere length in adult barn swallows is a highly consistent trait that shows a negative relationship with sexual ornamentation, suggesting a trade-off between sexual ornamentation and telomere length.
Collapse
Affiliation(s)
- Tereza Kauzálová
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Zoology, Faculty of Science, Charles University in Prague, Praha, Czech Republic
| |
Collapse
|
10
|
Wolf SE, Sanders TL, Beltran SE, Rosvall KA. The telomere regulatory gene POT1 responds to stress and predicts performance in nature: Implications for telomeres and life history evolution. Mol Ecol 2022; 31:6155-6171. [PMID: 34674335 DOI: 10.1111/mec.16237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 02/02/2023]
Abstract
Telomeres are emerging as correlates of fitness-related traits and may be important mediators of ecologically relevant variation in life history strategies. Growing evidence suggests that telomere dynamics can be more predictive of performance than length itself, but very little work considers how telomere regulatory mechanisms respond to environmental challenges or influence performance in nature. Here, we combine observational and experimental data sets from free-living tree swallows (Tachycineta bicolor) to assess how performance is predicted by the telomere regulatory gene POT1, which encodes a shelterin protein that sterically blocks telomerase from repairing the telomere. First, we show that lower POT1 gene expression in the blood was associated with higher female quality, that is, earlier breeding and heavier body mass. We next challenged mothers with an immune stressor (lipopolysaccharide injection) that led to "sickness" in mothers and 24 h of food restriction in their offspring. While POT1 did not respond to maternal injection, females with lower constitutive POT1 gene expression were better able to maintain feeding rates following treatment. Maternal injection also generated a 1-day stressor for chicks, which responded with lower POT1 gene expression and elongated telomeres. Other putatively stress-responsive mechanisms (i.e., glucocorticoids, antioxidants) showed marginal responses in stress-exposed chicks. Model comparisons indicated that POT1 mRNA abundance was a largely better predictor of performance than telomere dynamics, indicating that telomere regulators may be powerful modulators of variation in life history strategies.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biology, Indiana University, Bloomington, Indiana, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| | - Tiana L Sanders
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| | - Sol E Beltran
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, Indiana, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
11
|
Remot F, Ronget V, Froy H, Rey B, Gaillard JM, Nussey DH, Lemaitre JF. Decline in telomere length with increasing age across nonhuman vertebrates: A meta-analysis. Mol Ecol 2022; 31:5917-5932. [PMID: 34437736 DOI: 10.1111/mec.16145] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
The prediction that telomere length (TL) shortens with increasing age is a major element in considering the role of telomeres as a key player in evolution. While telomere attrition is found in humans both in vitro and in vivo, the increasing number of studies reporting diverse age-specific patterns of TL challenges the hypothesis of a universal decline of TL with increasing age. Here, we performed a meta-analysis to estimate the relationship between TL and age across 175 estimates encompassing 98 species of vertebrates. We found that, on average, TL does decline with increasing age during adulthood. However, this decline was weak and variable across vertebrate classes, and we also found evidence for a publication bias that might weaken our current evidence of decreasing TL with increasing age. We found no evidence for a faster decline in TL with increasing age when considering the juvenile stage (from birth to age at first reproduction) compared to the adult stage. Heterogeneity in TL ageing rates was explained by the method used to measure telomeres: detectable TL declines with increasing age were found only among studies using TRF with in-gel hybridisation and qFISH methods, but not in studies using qPCR and Southern blot-based TRF methods. While we confirmed that TL declines with increasing age in most adult vertebrates, our results identify an influence of telomere measurement methodology, which highlights the need to examine more thoroughly the effect of the method of measurement on TL estimates.
Collapse
Affiliation(s)
- Florentin Remot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Victor Ronget
- Unité Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Diderot, Paris, France
| | - Hannah Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.,Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Daniel H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Jean-François Lemaitre
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
12
|
Large mammal telomere length variation across ecoregions. BMC Ecol Evol 2022; 22:105. [PMID: 36038827 PMCID: PMC9426267 DOI: 10.1186/s12862-022-02050-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Telomere length provides a physiological proxy for accumulated stress in animals. While there is a growing consensus over how telomere dynamics and their patterns are linked to life history variation and individual experience, knowledge on the impact of exposure to different stressors at a large spatial scale on telomere length is still lacking. How exposure to different stressors at a regional scale interacts with individual differences in life history is also poorly understood. To better understand large-scale regional influences, we investigated telomere length variation in moose (Alces alces) distributed across three ecoregions. We analyzed 153 samples of 106 moose representing moose of both sexes and range of ages to measure relative telomere lengths (RTL) in white blood cells. Results We found that average RTL was significantly shorter in a northern (montane) and southern (sarmatic) ecoregion where moose experience chronic stress related to severe summer and winter temperatures as well as high anthropogenic land-use compared to the boreal region. Our study suggests that animals in the northern boreal forests, with relatively homogenous land use, are less disturbed by environmental and anthropogenic stressors. In contrast, animals in areas experiencing a higher rate of anthropogenic and environmental change experience increased stress. Conclusion Although animals can often adapt to predictable stressors, our data suggest that some environmental conditions, even though predictable and ubiquitous, can generate population level differences of long-term stress. By measuring RTL in moose for the first time, we provide valuable insights towards our current understanding of telomere biology in free-ranging wildlife in human-modified ecosystems. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02050-5.
