1
|
Becker C, Steingass CB, Vogel H, Reineke A. Change Your Diet: How CO 2, Plant Phenology and Genotype Alter Grapevine Quality and Affect Performance and Larval Transcriptome of an Insect Herbivore. Mol Ecol 2025:e17636. [PMID: 39789898 DOI: 10.1111/mec.17636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/21/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Herbivorous insects need to cope with changing host plant biochemistry caused by abiotic and biotic impacts, to meet their dietary requirements. Larvae of the multivoltine European grapevine moth Lobesia botrana, one of the main insect pests in viticulture, feed on both flowers and berries. The nutritional value and defence compounds of these organs are changing with plant phenology and are affected by climate change which may accordingly alter plant-insect interactions. Here, we assessed the impacts of future elevated atmospheric CO2 concentrations on the host plant quality of different grapevine organs and the larval performance and the transcriptome of L. botrana. Using the Geisenheim VineyardFACE facility, where 'Riesling' and 'Cabernet Sauvignon' were cultivated in the field under ambient or elevated (ca. + 20%) atmospheric CO2 concentrations, we found that nutrient (amino acids and sugars) and defence compound (phenolic compounds) concentrations of inflorescences and ripening berries differed strongly due to plant phenology and less due to cultivar and CO2 concentration. Assessing global gene expression after feeding on the respective organs, we found that larval transcriptomic plasticity largely mirrored the plant biochemical plasticity. Larval relative growth rate differed between treatments in a plant phenology-dependent manner. Grape berries contained higher amino acid concentrations and altered phenolics profiles after larval feeding. In the near future, the grapevine-L. botrana interaction will probably change less because of elevated CO2 concentrations than it does currently during one season. Changes associated with plant phenology, however, may be relevant for contemporary pest management.
Collapse
Affiliation(s)
- Christine Becker
- Department of Crop Protection, Hochschule Geisenheim University, Geisenheim, Germany
| | - Christof B Steingass
- Department of Beverage Research, Hochschule Geisenheim University, Geisenheim, Germany
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Annette Reineke
- Department of Crop Protection, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
2
|
Naseer A, Singh VV, Sellamuthu G, Synek J, Mogilicherla K, Kokoska L, Roy A. Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle. Int J Mol Sci 2024; 25:10209. [PMID: 39337695 PMCID: PMC11432361 DOI: 10.3390/ijms251810209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the Eurasian spruce bark beetle, ESBB (Ips typographus). Despite these defences, the ESBB infests Norway spruce, causing significant ecological damage by exploiting weakened trees and using pheromones for aggregation. However, the mechanism of sensing and resistance towards host allelochemicals in ESBB is poorly understood. We hypothesised that the exposure of ESBB to spruce allelochemicals, especially monoterpenes, leads to an upsurge in the important detoxification genes like P450s, GSTs, UGTs, and transporters, and at the same time, genes responsible for development must be compromised. The current study demonstrates that exposure to monoterpenes like R-limonene and sabiene effectively elevated detoxification enzyme activities. The differential gene expression (DGE) analysis revealed 294 differentially expressed (DE) detoxification genes in response to R-limonene and 426 DE detoxification genes in response to sabiene treatments, with 209 common genes between the treatments. Amongst these, genes from the cytochrome P450 family 4 and 6 genes (CP4 and CP6), esterases, glutathione S-transferases family 1 (GSTT1), UDP-glucuronosyltransferase 2B genes (UDB), and glucose synthesis-related dehydrogenases were highly upregulated. We further validated 19 genes using RT-qPCR. Additionally, we observed similar high expression levels of detoxification genes across different monoterpene treatments, including myrcene and α-pinene, suggesting a conserved detoxification mechanism in ESBB, which demands further investigation. These findings highlight the potential for molecular target-based beetle management strategies targeting these key detoxification genes.
Collapse
Affiliation(s)
- Aisha Naseer
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Vivek Vikram Singh
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- Institute of Forest Ecology, Slovak Academy of Sciences, Štúrova 2, 960 53 Zvolen, Slovakia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Jiří Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Ladislav Kokoska
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| |
Collapse
|
3
|
Barber A, Friedrichs J, Müller C. Gregarines impact consumption and development but not glucosinolate metabolism in the mustard leaf beetle. Front Physiol 2024; 15:1394576. [PMID: 38751987 PMCID: PMC11094291 DOI: 10.3389/fphys.2024.1394576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Gregarines are usually classified as parasites, but recent studies suggest that they should be viewed on a parasitism-mutualism spectrum and may even be seen as part of the gut microbiota of host insects. As such, they may also impact the consumption of their hosts and/or be involved in the digestion or detoxification of the host's diet. To study such effects of a gregarine species on those traits in its host, the mustard leaf beetle (Phaedon cochleariae) was used. This beetle species feeds on Brassicaceae plants that contain glucosinolates, which form toxic compounds when hydrolyzed by myrosinases. We cleaned host eggs from gametocysts and spores and reinfected half of the larvae with gregarines, to obtain gregarine-free (G-) and gregarine-infected (G+) larvae. Growth and food consumption parameters of these larvae were assessed by rearing individuals on watercress (Nasturtium officinale, Brassicaceae). A potential involvement of gregarines in the glucosinolate metabolism of P. cochleariae larvae was investigated by offering G- and G+ larvae leaf discs of watercress (containing mainly the benzenic 2-phenylethyl glucosinolate and myrosinases) or pea (Pisum sativum, Fabaceae, lacking glucosinolates and myrosinases) treated with the aliphatic 4-pentenyl glucosinolate or the indole 1-methoxy-3-indolylmethyl glucosinolate. Larval and fecal samples were analyzed via UHPLC-QTOF-MS/MS to search for breakdown metabolites. Larval development, body mass, growth rate and efficiency to convert food into body mass were negatively affected by gregarine infection while the pupal mass remained unaffected. The breakdown metabolites of benzenic and aliphatic glucosinolates were conjugated with aspartic acid, while those of the indole glucosinolate were conjugated with glutamic acid. Gregarine infection did not alter the larvae's ability to metabolize glucosinolates and was independent of plant myrosinases. In summary, some negative effects of gregarines on host performance could be shown, indicating parasitism. Future studies may further disentangle this gregarine-host relationship and investigate the microbiome potentially involved in the glucosinolate metabolism.
