1
|
Ballén-Guapacha AV, Ospina-Garcés SM, Guevara R, Sánchez-Guillén RA. Reproductive character displacement: insights from genital morphometrics in damselfly hybrid zones. Heredity (Edinb) 2024; 133:355-368. [PMID: 39155287 PMCID: PMC11528104 DOI: 10.1038/s41437-024-00719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Reproductive Character Displacement (RCD) refers to the phenomenon of greater differences in reproductive characters between two species when they occur in sympatry compared to when they occur in allopatry to prevent maladaptive hybridization. We explored whether reinforcement of a mechanical barrier involved in the first contact point between male and female genital traits during copulation in the cross between Ischnura graellsii males and Ischnura elegans females has led to RCD, and whether it supports the lock-and-key hypothesis of genital evolution. We employed geometric morphometrics to analyze the shape and size of male and female genital traits, controlling for environmental and geographic factors. Consistent with an increase in mechanical isolation via reinforcement, we detected larger divergence in genital traits between the species in sympatry than in allopatry, and also stronger signal in females than in males. In the Northwest (NW) hybrid zone, we detected RCD in I. graellsii males and I. elegans females, while in the Northcentral (NC) hybrid zone we detected RCD only in I. elegans females and I. elegans males. The detection of RCD in both sexes of I. elegans was consistent with the lock-and-key hypothesis of genital evolution via female choice for conspecific males in this species. Our study highlights the importance of using geometric morphometrics to deal with the complexity of female reproductive structures while controlling for environmental and geographic factors to investigate RCD. This study contributes valuable insights into the dynamics of reproductive isolation mechanisms and genital coevolution.
Collapse
Affiliation(s)
| | - Sandra Milena Ospina-Garcés
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, CP 62209, Cuernavaca, Morelos, Mexico
| | - Roger Guevara
- Instituto de Ecología A. C. (INECOL), Red de Biología Evolutiva, 91093, Xalapa, Veracruz, México
| | - Rosa Ana Sánchez-Guillén
- Instituto de Ecología A. C. (INECOL), Red de Biología Evolutiva, 91093, Xalapa, Veracruz, México.
| |
Collapse
|
2
|
Tahami MS, Vargas-Chavez C, Poikela N, Coronado-Zamora M, González J, Kankare M. Transposable elements in Drosophila montana from harsh cold environments. Mob DNA 2024; 15:18. [PMID: 39354634 PMCID: PMC11445987 DOI: 10.1186/s13100-024-00328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Substantial discoveries during the past century have revealed that transposable elements (TEs) can play a crucial role in genome evolution by affecting gene expression and inducing genetic rearrangements, among other molecular and structural effects. Yet, our knowledge on the role of TEs in adaptation to extreme climates is still at its infancy. The availability of long-read sequencing has opened up the possibility to identify and study potential functional effects of TEs with higher precision. In this work, we used Drosophila montana as a model for cold-adapted organisms to study the association between TEs and adaptation to harsh climates. RESULTS Using the PacBio long-read sequencing technique, we de novo identified and manually curated TE sequences in five Drosophila montana genomes from eco-geographically distinct populations. We identified 489 new TE consensus sequences which represented 92% of the total TE consensus in D. montana. Overall, 11-13% of the D. montana genome is occupied by TEs, which as expected are non-randomly distributed across the genome. We identified five potentially active TE families, most of them from the retrotransposon class of TEs. Additionally, we found TEs present in the five analyzed genomes that were located nearby previously identified cold tolerant genes. Some of these TEs contain promoter elements and transcription binding sites. Finally, we detected TEs nearby fixed and polymorphic inversion breakpoints. CONCLUSIONS Our research revealed a significant number of newly identified TE consensus sequences in the genome of D. montana, suggesting that non-model species should be studied to get a comprehensive view of the TE repertoire in Drosophila species and beyond. Genome annotations with the new D. montana library allowed us to identify TEs located nearby cold tolerant genes, and present at high population frequencies, that contain regulatory regions and are thus good candidates to play a role in D. montana cold stress response. Finally, our annotations also allow us to identify for the first time TEs present in the breakpoints of three D. montana inversions.
Collapse
Affiliation(s)
- Mohadeseh S Tahami
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Marta Coronado-Zamora
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain.
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
3
|
Quintero‐Galvis JF, Saenz‐Agudelo P, D'Elía G, Nespolo RF. Local adaptation of Dromiciops marsupials (Microbiotheriidae) from southern South America: Implications for species management facing climate change. Ecol Evol 2024; 14:e70355. [PMID: 39371267 PMCID: PMC11450259 DOI: 10.1002/ece3.70355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The two species of the microbiotheriid marsupial genus Dromiciops (Dromiciops bozinovici: "Panchos's monito del monte" and Dromiciops gliroides: "monito del monte") exhibit a marked latitudinal genetic differentiation. Nevertheless, it is unclear whether this differentiation results from neutral processes or can be explained, to some extent, by local adaptation to different environmental conditions. Here, we used an SNP panel gathered by Rad-seq and searched for footprints of local adaptation (putative loci under selection) by exploring genetic associations with environmental variables in the two species of Dromiciops in Chilean and Argentinean populations. We applied three methods for detecting outlier SNPs and two genotype-environment associations approaches to quantify associations between allelic frequencies and environmental variables. Both species display strong genetic structure. D. bozinovici exhibited three distinct genetic groups, marking the first report of such structuring in this species using SNPs. In contrast, D. gliroides displayed four genetic clusters, consistent with previous studies. Both species exhibited an association of their genetic structure with environmental variables. D. bozinovici exhibited significant associations of allelic frequencies with elevation, precipitation during the warmest periods, and seasonality in the thermal regime. For D. gliroides, genetic variation appeared to be associated with more variables than D. bozinovici, including precipitation and temperature-related variables, isothermality, and elevation. All the outlier SNPs were mapped to the D. gliroides reference genome to explore if they fell within functionally known genes. These results represent a necessary first step toward identifying the genome regions that harbor genes associated with climate adaptations in Dromiciops. Notably, we identified genes involved in various functions, including carbohydrate synthesis (ALG8), muscle and neuronal regulation (MEF2D), and stress responses (PTGES3). Ultimately, this study contributes valuable insights that can inform targeted conservation strategies aimed at preserving the genetic diversity of Dromiciops in the face of environmental challenges.
Collapse
Affiliation(s)
- Julian F. Quintero‐Galvis
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)ValdiviaChile
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millenium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME)Las CrucesChile
| | - Guillermo D'Elía
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Colección de MamíferosUniversidad Austral de ChileValdiviaChile
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)ValdiviaChile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
4
|
Li H, Peng Y, Wu C, Li Z, Zou L, Mao K, Ping J, Buck R, Monahan S, Sethuraman A, Xiao Y. Assessing genome-wide adaptations associated with range expansion in the pink rice borer, Sesamia inferens. INSECT SCIENCE 2024; 31:1617-1630. [PMID: 38204333 DOI: 10.1111/1744-7917.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Understanding the genetic basis of adaptive evolution following habitat expansion can have important implications for pest management. The pink rice borer (PRB), Sesamia inferens (Walker), is a destructive pest of rice that was historically restricted to regions south of 34° N latitude in China. However, with changes in global climate and farming practices, the distribution of this moth has progressively expanded, encompassing most regions in North China. Here, 3 highly differentiated subpopulations were discovered using high-quality single-nucleotide polymorphism and structural variant datasets across China, corresponding to northern, southern China regions, and the Yunnan-Guizhou Plateau, with significant patterns of isolation by geographic and environmental distances. Our estimates of evolutionary history indicate asymmetric migration with varying population sizes across the 3 subpopulations. Selective sweep analyses estimated strong selection at insect cuticle glycine-rich cuticular protein genes which are associated with enhanced desiccation adaptability in the northern group, and at the histone-lysine-N-methyltransferase gene associated with range expansion and local adaptation in the Shandong population. Our findings have significant implications for the development of effective strategies to control this pest.
Collapse
Affiliation(s)
- Hongran Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Zhimin Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Luming Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Kaikai Mao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Junfen Ping
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Ryan Buck
- Department of Biology, San Diego State University, CA, USA
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Scott Monahan
- Department of Biology, San Diego State University, CA, USA
| | | | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Kardum Hjort C, Paris JR, Smith HG, Dudaniec RY. Selection despite low genetic diversity and high gene flow in a rapid island invasion of the bumblebee, Bombus terrestris. Mol Ecol 2024; 33:e17212. [PMID: 37990959 DOI: 10.1111/mec.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Invasive species are predicted to adjust their morphological, physiological and life-history traits to adapt to their non-native environments. Although a loss of genetic variation during invasion may restrict local adaptation, introduced species often thrive in novel environments. Despite being founded by just a few individuals, Bombus terrestris (Hymenoptera: Apidae) has in less than 30 years successfully spread across the island of Tasmania (Australia), becoming abundant and competitive with native pollinators. We use RADseq to investigate what neutral and adaptive genetic processes associated with environmental and morphological variation allow B. terrestris to thrive as an invasive species in Tasmania. Given the widespread abundance of B. terrestris, we expected little genetic structure across Tasmania and weak signatures of environmental and morphological selection. We found high gene flow with low genetic diversity, although with significant isolation-by-distance and spatial variation in effective migration rates. Restricted migration was evident across the mid-central region of Tasmania, corresponding to higher elevations, pastural land, low wind speeds and low precipitation seasonality. Tajima's D indicated a recent population expansion extending from the south to the north of the island. Selection signatures were found for loci in relation to precipitation, wind speed and wing loading. Candidate loci were annotated to genes with functions related to cuticle water retention and insect flight muscle stability. Understanding how a genetically impoverished invasive bumblebee has rapidly adapted to a novel island environment provides further understanding about the evolutionary processes that determine successful insect invasions, and the potential for invasive hymenopteran pollinators to spread globally.
