1
|
McAuley JB, Servin B, Burnett HA, Brekke C, Peters L, Hagen IJ, Niskanen AK, Ringsby TH, Husby A, Jensen H, Johnston SE. The Genetic Architecture of Recombination Rates is Polygenic and Differs Between the Sexes in Wild House Sparrows (Passer domesticus). Mol Biol Evol 2024; 41:msae179. [PMID: 39183719 PMCID: PMC11385585 DOI: 10.1093/molbev/msae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/01/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
Meiotic recombination through chromosomal crossing-over is a fundamental feature of sex and an important driver of genomic diversity. It ensures proper disjunction, allows increased selection responses, and prevents mutation accumulation; however, it is also mutagenic and can break up favorable haplotypes. This cost-benefit dynamic is likely to vary depending on mechanistic and evolutionary contexts, and indeed, recombination rates show huge variation in nature. Identifying the genetic architecture of this variation is key to understanding its causes and consequences. Here, we investigate individual recombination rate variation in wild house sparrows (Passer domesticus). We integrate genomic and pedigree data to identify autosomal crossover counts (ACCs) and intrachromosomal allelic shuffling (r¯intra) in 13,056 gametes transmitted from 2,653 individuals to their offspring. Females had 1.37 times higher ACC, and 1.55 times higher r¯intra than males. ACC and r¯intra were heritable in females and males (ACC h2 = 0.23 and 0.11; r¯intra h2 = 0.12 and 0.14), but cross-sex additive genetic correlations were low (rA = 0.29 and 0.32 for ACC and r¯intra). Conditional bivariate analyses showed that all measures remained heritable after accounting for genetic values in the opposite sex, indicating that sex-specific ACC and r¯intra can evolve somewhat independently. Genome-wide models showed that ACC and r¯intra are polygenic and driven by many small-effect loci, many of which are likely to act in trans as global recombination modifiers. Our findings show that recombination rates of females and males can have different evolutionary potential in wild birds, providing a compelling mechanism for the evolution of sexual dimorphism in recombination.
Collapse
Affiliation(s)
- John B McAuley
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Bertrand Servin
- Génétique Physiologie et Systèmes d'Elevage (GenPhySE), Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - Hamish A Burnett
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Cathrine Brekke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Lucy Peters
- Génétique Physiologie et Systèmes d'Elevage (GenPhySE), Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - Ingerid J Hagen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Norwegian Institute for Nature Research, Trondheim 7034, Norway
| | - Alina K Niskanen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Ecology and Genetics Research Unit, University of Oulu, Oulu 90014, Finland
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala 75236, Sweden
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
2
|
Ranke PS, Pepke ML, Søraker JS, David G, Araya‐Ajoy YG, Wright J, Nafstad ÅM, Rønning B, Pärn H, Ringsby TH, Jensen H, Sæther B. Long-distance dispersal in the short-distance dispersing house sparrow ( Passer domesticus). Ecol Evol 2024; 14:e11356. [PMID: 38694748 PMCID: PMC11056847 DOI: 10.1002/ece3.11356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024] Open
Abstract
The house sparrow (Passer domesticus) is a small passerine known to be highly sedentary. Throughout a 30-year capture-mark-recapture study, we have obtained occasional reports of recoveries far outside our main metapopulation study system, documenting unusually long dispersal distances. Our records constitute the highest occurrence of long-distance dispersal events recorded for this species in Scandinavia. Such long-distance dispersals radically change the predicted distribution of dispersal distances and connectedness for our study metapopulation. Moreover, it reveals a much greater potential for colonization than formerly recorded for the house sparrow, which is an invasive species across four continents. These rare and occasional long-distance dispersal events are challenging to document but may have important implications for the genetic composition of small and isolated populations and for our understanding of dispersal ecology and evolution.