Collapse
Affiliation(s)
- Alessa Barber
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Jeanne Friedrichs
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Sellamuthu G, Naseer A, Hradecký J, Chakraborty A, Synek J, Modlinger R, Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104061. [PMID: 38151136 DOI: 10.1016/j.ibmb.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Aisha Naseer
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jaromír Hradecký
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amrita Chakraborty
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jiří Synek
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Roman Modlinger
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amit Roy
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic.
| |
Collapse
|
5
|
Breeschoten T, Schranz ME, Poelman EH, Simon S. Family dinner: Transcriptional plasticity of five Noctuidae (Lepidoptera) feeding on three host plant species. Ecol Evol 2022; 12:e9258. [PMID: 36091341 PMCID: PMC9448971 DOI: 10.1002/ece3.9258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Polyphagous insects often show specialization in feeding on different host plants in terms of survival and growth and, therefore, can be considered minor or major pests of particular hosts. Whether polyphagous insects employ a common transcriptional response to cope with defenses from diverse host plants is under-studied. We focused on patterns of transcriptional plasticity in polyphagous moths (Noctuidae), of which many species are notorious pests, in relation to herbivore performance on different host plants. We compared the transcriptional plasticity of five polyphagous moth species feeding and developing on three different host plant species. Using a comparative phylogenetic framework, we evaluated if successful herbivory, as measured by larval performance, is determined by a shared or lineage-specific transcriptional response. The upregulated transcriptional activity, or gene expression pattern, of larvae feeding on the different host plants and artificial control diet was highly plastic and moth species-specific. Specialization, defined as high herbivore success for specific host plants, was not generally linked to a lower number of induced genes. Moths that were more distantly related and showing high herbivore success for certain host plants showed shared expression of multiple homologous genes, indicating convergence. We further observed specific transcriptional responses within phylogenetic lineages. These expression patterns for specific host plant species are likely caused by shared evolutionary histories, for example, symplesiomorphic patterns, and could therefore not be associated with herbivore success alone. Multiple gene families, with roles in plant digestion and detoxification, were widely expressed in response to host plant feeding but again showed highly moth species-specific. Consequently, high herbivore success for specific host plants is also driven by species-specific transcriptional plasticity. Thus, potential pest moths display a complex and species-specific transcriptional plasticity.
Collapse
Affiliation(s)
- Thijmen Breeschoten
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| | - M. Eric Schranz
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
6
|
Tadmor E, Juravel K, Morin S, Santos-Garcia D. Evolved transcriptional responses and their trade-offs after long-term adaptation of Bemisia tabaci to a marginally-suitable host. Genome Biol Evol 2022; 14:6649882. [PMID: 35880721 PMCID: PMC9372648 DOI: 10.1093/gbe/evac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Although generalist insect herbivores can migrate and rapidly adapt to a broad range of host plants, they can face significant difficulties when accidentally migrating to novel and marginally-suitable hosts. What happens, both in performance and gene expression regulation, if these marginally-suitable hosts must be used for multiple generations before migration to a suitable host can take place, largely remains unknown. In this study, we established multigenerational colonies of the whitefly Bemisia tabaci, a generalist phloem-feeding species, adapted to a marginally-suitable host (habanero pepper) or an optimal host (cotton). We used reciprocal host tests to estimate the differences in performance of the populations on both hosts under optimal (30 oC) and mild-stressful (24 oC) temperature conditions, and documented the associated transcriptomic changes. The habanero pepper-adapted population greatly improved its performance on habanero pepper but did not reach its performance level on cotton, the original host. It also showed reduced performance on cotton, relative to the non-adapted population, and an antagonistic effect of the lower-temperature stressor. The transcriptomic data revealed that most of the expression changes, associated with long-term adaptation to habanero pepper, can be categorized as "evolved" with no initial plastic response. Three molecular functions dominated: enhanced formation of cuticle structural constituents, enhanced activity of oxidation-reduction processes involved in neutralization of phytotoxins and reduced production of proteins from the cathepsin B family. Taken together, these findings indicate that generalist insects can adapt to novel host plants by modifying the expression of a relatively small set of specific molecular functions.
Collapse
Affiliation(s)
- Ella Tadmor
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Ksenia Juravel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology University Lyon 1 - UMR CNRS 5558, Villeurbanne, France
| |
Collapse
|
7
|
Unique metabolism of different glucosinolates in larvae and adults of a leaf beetle specialised on Brassicaceae. Sci Rep 2022; 12:10905. [PMID: 35764778 PMCID: PMC9240079 DOI: 10.1038/s41598-022-14636-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/09/2022] [Indexed: 01/12/2023] Open
Abstract
Brassicaceae plants contain glucosinolates, which are hydrolysed by myrosinases to toxic products such as isothiocyanates and nitriles, acting as defences. Herbivores have evolved various detoxification strategies, which are reviewed here. Larvae of Phaedon cochleariae (Coleoptera: Chrysomelidae) metabolise hydrolysis products of benzenic glucosinolates by conjugation with aspartic acid. In this study, we investigated whether P. cochleariae uses the same metabolic pathway for structurally different glucosinolates, whether the metabolism differs between adults and larvae and which hydrolysis products are formed as intermediates. Feeding experiments were performed with leaves of watercress (Nasturtium officinale, Brassicaceae) and pea (Pisum sativum, non-Brassicaceae), to which glucosinolates with structurally different side chains (benzenic, indole or aliphatic) or their hydrolysis products were applied. Samples were analysed by UHPLC-QTOF-MS/MS or TD–GC–MS. The same aspartic acid conjugates as previously identified in larvae were also detected as major metabolites of benzenic glucosinolates in adults. Indol-3-ylmethyl glucosinolate was mainly metabolised to N-(1H-indol-3-ylcarbonyl) glutamic acid in adults and larvae, while the metabolism of 2-propenyl glucosinolate remains unclear. The metabolism may thus proceed primarily via isothiocyanates rather than via nitriles, while the hydrolysis occurs independently of plant myrosinases. A detoxification by conjugation with these amino acids is not yet known from other Brassicaceae-feeders.