Collapse
Affiliation(s)
- Cecilia Kardum Hjort
- Department of Biology, Lund University, Lund, Sweden
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Josephine R Paris
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Henrik G Smith
- Department of Biology, Lund University, Lund, Sweden
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Rachael Y Dudaniec
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Vega-Sánchez YM, Oyama K, Mendoza-Cuenca LF, Gaytán-Legaria R, González-Rodríguez A. Genomic differentiation and niche divergence in the Hetaerina americana (Odonata) cryptic species complex. Mol Ecol 2024; 33:e17207. [PMID: 37975486 DOI: 10.1111/mec.17207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The evolution of reproductive barriers, that is, the speciation process, implies the limitation of gene flow between populations. Different patterns of genomic differentiation throughout the speciation continuum may provide insights into the causal evolutionary forces of species divergence. In this study, we analysed a cryptic species complex of the genus Hetaerina (Odonata). This complex includes H. americana and H. calverti; however, in H. americana two highly differentiated genetic groups have been previously detected, which, we hypothesize, may correspond to different species with low morphological variation. We obtained single nucleotide polymorphism (SNP) data for 90 individuals belonging to the different taxa in the complex and carried out differentiation tests to identify genetic isolation. The results from STRUCTURE and discriminant analysis of principal components (DAPC), based on almost 5000 SNPs, confirmed the presence of three highly differentiated taxa. Also, we found FST values above 0.5 in pairwise comparisons, which indicates a considerable degree of genetic isolation among the suggested species. We also found low climatic niche overlap among all taxa, suggesting that each group occurs at specific conditions of temperature, precipitation and elevation. We propose that H. americana comprises two cryptic species, which may be reproductively isolated by ecological barriers related to niche divergence, since the morphological variation is minimal and, therefore, mechanical barriers are probably less effective compared to other related species such as H. calverti.
Collapse
Affiliation(s)
- Yesenia Margarita Vega-Sánchez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | | | - Ricardo Gaytán-Legaria
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| |
Collapse
|
7
|
Babik W, Dudek K, Marszałek M, Palomar G, Antunes B, Sniegula S. The genomic response to urbanization in the damselfly Ischnura elegans. Evol Appl 2023; 16:1805-1818. [PMID: 38029064 PMCID: PMC10681423 DOI: 10.1111/eva.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
The complex and rapid environmental changes brought about by urbanization pose significant challenges to organisms. The multifaceted effects of urbanization often make it difficult to define and pinpoint the very nature of adaptive urban phenotypes. In such situations, scanning genomes for regions differentiated between urban and non-urban populations may be an attractive approach. Here, we investigated the genomic signatures of adaptation to urbanization in the damselfly Ischnura elegans sampled from 31 rural and urban localities in three geographic regions: southern and northern Poland, and southern Sweden. Genome-wide variation was assessed using more than 370,000 single nucleotide polymorphisms (SNPs) genotyped by ddRADseq. Associations between SNPs and the level of urbanization were tested using two genetic environment association methods: Latent Factors Mixed Models and BayPass. While we found numerous candidate SNPs and a highly significant overlap between candidates identified by the two methods within the geographic regions, there was a distinctive lack of repeatability between the geographic regions both at the level of individual SNPs and of genomic regions. However, we found "synapse organization" at the top of the functional categories enriched among the genes located in the proximity of the candidate urbanization SNPs. Interestingly, the overall significance of "synapse organization" was built up by the accretion of different genes associated with candidate SNPs in different geographic regions. This finding is consistent with the highly polygenic nature of adaptation, where the response may be achieved through a subtle adjustment of allele frequencies in different genes that contribute to adaptive phenotypes. Taken together, our results point to a polygenic adaptive response in the nervous system, specifically implicating genes involved in synapse organization, which mirrors the findings from several genomic and behavioral studies of adaptation to urbanization in other taxa.
Collapse
Affiliation(s)
- W. Babik
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - K. Dudek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - M. Marszałek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - G. Palomar
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological SciencesComplutense University of MadridMadridSpain
| | - B. Antunes
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - S. Sniegula
- Department of Ecosystem Conservation, Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| |
Collapse
|
8
|
Pantel JH, Becks L. Statistical methods to identify mechanisms in studies of eco-evolutionary dynamics. Trends Ecol Evol 2023; 38:760-772. [PMID: 37437547 DOI: 10.1016/j.tree.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 07/14/2023]
Abstract
While the reciprocal effects of ecological and evolutionary dynamics are increasingly recognized as an important driver for biodiversity, detection of such eco-evolutionary feedbacks, their underlying mechanisms, and their consequences remains challenging. Eco-evolutionary dynamics occur at different spatial and temporal scales and can leave signatures at different levels of organization (e.g., gene, protein, trait, community) that are often difficult to detect. Recent advances in statistical methods combined with alternative hypothesis testing provides a promising approach to identify potential eco-evolutionary drivers for observed data even in non-model systems that are not amenable to experimental manipulation. We discuss recent advances in eco-evolutionary modeling and statistical methods and discuss challenges for fitting mechanistic models to eco-evolutionary data.
Collapse
Affiliation(s)
- Jelena H Pantel
- Ecological Modelling, Faculty of Biology, University of Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany.
| | - Lutz Becks
- University of Konstanz, Aquatic Ecology and Evolution, Limnological Institute University of Konstanz Mainaustraße 252 78464, Konstanz/Egg, Germany
| |
Collapse
|
9
|
Li H, Peng Y, Wang Y, Summerhays B, Shu X, Vasquez Y, Vansant H, Grenier C, Gonzalez N, Kansagra K, Cartmill R, Sujii ER, Meng L, Zhou X, Lövei GL, Obrycki JJ, Sethuraman A, Li B. Global patterns of genomic and phenotypic variation in the invasive harlequin ladybird. BMC Biol 2023; 21:141. [PMID: 37337183 DOI: 10.1186/s12915-023-01638-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae), native to Asia, has been introduced to other major continents where it has caused serious negative impacts on local biodiversity. Though notable advances to understand its invasion success have been made during the past decade, especially with then newer molecular tools, the conclusions reached remain to be confirmed with more advanced genomic analyses and especially using more samples from larger geographical regions across the native range. Furthermore, although H. axyridis is one of the best studied invasive insect species with respect to life history traits (often comparing invasive and native populations), the traits responsible for its colonization success in non-native areas warrant more research. RESULTS Our analyses of genome-wide nuclear population structure indicated that an eastern Chinese population could be the source of all non-native populations and revealed several putatively adaptive candidate genomic loci involved in body color variation, visual perception, and hemolymph synthesis. Our estimates of evolutionary history indicate (1) asymmetric migration with varying population sizes across its native and non-native range, (2) a recent admixture between eastern Chinese and American populations in Europe, (3) signatures of a large progressive, historical bottleneck in the common ancestors of both populations and smaller effective sizes of the non-native population, and (4) the southwest origin and subsequent dispersal routes within its native range in China. In addition, we found that while two mitochondrial haplotypes-Hap1 and Hap2 were dominant in the native range, Hap1 was the only dominant haplotype in the non-native range. Our laboratory observations in both China and USA found statistical yet slight differences between Hap1 and Hap2 in some of life history traits. CONCLUSIONS Our study on H. axyridis provides new insights into its invasion processes into other major continents from its native Asian range, reconstructs a geographic range evolution across its native region China, and tentatively suggests that its invasiveness may differ between mitochondrial haplotypes.
Collapse
Affiliation(s)
- Hongran Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yansong Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bryce Summerhays
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Xiaohan Shu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yumary Vasquez
- Department of Biological Sciences, California State University, San Marcos, CA, USA
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Hannah Vansant
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Christy Grenier
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Nicolette Gonzalez
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Khyati Kansagra
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Ryan Cartmill
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | | | - Ling Meng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Gábor L Lövei
- Department of Agroecology, Flakkebjerg Research Centre, Aarhus University, Aarhus, Denmark
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Debrecen, Hungary
- Department of Zoology & Ecology, Hungarian University of Agriculture & Life Sciences, Godollo, Hungary
| | - John J Obrycki
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Arun Sethuraman
- Department of Biological Sciences, California State University, San Marcos, CA, USA.
- Department of Biology, San Diego State University, San Diego, CA, USA.
| | - Baoping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
10
|
Zhang X, Guo R, Shen R, Landis JB, Jiang Q, Liu F, Wang H, Yao X. The genomic and epigenetic footprint of local adaptation to variable climates in kiwifruit. HORTICULTURE RESEARCH 2023; 10:uhad031. [PMID: 37799629 PMCID: PMC10548413 DOI: 10.1093/hr/uhad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/14/2023] [Indexed: 10/07/2023]
Abstract
A full understanding of adaptive genetic variation at the genomic level will help address questions of how organisms adapt to diverse climates. Actinidia eriantha is a shade-tolerant species, widely distributed in the southern tropical region of China, occurring in spatially heterogeneous environments. In the present study we combined population genomic, epigenomic, and environmental association analyses to infer population genetic structure and positive selection across a climatic gradient, and to assess genomic offset to climatic change for A. eriantha. The population structure is strongly shaped by geography and influenced by restricted gene flow resulting from isolation by distance due to habitat fragmentation. In total, we identified 102 outlier loci and annotated 455 candidate genes associated with the genomic basis of climate adaptation, which were enriched in functional categories related to development processes and stress response; both temperature and precipitation are important factors driving adaptive variation. In addition to single-nucleotide polymorphisms (SNPs), a total of 27 single-methylation variants (SMVs) had significant correlation with at least one of four climatic variables and 16 SMVs were located in or adjacent to genes, several of which were predicted to be involved in plant response to abiotic or biotic stress. Gradient forest analysis indicated that the central/east populations were predicted to be at higher risk of future population maladaptation under climate change. Our results demonstrate that local climate factors impose strong selection pressures and lead to local adaptation. Such information adds to our understanding of adaptive mechanisms to variable climates revealed by both population genome and epigenome analysis.
Collapse
Affiliation(s)
- Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruinan Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853 USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Quan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| |
Collapse
|
11
|
DeVos TB, Bock DG, Kolbe JJ. Rapid introgression of non-native alleles following hybridization between a native Anolis lizard species and a cryptic invader across an urban landscape. Mol Ecol 2023; 32:2930-2944. [PMID: 36811388 DOI: 10.1111/mec.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Invasive species can impact native populations through competition, predation, habitat alteration, and disease transmission, but also genetically through hybridization. Potential outcomes of hybridization span the continuum from extinction to hybrid speciation and can be further complicated by anthropogenic habitat disturbance. Hybridization between the native green anole lizard (Anolis carolinensis) and a morphologically similar invader (A. porcatus) in south Florida provides an ideal opportunity to study interspecific admixture across a heterogeneous landscape. We used reduced-representation sequencing to describe introgression in this hybrid system and to test for a relationship between urbanization and non-native ancestry. Our findings indicate that hybridization between green anole lineages was probably a limited, historic event, producing a hybrid population characterized by a diverse continuum of ancestry proportions. Genomic cline analyses revealed rapid introgression and disproportionate representation of non-native alleles at many loci and no evidence for reproductive isolation between parental species. Three loci were associated with urban habitat characteristics; urbanization and non-native ancestry were positively correlated, although this relationship did not remain significant when accounting for spatial nonindependence. Ultimately, our study demonstrates the persistence of non-native genetic material even in the absence of ongoing immigration, indicating that selection favouring non-native alleles can override the demographic limitation of low propagule pressure. We also note that not all outcomes of admixture between native and non-native species should be considered intrinsically negative. Hybridization with ecologically robust invaders can lead to adaptive introgression, which may facilitate the long-term survival of native populations otherwise unable to adapt to anthropogenically mediated global change.