Collapse
Affiliation(s)
- Peter S. Ranke
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- BirdLife NorwayTrondheimNorway
| | - Michael L. Pepke
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jørgen S. Søraker
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Edward Grey Institute, Department of BiologyUniversity of OxfordOxfordUK
| | - Gabriel David
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Yimen G. Araya‐Ajoy
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Jonathan Wright
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Ådne M. Nafstad
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Teacher EducationNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Henrik Pärn
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Aquatic Resources (SLU Aqua)Swedish University of Agricultural SciencesLysekilSweden
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Bernt‐Erik Sæther
- Centre for Biodiversity Dynamics (CBD), Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
- The Gjærevoll Centre, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
3
|
Nafstad ÅM, Rønning B, Aase K, Ringsby TH, Hagen IJ, Ranke PS, Kvalnes T, Stawski C, Räsänen K, Saether BE, Muff S, Jensen H. Spatial variation in the evolutionary potential and constraints of basal metabolic rate and body mass in a wild bird. J Evol Biol 2023; 36:650-662. [PMID: 36811205 DOI: 10.1111/jeb.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 02/24/2023]
Abstract
An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb ) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed 'common garden' population in 2012. With the use of a novel genetic group animal model concomitant with a genetically determined pedigree, we differentiate genetic and environmental sources of variation, thereby providing insight into the effects of spatial population structure on evolutionary potential. We found that the evolutionary potential of BMR was similar in the two source populations, whereas the Vega population had a somewhat higher evolutionary potential of Mb than the Leka population. BMR was genetically correlated with Mb in both populations, and the conditional evolutionary potential of BMR (independent of body mass) was 41% (Leka) and 53% (Vega) lower than unconditional estimates. Overall, our results show that there is potential for BMR to evolve independently of Mb , but that selection on BMR and/or Mb may have different evolutionary consequences in different populations of the same species.
Collapse
Affiliation(s)
- Ådne M Nafstad
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Teacher Education, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kenneth Aase
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingerid J Hagen
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Peter S Ranke
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Clare Stawski
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Katja Räsänen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylän, Finland
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Stefanie Muff
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
4
|
Ranke PS, Araya-Ajoy YG, Ringsby TH, Pärn H, Rønning B, Jensen H, Wright J, Saether BE. Spatial structure and dispersal dynamics in a house sparrow metapopulation. J Anim Ecol 2021; 90:2767-2781. [PMID: 34455579 DOI: 10.1111/1365-2656.13580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 08/13/2021] [Indexed: 11/29/2022]
Abstract
The effects of spatial structure on metapopulation dynamics depend upon the interaction between local population dynamics and dispersal, and how this relationship is affected by the geographical isolation and spatial heterogeneity in habitat characteristics. Our aim is to examine how emigration and immigration of house sparrows Passer domesticus in a Norwegian archipelagic metapopulation are affected by key factors predicted by classic metapopulation models to affect dispersal-spatial and temporal variation in population size, inter-island distance, local demography and habitat characteristics. This metapopulation can be divided into two major habitat types: (a) islands closer to the mainland where sparrows breed in colonies on farms, and (b) islands without farms, situated farther away from the mainland where sparrows are exposed to harsher environmental conditions. Dispersal was spatially structured within the metapopulation; there was proportionally and numerically less emigration and immigration involving farm islands, as compared to non-farm islands. Furthermore, emigration and immigration occurred mostly between nearby islands. Moreover, emigration in response to spatial differences in mean population size differed between the habitat types, but populations with large mean received more immigrants in both habitat types. The number of emigrants and immigrants was negatively related to long-term recruit production, which was not the case in non-farm islands. The proportion and number of emigrants was positively related to temporal increases in recruit production on farm islands, however not on non-farm islands. Our results demonstrate that spatial heterogeneity in environmental conditions influences how spatial variation in long-term mean population size, and temporal and spatial variation in recruit production, affects dispersal dynamics. The spatial structure of this metapopulation is therefore best described by a spatially explicit model in which the exchange of individuals within each habitat type is strongly affected by the degree of geographical isolation, population size and recruit production. However, these relationships differed between the two habitat types; non-farm islands showing similarities to a mainland-island model type of structure, whereas farm islands showed features more associated with source-sink or balanced dispersal models. Such differential dispersal dynamics between habitat types are expected to have important consequences for the ecological and evolutionary dynamics within this metapopulation.