Collapse
|
8
|
Bessette E, Williams B. Protists in the Insect Rearing Industry: Benign Passengers or Potential Risk? INSECTS 2022; 13:482. [PMID: 35621816 PMCID: PMC9144225 DOI: 10.3390/insects13050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023]
Abstract
As the insects for food and feed industry grows, a new understanding of the industrially reared insect microbiome is needed to better comprehend the role that it plays in both maintaining insect health and generating disease. While many microbiome projects focus on bacteria, fungi or viruses, protists (including microsporidia) can also make up an important part of these assemblages. Past experiences with intensive invertebrate rearing indicate that these parasites, whilst often benign, can rapidly sweep through populations, causing extensive damage. Here, we review the diversity of microsporidia and protist species that are found in reared insect hosts and describe the current understanding of their host spectra, life cycles and the nature of their interactions with hosts. Major entomopathogenic parasite groups with the potential to infect insects currently being reared for food and feed include the Amoebozoa, Apicomplexa, Ciliates, Chlorophyta, Euglenozoa, Ichtyosporea and Microsporidia. However, key gaps exist in the understanding of how many of these entomopathogens affect host biology. In addition, for many of them, there are very limited or even no molecular data, preventing the implementation of molecular detection methods. There is now a pressing need to develop and use novel molecular tools, coupled with standard molecular diagnostic methods, to help unlock their biology and predict the effects of these poorly studied protist parasites in intensive insect rearing systems.
Collapse
Affiliation(s)
- Edouard Bessette
- Living Systems Institute, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK;
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - Bryony Williams
- Living Systems Institute, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK;
| |
Collapse
|
9
|
Wolz M, Rueckert S, Müller C. Fluctuating Starvation Conditions Modify Host-Symbiont Relationship Between a Leaf Beetle and Its Newly Identified Gregarine Species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.850161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gregarines are ubiquitous endosymbionts in invertebrates, including terrestrial insects. However, the biodiversity of gregarines is probably vastly underestimated and the knowledge about their role in shaping fitness-related traits of their host in dependence of fluctuating environmental conditions is limited. Using morphological and molecular analyses, we identified a new gregarine species, Gregarina cochlearium sp. n., in the mustard leaf beetle, Phaedon cochleariae. Applying a full-factorial design, we investigated the effects of a gregarine infection in combination with fluctuating starvation conditions during the larval stage on the development time and fitness-related traits of adult beetles. Under benign environmental conditions, the relationship between gregarines and the host seemed neutral, as host development, body mass, reproduction and survival were not altered by a gregarine infection. However, when additionally exposed to starvation, the combination of gregarine infection and this stress resulted in the lowest reproduction and survival of the host, which points to a parasitic relationship. Furthermore, when the host experienced starvation, the development time was prolonged and the adult females were lighter compared to non-starved individuals, independent of the presence of gregarines. Counting of gregarines in the guts of larvae revealed a lower gregarine load with increasing host body mass under stable food conditions, which indicates a regulation of the gregarine burden in dependence of the host condition. Contrary, in starved individuals the number of gregarines was the highest, hence the already weakened host suffered additionally from a higher gregarine burden. This interactive effect between gregarine infection and fluctuating starvation conditions led to an overall reduced fitness of P. cochleariae. Our study emphasizes the need to study endosymbionts as important components of the natural environment and to investigate the role of host-symbiont relationships under fluctuating environmental conditions in an evolutionary and ecological context.
Collapse
|
10
|
Salehipourshirazi G, Bruinsma K, Ratlamwala H, Dixit S, Arbona V, Widemann E, Milojevic M, Jin P, Bensoussan N, Gómez-Cadenas A, Zhurov V, Grbic M, Grbic V. Rapid specialization of counter defenses enables two-spotted spider mite to adapt to novel plant hosts. PLANT PHYSIOLOGY 2021; 187:2608-2622. [PMID: 34618096 PMCID: PMC8644343 DOI: 10.1093/plphys/kiab412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/05/2021] [Indexed: 05/06/2023]
Abstract
Genetic adaptation, occurring over a long evolutionary time, enables host-specialized herbivores to develop novel resistance traits and to efficiently counteract the defenses of a narrow range of host plants. In contrast, physiological acclimation, leading to the suppression and/or detoxification of host defenses, is hypothesized to enable broad generalists to shift between plant hosts. However, the host adaptation mechanisms used by generalists composed of host-adapted populations are not known. Two-spotted spider mite (TSSM; Tetranychus urticae) is an extreme generalist herbivore whose individual populations perform well only on a subset of potential hosts. We combined experimental evolution, Arabidopsis thaliana genetics, mite reverse genetics, and pharmacological approaches to examine mite host adaptation upon the shift of a bean (Phaseolus vulgaris)-adapted population to Arabidopsis. We showed that cytochrome P450 monooxygenases are required for mite adaptation to Arabidopsis. We identified activities of two tiers of P450s: general xenobiotic-responsive P450s that have a limited contribution to mite adaptation to Arabidopsis and adaptation-associated P450s that efficiently counteract Arabidopsis defenses. In approximately 25 generations of mite selection on Arabidopsis plants, mites evolved highly efficient detoxification-based adaptation, characteristic of specialist herbivores. This demonstrates that specialization to plant resistance traits can occur within the ecological timescale, enabling the TSSM to shift to novel plant hosts.