Collapse
Affiliation(s)
- Tyler B DeVos
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Dan G Bock
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
12
|
Abstract
Insects constitute vital components of ecosystems. There is alarming evidence for global declines in insect species diversity, abundance, and biomass caused by anthropogenic drivers such as habitat degradation or loss, agricultural practices, climate change, and environmental pollution. This raises important concerns about human food security and ecosystem functionality and calls for more research to assess insect population trends and identify threatened species and the causes of declines to inform conservation strategies. Analysis of genetic diversity is a powerful tool to address these goals, but so far animal conservation genetics research has focused strongly on endangered vertebrates, devoting less attention to invertebrates, such as insects, that constitute most biodiversity. Insects' shorter generation times and larger population sizes likely necessitate different analytical methods and management strategies. The availability of high-quality reference genome assemblies enables population genomics to address several key issues. These include precise inference of past demographic fluctuations and recent declines, measurement of genetic load levels, delineation of evolutionarily significant units and cryptic species, and analysis of genetic adaptation to stressors. This enables identification of populations that are particularly vulnerable to future threats, considering their potential to adapt and evolve. We review the application of population genomics to insect conservation and the outlook for averting insect declines.
Collapse
Affiliation(s)
- Matthew T Webster
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Alexis Beaurepaire
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Eckart Stolle
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| |
Collapse
|
13
|
McCulloch GA, Waters JM. Rapid adaptation in a fast-changing world: Emerging insights from insect genomics. GLOBAL CHANGE BIOLOGY 2023; 29:943-954. [PMID: 36333958 PMCID: PMC10100130 DOI: 10.1111/gcb.16512] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 05/31/2023]
Abstract
Many researchers have questioned the ability of biota to adapt to rapid anthropogenic environmental shifts. Here, we synthesize emerging genomic evidence for rapid insect evolution in response to human pressure. These new data reveal diverse genomic mechanisms (single locus, polygenic, structural shifts; introgression) underpinning rapid adaptive responses to a variety of anthropogenic selective pressures. While the effects of some human impacts (e.g. pollution; pesticides) have been previously documented, here we highlight startling new evidence for rapid evolutionary responses to additional anthropogenic processes such as deforestation. These recent findings indicate that diverse insect assemblages can indeed respond dynamically to major anthropogenic evolutionary challenges. Our synthesis also emphasizes the critical roles of genomic architecture, standing variation and gene flow in maintaining future adaptive potential. Broadly, it is clear that genomic approaches are essential for predicting, monitoring and responding to ongoing anthropogenic biodiversity shifts in a fast-changing world.
Collapse
|
14
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Wang Y, Zhang L, Zhou Y, Ma W, Li M, Guo P, Feng L, Fu C. Using landscape genomics to assess local adaptation and genomic vulnerability of a perennial herb Tetrastigma hemsleyanum (Vitaceae) in subtropical China. Front Genet 2023; 14:1150704. [PMID: 37144128 PMCID: PMC10151583 DOI: 10.3389/fgene.2023.1150704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Understanding adaptive genetic variation of plant populations and their vulnerabilities to climate change are critical to preserve biodiversity and subsequent management interventions. To this end, landscape genomics may represent a cost-efficient approach for investigating molecular signatures underlying local adaptation. Tetrastigma hemsleyanum is, in its native habitat, a widespread perennial herb of warm-temperate evergreen forest in subtropical China. Its ecological and medicinal values constitute a significant revenue for local human populations and ecosystem. Using 30,252 single nucleotide polymorphisms (SNPs) derived from reduced-representation genome sequencing in 156 samples from 24 sites, we conducted a landscape genomics study of the T. hemsleyanum to elucidate its genomic variation across multiple climate gradients and genomic vulnerability to future climate change. Multivariate methods identified that climatic variation explained more genomic variation than that of geographical distance, which implied that local adaptation to heterogeneous environment might represent an important source of genomic variation. Among these climate variables, winter precipitation was the strongest predictor of the contemporary genetic structure. F ST outlier tests and environment association analysis totally identified 275 candidate adaptive SNPs along the genetic and environmental gradients. SNP annotations of these putatively adaptive loci uncovered gene functions associated with modulating flowering time and regulating plant response to abiotic stresses, which have implications for breeding and other special agricultural aims on the basis of these selection signatures. Critically, modelling revealed that the high genomic vulnerability of our focal species via a mismatch between current and future genotype-environment relationships located in central-northern region of the T. hemsleyanum's range, where populations require proactive management efforts such as assistant adaptation to cope with ongoing climate change. Taken together, our results provide robust evidence of local climate adaption for T. hemsleyanum and further deepen our understanding of adaptation basis of herbs in subtropical China.
Collapse
Affiliation(s)
- Yihan Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Yuchao Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Wenxin Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Manyu Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Peng Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Li Feng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Chengxin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, Abram PK, Basset Y, Berg M, Boggs C, Brodeur J, Cardoso P, de Boer JG, De Snoo GR, Deacon C, Dell JE, Desneux N, Dillon ME, Duffy GA, Dyer LA, Ellers J, Espíndola A, Fordyce J, Forister ML, Fukushima C, Gage MJG, García‐Robledo C, Gely C, Gobbi M, Hallmann C, Hance T, Harte J, Hochkirch A, Hof C, Hoffmann AA, Kingsolver JG, Lamarre GPA, Laurance WF, Lavandero B, Leather SR, Lehmann P, Le Lann C, López‐Uribe MM, Ma C, Ma G, Moiroux J, Monticelli L, Nice C, Ode PJ, Pincebourde S, Ripple WJ, Rowe M, Samways MJ, Sentis A, Shah AA, Stork N, Terblanche JS, Thakur MP, Thomas MB, Tylianakis JM, Van Baaren J, Van de Pol M, Van der Putten WH, Van Dyck H, Verberk WCEP, Wagner DL, Weisser WW, Wetzel WC, Woods HA, Wyckhuys KAG, Chown SL. Scientists' warning on climate change and insects. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Harvey
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Kévin Tougeron
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
- EDYSAN, UMR 7058, Université de Picardie Jules Verne, CNRS Amiens France
| | - Rieta Gols
- Laboratory of Entomology Wageningen University Wageningen The Netherlands
| | - Robin Heinen
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Mariana Abarca
- Department of Biological Sciences Smith College Northampton Massachusetts USA
| | - Paul K. Abram
- Agriculture and Agri‐Food Canada, Agassiz Research and Development Centre Agassiz British Columbia Canada
| | - Yves Basset
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - Matty Berg
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Groningen Institute of Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Carol Boggs
- School of the Earth, Ocean and Environment and Department of Biological Sciences University of South Carolina Columbia South Carolina USA
- Rocky Mountain Biological Laboratory Gothic Colorado USA
| | - Jacques Brodeur
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal Québec Canada
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | - Jetske G. de Boer
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Geert R. De Snoo
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Charl Deacon
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Jane E. Dell
- Geosciences and Natural Resources Department Western Carolina University Cullowhee North Carolina USA
| | | | - Michael E. Dillon
- Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie Wyoming USA
| | - Grant A. Duffy
- School of Biological Sciences Monash University Melbourne Victoria Australia
- Department of Marine Science University of Otago Dunedin New Zealand
| | - Lee A. Dyer
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Jacintha Ellers
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Anahí Espíndola
- Department of Entomology University of Maryland College Park Maryland USA
| | - James Fordyce
- Department of Ecology and Evolutionary Biology University of Tennessee, Knoxville Knoxville Tennessee USA
| | - Matthew L. Forister
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Caroline Fukushima
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | | | | | - Claire Gely
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Mauro Gobbi
- MUSE‐Science Museum, Research and Museum Collections Office Climate and Ecology Unit Trento Italy
| | - Caspar Hallmann
- Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| | - Thierry Hance
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - John Harte
- Energy and Resources Group University of California Berkeley California USA
| | - Axel Hochkirch
- Department of Biogeography Trier University Trier Germany
- IUCN SSC Invertebrate Conservation Committee
| | - Christian Hof
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Ary A. Hoffmann
- Bio21 Institute, School of BioSciences University of Melbourne Melbourne Victoria Australia
| | - Joel G. Kingsolver
- Department of Biology University of North Carolina Chapel Hill North Carolina USA
| | - Greg P. A. Lamarre
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - William F. Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Blas Lavandero
- Laboratorio de Control Biológico Universidad de Talca Talca Chile
| | - Simon R. Leather
- Center for Integrated Pest Management Harper Adams University Newport UK
| | - Philipp Lehmann
- Department of Zoology Stockholm University Stockholm Sweden
- Zoological Institute and Museum University of Greifswald Greifswald Germany
| | - Cécile Le Lann
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | | | | | - Chris Nice
- Department of Biology Texas State University San Marcos Texas USA
| | - Paul J. Ode
- Department of Agricultural Biology Colorado State University Fort Collins Colorado USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS Université de Tours Tours France
| | - William J. Ripple
- Department of Forest Ecosystems and Society Oregon State University Oregon USA
| | - Melissah Rowe
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
| | - Michael J. Samways
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Arnaud Sentis
- INRAE, Aix‐Marseille University, UMR RECOVER Aix‐en‐Provence France
| | - Alisha A. Shah
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University East Lansing Michigan USA
| | - Nigel Stork
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Nathan Queensland Australia
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Madhav P. Thakur
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Matthew B. Thomas
- York Environmental Sustainability Institute and Department of Biology University of York York UK
| | - Jason M. Tylianakis
- Bioprotection Aotearoa, School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Joan Van Baaren
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | - Martijn Van de Pol
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Hans Van Dyck
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | - David L. Wagner
- Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Wolfgang W. Weisser
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - William C. Wetzel
- Department of Entomology, Department of Integrative Biology, and Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA
| | - H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - Kris A. G. Wyckhuys
- Chrysalis Consulting Hanoi Vietnam
- China Academy of Agricultural Sciences Beijing China
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
17
|
Wright JJ, Bruce SA, Sinopoli DA, Palumbo JR, Stewart DJ. Phylogenomic analysis of the bowfin (Amia calva) reveals unrecognized species diversity in a living fossil lineage. Sci Rep 2022; 12:16514. [PMID: 36192509 PMCID: PMC9529906 DOI: 10.1038/s41598-022-20875-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
The Bowfin (Amia calva), as currently recognized, represents the sole living member of the family Amiidae, which dates back to approximately 150 Ma. Prior to 1896, 13 species of extant Bowfins had been described, but these were all placed into a single species with no rationale or analysis given. This situation has persisted until the present day, with little attention given to re-evaluation of those previously described nominal forms. Here, we present a phylogenomic analysis based on over 21,000 single nucleotide polymorphisms (SNPs) from 94 individuals that unambiguously demonstrates the presence of at least two independent evolutionary lineages within extant Amia populations that merit species-level standing, as well as the possibility of two more. These findings not only expand the recognizable species diversity in an iconic, ancient lineage, but also demonstrate the utility of such methods in addressing previously intractable questions of molecular systematics and phylogeography in slowly evolving groups of ancient fishes.