Collapse
|
13
|
He J, Ge X, Cheng H, Bao Y, Feng X, Zan G, Wang F, Zou Y, Yang X. Sex-specific associations of exposure to metal mixtures with telomere length change: Results from an 8-year longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151327. [PMID: 34717997 DOI: 10.1016/j.scitotenv.2021.151327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Studies on the relationships between exposure to metal mixtures and telomere length (TL) are limited, particularly longitudinal studies. Few studies are available on the potential sex-specific associations between metal exposures and TL change. We examined blood metal concentrations and TL at baseline (August 2012) and follow-up (June 2020) among 316 participants in a ferro-manganese refinery. The least absolute shrinkage and selection operator (LASSO) followed by the generalized linear model (GLM) was applied to evaluate the associations between multiple-metal exposures and TL change (TL in 2012 minus TL in 2020). Bayesian kernel machine regression (BKMR) was applied to cope with metal mixtures and evaluate their joint effects on TL change. Among men, three statistical methods consistently showed rubidium was negatively associated with TL change (β [95% CI] = -2.755 [-5.119, -0.391] in the GLM) and dominated the negative overall effects of 10 metal mixtures (magnesium, manganese, iron, cobalt, copper, zinc, selenium, rubidium, cadmium, and lead) on TL change (posterior inclusion probabilities = 0.816). Among women, the GLM (β [95% CI] = 4.463 [0.943, 7.983]) and LASSO (β = 4.289) showed rubidium was positively associated with TL change. Interestingly, no significant association was observed between exposure to metal mixtures and TL change in overall participants (P > 0.05). Furthermore, stratified analysis showed significant relationships between rubidium and TL change in men (β = -2.744), women (β = 3.624), and current smokers (β = -3.266) (both P interaction <0.05). In summary, our findings underlined the steady and negative association between rubidium and TL change among men with potential sex-dependent heterogeneities. Further experimental studies are required to expound the underlying mechanisms.
Collapse
Affiliation(s)
- Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.
| |
Collapse
|
14
|
Hassler E, Almer G, Reishofer G, Marsche G, Mangge H, Deutschmann H, Herrmann M, Leber S, Gunzer F, Renner W. Sex-Specific Association of Serum Anti-Oxidative Capacity and Leukocyte Telomere Length. Antioxidants (Basel) 2021; 10:1908. [PMID: 34943011 PMCID: PMC8750675 DOI: 10.3390/antiox10121908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022] Open
Abstract
Telomeres are a crucial factor in the preservation of genomic integrity, and an elevated risk for diseases such as cancer and cardiovascular events is related to shortened telomeres. However, telomere deterioration could be caused by factors such as chronic oxidative stress and inflammation, which are promoted by an imbalance among reactive oxygen species (ROS) and antioxidants. In this cross-sectional study, we investigated the relationship between telomeres and oxidative stress. The serum leucocyte telomer length (LTL), serum total antioxidant capacity (TAC) and the total serum lipid panel of 180 healthy athletic volunteers (90 males, 90 females) were measured Additionally, a questionnaire about sports behaviour and the type of training was completed. We observed a positive significant relation between serum LTL and TAC in the male group (cc = 3.4/p = 0.001) but not in females. There was no statistically significant correlation between age and physical activity and LTL in both groups. This is the first cross sectional study demonstrating an association between total serum TAC and LTL in healthy males, but interestingly, not in the females. Nevertheless, these results should be interpreted as preliminary, and further studies in independent cohorts are needed to investigate the sex-specific effects of oxidative stress on telomere length and telomerase activity.
Collapse
Affiliation(s)
- Eva Hassler
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University Graz, 8036 Graz, Austria; (E.H.); (H.D.); (S.L.); (F.G.)
| | - Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, 8036 Graz, Austria; (G.A.); (H.M.); (M.H.); (W.R.)
| | - Gernot Reishofer
- Department of Radiology, Medical University Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, 8036 Graz, Austria; (G.A.); (H.M.); (M.H.); (W.R.)
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Hannes Deutschmann
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University Graz, 8036 Graz, Austria; (E.H.); (H.D.); (S.L.); (F.G.)
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, 8036 Graz, Austria; (G.A.); (H.M.); (M.H.); (W.R.)
| | - Stefan Leber
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University Graz, 8036 Graz, Austria; (E.H.); (H.D.); (S.L.); (F.G.)
| | - Felix Gunzer
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University Graz, 8036 Graz, Austria; (E.H.); (H.D.); (S.L.); (F.G.)
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, 8036 Graz, Austria; (G.A.); (H.M.); (M.H.); (W.R.)
| |
Collapse
|
15
|
Zeid D, Mooney-Leber S, Seemiller LR, Goldberg LR, Gould TJ. Terc Gene Cluster Variants Predict Liver Telomere Length in Mice. Cells 2021; 10:2623. [PMID: 34685603 PMCID: PMC8533930 DOI: 10.3390/cells10102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Variants in a gene cluster upstream-adjacent to TERC on human chromosome 3, which includes genes APRM, LRRC31, LRRC34 and MYNN, have been associated with telomere length in several human populations. Currently, the mechanism by which variants in the TERC gene cluster influence telomere length in humans is unknown. Given the proximity between the TERC gene cluster and TERC (~0.05 Mb) in humans, it is speculated that cluster variants are in linkage disequilibrium with a TERC causal variant. In mice, the Terc gene/Terc gene cluster are also located on chromosome 3; however, the Terc gene cluster is located distantly downstream of Terc (~60 Mb). Here, we initially aim to investigate the interactions between genotype and nicotine exposure on absolute liver telomere length (aTL) in a panel of eight inbred mouse strains. Although we found no significant impact of nicotine on liver aTL, this first experiment identified candidate single nucleotide polymorphisms (SNPs) in the murine Terc gene cluster (within genes Lrrc31, Lrriq4 and Mynn) co-varying with aTL in our panel. In a second experiment, we tested the association of these Terc gene cluster variants with liver aTL in an independent panel of eight inbred mice selected based on candidate SNP genotype. This supported our initial finding that Terc gene cluster polymorphisms impact aTL in mice, consistent with data in human populations. This provides support for mice as a model for telomere dynamics, especially for studying mechanisms underlying the association between Terc cluster variants and telomere length. Finally, these data suggest that mechanisms independent of linkage disequilibrium between the Terc/TERC gene cluster and the Terc/TERC gene mediate the cluster's regulation of telomere length.