Collapse
Affiliation(s)
| | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Huzefa Ratlamwala
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Sameer Dixit
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, E-12071, Spain
| | - Emilie Widemann
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Pengyu Jin
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, E-12071, Spain
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
- Instituto de Ciencias de la Vid y el Vino (CSIC, UR, Gobiernode La Rioja), Logrono 26006, Spain
- Department of Biology, University of Belgrade, Belgrade, Serbia
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
- Author for communication:
| |
Collapse
|
11
|
Gregarines modulate insect responses to sublethal insecticide residues. Oecologia 2021; 198:255-265. [PMID: 34851452 PMCID: PMC8803800 DOI: 10.1007/s00442-021-05086-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/18/2021] [Indexed: 10/25/2022]
Abstract
Throughout their lifetime, insects face multiple environmental challenges that influence their performance. Gregarines are prevalent endoparasites in most invertebrates that affect the fitness of their hosts, but are often overlooked in ecological studies. Next to such biotic factors, a current common challenge is anthropogenic pollution with pesticides, which causes a major threat to non-target organisms that are readily exposed to lethal or sublethal concentrations. In a laboratory study, we investigated whether the presence of gregarines modulates the food consumption and life history traits of a (non-target) leaf beetle species, Phaedon cochleariae, in response to sublethal insecticide exposure. We show that the larval food consumption of the herbivore was neither affected by gregarine infection nor sublethal insecticide exposure. Nevertheless, infection with gregarines led to a delayed development, while insecticide exposure resulted in a lower body mass of adult males and a reduced reproduction of females. Individuals exposed to both challenges suffered most, as they had the lowest survival probability. This indicates detrimental effects on the population dynamics of non-target insects infected with naturally occurring gregarines that face additional stress from agrochemical pollution. Moreover, we found that the infection load with gregarines was higher in individuals exposed to sublethal insecticide concentrations compared to unexposed individuals. To counteract the global decline of insects, the potential of natural parasite infections in modulating insect responses to anthropogenic and non-anthropogenic environmental factors should be considered in ecological risk assessment.
Collapse
|
12
|
Simon S, Breeschoten T, Jansen HJ, Dirks RP, Schranz ME, Ros VID. Genome and transcriptome analysis of the beet armyworm Spodoptera exigua reveals targets for pest control. G3 (BETHESDA, MD.) 2021; 11:jkab311. [PMID: 34557910 PMCID: PMC8527508 DOI: 10.1093/g3journal/jkab311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
The genus Spodoptera (Lepidoptera: Noctuidae) includes some of the most infamous insect pests of cultivated plants including Spodoptera frugiperda, Spodoptera litura, and Spodoptera exigua. To effectively develop targeted pest control strategies for diverse Spodoptera species, genomic resources are highly desired. To this aim, we provide the genome assembly and developmental transcriptome comprising all major life stages of S. exigua, the beet armyworm. Spodoptera exigua is a polyphagous herbivore that can feed on > 130 host plants, including several economically important crops. The 419 Mb beet armyworm genome was sequenced from a female S. exigua pupa. Using a hybrid genome sequencing approach (Nanopore long-read data and Illumina short read), a high-quality genome assembly was achieved (N50 = 1.1 Mb). An official gene set (18,477 transcripts) was generated by automatic annotation and by using transcriptomic RNA-seq datasets of 18 S. exigua samples as supporting evidence. In-depth analyses of developmental stage-specific expression combined with gene tree analyses of identified homologous genes across Lepidoptera genomes revealed four potential genes of interest (three of them Spodoptera-specific) upregulated during first- and third-instar larval stages for targeted pest-outbreak management. The beet armyworm genome sequence and developmental transcriptome covering all major developmental stages provide critical insights into the biology of this devastating polyphagous insect pest species worldwide. In addition, comparative genomic analyses across Lepidoptera significantly advance our knowledge to further control other invasive Spodoptera species and reveals potential lineage-specific target genes for pest control strategies.
Collapse
Affiliation(s)
- Sabrina Simon
- Biosystematics Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Thijmen Breeschoten
- Biosystematics Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Hans J Jansen
- Future Genomics Technologies, Leiden, The Netherlands
| | - Ron P Dirks
- Future Genomics Technologies, Leiden, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Mackay-Smith A, Dornon MK, Lucier R, Okimoto A, Mendonca de Sousa F, Rodriguero M, Confalonieri V, Lanteri AA, Sequeira AS. Host-specific gene expression as a tool for introduction success in Naupactus parthenogenetic weevils. PLoS One 2021; 16:e0248202. [PMID: 34329290 PMCID: PMC8323892 DOI: 10.1371/journal.pone.0248202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/13/2021] [Indexed: 11/22/2022] Open
Abstract
Food resource access can mediate establishment success in invasive species, and generalist herbivorous insects are thought to rely on mechanisms of transcriptional plasticity to respond to dietary variation. While asexually reproducing invasives typically have low genetic variation, the twofold reproductive capacity of asexual organisms is a marked advantage for colonization. We studied host-related transcriptional acclimation in parthenogenetic, invasive, and polyphagous weevils: Naupactus cervinus and N. leucoloma. We analyzed patterns of gene expression in three gene categories that can mediate weevil-host plant interactions through identification of suitable host plants, short-term acclimation to host plant defenses, and long-term adaptation to host plant defenses and their pathogens. This approach employed comparative transcriptomic methods to investigate differentially expressed host detection, detoxification, immune defense genes, and pathway-level gene set enrichment. Our results show that weevil gene expression responses can be host plant-specific, and that elements of that response can be maintained in the offspring. Some host plant groups, such as legumes, appear to be more taxing as they elicit a complex gene expression response which is both strong in intensity and specific in identity. However, the weevil response to taxing host plants shares many differentially expressed genes with other stressful situations, such as host plant cultivation conditions and transition to novel host, suggesting that there is an evolutionarily favorable shared gene expression regime for responding to different types of stressful situations. Modulating gene expression in the absence of other avenues for phenotypic adaptation may be an important mechanism of successful colonization for these introduced insects.