Collapse
Affiliation(s)
- Peter S Ranke
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henrik Pärn
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonathan Wright
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Araya-Ajoy YG, Niskanen AK, Froy H, Ranke PS, Kvalnes T, Rønning B, Le Pepke M, Jensen H, Ringsby TH, Saether BE, Wright J. Variation in generation time reveals density regulation as an important driver of pace of life in a bird metapopulation. Ecol Lett 2021; 24:2077-2087. [PMID: 34312969 DOI: 10.1111/ele.13835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/28/2020] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Generation time determines the pace of key demographic and evolutionary processes. Quantified as the weighted mean age at reproduction, it can be studied as a life-history trait that varies within and among populations and may evolve in response to ecological conditions. We combined quantitative genetic analyses with age- and density-dependent models to study generation time variation in a bird metapopulation. Generation time was heritable, and males had longer generation times than females. Individuals with longer generation times had greater lifetime reproductive success but not a higher expected population growth rate. Density regulation acted on recruit production, suggesting that longer generation times should be favoured when populations are closer to carrying capacity. Furthermore, generation times were shorter when populations were growing and longer when populations were closer to equilibrium or declining. These results support classic theory predicting that density regulation is an important driver of the pace of life-history strategies.
Collapse
Affiliation(s)
- Yimen G Araya-Ajoy
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Alina K Niskanen
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Hannah Froy
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Peter Sjolte Ranke
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Michael Le Pepke
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jonathan Wright
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
6
|
Saatoglu D, Niskanen AK, Kuismin M, Ranke PS, Hagen IJ, Araya-Ajoy YG, Kvalnes T, Pärn H, Rønning B, Ringsby TH, Saether BE, Husby A, Sillanpää MJ, Jensen H. Dispersal in a house sparrow metapopulation: An integrative case study of genetic assignment calibrated with ecological data and pedigree information. Mol Ecol 2021; 30:4740-4756. [PMID: 34270821 DOI: 10.1111/mec.16083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023]
Abstract
Dispersal has a crucial role determining ecoevolutionary dynamics through both gene flow and population size regulation. However, to study dispersal and its consequences, one must distinguish immigrants from residents. Dispersers can be identified using telemetry, capture-mark-recapture (CMR) methods, or genetic assignment methods. All of these methods have disadvantages, such as high costs and substantial field efforts needed for telemetry and CMR surveys, and adequate genetic distance required in genetic assignment. In this study, we used genome-wide 200K Single Nucleotide Polymorphism data and two different genetic assignment approaches (GSI_SIM, Bayesian framework; BONE, network-based estimation) to identify the dispersers in a house sparrow (Passer domesticus) metapopulation sampled over 16 years. Our results showed higher assignment accuracy with BONE. Hence, we proceeded to diagnose potential sources of errors in the assignment results from the BONE method due to variation in levels of interpopulation genetic differentiation, intrapopulation genetic variation and sample size. We show that assignment accuracy is high even at low levels of genetic differentiation and that it increases with the proportion of a population that has been sampled. Finally, we highlight that dispersal studies integrating both ecological and genetic data provide robust assessments of the dispersal patterns in natural populations.
Collapse
Affiliation(s)
- Dilan Saatoglu
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alina K Niskanen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Markku Kuismin
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Finland
| | - Peter S Ranke
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingerid J Hagen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Norwegian Institute for Nature Research, Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henrik Pärn
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arild Husby
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Mikko J Sillanpää
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Finland.,Infotech Oulu, University of Oulu, Oulu, Finland
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Demography, genetics, and decline of a spatially structured population of lekking bird. Oecologia 2021; 195:117-129. [PMID: 33392789 DOI: 10.1007/s00442-020-04808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Understanding the mechanisms underlying population decline is a critical challenge for conservation biologists. Both deterministic (e.g. habitat loss, fragmentation, and Allee effect) and stochastic (i.e. demographic and environmental stochasticity) demographic processes are involved in population decline. Simultaneously, a decrease of population size has far-reaching consequences for genetics of populations by increasing the risk of inbreeding and the strength of genetic drift, which together inevitably results in a loss of genetic diversity and a reduced effective population size ([Formula: see text]). These genetic factors may retroactively affect vital rates (a phenomenon coined 'inbreeding depression'), reduce population growth, and accelerate demographic decline. To date, most studies that have examined the demographic and genetic processes driving the decline of wild populations have neglected their spatial structure. In this study, we examined demographic and genetic factors involved in the decline of a spatially structured population of a lekking bird, the western capercaillie (Tetrao urogallus). To address this issue, we collected capture-recapture and genetic data over a 6-years period in the Vosges Mountains (France). Our study showed that the population of T. urogallus experienced a severe decline between 2010 and 2015. We did not detect any Allee effect on survival and recruitment. By contrast, individuals of both sexes dispersed to avoid small subpopulations, thus suggesting a potential behavioral response to a mate finding Allee effect. In parallel to this demographic decline, the population showed low levels of genetic diversity, high inbreeding and low effective population sizes at both subpopulation and population levels. Despite this, we did not detect evidence of inbreeding depression: neither adult survival nor recruitment were affected by individual inbreeding level. Our study underlines the benefit from combining demographic and genetic approaches to investigate processes that are involved in population decline.