Collapse
Affiliation(s)
- Dana Zeid
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA; (L.R.S.); (L.R.G.); (T.J.G.)
| | - Sean Mooney-Leber
- Department of Psychology, University of Wisconsin-Stevens Point, Stevens Point, WI 54481, USA;
| | - Laurel R. Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA; (L.R.S.); (L.R.G.); (T.J.G.)
| | - Lisa R. Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA; (L.R.S.); (L.R.G.); (T.J.G.)
| | - Thomas J. Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA; (L.R.S.); (L.R.G.); (T.J.G.)
| |
Collapse
|
16
|
Tschirren B, Romero-Haro AÁ, Zahn S, Criscuolo F. Sex-specific effects of experimental ectoparasite infestation on telomere length in great tit nestlings. J Evol Biol 2020; 34:584-589. [PMID: 33226680 DOI: 10.1111/jeb.13744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
Telomere length is a biomarker of biological ageing and lifespan in various vertebrate taxa. Evidence is accumulating that telomeres shorten more rapidly when an individual is exposed to environmental stressors. Parasites are potent selective agents that can cause physiological stress directly or indirectly through the activation of the host's immune system. Yet to date, empirical evidence for a role of parasites in telomere dynamics in natural populations is limited. Here, we show experimentally that exposure to ectoparasitic hen fleas (Ceratophyllus gallinae) during growth results in shorter telomeres in female, but not male, great tit (Parus major) nestlings. Females had longer telomeres than males when growing up in experimentally deparasitized nests but, likely because of the sex-specific effects of ectoparasitism on telomere length, this sexual dimorphism was absent in birds growing up in experimentally infested nests. Our results provide the first experimental evidence for a role of ectoparasitism in telomere dynamics in a natural vertebrate population, and suggest that the costs of infection manifest in sex-specific ways.
Collapse
Affiliation(s)
- Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | | - Sandrine Zahn
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
17
|
van Lieshout SHJ, Sparks AM, Bretman A, Newman C, Buesching CD, Burke T, Macdonald DW, Dugdale HL. Estimation of environmental, genetic and parental age at conception effects on telomere length in a wild mammal. J Evol Biol 2020; 34:296-308. [PMID: 33113164 DOI: 10.1111/jeb.13728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Understanding individual variation in fitness-related traits requires separating the environmental and genetic determinants. Telomeres are protective caps at the ends of chromosomes that are thought to be a biomarker of senescence as their length predicts mortality risk and reflect the physiological consequences of environmental conditions. The relative contribution of genetic and environmental factors to individual variation in telomere length is, however, unclear, yet important for understanding its evolutionary dynamics. In particular, the evidence for transgenerational effects, in terms of parental age at conception, on telomere length is mixed. Here, we investigate the heritability of telomere length, using the 'animal model', and parental age at conception effects on offspring telomere length in a wild population of European badgers (Meles meles). Although we found no heritability of telomere length and low evolvability (<0.001), our power to detect heritability was low and a repeatability of 2% across individual lifetimes provides a low upper limit to ordinary narrow-sense heritability. However, year (32%) and cohort (3%) explained greater proportions of the phenotypic variance in telomere length, excluding qPCR plate and row variances. There was no support for cross-sectional or within-individual parental age at conception effects on offspring telomere length. Our results indicate a lack of transgenerational effects through parental age at conception and a low potential for evolutionary change in telomere length in this population. Instead, we provide evidence that individual variation in telomere length is largely driven by environmental variation in this wild mammal.
Collapse
Affiliation(s)
- Sil H J van Lieshout
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK.,Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield, Sheffield, UK
| | - Alexandra M Sparks
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Amanda Bretman
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, UK
| | - Terry Burke
- Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield, Sheffield, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, UK
| | - Hannah L Dugdale
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Power ML, Power S, Bertelsen MF, Jones G, Teeling EC. Wing: A suitable nonlethal tissue type for repeatable and rapid telomere length estimates in bats. Mol Ecol Resour 2020; 21:421-432. [PMID: 33049101 DOI: 10.1111/1755-0998.13276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022]
Abstract
Telomeres are used increasingly in ecology and evolution as biomarkers for ageing and environmental stress, and are typically measured from DNA extracted from nonlethally sampled blood. However, obtaining blood is not always possible in field conditions and only limited amounts can be taken from small mammals, such as bats, which moreover lack nucleated red blood cells and hence yield relatively low amounts of DNA. As telomere length can vary within species according to age and tissue, it is important to determine which tissues serve best as a representation of the organism as a whole. Here, we investigated whether wing tissue biopsies, a rapid and relatively noninvasive tissue collection method, could serve as a proxy for other tissues when measuring relative telomere length (rTL) in the Egyptian fruit bat (Rousettus aegyptiacus). Telomeres were measured from blood, brain, heart, kidney, liver lung, muscle and wing, and multiple wing biopsies were taken from the same individuals to determine intra-individual repeatability of rTL measured by using qPCR. Wing rTL correlated with rTL estimates from most tissues apart from blood. Blood rTL was not significantly correlated with rTL from any other tissue. Blood and muscle rTLs were significantly longer compared with other tissues, while lung displayed the shortest rTLs. Individual repeatability of rTL measures from wing tissue was high (>70%). Here we show the relationships between tissue telomere dynamics for the first time in a bat, and our results provide support for the use of wing tissue for rTL measurements.