Collapse
Affiliation(s)
- Ava Mackay-Smith
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Mary Kate Dornon
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Rosalind Lucier
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Anna Okimoto
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Flavia Mendonca de Sousa
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Marcela Rodriguero
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Viviana Confalonieri
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analia A. Lanteri
- Facultad de Ciencias Naturales y Museo, Universidad de La Plata, La Plata, Argentina
| | - Andrea S. Sequeira
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| |
Collapse
|
14
|
Aguirre-Rojas LM, Scully ED, Trick HN, Zhu KY, Smith CM. Comparative analyses of transcriptional responses of Dectes texanus LeConte (Coleoptera: Cerambycidae) larvae fed on three different host plants and artificial diet. Sci Rep 2021; 11:11448. [PMID: 34075134 PMCID: PMC8169664 DOI: 10.1038/s41598-021-90932-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Dectes texanus is an important coleopteran pest of soybeans and cultivated sunflowers in the Midwestern United States that causes yield losses by girdling stems of their host plants. Although sunflower and giant ragweed are primary hosts of D. texanus, they began colonizing soybeans approximately 50 years ago and no reliable management method has been established to prevent or reduce losses by this pest. To identify genes putatively involved when feeding soybean, we compared gene expression of D. texanus third-instar larvae fed soybean to those fed sunflower, giant ragweed, or artificial diet. Dectes texanus larvae differentially expressed 514 unigenes when fed on soybean compared to those fed the other diet treatments. Enrichment analyses of gene ontology terms from up-regulated unigenes in soybean-fed larvae compared to those fed both primary hosts highlighted unigenes involved in oxidoreductase and polygalacturonase activities. Cytochrome P450s, carboxylesterases, major facilitator superfamily transporters, lipocalins, apolipoproteins, glycoside hydrolases 1 and 28, and lytic monooxygenases were among the most commonly up-regulated unigenes in soybean-fed larvae compared to those fed their primary hosts. These results suggest that D. texanus larvae differentially expressed unigenes involved in biotransformation of allelochemicals, digestion of plant cell walls and transport of small solutes and lipids when feeding in soybean.
Collapse
Affiliation(s)
- Lina M Aguirre-Rojas
- Deparment of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92506, USA
| | - Erin D Scully
- Stored Product Insect and Engineering Research Unit, USDA-ARS-CGAHR, Manhattan, KS, 66502, USA
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - C Michael Smith
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
15
|
Malka O, Feldmesser E, van Brunschot S, Santos‐Garcia D, Han W, Seal S, Colvin J, Morin S. The molecular mechanisms that determine different degrees of polyphagy in the Bemisia tabaci species complex. Evol Appl 2021; 14:807-820. [PMID: 33767754 PMCID: PMC7980310 DOI: 10.1111/eva.13162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
The whitefly Bemisia tabaci is a closely related group of >35 cryptic species that feed on the phloem sap of a broad range of host plants. Species in the complex differ in their host-range breadth, but the mechanisms involved remain poorly understood. We investigated, therefore, how six different B. tabaci species cope with the environmental unpredictability presented by a set of four common and novel host plants. Behavioral studies indicated large differences in performances on the four hosts and putative specialization of one of the species to cassava plants. Transcriptomic analyses revealed two main insights. First, a large set of genes involved in metabolism (>85%) showed differences in expression between the six species, and each species could be characterized by its own unique expression pattern of metabolic genes. However, within species, these genes were constitutively expressed, with a low level of environmental responsiveness (i.e., to host change). Second, within each species, sets of genes mainly associated with the super-pathways "environmental information processing" and "organismal systems" responded to the host switching events. These included genes encoding for proteins involved in sugar homeostasis, signal transduction, membrane transport, and immune, endocrine, sensory and digestive responses. Our findings suggested that the six B. tabaci species can be divided into four performance/transcriptomic "Types" and that polyphagy can be achieved in multiple ways. However, polyphagy level is determined by the specific identity of the metabolic genes/pathways that are enriched and overexpressed in each species (the species' individual metabolic "tool kit").
Collapse
Affiliation(s)
- Osnat Malka
- Department of EntomologyThe Hebrew University of JerusalemRehovotIsrael
| | - Ester Feldmesser
- Department of Biological ServicesWeizmann Institute of ScienceRehovotIsrael
| | - Sharon van Brunschot
- Natural Resources InstituteUniversity of GreenwichKentUK
- School of Biological Sciencesthe University of QueenslandBrisbaneQldAustralia
| | | | - Wen‐Hao Han
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Susan Seal
- Natural Resources InstituteUniversity of GreenwichKentUK
| | - John Colvin
- Natural Resources InstituteUniversity of GreenwichKentUK
| | - Shai Morin
- Department of EntomologyThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
16
|
Vandenhole M, Dermauw W, Van Leeuwen T. Short term transcriptional responses of P450s to phytochemicals in insects and mites. CURRENT OPINION IN INSECT SCIENCE 2021; 43:117-127. [PMID: 33373700 PMCID: PMC8082277 DOI: 10.1016/j.cois.2020.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) play a key role in the detoxification of phytochemicals in arthropod herbivores. We present here an overview of recent progress in understanding the breadth and specificity of gene expression plasticity of P450s in response to phytochemicals. We discuss experimental setups and new findings in mechanisms of P450 regulation. Whole genome transcriptomic analysis of arthropod herbivores, either after direct administration of phytochemicals or after host plant shifts, allowed to integrate various levels of chemical complexity and lead to the unbiased identification of responsive P450 genes. However, despite progress in identification of inducible P450s, the link between induction and metabolism is still largely unexplored, and to what extent the overall response is biologically functional should be further investigated. In the near future, such studies will be more straightforward as forward and reverse genetic tools become more readily available.