Collapse
Affiliation(s)
- Jeremy J Wright
- Research & Collections, New York State Museum, 3140 Cultural Education Center, Albany, NY, USA.
| | - Spencer A Bruce
- Department of Information Technology Services, University at Albany-State University of New York, Albany, NY, USA
| | - Daniel A Sinopoli
- Department of Biological Sciences, Museum of Natural Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jay R Palumbo
- Department of Environmental Science & Ecology, State University of New York at Brockport, Brockport, NY, USA
| | - Donald J Stewart
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA.
| |
Collapse
|
18
|
Yang YZ, Luo MX, Pang LD, Gao RH, Chang JT, Liao PC. Parallel adaptation prompted core-periphery divergence of Ammopiptanthus mongolicus. FRONTIERS IN PLANT SCIENCE 2022; 13:956374. [PMID: 36092420 PMCID: PMC9449729 DOI: 10.3389/fpls.2022.956374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Range expansion requires peripheral populations to shift adaptive optima to breach range boundaries. Opportunities for range expansion can be assessed by investigating the associations of core-periphery environmental and genetic differences. This study investigates differences in the core-periphery adaptation of Ammopiptanthus mongolicus, a broad-leaved evergreen shrub species in a relatively homogeneous temperate Asian desert environment, to explore the environmental factors that limit the expansion of desert plants. Temperate deserts are characterized by severe drought, a large diurnal temperature range, and seasonality. Long-standing adaptation to the harsh desert environment may confine the genetic diversity of A. mongolicus, despite its distribution over a wide range of longitude, latitude, and altitude. Since range edges defined by climate niches may have different genetic responses to environmental extremes, we compared genome-wide polymorphisms between nine environmental core populations and ten fragmented peripheral populations to determine the "adaptive peripheral" populations. At least four adaptive peripheral populations had similar genetic-environmental association patterns. High elevations, summer drought, and winter cold were the three main determinants of converging these four adaptive peripheral populations. Elevation mainly caused similar local climates among different geographic regions. Altitudinal adaptation resulting from integrated environmental-genetic responses was a breakthrough in breaching niche boundaries. These peripheral populations are also located in relatively humid and warmer environments. Relaxation of the drought and cold constraints facilitated the genetic divergence of these peripheral populations from the core population's adaptive legacy. We conclude that pleiotropic selection synchronized adaptative divergence to cold and drought vs. warm and humid environments between the core and peripheral populations. Such parallel adaptation of peripheral populations relies on selection under a background of abundant new variants derived from the core population's standing genetic variation, i.e., integration of genetic surfing and local adaptation.
Collapse
Affiliation(s)
- Yong-Zhi Yang
- College of Forestry, Inner Mongolia Agricultural University, Huhhot, China
| | - Min-Xin Luo
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Li-Dong Pang
- College Resource and Environmental Economics, Inner Mongolia University of Finance and Economics, Huhhot, China
| | - Run-Hong Gao
- College of Forestry, Inner Mongolia Agricultural University, Huhhot, China
| | - Jui-Tse Chang
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Chun Liao
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
19
|
Wellenreuther M, Dudaniec RY, Neu A, Lessard JP, Bridle J, Carbonell JA, Diamond SE, Marshall KE, Parmesan C, Singer MC, Swaegers J, Thomas CD, Lancaster LT. The importance of eco-evolutionary dynamics for predicting and managing insect range shifts. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100939. [PMID: 35644339 DOI: 10.1016/j.cois.2022.100939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary change impacts the rate at which insect pests, pollinators, or disease vectors expand or contract their geographic ranges. Although evolutionary changes, and their ecological feedbacks, strongly affect these risks and associated ecological and economic consequences, they are often underappreciated in management efforts. Greater rigor and scope in study design, coupled with innovative technologies and approaches, facilitates our understanding of the causes and consequences of eco-evolutionary dynamics in insect range shifts. Future efforts need to ensure that forecasts allow for demographic and evolutionary change and that management strategies will maximize (or minimize) the adaptive potential of range-shifting insects, with benefits for biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand; School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Rachael Y Dudaniec
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Anika Neu
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, UK
| | - José A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain; Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Camille Parmesan
- Station d'Écologie Théorique et Expérimentale (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France; Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; Dept of Geological Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Michael C Singer
- Station d'Écologie Théorique et Expérimentale (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France; Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, University of York, Wentworth Way, York YO10 5DD, UK
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen UK AB24 2TZ.
| |
Collapse
|
20
|
Swaegers J, Sánchez-Guillén RA, Chauhan P, Wellenreuther M, Hansson B. Restricted X chromosome introgression and support for Haldane's rule in hybridizing damselflies. Proc Biol Sci 2022; 289:20220968. [PMID: 35855603 PMCID: PMC9297008 DOI: 10.1098/rspb.2022.0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Contemporary hybrid zones act as natural laboratories for the investigation of species boundaries and may shed light on the little understood roles of sex chromosomes in species divergence. Sex chromosomes are considered to function as a hotspot of genetic divergence between species; indicated by less genomic introgression compared to autosomes during hybridization. Moreover, they are thought to contribute to Haldane's rule, which states that hybrids of the heterogametic sex are more likely to be inviable or sterile. To test these hypotheses, we used contemporary hybrid zones of Ischnura elegans, a damselfly species that has been expanding its range into the northern and western regions of Spain, leading to chronic hybridization with its sister species Ischnura graellsii. We analysed genome-wide SNPs in the Spanish I. elegans and I. graellsii hybrid zone and found (i) that the X chromosome shows less genomic introgression compared to autosomes, and (ii) that males are underrepresented among admixed individuals, as predicted by Haldane's rule. This is the first study in Odonata that suggests a role of the X chromosome in reproductive isolation. Moreover, our data add to the few studies on species with X0 sex determination system and contradict the hypothesis that the absence of a Y chromosome causes exceptions to Haldane's rule.
Collapse
Affiliation(s)
- Janne Swaegers
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden,Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, Belgium
| | | | - Pallavi Chauhan
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden
| |
Collapse
|
21
|
Lancaster LT, Fuller ZL, Berger D, Barbour MA, Jentoft S, Wellenreuther M. Understanding climate change response in the age of genomics. J Anim Ecol 2022; 91:1056-1063. [PMID: 35668551 DOI: 10.1111/1365-2656.13711] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - David Berger
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Abrams MB, Brem RB. Temperature-dependent genetics of thermotolerance between yeast species. Front Ecol Evol 2022; 10:859904. [PMID: 36911365 PMCID: PMC10004143 DOI: 10.3389/fevo.2022.859904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many traits of industrial and basic biological interest arose long ago, and manifest now as fixed differences between a focal species and its reproductively isolated relatives. In these systems, extant individuals can hold clues to the mechanisms by which phenotypes evolved in their ancestors. We harnessed yeast thermotolerance as a test case for such molecular-genetic inferences. In viability experiments, we showed that extant Saccharomyces cerevisiae survived at temperatures where cultures of its sister species S. paradoxus died out. Then, focusing on loci that contribute to this difference, we found that the genetic mechanisms of high-temperature growth changed with temperature. We also uncovered an enrichment of low-frequency variants at thermotolerance loci in S. cerevisiae population sequences, suggestive of a history of non-neutral selective forces acting at these genes. We interpret these results in light of models of the evolutionary mechanisms by which the thermotolerance trait arose in the S. cerevisiae lineage. Together, our results and interpretation underscore the power of genetic approaches to explore how an ancient trait came to be.
Collapse
Affiliation(s)
- Melanie B. Abrams
- UC Berkeley, Department of Plant and Microbial Biology, Berkeley, CA, USA
| | - Rachel B. Brem
- UC Berkeley, Department of Plant and Microbial Biology, Berkeley, CA, USA
| |
Collapse
|
23
|
Sheppard EC, Martin CA, Armstrong C, González-Quevedo C, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic associations with poxvirus across divergent island populations in Berthelot's pipit. Mol Ecol 2022; 31:3154-3173. [PMID: 35395699 PMCID: PMC9321574 DOI: 10.1111/mec.16461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms and genes that enable animal populations to adapt to pathogens is important from an evolutionary, health and conservation perspective. Berthelot's pipit (Anthus berthelotii) experiences extensive and consistent spatial heterogeneity in avian pox infection pressure across its range of island populations, thus providing an excellent system with which to examine how pathogen-mediated selection drives spatial variation in immunogenetic diversity. Here we test for evidence of genetic variation associated with avian pox at both an individual and population-level. At the individual level, we find no evidence that variation in MHC class I and TLR4 (both known to be important in recognising viral infection) was associated with pox infection within two separate populations. However, using genotype-environment association (Bayenv) in conjunction with genome-wide (ddRAD-seq) data, we detected strong associations between population-level avian pox prevalence and allele frequencies of single nucleotide polymorphisms (SNPs) at a number of sites across the genome. These sites were located within genes involved in cellular stress signalling and immune responses, many of which have previously been associated with responses to viral infection in humans and other animals. Consequently, our analyses indicates that pathogen-mediated selection may play a role in shaping genomic variation among relatively recently colonised island bird populations and highlights the utility of genotype-environment associations for identifying candidate genes potentially involved in host-pathogen interactions.