Collapse
|
8
|
Love Stowell SM, Gagne RB, McWhirter D, Edwards W, Ernest HB. Bighorn Sheep Genetic Structure in Wyoming Reflects Geography and Management. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sierra M. Love Stowell
- Wildlife Genomics & Disease Ecology Lab, Department of Veterinary SciencesUniversity of Wyoming 1174 Snowy Range Rd Laramie WY 82070 USA
| | - Roderick B. Gagne
- Wildlife Genomics & Disease Ecology Lab, Department of Veterinary SciencesUniversity of Wyoming 1174 Snowy Range Rd Laramie WY 82070 USA
| | - Doug McWhirter
- Wyoming Game and Fish DepartmentJackson Regional Office 420 N Cache St Jackson WY 830001 USA
| | - William Edwards
- Wyoming Game and Fish DepartmentWildlife Health Laboratory 1174 Snowy Range Rd Laramie WY 82070 USA
| | - Holly B. Ernest
- Wildlife Genomics & Disease Ecology Lab, Department of Veterinary SciencesUniversity of Wyoming 1174 Snowy Range Rd Laramie WY 82070 USA
| |
Collapse
|
9
|
Consistent scaling of inbreeding depression in space and time in a house sparrow metapopulation. Proc Natl Acad Sci U S A 2020; 117:14584-14592. [PMID: 32513746 DOI: 10.1073/pnas.1909599117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inbreeding may increase the extinction risk of small populations. Yet, studies using modern genomic tools to investigate inbreeding depression in nature have been limited to single populations, and little is known about the dynamics of inbreeding depression in subdivided populations over time. Natural populations often experience different environmental conditions and differ in demographic history and genetic composition, characteristics that can affect the severity of inbreeding depression. We utilized extensive long-term data on more than 3,100 individuals from eight islands in an insular house sparrow metapopulation to examine the generality of inbreeding effects. Using genomic estimates of realized inbreeding, we discovered that inbred individuals had lower survival probabilities and produced fewer recruiting offspring than noninbred individuals. Inbreeding depression, measured as the decline in fitness-related traits per unit inbreeding, did not vary appreciably among populations or with time. As a consequence, populations with more resident inbreeding (due to their demographic history) paid a higher total fitness cost, evidenced by a larger variance in fitness explained by inbreeding within these populations. Our results are in contrast to the idea that effects of inbreeding generally depend on ecological factors and genetic differences among populations, and expand the understanding of inbreeding depression in natural subdivided populations.