Collapse
Affiliation(s)
- Marilou Vandenhole
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Iinks 653, 9000 Ghent, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Iinks 653, 9000 Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Iinks 653, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Kumar P, Akhter T, Bhardwaj P, Kumar R, Bhardwaj U, Mazumdar-Leighton S. Consequences of 'no-choice, fixed time' reciprocal host plant switches on nutrition and gut serine protease gene expression in Pieris brassicae L. (Lepidoptera: Pieridae). PLoS One 2021; 16:e0245649. [PMID: 33471847 PMCID: PMC7817030 DOI: 10.1371/journal.pone.0245649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
Rapid adaptive responses were evident from reciprocal host-plant switches on performance, digestive physiology and relative gene expression of gut serine proteases in larvae of crucifer pest P. brassicae transferred from cauliflower (CF, Brassica oleracea var. botrytis, family Brassicaceae) to an alternate host, garden nasturtium, (GN, Tropaeolum majus L., family Tropaeolaceae) and vice-versa under laboratory conditions. Estimation of nutritional indices indicated that larvae of all instars tested consumed the least food and gained less weight on CF-GN diet (significant at p≤0.05) as compared to larvae feeding on CF-CF, GN-GN and GN-CF diets suggesting that the switch to GN was nutritionally less favorable for larval growth. Nevertheless, these larvae, especially fourth instars, were adroit in utilizing and digesting GN as a new host plant type. In vitro protease assays conducted to understand associated physiological responses within twelve hours indicated that levels and properties of gut proteases were significantly influenced by type of natal host-plant consumed, change in diet as well as larval age. Activities of gut trypsins and chymotrypsins in larvae feeding on CF-GN and GN-CF diets were distinct, and represented shifts toward profiles observed in larvae feeding continuously on GN-GN and CF-CF diets respectively. Results with diagnostic protease inhibitors like TLCK, STI and SBBI in these assays and gelatinolytic zymograms indicated complex and contrasting trends in gut serine protease activities in different instars from CF-GN diet versus GN-CF diet, likely due to ingestion of plant protease inhibitors present in the new diet. Cloning and sequencing of serine protease gene fragments expressed in gut tissues of fourth instar P. brassicae revealed diverse transcripts encoding putative trypsins and chymotrypsins belonging to at least ten lineages. Sequences of members of each lineage closely resembled lepidopteran serine protease orthologs including uncharacterized transcripts from Pieris rapae. Differential regulation of serine protease genes (Pbr1-Pbr5) was observed in larval guts of P. brassicae from CF-CF and GN-GN diets while expression of transcripts encoding two putative trypsins (Pbr3 and Pbr5) were significantly different in larvae from CF-GN and GN-CF diets. These results suggested that some gut serine proteases that were differentially expressed in larvae feeding on different species of host plants were also involved in rapid adaptations to dietary switches. A gene encoding nitrile-specifier protein (nsp) likely involved in detoxification of toxic products from interactions of ingested host plant glucosinolates with myrosinases was expressed to similar levels in these larvae. Taken together, these snapshots reflected contrasts in physiological and developmental plasticity of P. brassicae larvae to nutritional challenges from wide dietary switches in the short term and the prominent role of gut serine proteases in rapid dietary adaptations. This study may be useful in designing novel management strategies targeting candidate gut serine proteases of P. brassicae using RNA interference, gene editing or crops with transgenes encoding protease inhibitors from taxonomically-distant host plants.
Collapse
Affiliation(s)
- Pawan Kumar
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Tabasum Akhter
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Parul Bhardwaj
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Rakesh Kumar
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Usha Bhardwaj
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | | |
Collapse
|
18
|
Cohen ZP, Brevik K, Chen YH, Hawthorne DJ, Weibel BD, Schoville SD. Elevated rates of positive selection drive the evolution of pestiferousness in the Colorado potato beetle (Leptinotarsa decemlineata, Say). Mol Ecol 2020; 30:237-254. [PMID: 33095936 DOI: 10.1111/mec.15703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Contextualizing evolutionary history and identifying genomic features of an insect that might contribute to its pest status is important in developing early detection and control tactics. In order to understand the evolution of pestiferousness, which we define as the accumulation of traits that contribute to an insect population's success in an agroecosystem, we tested the importance of known genomic properties associated with rapid adaptation in the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say. Within the leaf beetle genus Leptinotarsa, only CPB, and a few populations therein, has risen to pest status on cultivated nightshades, Solanum. Using whole genomes from ten closely related Leptinotarsa species native to the United States, we reconstructed a high-quality species tree and used this phylogenetic framework to assess evolutionary patterns in four genomic features of rapid adaptation: standing genetic variation, gene family expansion and contraction, transposable element abundance and location, and positive selection at protein-coding genes. Throughout approximately 20 million years of history, Leptinotarsa species show little evidence of gene family turnover and transposable element variation. However, there is a clear pattern of CPB experiencing higher rates of positive selection on protein-coding genes. We determine that these rates are associated with greater standing genetic variation due to larger effective population size, which supports the theory that the demographic history contributes to rates of protein evolution. Furthermore, we identify a suite of coding genes under positive selection that are putatively associated with pestiferousness in the Colorado potato beetle lineage. They are involved in the biological processes of xenobiotic detoxification, chemosensation and hormone function.