Collapse
Affiliation(s)
- Megan L Power
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| | - Sarahjane Power
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
19
|
Remot F, Ronget V, Froy H, Rey B, Gaillard JM, Nussey DH, Lemaître JF. No sex differences in adult telomere length across vertebrates: a meta-analysis. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200548. [PMID: 33391781 PMCID: PMC7735339 DOI: 10.1098/rsos.200548] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
In many mammalian species, females live on average longer than males. In humans, women have consistently longer telomeres than men, and this has led to speculation that sex differences in telomere length (TL) could play a role in sex differences in longevity. To address the generality and drivers of patterns of sex differences in TL across vertebrates, we performed meta-analyses across 51 species. We tested two main evolutionary hypotheses proposed to explain sex differences in TL, namely the heterogametic sex disadvantage and the sexual selection hypotheses. We found no support for consistent sex differences in TL between males and females among mammal, bird, fish and reptile species. This absence of sex differences in TL across different classes of vertebrates does not support the heterogametic sex disadvantage hypothesis. Likewise, the absence of any negative effect of sexual size dimorphism on male TL suggests that sexual selection is not likely to mediate the magnitude of sex differences in TL across vertebrates. Finally, the comparative analyses we conducted did not detect any association between sex differences in TL and sex differences in longevity, which does not support the idea that sex differences in TL could explain the observed sex differences in longevity.
Collapse
Affiliation(s)
- Florentin Remot
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, F-69622 Villeurbanne, France
| | - Victor Ronget
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, F-69622 Villeurbanne, France
| | - Hannah Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Benjamin Rey
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, F-69622 Villeurbanne, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, F-69622 Villeurbanne, France
| | - Daniel H. Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, F-69622 Villeurbanne, France
| |
Collapse
|
20
|
van Lieshout SHJ, Badás EP, Mason MWT, Newman C, Buesching CD, Macdonald DW, Dugdale HL. Social effects on age-related and sex-specific immune cell profiles in a wild mammal. Biol Lett 2020; 16:20200234. [PMID: 32673548 PMCID: PMC7423055 DOI: 10.1098/rsbl.2020.0234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Evidence for age-related changes in innate and adaptive immune responses is increasing in wild populations. Such changes have been linked to fitness, and knowledge of the factors driving immune response variation is important for understanding the evolution of immunity. Age-related changes in immune profiles may be owing to factors such as immune system development, sex-specific behaviour and responses to environmental conditions. Social environments may also contribute to variation in immunological responses, for example, through transmission of pathogens and stress arising from resource and mate competition. Yet, the impact of the social environment on age-related changes in immune cell profiles is currently understudied in the wild. Here, we tested the relationship between leukocyte cell composition (proportion of neutrophils and lymphocytes [innate and adaptive immunity, respectively] that were lymphocytes) and age, sex and group size in a wild population of European badgers (Meles meles). We found that the proportion of lymphocytes in early life was greater in males in smaller groups compared to larger groups, but with a faster age-related decline in smaller groups. By contrast, the proportion of lymphocytes in females was not significantly related to age or group size. Our results provide evidence of sex-specific age-related changes in immune cell profiles in a wild mammal, which are influenced by the social environment.
Collapse
Affiliation(s)
- Sil H J van Lieshout
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elisa P Badás
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Michael W T Mason
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, Oxfordshire OX13 5QL, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, Oxfordshire OX13 5QL, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon, Oxfordshire OX13 5QL, UK
| | - Hannah L Dugdale
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
21
|
Foley NM, Petit EJ, Brazier T, Finarelli JA, Hughes GM, Touzalin F, Puechmaille SJ, Teeling EC. Drivers of longitudinal telomere dynamics in a long‐lived bat species,
Myotis myotis. Mol Ecol 2020; 29:2963-2977. [PMID: 32105386 DOI: 10.1111/mec.15395] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/20/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Nicole M. Foley
- School of Biology and Environmental Science Science Centre West University College Dublin Belfield, Dublin Ireland
| | - Eric J. Petit
- ESE, Ecology and Ecosystem Health Agrocampus Ouest INRAE Rennes France
| | - Thomas Brazier
- ESE, Ecology and Ecosystem Health Agrocampus Ouest INRAE Rennes France
| | - John A. Finarelli
- School of Biology and Environmental Science Science Centre West University College Dublin Belfield, Dublin Ireland
| | - Graham M. Hughes
- School of Biology and Environmental Science Science Centre West University College Dublin Belfield, Dublin Ireland
| | - Frédéric Touzalin
- School of Biology and Environmental Science Science Centre West University College Dublin Belfield, Dublin Ireland
| | - Sébastien J. Puechmaille
- School of Biology and Environmental Science Science Centre West University College Dublin Belfield, Dublin Ireland
- Zoological Institute and Museum University of Greifswald Greifswald Germany
- ISEM Univ Montpellier, CNRS, EPHE, IRD Montpellier France
| | - Emma C. Teeling
- School of Biology and Environmental Science Science Centre West University College Dublin Belfield, Dublin Ireland
| |
Collapse
|
22
|
Giraudeau M, Heidinger B, Bonneaud C, Sepp T. Telomere shortening as a mechanism of long-term cost of infectious diseases in natural animal populations. Biol Lett 2019; 15:20190190. [PMID: 31113307 DOI: 10.1098/rsbl.2019.0190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pathogens are potent selective forces that can reduce the fitness of their hosts. While studies of the short-term energetic costs of infections are accumulating, the long-term costs have only just started to be investigated. Such delayed costs may, at least in part, be mediated by telomere erosion. This hypothesis is supported by experimental investigations conducted on laboratory animals which show that infection accelerates telomere erosion in immune cells. However, the generalizability of such findings to natural animal populations and to humans remains debatable. First, laboratory animals typically display long telomeres relative to their wild counterparts. Second, unlike humans and most wild animals, laboratory small-bodied mammals are capable of telomerase-based telomere maintenance throughout life. Third, the effect of infections on telomere shortening and ageing has only been studied using single pathogen infections, yet hosts are often simultaneously confronted with a range of pathogens in the wild. Thus, the cost of an infection in terms of telomere-shortening-related ageing in natural animal populations is likely to be strongly underestimated. Here, we discuss how investigations into the links between infection, immune response and tissue ageing are now required to improve our understanding of the long-term impact of disease.