Collapse
|
10
|
Hagen IJ, Lien S, Billing AM, Elgvin TO, Trier C, Niskanen AK, Tarka M, Slate J, Sætre G, Jensen H. A genome‐wide linkage map for the house sparrow (Passer domesticus) provides insights into the evolutionary history of the avian genome. Mol Ecol Resour 2020; 20:544-559. [DOI: 10.1111/1755-0998.13134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Ingerid J. Hagen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics Department of Animal and Aquacultural Sciences Faculty of Biosciences Norwegian University of Life Sciences Ås Norway
| | - Anna M. Billing
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Tore O. Elgvin
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Cassandra Trier
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Alina K. Niskanen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| | - Maja Tarka
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Department of Biology Lund University Lund Sweden
| | - Jon Slate
- Department of Animal and Plant Sciences University of Sheffield Western Bank Sheffield UK
| | - Glenn‐Peter Sætre
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
11
|
Lee AM, Myhre AM, Markussen SS, Engen S, Solberg EJ, Haanes H, Røed K, Herfindal I, Heim M, Saether BE. Decomposing demographic contributions to the effective population size with moose as a case study. Mol Ecol 2019; 29:56-70. [PMID: 31732991 DOI: 10.1111/mec.15309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 11/30/2022]
Abstract
Levels of random genetic drift are influenced by demographic factors, such as mating system, sex ratio and age structure. The effective population size (Ne ) is a useful measure for quantifying genetic drift. Evaluating relative contributions of different demographic factors to Ne is therefore important to identify what makes a population vulnerable to loss of genetic variation. Until recently, models for estimating Ne have required many simplifying assumptions, making them unsuitable for this task. Here, using data from a small, harvested moose population, we demonstrate the use of a stochastic demographic framework allowing for fluctuations in both population size and age distribution to estimate and decompose the total demographic variance and hence the ratio of effective to total population size (Ne /N) into components originating from sex, age, survival and reproduction. We not only show which components contribute most to Ne /N currently, but also which components have the greatest potential for changing Ne /N. In this relatively long-lived polygynous system we show that Ne /N is most sensitive to the demographic variance of older males, and that both reproductive autocorrelations (i.e., a tendency for the same individuals to be successful several years in a row) and covariance between survival and reproduction contribute to decreasing Ne /N (increasing genetic drift). These conditions are common in nature and can be caused by common hunting strategies. Thus, the framework presented here has great potential to increase our understanding of the demographic processes that contribute to genetic drift and viability of populations, and to inform management decisions.
Collapse
Affiliation(s)
- Aline Magdalena Lee
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ane Marlene Myhre
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stine Svalheim Markussen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Steinar Engen
- Centre for Biodiversity Dynamics, Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Hallvard Haanes
- Norwegian Radiation and Nuclear Safety Authority (DSA), Oslo, Norway
| | - Knut Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ivar Herfindal
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten Heim
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
Gagne RB, Tinker MT, Gustafson KD, Ralls K, Larson S, Tarjan LM, Miller MA, Ernest HB. Measures of effective population size in sea otters reveal special considerations for wide-ranging species. Evol Appl 2018; 11:1779-1790. [PMID: 30459829 PMCID: PMC6231473 DOI: 10.1111/eva.12642] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/21/2023] Open
Abstract
Conservation genetic techniques and considerations of the evolutionary potential of a species are increasingly being applied to species conservation. For example, effective population size (N e) estimates are useful for determining the conservation status of species, yet accurate estimates of current N e remain difficult to obtain. The effective population size can contribute to setting federal delisting criteria, as was done for the southern sea otter (Enhydra lutris nereis). After being hunted to near extinction during the North Pacific fur trade, the southern sea otter has recovered over part of its former range, but remains at relatively low numbers, making it desirable to obtain accurate and consistent estimates of N e. Although theoretical papers have compared the validity of several methods, comparisons of estimators using empirical data in applied conservation settings are limited. We combined thirteen years of demographic and genetic data from 1,006 sea otters to assess multiple N e estimators, as well as temporal trends in genetic diversity and population genetic structure. Genetic diversity was low and did not increase over time. There was no evidence for distinct genetic units, but some evidence for genetic isolation by distance. In particular, estimates of N e based on demographic data were much larger than genetic estimates when computed for the entire range of the population, but were similar at smaller spatial scales. The discrepancy between estimates at large spatial scales could be driven by cryptic population structure and/or individual differences in reproductive success. We recommend the development of new delisting criteria for the southern sea otter. We advise the use of multiple estimates of N e for other wide-ranging species, species with overlapping generations, or with sex-biased dispersal, as well as the development of improved metrics of genetic assessments of populations.