Collapse
Affiliation(s)
- Zachary P Cohen
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristian Brevik
- Department of Plant and Soil Sciences, University of Vermont, Burlington, VT, USA
| | - Yolanda H Chen
- Department of Plant and Soil Sciences, University of Vermont, Burlington, VT, USA
| | - David J Hawthorne
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Benjamin D Weibel
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Jia S, Li Y, Dai X, Li X, Zhou Y, Xu Y, Wang H. Physiological adaptations to sugar-mimic alkaloids: Insights from Bombyx mori for long-term adaption and short-term response. Ecol Evol 2020; 10:9682-9695. [PMID: 33005339 PMCID: PMC7520222 DOI: 10.1002/ece3.6574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Insects evolved adaptive plasticity to minimize the effects of the chemical defenses of their host plants. Nevertheless, the expressional response and adaptation of phytophagous specialists for long-term adaption and short-term response to host phytochemicals remains largely unexplored. The mulberry (Morus alba)-silkworm (Bombyx mori) interaction is an old and well-known model of plant-insect interaction. In this study, we examined the long-term adaption and short-term response of the mulberry-specialist silkworm to two sugar-mimic alkaloids in mulberry: the commonly encountered 1-deoxynojirimycin (1-DNJ) and occasionally encountered 1,4-dideoxy-1,4-imino-D-arabinitol (D-AB1), respectively. Global transcriptional patterns revealed that the physiological responses induced by the selective expression of genes involved in manifold cellular processes, including detoxification networks, canonical digestion processes, target enzymes, and other fundamental physiological processes, were crucial for regulating metabolic homeostasis. Comparative network analysis of the effects of exposure to D-AB1 and 1-DNJ supported the contention that B. mori produced similar and specific trajectories of changed gene expression in response to different sugar-mimic alkaloids. D-AB1 elicited a substantial proportion of downregulated genes relating to carbohydrate metabolism, catabolic process, lipid metabolism, and glycan biosynthesis and metabolism. This study dramatically expands our knowledge of the physiological adaptations to dietary sugar-mimic alkaloid intake and uncovered both metabolic evolutionarily responses and unique adaptive mechanisms previously unknown in insects.
Collapse
Affiliation(s)
- Shunze Jia
- College of Animal Sciences Zhejiang University Hangzhou China
| | - Yinghui Li
- College of Animal Sciences Zhejiang University Hangzhou China
| | - Xiangping Dai
- College of Animal Sciences Zhejiang University Hangzhou China
| | - Xiaotong Li
- College of Animal Sciences Zhejiang University Hangzhou China
| | - Yanyan Zhou
- College of Animal Sciences Zhejiang University Hangzhou China
| | - Yusong Xu
- College of Animal Sciences Zhejiang University Hangzhou China
| | - Huabing Wang
- College of Animal Sciences Zhejiang University Hangzhou China
| |
Collapse
|
20
|
Gene Expression and Diet Breadth in Plant-Feeding Insects: Summarizing Trends. Trends Ecol Evol 2019; 35:259-277. [PMID: 31791830 DOI: 10.1016/j.tree.2019.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022]
Abstract
Transcriptomic studies lend insights into the role of transcriptional plasticity in adaptation and specialization. Recently, there has been growing interest in understanding the relationship between variation in herbivorous insect gene expression and the evolution of diet breadth. We review the studies that have emerged on insect gene expression and host plant use, and outline the questions and approaches in the field. Many candidate genes underlying herbivory and specialization have been identified, and a few key studies demonstrate increased transcriptional plasticity associated with generalist compared with specialist species. Addressing the roles that transcriptional variation plays in insect diet breadth will have important implications for our understanding of the evolution of specialization and the genetic and environmental factors that govern insect-plant interactions.
Collapse
|
21
|
Breeschoten T, Ros VID, Schranz ME, Simon S. An influential meal: host plant dependent transcriptional variation in the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). BMC Genomics 2019; 20:845. [PMID: 31722664 PMCID: PMC6854893 DOI: 10.1186/s12864-019-6081-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND To understand the genetic mechanisms of insect herbivory, the transcriptional response of insects feeding on different host plant species has to be studied. Here, we generated gene expression data of the generalist herbivore Spodoptera exigua (Hübner) feeding on three selected host plant species and a control (artificial diet). The host plant species used in this study -cabbage (Brassica oleracea), maize (Zea mays) and tobacco (Nicotiana tabacum)- are members of different plant families that each employ specific defence mechanisms and toxins. RESULTS Spodoptera exigua larvae had a higher growth rate, indicator for herbivore success, when feeding on Z. mays compared to larvae feeding on B. oleracea or N. tabacum. Larvae feeding on the different host plant species showed divergent transcriptional responses. We identified shared and unique gene expression patterns dependent of the host plant species the larvae fed on. Unique gene expression patterns, containing uniquely upregulated transcripts including specific detoxification genes, were found for larvae feeding on either B. oleracea or N. tabacum. No diet-specific gene cluster was identified for larvae feeding on the host for which larvae showed optimal herbivore success, Z. mays, or artificial diet. In contrast, for larvae feeding on hosts for which they showed low herbivore success, specific diet-dependent gene clusters were identified. Functional annotation of these clusters indicates that S. exigua larvae deploy particular host plant-specific genes for digestion and detoxification. CONCLUSIONS The lack of a host plant-specific gene activity for larvae feeding on Z. mays and the artificial diet suggest a general and non-specific gene activity for host plants with optimal herbivore success. Whereas the finding of specific gene clusters containing particular digestion and detoxifying genes expressed in larvae feeding on B. oleracea and N. tabacum, with low herbivore success, imply a host plant-specific gene activity for larvae feeding on host plants with suboptimal herbivore success. This observation leads to the conclusion that a polyphagous herbivore is able to feed on a large variation of host plants due to the flexibility and diversity of genes involved in digestion and detoxification that are deployed in response to particular host plant species.