Collapse
Affiliation(s)
| | - Britt Heidinger
- 2 Biological Sciences Department, North Dakota State University , Fargo , USA
| | - Camille Bonneaud
- 3 Centre for Ecology and Conservation, University of Exeter , Penryn , UK
| | - Tuul Sepp
- 4 Department of Zoology, University of Tartu , Tartu , Estonia
| |
Collapse
|
23
|
Chatelain M, Drobniak SM, Szulkin M. The association between stressors and telomeres in non‐human vertebrates: a meta‐analysis. Ecol Lett 2019; 23:381-398. [DOI: 10.1111/ele.13426] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Marion Chatelain
- Centre of New Technologies University of Warsaw Banacha 2C 02‐097 Warszawa Poland
| | - Szymon M. Drobniak
- Institute of Environmental Sciences Jagiellonian University Gronostajowa 7 30‐387 Kraków Poland
- Ecology & Evolution Research Centre School of Biological, Environmental and Earth Sciences University of New South Wales Sydney Australia
| | - Marta Szulkin
- Centre of New Technologies University of Warsaw Banacha 2C 02‐097 Warszawa Poland
| |
Collapse
|
24
|
Ilska-Warner JJ, Psifidi A, Seeker LA, Wilbourn RV, Underwood SL, Fairlie J, Whitelaw B, Nussey DH, Coffey MP, Banos G. The Genetic Architecture of Bovine Telomere Length in Early Life and Association With Animal Fitness. Front Genet 2019; 10:1048. [PMID: 31749836 PMCID: PMC6843005 DOI: 10.3389/fgene.2019.01048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Health and survival are key goals for selective breeding in farm animals. Progress, however, is often limited by the low heritability of these animal fitness traits in addition to measurement difficulties. In this respect, relevant early-life biomarkers may be useful for breeding purposes. Telomere length (TL), measured in leukocytes, is a good candidate biomarker since TL has been associated with health, ageing, and stress in humans and other species. However, telomere studies are very limited in farm animals. Here, we examined the genetic background, genomic architecture, and factors affecting bovine TL measurements in early life, and the association of the latter with animal fitness traits expressed later in life associated with survival, longevity, health, and reproduction. We studied two TL measurements, one at birth (TLB) and another during the first lactation (TLFL) of a cow. We performed a genome-wide association study of dairy cattle TL, the first in a non-human species, and found that TLB and TLFL are complex, polygenic, moderately heritable, and highly correlated traits. However, genomic associations with distinct chromosomal regions were identified for the two traits suggesting that their genomic architecture is not identical. This is reflected in changes in TL throughout an individual’s life. TLB had a significant association with survival, length of productive life and future health status of the animal, and could be potentially used as an early-life biomarker for disease predisposition and longevity in dairy cattle.