Collapse
Affiliation(s)
- Eleanor C Sheppard
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Claire Armstrong
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Catalina González-Quevedo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.,Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Campus of Mieres, Research Building, 5th Floor, c/ Gonzalo Gutiérrez Quirós, s/n, 33600 Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.,Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| |
Collapse
|
24
|
Fifer JE, Yasuda N, Yamakita T, Bove CB, Davies SW. Genetic divergence and range expansion in a western North Pacific coral. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152423. [PMID: 34942242 DOI: 10.1016/j.scitotenv.2021.152423] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Coral poleward range expansions have recently been observed in response to warming oceans. Range expansion can lead to reduced genetic diversity and increased frequency of deleterious mutations that were rare in core populations, potentially limiting the ability for adaptation and persistence in novel environments. Successful expansions that overcome these founder effects and colonize new habitat have been attributed to multiple introductions from different sources, hybridization with native populations, or rapid adaptive evolution. Here, we investigate population genomic patterns of the reef-building coral Acropora hyacinthus along a latitudinal cline that includes a well-established range expansion front in Japan using 2b-RAD sequencing. A total of 184 coral samples were collected across seven sites spanning from ~24°N to near its northern range front at ~33°N. We uncover the presence of three cryptic lineages of A. hyacinthus, which occupy discrete reefs within this region. Only one lineage is present along the expansion front and we find evidence for its historical occupation of marginal habitats. Within this lineage we also find evidence of bottleneck pressures associated with expansion events including higher clonality, increased linkage disequilibrium, and lower genetic diversity in range edge populations compared to core populations. Asymmetric migration between populations was also detected with lower migration from edge sites. Lastly, we describe genomic signatures of local adaptation potentially attributed to lower winter temperatures experienced at the more recently expanded northern populations. Together these data illuminate the genomic consequences of range expansion in a coral and highlight how adaptation to discrete environments along expansion fronts may facilitate further range expansion in this temperate coral lineage.
Collapse
Affiliation(s)
- James E Fifer
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | - Nina Yasuda
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki 889-2192, Japan.
| | - Takehisa Yamakita
- Marine Biodiversity and Environmental Assessment Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan
| | - Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
25
|
De Lisle SP, Mäenpää MI, Svensson EI. Phenotypic plasticity is aligned with phenological adaptation on both micro- and macroevolutionary timescales. Ecol Lett 2022; 25:790-801. [PMID: 35026042 DOI: 10.1111/ele.13953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
In seasonally variable environments, phenotypic plasticity in phenology may be critical for adaptation to fluctuating environmental conditions. Using an 18-generation longitudinal dataset from natural damselfly populations, we show that phenology has strongly advanced. Individual fitness data suggest this is likely an adaptive response towards a temperature-dependent optimum. A laboratory experiment revealed that developmental plasticity qualitatively matches the temperature dependence of selection, partially explaining observed advance in phenology. Expanding our analysis to the macroevolutionary level, we use a database of over 1-million occurrence records and spatiotemporally matched temperature data from 49 Swedish Odonate species to infer macroevolutionary dynamics of phenology. Phenological plasticity was more closely aligned with adaptation for species that have recently colonised northern latitudes, but with higher phenological mismatch at lower latitudes. Our results show that phenological plasticity plays a key role in microevolutionary dynamics within a single species, and such plasticity may have facilitated post-Pleistocene range expansion in this insect clade.
Collapse
Affiliation(s)
- Stephen P De Lisle
- Evolutionary Ecology Unit, Department of Biology, Lund University, Lund, Sweden
| | | | - Erik I Svensson
- Evolutionary Ecology Unit, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Abstract
Restriction enzymes have been one of the primary tools in the population genetics toolkit for 50 years, being coupled with each new generation of technology to provide a more detailed view into the genetics of natural populations. Restriction site-Associated DNA protocols, which joined enzymes with short-read sequencing technology, have democratized the field of population genomics, providing a means to assay the underlying alleles in scores of populations. More than 10 years on, the technique has been widely applied across the tree of life and served as the basis for many different analysis techniques. Here, we provide a detailed protocol to conduct a RAD analysis from experimental design to de novo analysis-including parameter optimization-as well as reference-based analysis, all in Stacks version 2, which is designed to work with paired-end reads to assemble RAD loci up to 1000 nucleotides in length. The protocol focuses on major points of friction in the molecular approaches and downstream analysis, with special attention given to validating experimental analyses. Finally, the protocol provides several points of departure for further analysis.
Collapse
Affiliation(s)
- Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
27
|
Chen Y, Liu Z, Régnière J, Vasseur L, Lin J, Huang S, Ke F, Chen S, Li J, Huang J, Gurr GM, You M, You S. Large-scale genome-wide study reveals climate adaptive variability in a cosmopolitan pest. Nat Commun 2021; 12:7206. [PMID: 34893609 PMCID: PMC8664911 DOI: 10.1038/s41467-021-27510-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the genetic basis of climatic adaptation is essential for predicting species' responses to climate change. However, intraspecific variation of these responses arising from local adaptation remains ambiguous for most species. Here, we analyze genomic data from diamondback moth (Plutella xylostella) collected from 75 sites spanning six continents to reveal that climate-associated adaptive variation exhibits a roughly latitudinal pattern. By developing an eco-genetic index that combines genetic variation and physiological responses, we predict that most P. xylostella populations have high tolerance to projected future climates. Using genome editing, a key gene, PxCad, emerged from our analysis as functionally temperature responsive. Our results demonstrate that P. xylostella is largely capable of tolerating future climates in most of the world and will remain a global pest beyond 2050. This work improves our understanding of adaptive variation along environmental gradients, and advances pest forecasting by highlighting the genetic basis for local climate adaptation.
Collapse
Affiliation(s)
- Yanting Chen
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China ,grid.418033.d0000 0001 2229 4212Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
| | - Zhaoxia Liu
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China ,grid.449406.b0000 0004 1757 7252College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000 China
| | - Jacques Régnière
- grid.146611.50000 0001 0775 5922Natural Resources Canada, Canadian Forest Service, Quebec City, QC G1V 4C7 Canada
| | - Liette Vasseur
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,grid.411793.90000 0004 1936 9318Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1 Canada
| | - Jian Lin
- grid.256111.00000 0004 1760 2876College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shiguo Huang
- grid.256111.00000 0004 1760 2876College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Fushi Ke
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China ,grid.458495.10000 0001 1014 7864Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Shaoping Chen
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China ,grid.418033.d0000 0001 2229 4212Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
| | - Jianyu Li
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China ,grid.418033.d0000 0001 2229 4212Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
| | - Jieling Huang
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002 China
| | - Geoff M. Gurr
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.419897.a0000 0004 0369 313XJoint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002 China ,grid.1037.50000 0004 0368 0777Graham Centre, Charles Sturt University, Orange, NSW 2800 Australia
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China. .,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China.
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China. .,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China.
| |
Collapse
|
28
|
New insights into the past and recent evolutionary history of the Corsican mouflon (Ovis gmelini musimon) to inform its conservation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Deng J, Assandri G, Chauhan P, Futahashi R, Galimberti A, Hansson B, Lancaster LT, Takahashi Y, Svensson EI, Duplouy A. Wolbachia-driven selective sweep in a range expanding insect species. BMC Ecol Evol 2021; 21:181. [PMID: 34563127 PMCID: PMC8466699 DOI: 10.1186/s12862-021-01906-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Background Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. Method The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). Results Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years. Conclusions Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.
Collapse
Affiliation(s)
- Junchen Deng
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.,Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Giacomo Assandri
- Area per l'Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPA), Via Ca' Fornacetta 9, 40064, Ozzano Emilia, BO, Italy
| | - Pallavi Chauhan
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advance Industrial Science and Technology (AIST), Trukuba, Ibaraki, 305-8566, Japan
| | - Andrea Galimberti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Bengt Hansson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan
| | - Erik I Svensson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Anne Duplouy
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden. .,Insect Symbiosis Ecology and Evolution Lab, Organismal and Evolutionary Biology Research Program, The University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland.
| |
Collapse
|
30
|
Llanos-Garrido A, Briega-Álvarez A, Pérez-Tris J, Díaz JA. Environmental association modelling with loci under divergent selection predicts the distribution range of a lizard. Mol Ecol 2021; 30:3856-3868. [PMID: 34047420 DOI: 10.1111/mec.16002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 11/28/2022]
Abstract
During the historical building of a species range, individual colonizers have to confront different ecological challenges, and the capacity of the species to broaden its range may depend on the total amount of adaptive genetic variation supplied by evolution. We set out to increase our understanding of what defines a range and the role of underlying genetics by trying to predict an entire species' range from the geographical distribution of its genetic diversity under selection. We sampled five populations of the western Mediterranean lizard Psammodromus algirus that inhabit a noticeable environmental gradient of temperature and precipitation. We correlated the genotypes of 95 individuals (18-20 individuals per population) for 21 SNPs putatively under selection with environmental scores on a bioclimatic gradient, using 1 × 1 km2 grid cells as sampling units. By extrapolating the resulting model to all possible combinations of alleles, we inferred all the geographic cells that were theoretically suitable for a given amount of genetic variance under selection. The inferred distribution range overlapped to a large extent with the realized range of the species (77.46% of overlap), including an accurate prediction of internal gaps and range borders. Our results suggest an adaptability threshold determined by the amount of genetic variation available that would be required to warrant adaptation beyond a certain limit of environmental variation. These results support the idea that the expansion of a species' range can be ultimately linked to the arising of new variants under selection (either newly selected variants from standing genetic variation or innovative mutations under selection).
Collapse
Affiliation(s)
- Alejandro Llanos-Garrido
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Biodiversity, Ecology and Evolution, UCM, Madrid, Spain
| | - Andrea Briega-Álvarez
- Museum für Naturkunde, Leibniz-Institut für Evolutions und Biodiversitätsforschung Berlin, Berlin, Germany
| | - Javier Pérez-Tris
- Department of Biodiversity, Ecology and Evolution, UCM, Madrid, Spain
| | - José A Díaz
- Department of Biodiversity, Ecology and Evolution, UCM, Madrid, Spain
| |
Collapse
|
31
|
Bennett KL, McMillan WO, Loaiza JR. The genomic signal of local environmental adaptation in Aedes aegypti mosquitoes. Evol Appl 2021; 14:1301-1313. [PMID: 34025769 PMCID: PMC8127705 DOI: 10.1111/eva.13199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Local adaptation is important when predicting arthropod-borne disease risk because of its impacts on vector population fitness and persistence. However, the extent that vector populations are adapted to the environment generally remains unknown. Despite low population structure and high gene flow in Aedes aegypti mosquitoes across Panama, excepting the province of Bocas del Toro, we identified 128 candidate SNPs, clustered within 17 genes, which show a strong genomic signal of local environmental adaptation. This putatively adaptive variation occurred across fine geographical scales with the composition and frequency of candidate adaptive loci differing between populations in wet tropical environments along the Caribbean coast and dry tropical conditions typical of the Pacific coast. Temperature and vegetation were important predictors of adaptive genomic variation in Ae. aegypti with several potential areas of local adaptation identified. Our study lays the foundations of future work to understand whether environmental adaptation in Ae. aegypti impacts the arboviral disease landscape and whether this could either aid or hinder efforts of population control.