Collapse
Affiliation(s)
- Thijmen Breeschoten
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sabrina Simon
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
22
|
Müller T, Römer CI, Müller C. Parental sublethal insecticide exposure prolongs mating response and decreases reproductive output in offspring. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thorben Müller
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| | - Clara Isis Römer
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| | - Caroline Müller
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| |
Collapse
|
23
|
Snoeck S, Wybouw N, Van Leeuwen T, Dermauw W. Transcriptomic Plasticity in the Arthropod Generalist Tetranychus urticae Upon Long-Term Acclimation to Different Host Plants. G3 (BETHESDA, MD.) 2018; 8:3865-3879. [PMID: 30333191 PMCID: PMC6288829 DOI: 10.1534/g3.118.200585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
The two-spotted spider mite Tetranychus urticae is an important pest with an exceptionally broad host plant range. This generalist rapidly acclimatizes and adapts to a new host, hereby overcoming nutritional challenges and a novel pallet of constitutive and induced plant defenses. Although recent studies reveal that a broad transcriptomic response upon host plant transfer is associated with a generalist life style in arthropod herbivores, it remains uncertain to what extent these transcriptional changes are general stress responses or host-specific. In the present study, we analyzed and compared the transcriptomic changes that occur in a single T. urticae population upon long-term transfer from Phaseolus vulgaris to a similar, but chemically defended, host (cyanogenic Phaseolus lunatus) and to multiple economically important crops (Glycine max, Gossypium hirsutum, Solanum lycopersicum and Zea mays). These long-term host plant transfers were associated with distinct transcriptomic responses with only a limited overlap in both specificity and directionality, suggestive of a fine-tuned transcriptional plasticity. Nonetheless, analysis at the gene family level uncovered overlapping functional processes, recruiting genes from both well-known and newly discovered detoxification families. Of note, our analyses highlighted a possible detoxification role for Tetranychus-specific short-chain dehydrogenases and single PLAT domain proteins, and manual genome annotation showed that both families are expanded in T. urticae Our results shed new light on the molecular mechanisms underlying the remarkable adaptive potential for host plant use of generalist arthropods and set the stage for functional validation of important players in T. urticae detoxification of plant secondary metabolites.
Collapse
Affiliation(s)
- Simon Snoeck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 Amsterdam, Noord-Holland, the Netherlands
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| |
Collapse
|
24
|
Chen ML, Wang T, Huang YH, Qiu BY, Li HS, Pang H. Physiological and Evolutionary Changes in a Biological Control Agent During Prey Shifts Over Several Generations. Front Physiol 2018; 9:971. [PMID: 30072921 PMCID: PMC6060241 DOI: 10.3389/fphys.2018.00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/02/2018] [Indexed: 11/30/2022] Open
Abstract
Biological control agents usually suffer from a shortage of target prey or hosts in their post-release stage. Some predatory agents turn to attacking other prey organisms, which may induce physiological and evolutionary changes. In this study, we investigated life history traits, gene expression and genotype frequency in the predatory ladybird beetle Cryptolaemus montrouzieri during experimental prey shifts. C. montrouzieri were either continuously fed on aphids Megoura japonica as an alternative prey for four generations or were shifted back to the initial prey mealybugs Planococcus citri in each generation. In general, the utilization of aphids resulted in reduced performance and severe physiological adjustments, indicated by significant changes in development and fecundity traits and a large number of differentially expressed genes between the two offering setup prey treatments. Within the aphid-fed lines, performance regarding the developmental time, the adult weight and the survival rate recovered to some level in subsequent generations, possibly as a result of adaptive evolution. In particular, we found that a shift back to mealybugs caused a gradual increase in fecundity. Accordingly, a genotype of the fecundity-related gene vitellogenin, of which there were several minor alleles in the initial population, became the main genotype within four generations. The present study explored the short-term experimental evolution of a so-call specialist predator under prey shift conditions. This potential rapid adaptation of biological control agents to novel prey will increase environmental risks associated with non-target effects.
Collapse
Affiliation(s)
- Mei-Lan Chen
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bo-Yuan Qiu
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Li X, Shi L, Dai X, Chen Y, Xie H, Feng M, Chen Y, Wang H. Expression plasticity and evolutionary changes extensively shape the sugar-mimic alkaloid adaptation of nondigestive glucosidase in lepidopteran mulberry-specialist insects. Mol Ecol 2018; 27:2858-2870. [PMID: 29752760 DOI: 10.1111/mec.14720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023]
Abstract
During the co-evolutionary arms race between plants and herbivores, insects evolved systematic adaptive plasticity to minimize the chemical defence effects of their host plants. Previous studies mainly focused on the expressional plasticity of enzymes in detoxification and digestion. However, the expressional response and adaptive evolution of other fundamental regulators against host phytochemicals are largely unknown. Glucosidase II (GII), which is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit, is an evolutionarily conserved enzyme that regulates glycoprotein folding. In this study, we found that GIIα expression of the mulberry-specialist insect was significantly induced by mulberry leaf extract, 1-deoxynojirimycin (1-DNJ), whereas GIIβ transcripts were not significantly changed. Moreover, positive selection was detected in GIIα when the mulberry-specialist insects diverged from the lepidopteran order, whereas GIIβ was mainly subjected to purifying selection, thus indicating an asymmetrically selective pressure of GII subunits. In addition, positively selected sites were enriched in the GIIα of mulberry-specialist insects and located around the 1-DNJ-binding sites and in the C-terminal region, which could result in conformational changes that affect catalytic activity and substrate-binding efficiency. These results show that expression plasticity and evolutionary changes extensively shape sugar-mimic alkaloids adaptation of nondigestive glucosidase in lepidopteran mulberry-specialist insects. Our study provides novel insights into a deep understanding of the sequestration and adaptation of phytophagous specialists to host defensive compounds.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiangping Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yajie Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongqing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min Feng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuyin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|