Collapse
Affiliation(s)
- Joanna J Ilska-Warner
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Royal Veterinary College, University of London, London, United Kingdom
| | - Luise A Seeker
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Fairlie
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mike P Coffey
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| | - Georgios Banos
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Lieshout SHJ, Bretman A, Newman C, Buesching CD, Macdonald DW, Dugdale HL. Individual variation in early‐life telomere length and survival in a wild mammal. Mol Ecol 2019; 28:4152-4165. [DOI: 10.1111/mec.15212] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sil H. J. Lieshout
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
- NERC Biomolecular Analysis Facility Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Amanda Bretman
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| | - Chris Newman
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - Christina D. Buesching
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - Hannah L. Dugdale
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| |
Collapse
|
26
|
Dantzer B, Garratt M. Sex differences in telomeres and lifespan in Soay sheep: From the beginning to the end. Mol Ecol 2019; 26:3090-3092. [PMID: 28586541 DOI: 10.1111/mec.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 11/27/2022]
Abstract
There is tremendous diversity in ageing rates and lifespan not only among taxa but within species, and particularly between the sexes. Women often live longer than men, and considerable research on this topic has revealed some of the potential biological, psychological and cultural causes of sex differences in human ageing and lifespan. However, sex differences in lifespan are widespread in nonhuman animals suggesting biology plays a prominent role in variation in ageing and lifespan. Recently, evolutionary biologists have borrowed techniques from biomedicine to identify whether similar mechanisms causing or contributing to variation in ageing and lifespan in humans and laboratory animals also operate in wild animals. Telomeres are repetitive noncoding DNA sequences capping the ends of chromosomes that are important for chromosomal stability but that can shorten during normal cell division and exposure to stress. Telomere shortening is hypothesized to directly contribute to the ageing process as once telomeres shorten to some length, the cells stop dividing and die. Men tend to have shorter telomeres and faster rates of telomere attrition with age than women, suggesting one possible biological cause of sex differences in lifespan. In this issue of Molecular Ecology, Watson et al. () show that telomere lengths in wild Soay sheep are similar between females and males near the beginning of life but quickly diverge with age because males but not females showed reduced telomere lengths at older ages. The authors further show that some of the observed sex difference in telomere lengths in old age may be due to male investment in horn growth earlier in life, suggesting that sexually dimorphic allocation to traits involved in sexual selection might underlie sex differences in telomere attrition. This study provides a rare example of how biological mechanisms potentially contributing to sex differences in lifespan in humans may also operate in free-living animals. However, future studies using a longitudinal approach are necessary to confirm these observations and identify the ultimate and proximate causes of any sex differences in telomere lengths. Collaborations between evolutionary biologists and gerontologists are especially needed to identify whether telomere lengths have a causal role in ageing, particularly in natural conditions, and whether this directly contributes to sex differences in lifespan.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Michael Garratt
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Fischer KE, Riddle NC. Sex Differences in Aging: Genomic Instability. J Gerontol A Biol Sci Med Sci 2019; 73:166-174. [PMID: 28575157 DOI: 10.1093/gerona/glx105] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/26/2017] [Indexed: 11/13/2022] Open
Abstract
Aging is characterized by decreasing physiological integration, reduced function, loss of resilience, and increased risk of death. Paradoxically, although women live longer, they suffer greater morbidity particularly late in life. These sex differences in human lifespan and healthspan are consistently observed in all countries and during every era for which reliable data exist. While these differences are ubiquitous in humans, evidence of sex differences in longevity and health for other species is more equivocal. Among fruit flies, nematodes, and mice, sex differences in lifespan vary depending on strain and treatment. In this review, we focus on sex differences in age-related alterations in DNA damage and mutation rates, telomere attrition, epigenetics, and nuclear architecture. We find that robust sex differences exist, eg, the higher incidence of DNA damage in men compared to women, but sex differences are not often conserved between species. For most mechanisms reviewed here, there are insufficient data to make a clear determination regarding the impact of sex, largely because sex differences have not been analyzed. Overall, our findings reveal an urgent need for well-designed studies that explicitly examine sex differences in molecular drivers of aging.
Collapse
Affiliation(s)
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham
| |
Collapse
|
28
|
Wilbourn RV, Moatt JP, Froy H, Walling CA, Nussey DH, Boonekamp JJ. The relationship between telomere length and mortality risk in non-model vertebrate systems: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0447. [PMID: 29335371 PMCID: PMC5784067 DOI: 10.1098/rstb.2016.0447] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Telomere length (TL) has become a biomarker of increasing interest within ecology and evolutionary biology, and has been found to predict subsequent survival in some recent avian studies but not others. Here, we undertake the first formal meta-analysis to test whether there is an overall association between TL and subsequent mortality risk in vertebrates other than humans and model laboratory rodents. We identified 27 suitable studies and obtained standardized estimates of the hazard ratio associated with TL from each. We performed a meta-analysis on these estimates and found an overall significant negative association implying that short telomeres are associated with increased mortality risk, which was robust to evident publication bias. While we found that heterogeneity in the hazard ratios was not explained by sex, follow-up period, maximum lifespan or the age group of the study animals, the TL–mortality risk association was stronger in studies using qPCR compared to terminal restriction fragment methodologies. Our results provide support for a consistent association between short telomeres and increased mortality risk in birds, but also highlight the need for more research into non-avian vertebrates and the reasons why different telomere measurement methods may yield different results. This article is part of the theme issue ‘Understanding diversity in telomere dynamics’.
Collapse
Affiliation(s)
- Rachael V Wilbourn
- Institute of Evolutionary Biology, University of Edinburgh, The King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Joshua P Moatt
- Institute of Evolutionary Biology, University of Edinburgh, The King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Hannah Froy
- Institute of Evolutionary Biology, University of Edinburgh, The King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Craig A Walling
- Institute of Evolutionary Biology, University of Edinburgh, The King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, The King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Jelle J Boonekamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 72, 9700 AB Groningen, The Netherlands
| |
Collapse
|
29
|
Axson EL, Peterson KE, Tellez-Rojo MM, Goodrich JM, Meeker J, Mercado-García A, Solano M, Needham BL. Sex Differences in Telomere Length Are Not Mediated by Sex Steroid Hormones or Body Size in Early Adolescence. GENDER AND THE GENOME 2018. [DOI: 10.1177/2470289718795177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Telomere length is a biomarker of cell aging that is hypothesized to contribute to women’s greater longevity. Although most previous studies have found no sex difference in telomere length at birth, it is well established that females have longer average telomere length than males during adulthood. Proposed biological mechanisms underlying sex differences in adult telomere length include differences in sex steroid hormones and body size, which emerge during the pubertal transition. The purpose of this study was to examine the total effect of sex on telomere length during early adolescence and to examine estradiol, total testosterone, and body surface area (BSA; a measure of body size) as potential mediators of sex differences in telomere length. Data were from a population-based sample of 126 female and 109 male Hispanic adolescents aged 8 to 14 years from the Early Life Exposures in Mexico to ENvironmental Toxicants (ELEMENT) study. Relative telomere length (T/S ratio) was measured by the quantitative polymerase chain reaction method; sex steroid hormones were measured using an automated chemiluminescent immunoassay, and BSA was calculated using measured height and weight. Adjusting for age and pubertal status, we found that girls had significantly longer telomeres than boys (β = .13; P < .01), but there were no significant indirect effects of sex on telomere length through any of the proposed mediators. We conclude that sex differences in telomere length are evident during early adolescence but are not explained by cross-sectional differences in sex steroid hormones or body size.