Collapse
Affiliation(s)
- Roderick B. Gagne
- Wildlife Genomics and Disease Ecology LaboratoryDepartment of Veterinary SciencesUniversity of WyomingLaramieWyoming
| | - M. Timothy Tinker
- Western Ecological Research CenterU.S. Geological SurveySanta CruzCalifornia
| | - Kyle D. Gustafson
- Wildlife Genomics and Disease Ecology LaboratoryDepartment of Veterinary SciencesUniversity of WyomingLaramieWyoming
| | - Katherine Ralls
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonDistrict of Columbia
| | | | - L. Max Tarjan
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCalifornia
| | - Melissa A. Miller
- Marine Wildlife Veterinary Care and Research CenterCalifornia Department of Fish and GameSanta CruzCalifornia
| | - Holly B. Ernest
- Wildlife Genomics and Disease Ecology LaboratoryDepartment of Veterinary SciencesUniversity of WyomingLaramieWyoming
| |
Collapse
|
13
|
Trask AE, Bignal EM, McCracken DI, Piertney SB, Reid JM. Estimating demographic contributions to effective population size in an age-structured wild population experiencing environmental and demographic stochasticity. J Anim Ecol 2017; 86:1082-1093. [PMID: 28543048 DOI: 10.1111/1365-2656.12703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/05/2017] [Indexed: 01/25/2023]
Abstract
A population's effective size (Ne ) is a key parameter that shapes rates of inbreeding and loss of genetic diversity, thereby influencing evolutionary processes and population viability. However, estimating Ne , and identifying key demographic mechanisms that underlie the Ne to census population size (N) ratio, remains challenging, especially for small populations with overlapping generations and substantial environmental and demographic stochasticity and hence dynamic age-structure. A sophisticated demographic method of estimating Ne /N, which uses Fisher's reproductive value to account for dynamic age-structure, has been formulated. However, this method requires detailed individual- and population-level data on sex- and age-specific reproduction and survival, and has rarely been implemented. Here, we use the reproductive value method and detailed demographic data to estimate Ne /N for a small and apparently isolated red-billed chough (Pyrrhocorax pyrrhocorax) population of high conservation concern. We additionally calculated two single-sample molecular genetic estimates of Ne to corroborate the demographic estimate and examine evidence for unobserved immigration and gene flow. The demographic estimate of Ne /N was 0.21, reflecting a high total demographic variance (σ2dg) of 0.71. Females and males made similar overall contributions to σ2dg. However, contributions varied among sex-age classes, with greater contributions from 3 year-old females than males, but greater contributions from ≥5 year-old males than females. The demographic estimate of Ne was ~30, suggesting that rates of increase of inbreeding and loss of genetic variation per generation will be relatively high. Molecular genetic estimates of Ne computed from linkage disequilibrium and approximate Bayesian computation were approximately 50 and 30, respectively, providing no evidence of substantial unobserved immigration which could bias demographic estimates of Ne . Our analyses identify key sex-age classes contributing to demographic variance and thus decreasing Ne /N in a small age-structured population inhabiting a variable environment. They thereby demonstrate how assessments of Ne can incorporate stochastic sex- and age-specific demography and elucidate key demographic processes affecting a population's evolutionary trajectory and viability. Furthermore, our analyses show that Ne for the focal chough population is critically small, implying that management to re-establish genetic connectivity may be required to ensure population viability.
Collapse
Affiliation(s)
- Amanda E Trask
- Institute of Biological & Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Eric M Bignal
- Scottish Chough Study Group, Isle of Islay, Argyll, UK
| | | | - Stuart B Piertney
- Institute of Biological & Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Jane M Reid
- Institute of Biological & Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
14
|
Kvalnes T, Ringsby TH, Jensen H, Hagen IJ, Rønning B, Pärn H, Holand H, Engen S, Saether BE. Reversal of response to artificial selection on body size in a wild passerine. Evolution 2017; 71:2062-2079. [DOI: 10.1111/evo.13277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Thomas Kvalnes
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Ingerid Julie Hagen
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Henrik Pärn
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Håkon Holand
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Steinar Engen
- Centre for Biodiversity Dynamics (CBD); Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| |
Collapse
|