Collapse
Affiliation(s)
- Kelly L. Bennett
- Smithsonian Tropical Research InstituteBalboa AnconRepublic of Panama
| | - W. Owen McMillan
- Smithsonian Tropical Research InstituteBalboa AnconRepublic of Panama
| | - Jose R. Loaiza
- Smithsonian Tropical Research InstituteBalboa AnconRepublic of Panama
- Instituto de Investigaciones Científicas y Servicios de Alta TecnologíaPanamáRepublic of Panama
- Programa Centroamericano de Maestría en EntomologíaUniversidad de PanamáPanamáRepublic of Panama
| |
Collapse
|
32
|
Genome assembly, sex-biased gene expression and dosage compensation in the damselfly Ischnura elegans. Genomics 2021; 113:1828-1837. [PMID: 33831439 DOI: 10.1016/j.ygeno.2021.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/27/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022]
Abstract
The evolution of sex chromosomes, and patterns of sex-biased gene expression and dosage compensation, are poorly known among early winged insects such as odonates. We assembled and annotated the genome of Ischnura elegans (blue-tailed damselfly), which, like other odonates, has a male-hemigametic sex-determining system (X0 males, XX females). By identifying X-linked genes in I. elegans and their orthologs in other insect genomes, we found homologies between the X chromosome in odonates and chromosomes of other orders, including the X chromosome in Coleoptera. Next, we showed balanced expression of X-linked genes between sexes in adult I. elegans, i.e. evidence of dosage compensation. Finally, among the genes in the sex-determining pathway only fruitless was found to be X-linked, while only doublesex showed sex-biased expression. This study reveals partly conserved sex chromosome synteny and independent evolution of dosage compensation among insect orders separated by several hundred million years of evolutionary history.
Collapse
|
33
|
Dudaniec RY, Carey AR, Svensson EI, Hansson B, Yong CJ, Lancaster LT. Latitudinal clines in sexual selection, sexual size dimorphism and sex-specific genetic dispersal during a poleward range expansion. J Anim Ecol 2021; 91:1104-1118. [PMID: 33759189 DOI: 10.1111/1365-2656.13488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Range expansions can be shaped by sex differences in behaviours and other phenotypic traits affecting dispersal and reproduction. Here, we investigate sex differences in morphology, behaviour and genomic population differentiation along a climate-mediated range expansion in the common bluetail damselfly (Ischnura elegans) in northern Europe. We sampled 65 sites along a 583-km gradient spanning the I. elegans range in Sweden and quantified latitudinal gradients in site relative abundance, sex ratio and sex-specific shifts in body size and mating status (a measure of sexual selection). Using single nucleotide polymorphism (SNP) data for 426 individuals from 25 sites, we further investigated sex-specific landscape and climatic effects on neutral genetic connectivity and migration patterns. We found evidence for sex differences associated with the I. elegans range expansion, namely (a) increased male body size with latitude, but no latitudinal effect on female body size, resulting in reduced sexual dimorphism towards the range limit, (b) a steeper decline in male genetic similarity with increasing geographic distance than in females, (c) male-biased genetic migration propensity and (d) a latitudinal cline in migration distance (increasing migratory distances towards the range margin), which was stronger in males. Cooler mean annual temperatures towards the range limit were associated with increased resistance to gene flow in both sexes. Sex ratios became increasingly male biased towards the range limit, and there was evidence for a changed sexual selection regime shifting from favouring larger males in the south to favouring smaller males in the north. Our findings suggest sex-specific spatial phenotype sorting at the range limit, where larger males disperse more under higher landscape resistance associated with cooler climates. The combination of latitudinal gradients in sex-biased dispersal, increasing male body size and (reduced) sexual size dimorphism should have emergent consequences for sexual selection dynamics and the mating system at the expanding range front. Our study illustrates the importance of considering sex differences in the study of range expansions driven by ongoing climate change.
Collapse
Affiliation(s)
- Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexander R Carey
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Planning, Industry and Environment, Saving our Species Program, New South Wales Government, Sydney, NSW, Australia
| | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Chuan Ji Yong
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lesley T Lancaster
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
34
|
Carbonell JA, Wang YJ, Stoks R. Evolution of cold tolerance and thermal plasticity in life history, behaviour and physiology during a poleward range expansion. J Anim Ecol 2021; 90:1666-1677. [PMID: 33724470 DOI: 10.1111/1365-2656.13482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 01/04/2023]
Abstract
Many species that are moving polewards encounter novel thermal regimes to which they have to adapt. Therefore, rapid evolution of thermal tolerance and of thermal plasticity in fitness-related traits in edge populations can be crucial for the success and speed of range expansions. We tested for adaptation in cold tolerance and in life history, behavioural and physiological traits and their thermal plasticity during a poleward range expansion. We reconstructed the thermal performance curves of life history (survival, growth and development rates), behaviour (food intake) and cold tolerance (chill coma recovery time) in the aquatic larval stage of the damselfly Ischnura elegans that is currently showing a poleward range expansion in northern Europe. We studied larvae from three edge and three core populations using a common-garden experiment. Consistent with the colder annual temperatures, larvae at the expansion front evolved an improved cold tolerance. The edge populations showed no overall (across temperatures) evolution of a faster life history that would improve their range-shifting ability. Moreover, consistent with damselfly edge populations from colder latitudes, edge populations evolved at the highest rearing temperature (28°C) a faster development rate, likely to better exploit the rare periods with higher temperatures. This was associated with a higher food intake and a lower metabolic rate. In conclusion, our results suggest that the edge populations rapidly evolved adaptive changes in trait means and thermal plasticity to the novel thermal conditions at the edge front. Our results highlight the importance of considering besides trait plasticity and the evolution of trait means, also the evolution of trait plasticity to improve forecasts of responses to climate change.
Collapse
Affiliation(s)
- José Antonio Carbonell
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium.,Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Ying-Jie Wang
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Bioclimatic Modelling Identifies Suitable Habitat for the Establishment of the Invasive European Paper Wasp (Hymenoptera: Vespidae) across the Southern Hemisphere. INSECTS 2020; 11:insects11110784. [PMID: 33187210 PMCID: PMC7697767 DOI: 10.3390/insects11110784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/23/2023]
Abstract
Species distribution models (SDMs) are tools used by ecologists to help predict the spread of invasive species. Information provided by these models can help direct conservation and biosecurity efforts by highlighting areas likely to contain species of interest. In this study, two models were created to investigate the potential range expansion of Polistes dominula Christ (Hymenoptera: Vespidae) in the southern hemisphere. This palearctic species has spread to invade North and South America, South Africa, Australia, and more recently New Zealand. Using the BIOCLIM and MAXENT modelling methods, regions that were suitable for P. dominula were identified based on climate data across four regions in the southern hemisphere. In South America areas of central Chile, eastern Argentina, parts of Uruguay, and southern Brazil were identified as climatically suitable for the establishment of P. dominula. Similarly, southern parts of South Africa and Australia were identified by the model to be suitable as well as much of the North Island and east of the South Island of New Zealand. Based on outputs from both models, significant range expansion by P. dominula is possible across its more southern invaded ranges.
Collapse
|
36
|
Stuart KC, Cardilini APA, Cassey P, Richardson MF, Sherwin WB, Rollins LA, Sherman CDH. Signatures of selection in a recent invasion reveal adaptive divergence in a highly vagile invasive species. Mol Ecol 2020; 30:1419-1434. [PMID: 33463838 DOI: 10.1111/mec.15601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
A detailed understanding of population genetics in invasive populations helps us to identify drivers of successful alien introductions. Here, we investigate putative signals of selection in Australian populations of invasive common starlings, Sturnus vulgaris, and seek to understand how these have been influenced by introduction history. We used reduced representation sequencing to determine population structure, and identify Single Nucleotide Polymorphisms (SNPs) that are putatively under selection. We found that since their introduction into Australia, starling populations have become genetically differentiated despite the potential for high levels of dispersal, and that starlings have responded to selective pressures imposed by a wide range of environmental conditions across their geographic range. Isolation by distance appears to have played a strong role in determining genetic substructure across the starling's Australian range. Analyses of candidate SNPs that are putatively under selection indicated that aridity, precipitation and temperature may be important factors driving adaptive variation across the starling's invasive range in Australia. However, we also noted that the historic introduction regime may leave footprints on sites flagged as being under adaptive selection, and encourage critical interpretation of selection analyses in non-native populations.
Collapse
Affiliation(s)
- Katarina C Stuart
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Adam P A Cardilini
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Phillip Cassey
- Centre for Applied Conservation Science and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark F Richardson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.,Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - William B Sherwin
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Lee A Rollins
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Craig D H Sherman
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
37
|
DeSilva R, Dodd RS. Association of genetic and climatic variability in giant sequoia, Sequoiadendron giganteum, reveals signatures of local adaptation along moisture-related gradients. Ecol Evol 2020; 10:10619-10632. [PMID: 33072284 PMCID: PMC7548164 DOI: 10.1002/ece3.6716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 11/12/2022] Open
Abstract
Uncovering the genetic basis of local adaptation is a major goal of evolutionary biology and conservation science alike. In an era of climate change, an understanding of how environmental factors shape adaptive diversity is crucial to predicting species response and directing management. Here, we investigate patterns of genomic variation in giant sequoia, an iconic and ecologically important tree species, using 1,364 bi-allelic single nucleotide polymorphisms (SNPs). We use an F ST outlier test and two genotype-environment association methods, latent factor mixed models (LFMMs) and redundancy analysis (RDA), to detect complex signatures of local adaptation. Results indicate 79 genomic regions of potential adaptive importance, with limited overlap between the detection methods. Of the 58 loci detected by LFMM, 51 showed strong correlations to a precipitation-driven composite variable and seven to a temperature-related variable. RDA revealed 24 outlier loci with association to climate variables, all of which showed strongest relationship to summer precipitation. Nine candidate loci were indicated by two methods. After correcting for geographic distance, RDA models using climate predictors accounted for 49% of the explained variance and showed significant correlations between SNPs and climatic factors. Here, we present evidence of local adaptation in giant sequoia along gradients of precipitation and provide a first step toward identifying genomic regions of adaptive significance. The results of this study will provide information to guide management strategies that seek to maximize adaptive potential in the face of climate change.