Collapse
Affiliation(s)
- Eleanor L. Axson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Karen E. Peterson
- Department of Nutritional Sciences and Center for Human Growth and Development, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Martha M. Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health of Mexico, Cuernavaca, Morelos, Mexico
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Adriana Mercado-García
- Center for Nutrition and Health Research, National Institute of Public Health of Mexico, Col Santa Maria Ahuacatitlan, Cuernavaca, Morelos, Mexico
| | - Maritsa Solano
- Center for Nutrition and Health Research, National Institute of Public Health of Mexico, Cuernavaca, Morelos, Mexico
| | - Belinda L. Needham
- Department of Epidemiology and Center for Social Epidemiology and Population Health, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Seeker LA, Ilska JJ, Psifidi A, Wilbourn RV, Underwood SL, Fairlie J, Holland R, Froy H, Salvo-Chirnside E, Bagnall A, Whitelaw B, Coffey MP, Nussey DH, Banos G. Bovine telomere dynamics and the association between telomere length and productive lifespan. Sci Rep 2018; 8:12748. [PMID: 30143784 PMCID: PMC6109064 DOI: 10.1038/s41598-018-31185-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Average telomere length (TL) in blood cells has been shown to decline with age in a range of vertebrate species, and there is evidence that TL is a heritable trait associated with late-life health and mortality in humans. In non-human mammals, few studies to date have examined lifelong telomere dynamics and no study has estimated the heritability of TL, despite these being important steps towards assessing the potential of TL as a biomarker of productive lifespan and health in livestock species. Here we measured relative leukocyte TL (RLTL) in 1,328 samples from 308 Holstein Friesian dairy cows and in 284 samples from 38 female calves. We found that RLTL declines after birth but remains relatively stable in adult life. We also calculated the first heritability estimates of RLTL in a livestock species which were 0.38 (SE = 0.03) and 0.32 (SE = 0.08) for the cow and the calf dataset, respectively. RLTL measured at the ages of one and five years were positively correlated with productive lifespan (p < 0.05). We conclude that bovine RLTL is a heritable trait, and its association with productive lifespan may be used in breeding programmes aiming to enhance cow longevity.
Collapse
Affiliation(s)
- Luise A Seeker
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.
| | - Joanna J Ilska
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
- Queen Mother Hospital for Animals, Royal Veterinary College, University of London, Hatfield, UK
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Jennifer Fairlie
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Rebecca Holland
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Hannah Froy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | | | | | - Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Mike P Coffey
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Georgios Banos
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
31
|
Monaghan P, Ozanne SE. Somatic growth and telomere dynamics in vertebrates: relationships, mechanisms and consequences. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160446. [PMID: 29335370 PMCID: PMC5784066 DOI: 10.1098/rstb.2016.0446] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 01/11/2023] Open
Abstract
Much telomere loss takes place during the period of most rapid growth when cell proliferation and potentially energy expenditure are high. Fast growth is linked to reduced longevity. Therefore, the effects of somatic cell proliferation on telomere loss and cell senescence might play a significant role in driving the growth-lifespan trade-off. While different species will have evolved a growth strategy that maximizes lifetime fitness, environmental conditions encountered during periods of growth will influence individual optima. In this review, we first discuss the routes by which altered cellular conditions could influence telomere loss in vertebrates, with a focus on oxidative stress in both in vitro and in vivo studies. We discuss the relationship between body growth and telomere length, and evaluate the empirical evidence that this relationship is generally negative. We further discuss the potentially conflicting hypotheses that arise when other factors are taken into account, and the further work that needs to be undertaken to disentangle confounding variables.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Susan E Ozanne
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Level 4, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
32
|
Wilbourn RV, Froy H, McManus MC, Cheynel L, Gaillard JM, Gilot-Fromont E, Regis C, Rey B, Pellerin M, Lemaître JF, Nussey DH. Age-dependent associations between telomere length and environmental conditions in roe deer. Biol Lett 2017; 13:rsbl.2017.0434. [PMID: 28954855 PMCID: PMC5627176 DOI: 10.1098/rsbl.2017.0434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/06/2017] [Indexed: 12/29/2022] Open
Abstract
Telomere length (TL) represents a promising biomarker of overall physiological state and of past environmental experiences, which could help us understand the drivers of life-history variation in natural populations. A growing number of studies in birds suggest that environmental stress or poor environmental conditions are associated with shortened TL, but studies of such relationships in wild mammals are lacking. Here, we compare leucocyte TL from cross-sectional samples collected from two French populations of roe deer which experience different environmental conditions. We found that, as predicted, TL was shorter in the population experiencing poor environmental conditions but that this difference was only significant in older individuals and was independent of sex and body mass. Unexpectedly, the difference was underpinned by a significant increase in TL with age in the population experiencing good environmental conditions, while there was no detectable relationship with age in poor conditions. These results demonstrate both the environmental sensitivity and complexity of telomere dynamics in natural mammal populations, and highlight the importance of longitudinal data to disentangle the within- and among-individual processes that generate them.