Collapse
Affiliation(s)
- Rainbow DeSilva
- Department of Environmental Science, Policy, and Management University of California at Berkeley Berkeley California USA
| | - Richard S Dodd
- Department of Environmental Science, Policy, and Management University of California at Berkeley Berkeley California USA
| |
Collapse
|
38
|
Walters SJ, Robinson TP, Byrne M, Wardell-Johnson GW, Nevill P. Contrasting patterns of local adaptation along climatic gradients between a sympatric parasitic and autotrophic tree species. Mol Ecol 2020; 29:3022-3037. [PMID: 32621768 DOI: 10.1111/mec.15537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
Sympatric tree species are subject to similar climatic drivers, posing a question as to whether they display comparable adaptive responses. However, no study has explicitly examined local adaptation of co-occurring parasitic and autotrophic plant species to the abiotic environment. Here we test the hypotheses that a generalist parasitic tree would display a weaker signal of selection and that genomic variation would associate with fewer climatic variables (particularly precipitation) but have similar spatial patterns to a sympatric autotrophic tree species. To test these hypotheses, we collected samples from 17 sites across the range of two tree species, the hemiparasite Nuytsia floribunda (n = 264) and sympatric autotroph Melaleuca rhaphiophylla (n = 272). We obtained 5,531 high-quality genome-wide single nucleotide polymorphisms (SNPs) for M. rhaphiophylla and 6,727 SNPs for N. floribunda using DArTseq genome scan technology. Population differentiation and environmental association approaches were used to identify signals of selection. Generalized dissimilarly modelling was used to detect climatic and spatial patterns of local adaptation across climatic gradients. Overall, 322 SNPs were identified as putatively adaptive for the autotroph, while only 57 SNPs were identified for the parasitic species. We found genomic variation to associate with different sets of bioclimatic variables for each species, with precipitation relatively less important for the parasite. Spatial patterns of predicted adaptive variability were different and indicate that co-occurring species with disparate life history traits may not respond equally to selective pressures (i.e., temperature and precipitation). Together, these findings provide insight into local adaptation of sympatric parasitic and autotrophic tree species to abiotic environments.
Collapse
Affiliation(s)
- Sheree J Walters
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Todd P Robinson
- School of Earth and Planetary Science, Curtin University, Perth, Western Australia, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia.,School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Grant W Wardell-Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Paul Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia.,Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
39
|
Carbonell JA, Stoks R. Thermal evolution of life history and heat tolerance during range expansions toward warmer and cooler regions. Ecology 2020; 101:e03134. [PMID: 32691873 DOI: 10.1002/ecy.3134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Species' range edges are expanding to both warmer and cooler regions. Yet, no studies directly compared the changes in range-limiting traits within the same species during both types of range expansions. To increase our mechanistic understanding of range expansions, it is crucial to disentangle the contributions of plastic and genetic changes in these traits. The aim of this study was to test for plastic and evolutionary changes in heat tolerance, life history, and behavior, and compare these during range expansions toward warmer and cooler regions. Using laboratory experiments we reconstructed the thermal performance curves (TPCurves) of larval life history (survival, growth, and development rates) and larval heat tolerance (CTmax) across two recent range expansions from the core populations in southern France toward a warmer (southeastern Spain) and a cooler (northwestern Spain) region in Europe by the damselfly Ischnura elegans. First-generation larvae from field-collected mothers were reared across a range of temperatures (16°-28°C) in incubators. The range expansion to the warmer region was associated with the evolution of a greater ability to cope with high temperatures (increased mean and thermal plasticity of CTmax), faster development, and, in part, a faster growth, indicating a higher time constraints caused by a shorter time frame available for larval development associated with a transition to a greater voltinism. Our results thereby support the emerging pattern that plasticity in heat tolerance alone is inadequate to adapt to new thermal regimes. The range expansion to the cooler region was associated with faster growth indicating countergradient variation without a change in CTmax. The evolution of a faster growth rate during both range expansions could be explained by a greater digestive efficiency rather than an increased food intake. Our results highlight that range expansions to warmer and cooler regions can result in similar evolutionary changes in the TPCurves for life history, and no opposite changes in heat tolerance.
Collapse
Affiliation(s)
- José Antonio Carbonell
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium.,Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), Avenida Américo Vespucio 26, Isla de la Cartuja, Seville, 41042, Spain
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium
| |
Collapse
|
40
|
Li F, Park Y. Habitat availability and environmental preference drive species range shifts in concordance with climate change. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Fengqing Li
- Department of Biology Kyung Hee University Seoul Republic of Korea
| | - Young‐Seuk Park
- Department of Biology Kyung Hee University Seoul Republic of Korea
- Department of Life and Nanopharmaceutical Sciences Kyung Hee University Seoul Republic of Korea
| |
Collapse
|
41
|
Rivera-Colón AG, Rochette NC, Catchen JM. Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data. Mol Ecol Resour 2020; 21:363-378. [PMID: 32275349 DOI: 10.1111/1755-0998.13163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
Abstract
Restriction-site associated DNA sequencing (RADseq) has become a powerful and versatile tool in modern population genomics, enabling large-scale evolutionary and genomic analyses in otherwise inaccessible biological systems. With its widespread use, different variants on the protocol have been developed to suit specific experimental needs. Researchers face the challenge of choosing the optimal molecular and sequencing protocols for their reduced representation experimental design, an often-complicated process. Strategic errors can lead to biased data generation that has reduced power to answer biological questions. Here, we present RADinitio, simulation software for the selection and optimization of RADseq experiments via the generation of sequencing data that behave similarly to empirical sources. RADinitio provides an evolutionary simulation of populations, implementation of various RADseq protocols with customizable parameters, and thorough assessment of missing data. We test the efficacy of the software using different RAD protocols across several organisms, highlighting the importance of protocol selection on the magnitude and quality of data acquired. Additionally, we test the effects of RAD library preparation and sequencing on allelic dropout, observing that library preparation and sequencing often contributes more to missing alleles than population-level variation.
Collapse
Affiliation(s)
- Angel G Rivera-Colón
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, Illinois, USA
| | - Nicolas C Rochette
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, Illinois, USA
| | - Julian M Catchen
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
42
|
González‐Serna MJ, Cordero PJ, Ortego J. Insights into the neutral and adaptive processes shaping the spatial distribution of genomic variation in the economically important Moroccan locust ( Dociostaurus maroccanus). Ecol Evol 2020; 10:3991-4008. [PMID: 32489626 PMCID: PMC7244894 DOI: 10.1002/ece3.6165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 11/11/2022] Open
Abstract
Understanding the processes that shape neutral and adaptive genomic variation is a fundamental step to determine the demographic and evolutionary dynamics of pest species. Here, we use genomic data obtained via restriction site-associated DNA sequencing to investigate the genetic structure of Moroccan locust (Dociostaurus maroccanus) populations from the westernmost portion of the species distribution (Iberian Peninsula and Canary Islands), infer demographic trends, and determine the role of neutral versus selective processes in shaping spatial patterns of genomic variation in this pest species of great economic importance. Our analyses showed that Iberian populations are characterized by high gene flow, whereas the highly isolated Canarian populations have experienced strong genetic drift and loss of genetic diversity. Historical demographic reconstructions revealed that all populations have passed through a substantial genetic bottleneck around the last glacial maximum (~21 ka BP) followed by a sharp demographic expansion at the onset of the Holocene, indicating increased effective population sizes during warm periods as expected from the thermophilic nature of the species. Genome scans and environmental association analyses identified several loci putatively under selection, suggesting that local adaptation processes in certain populations might not be impeded by widespread gene flow. Finally, all analyses showed few differences between outbreak and nonoutbreak populations. Integrated pest management practices should consider high population connectivity and the potential importance of local adaptation processes on population persistence.
Collapse
Affiliation(s)
- María José González‐Serna
- Grupo de Investigación de la Biodiversidad Genética y CulturalInstituto de Investigación en Recursos Cinegéticos – IREC – (CSIC, UCLM, JCCM)Ciudad RealSpain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y CulturalInstituto de Investigación en Recursos Cinegéticos – IREC – (CSIC, UCLM, JCCM)Ciudad RealSpain
- Departamento de Ciencia y Tecnología Agroforestal y GenéticaEscuela Técnica Superior de Ingenieros Agrónomos (ETSIA)Universidad de Castilla‐La Mancha (UCLM)Ciudad RealSpain
| | - Joaquín Ortego
- Department of Integrative EcologyEstación Biológica de Doñana – EBD – (CSIC)SevilleSpain
| |
Collapse
|
43
|
Environmental and genetic constraints on cuticular hydrocarbon composition and nestmate recognition in ants. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2019.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Waller JT, Willink B, Tschol M, Svensson EI. The odonate phenotypic database, a new open data resource for comparative studies of an old insect order. Sci Data 2019; 6:316. [PMID: 31831730 PMCID: PMC6908694 DOI: 10.1038/s41597-019-0318-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
We present The Odonate Phenotypic Database (OPD): an online data resource of dragonfly and damselfly phenotypes (Insecta: Odonata). Odonata is a relatively small insect order that currently consists of about 6400 species belonging to 32 families. The database consists of multiple morphological, life-history and behavioral traits, and biogeographical information collected from literature sources. We see taxon-specific phenotypic databases from Odonata and other organismal groups as becoming an increasing valuable resource in comparative studies. Our database has phenotypic records for 1011 of all 6400 known odonate species. The database is accessible at http://www.odonatephenotypicdatabase.org/, and a static version with an information file about the variables in the database is archived at Dryad.
Collapse
Affiliation(s)
- John T Waller
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
- Global Biodiversity Information Facility (GBIF), GBIF Secretariat Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
| | - Beatriz Willink
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
- School of Biology, University of Costa Rica, San Jose, 11501-2060, Costa Rica
| | - Maximilian Tschol
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
- School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Erik I Svensson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden.
| |
Collapse
|
45
|
Han X, Lu C, Geib SM, Zheng J, Wu S, Zhang F, Liang G. Characterization of Dendrolimus houi Lajonquiere (Lepidoptera: Lasiocampidae) Transcriptome across All Life Stages. INSECTS 2019; 10:insects10120442. [PMID: 31835398 PMCID: PMC6956129 DOI: 10.3390/insects10120442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
Abstract
Dendrolimus houi Lajonquiere is a phytophagous caterpillar infesting many economically important coniferous tree species in China, causing serious economic and ecological environment losses. Based on previous research, it has one generation per year in South China and East China in contrast to two generations per year in Yunnan province in southwestern China. The species is potentially resilient to climatic extremes in these regions with the eggs and 1st instar larvae surviving in the winter (5 °C), older instar larvae and pupae surviving high temperatures in the summer (35 °C), suggesting some temperature stress tolerance during different developmental stages. However, little is known in this species at the genetic and genomic level. In this study, we used high throughput sequencing to obtain transcriptome data from different developmental stages (eggs, 1st-3rd instar larvae, 4th-5th instar larvae, 6th-7th instar larvae, pupae, male and female adults), which were collected from Fujian province. In total, we obtained approximately 90 Gb of data, from which 33,720 unigenes were assembled and 17,797 unigenes were annotated. We furtherly analyzed the differentially expressed genes (DGEs) across all stages, the largest number between the eggs and 1st instar larvae stage and gene expression varied significantly in different developmental stages. Furthermore, 4138 SSR genes and 114,977 SNP loci were screened from transcriptome data. This paper will be a foundation for further study towards improved integrated pest management strategies for this species.
Collapse
Affiliation(s)
- Xiaohong Han
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (S.W.)
| | - Ciding Lu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (S.W.)
| | - Scott M. Geib
- Daniel K. Inouye US Pacific Basin Agricultural Research Center, USDA-ARS, 64 Nowelo, St.; Hilo, HI 96720, USA;
| | - Junxian Zheng
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (S.W.)
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (S.W.)
- Provincial Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Feiping Zhang
- Provincial Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Guanghong Liang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (S.W.)
- Provincial Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: ; Tel.: +86-0591-8385-1475
| |
Collapse
|
46
|
Dillon ME, Lozier JD. Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics. CURRENT OPINION IN INSECT SCIENCE 2019; 36:131-139. [PMID: 31698151 DOI: 10.1016/j.cois.2019.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Advances in tools to gather environmental, phenotypic, and molecular data have accelerated our ability to detect abiotic drivers of variation across the genome-to-phenome spectrum in model and non-model insects. However, differences in the spatial and temporal resolution of these data sets may create gaps in our understanding of linkages between environment, genotype, and phenotype that yield missed or misleading results about adaptive variation. In this review we highlight sources of variability that might impact studies of phenotypic and 'omic environmental adaptation, challenges to collecting data at relevant scales, and possible solutions that link intensive fine-scale reductionist studies of mechanisms to large-scale biogeographic patterns.
Collapse
Affiliation(s)
- Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, The University of Wyoming, Laramie, Wyoming 82071, USA.
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
47
|
Svensson EI, Willink B, Duryea MC, Lancaster LT. Temperature drives pre‐reproductive selection and shapes the biogeography of a female polymorphism. Ecol Lett 2019; 23:149-159. [DOI: 10.1111/ele.13417] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023]
|
48
|
Sherpa S, Guéguen M, Renaud J, Blum MGB, Gaude T, Laporte F, Akiner M, Alten B, Aranda C, Barre‐Cardi H, Bellini R, Bengoa Paulis M, Chen X, Eritja R, Flacio E, Foxi C, Ishak IH, Kalan K, Kasai S, Montarsi F, Pajović I, Petrić D, Termine R, Turić N, Vazquez‐Prokopec GM, Velo E, Vignjević G, Zhou X, Després L. Predicting the success of an invader: Niche shift versus niche conservatism. Ecol Evol 2019; 9:12658-12675. [PMID: 31788205 PMCID: PMC6875661 DOI: 10.1002/ece3.5734] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 01/04/2023] Open
Abstract
Invasive species can encounter environments different from their source populations, which may trigger rapid adaptive changes after introduction (niche shift hypothesis). To test this hypothesis, we investigated whether postintroduction evolution is correlated with contrasting environmental conditions between the European invasive and source ranges in the Asian tiger mosquito Aedes albopictus. The comparison of environmental niches occupied in European and source population ranges revealed more than 96% overlap between invasive and source niches, supporting niche conservatism. However, we found evidence for postintroduction genetic evolution by reanalyzing a published ddRADseq genomic dataset from 90 European invasive populations using genotype-environment association (GEA) methods and generalized dissimilarity modeling (GDM). Three loci, among which a putative heat-shock protein, exhibited significant allelic turnover along the gradient of winter precipitation that could be associated with ongoing range expansion. Wing morphometric traits weakly correlated with environmental gradients within Europe, but wing size differed between invasive and source populations located in different climatic areas. Niche similarities between source and invasive ranges might have facilitated the establishment of populations. Nonetheless, we found evidence for environmental-induced adaptive changes after introduction. The ability to rapidly evolve observed in invasive populations (genetic shift) together with a large proportion of unfilled potential suitable areas (80%) pave the way to further spread of Ae. albopictus in Europe.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Maya Guéguen
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Julien Renaud
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Michael G. B. Blum
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité (TIMC‐IMAG)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Thierry Gaude
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Frédéric Laporte
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| | - Mustafa Akiner
- Department of BiologyFaculty of Arts and SciencesRecep Tayyip Erdogan UniversityFenerTurkey
| | - Bulent Alten
- Vector Ecology Research Group (VERG)Ecological Sciences Research LaboratoriesDepartment of BiologyFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Carles Aranda
- Centre de Recerca en Sanitat Animal (CReSA IRTA)BarcelonaSpain
- Servei de Control de MosquitsConsell Comarcal del Baix LlobregatBarcelonaSpain
| | - Hélène Barre‐Cardi
- Observatoire Conservatoire des Insectes de CorseOffice de l'Environnement de la CorseCortiFrance
| | - Romeo Bellini
- Department of Medical and Veterinary EntomologyCentro Agricoltura Ambiente “G.Nicoli”CrevalcoreItaly
| | | | - Xiao‐Guang Chen
- Department of Pathogen BiologySchool of Public HealthSouthern Medical UniversityGuang ZhouChina
| | - Roger Eritja
- Servei de Control de MosquitsConsell Comarcal del Baix LlobregatBarcelonaSpain
| | - Eleonora Flacio
- Laboratorio Microbiologia ApplicataDipartimento Ambiente Costruzioni e DesignScuola Universitaria Professionale della Svizzera ItalianaPorzaSwitzerland
| | - Cipriano Foxi
- Istituto Zooprofilattico Sperimentale della Sardegna “G. Pegreffi”SassariItaly
| | - Intan H. Ishak
- School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
| | - Katja Kalan
- Department of BiodiversityFaculty of Mathematics, Natural Sciences and Information TechnologiesUniversity of PrimorskaKoperSlovenia
| | - Shinji Kasai
- Department of Medical EntomologyNational Institute of Infectious DiseasesTokyoJapan
| | - Fabrizio Montarsi
- Laboratory of ParasitologyIstituto Zooprofilattico Sperimentale delle VeneziePadovaItaly
| | - Igor Pajović
- University of Montenegro Biotechnical FacultyPodgoricaMontenegro
| | - Dušan Petrić
- Laboratory for Medical and Veterinary EntomologyFaculty of AgricultureUniversity of Novi SadNovi SadSerbia
| | - Rosa Termine
- Laboratorio di Ingegneria Sanitaria AmbientaleUniversità “Kore” di EnnaEnnaItaly
| | - Nataša Turić
- Department of BiologyJosip Juraj Strossmayer UniversityOsijekCroatia
| | | | - Enkelejda Velo
- Department of Epidemiology and Control of Infectious DiseasesInstitute of Public HealthTiranaAlbania
| | - Goran Vignjević
- Department of BiologyJosip Juraj Strossmayer UniversityOsijekCroatia
| | - Xiaohong Zhou
- Department of Pathogen BiologySchool of Public HealthSouthern Medical UniversityGuang ZhouChina
| | - Laurence Després
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesGrenobleFrance
| |
Collapse
|
49
|
Selmoni O, Vajana E, Guillaume A, Rochat E, Joost S. Sampling strategy optimization to increase statistical power in landscape genomics: A simulation-based approach. Mol Ecol Resour 2019; 20:154-169. [PMID: 31550072 PMCID: PMC6972490 DOI: 10.1111/1755-0998.13095] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
An increasing number of studies are using landscape genomics to investigate local adaptation in wild and domestic populations. Implementation of this approach requires the sampling phase to consider the complexity of environmental settings and the burden of logistical constraints. These important aspects are often underestimated in the literature dedicated to sampling strategies. In this study, we computed simulated genomic data sets to run against actual environmental data in order to trial landscape genomics experiments under distinct sampling strategies. These strategies differed by design approach (to enhance environmental and/or geographical representativeness at study sites), number of sampling locations and sample sizes. We then evaluated how these elements affected statistical performances (power and false discoveries) under two antithetical demographic scenarios. Our results highlight the importance of selecting an appropriate sample size, which should be modified based on the demographic characteristics of the studied population. For species with limited dispersal, sample sizes above 200 units are generally sufficient to detect most adaptive signals, while in random mating populations this threshold should be increased to 400 units. Furthermore, we describe a design approach that maximizes both environmental and geographical representativeness of sampling sites and show how it systematically outperforms random or regular sampling schemes. Finally, we show that although having more sampling locations (between 40 and 50 sites) increase statistical power and reduce false discovery rate, similar results can be achieved with a moderate number of sites (20 sites). Overall, this study provides valuable guidelines for optimizing sampling strategies for landscape genomics experiments.
Collapse
Affiliation(s)
- Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elia Vajana
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Annie Guillaume
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
50
|
Rochette NC, Rivera‐Colón AG, Catchen JM. Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Mol Ecol 2019; 28:4737-4754. [DOI: 10.1111/mec.15253] [Citation(s) in RCA: 357] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Nicolas C. Rochette
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Angel G. Rivera‐Colón
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Julian M. Catchen
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐Champaign Urbana IL USA
| |
Collapse
|