Collapse
Affiliation(s)
- Rachael V Wilbourn
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Hannah Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | - Louise Cheynel
- CNRS, Université Lyon 1, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 69622 Villeurbanne, France
| | - Jean-Michel Gaillard
- CNRS, Université Lyon 1, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 69622 Villeurbanne, France
| | - Emmanuelle Gilot-Fromont
- CNRS, Université Lyon 1, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 69622 Villeurbanne, France
| | - Corinne Regis
- CNRS, Université Lyon 1, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 69622 Villeurbanne, France
| | - Benjamin Rey
- CNRS, Université Lyon 1, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 69622 Villeurbanne, France
| | - Maryline Pellerin
- Office National de la Chasse et de la Faune Sauvage, Unité Cervidés-Sanglier, Bar-le-Duc, France
| | - Jean-François Lemaître
- CNRS, Université Lyon 1, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 69622 Villeurbanne, France
| | - Daniel H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
33
|
Spurgin LG, Bebbington K, Fairfield EA, Hammers M, Komdeur J, Burke T, Dugdale HL, Richardson DS. Spatio-temporal variation in lifelong telomere dynamics in a long-term ecological study. J Anim Ecol 2017; 87:187-198. [PMID: 28796902 PMCID: PMC5765431 DOI: 10.1111/1365-2656.12741] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/15/2017] [Indexed: 11/30/2022]
Abstract
Understanding individual‐level variation in response to the environment is fundamental to understanding life‐history evolution and population dynamics. Telomeres, the protective caps at the ends of chromosomes, shorten in response to oxidative stress, and telomere shortening is correlated with reduced survival and life span. Investigating telomere dynamics may help us quantify individual variation in the costs experienced from social and ecological factors, and enhance our understanding of the dynamics of natural populations. Here, we study spatio‐temporal variation in lifelong telomere dynamics in the Seychelles warbler, Acrocephalus sechellensis. We combine long‐term life history and ecological data with a large longitudinal dataset of mean telomere lengths, consisting of 1,808 samples from 22 cohorts born between 1993 and 2014. We provide a detailed analysis of how telomere dynamics vary over individual life spans and cohorts, and with spatio‐temporal variation in the social and ecological environment. We found that telomere length decreases with cross‐sectional and longitudinal measures of age, and most rapidly very early in life. However, both cross‐sectional and longitudinal data suggested that against this overall pattern of shortening, bouts of telomere length increase occur in some individuals. Using a large number of repeated measurements we show statistically that these increases are unlikely to be explained solely by qPCR measurement error. Telomere length varied markedly among cohorts. Telomere length was positively associated with temporal variation in island‐wide insect abundance—a key resource for the insectivorous Seychelles warbler—suggesting that the costs associated with living in harsher environments can be studied by investigating telomere dynamics. We also found evidence for sex‐specific relationships between telomeres and tarsus length, potentially reflecting differential costs of growth. Our long‐term data show that in a natural population, telomere dynamics vary in a complex manner over individual life spans, and across space and time. Variance in telomere dynamics among individuals is the product of a wide array of genetic, parental and environmental factors. Explaining this variation more fully will require the integration of comprehensive long‐term ecological and genetic data from multiple populations and species.
Collapse
Affiliation(s)
- Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, UK
| | - Kat Bebbington
- School of Biological Sciences, University of East Anglia, Norwich Research Park, UK
| | - Eleanor A Fairfield
- School of Biological Sciences, University of East Anglia, Norwich Research Park, UK
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,School of Biology, The Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, UK.,Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles
| |
Collapse
|
34
|
Beaulieu M, Benoit L, Abaga S, Kappeler PM, Charpentier MJE. Mind the cell: Seasonal variation in telomere length mirrors changes in leucocyte profile. Mol Ecol 2017; 26:5603-5613. [DOI: 10.1111/mec.14329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/30/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Michaël Beaulieu
- Zoological Institute and Museum; University of Greifswald; Greifswald Germany
| | | | | | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit; German Primate Center (DPZ); Göttingen Germany
| | | |
Collapse
|
35
|
Froy H, Bird EJ, Wilbourn RV, Fairlie J, Underwood SL, Salvo-Chirnside E, Pilkington JG, Bérénos C, Pemberton JM, Nussey DH. No evidence for parental age effects on offspring leukocyte telomere length in free-living Soay sheep. Sci Rep 2017; 7:9991. [PMID: 28855677 PMCID: PMC5577307 DOI: 10.1038/s41598-017-09861-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
In humans, the effect of paternal age at conception (PAC) on offspring leukocyte telomere length (LTL) is well established, with older fathers thought to pass on longer telomeres to their offspring in their sperm. Few studies have looked for PAC effects in other species, but it has been hypothesised that the effect will be exacerbated in polygamous species with higher levels of sperm competition and production. We test for maternal (MAC) and paternal age at conception effects on offspring LTL in Soay sheep, a primitive breed experiencing strong sperm competition. We use qPCR to measure relative telomere length in 389 blood samples (n = 318 individuals) collected from an unmanaged population of sheep on St Kilda, where individual age and parentage are known. We find no evidence that either MAC or PAC are associated with LTL in offspring across the age range, or when considering only young lambs (n = 164). This is the first study to test for parental age effects on offspring LTL in a wild mammal population, and the results contrast with the findings of numerous human studies that find a PAC effect, as well as predictions of a stronger PAC effect in polygamous species.
Collapse
Affiliation(s)
- H Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - E J Bird
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - R V Wilbourn
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - J Fairlie
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - S L Underwood
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | | | - J G Pilkington
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - C Bérénos
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - J M Pemberton
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - D H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|