1
|
Breistein B, Dahle G, Johansen T, Jorde PE, Glover KA. Haemoglobin revisited: delineating population structure with the world's first molecular genetic marker used in fisheries research. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241760. [PMID: 39816733 PMCID: PMC11732412 DOI: 10.1098/rsos.241760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
When haemoglobin genotyping was implemented in the early 1960s to investigate population genetic structure in Atlantic cod (Gadus morhua), it became one of the first molecular genetic markers deployed in fisheries research worldwide. However, its suitability was questioned due to its potential for selection. While the issue of neutrality concerned the first population geneticists, markers under selection are now routinely used to study population genetic structure. Here, we revisited haemoglobin genotyping half a decade later to analyse >6000 mature Atlantic cod from 73 spawning locations throughout Norway's approximately 2500 km coastline. A latitudinal gradient in allele frequencies, with a decrease in the HbI-2 allele towards the south, was observed. Our observed HbI-2 frequencies were consistently slightly lower than data from the 1960s, potentially reflecting adaptive changes to increasing sea temperatures. However, despite this difference, the observed north-south pattern in allele frequencies observed here and in the historical studies overlapped, aligning with current knowledge of population genetic structure in this species. We therefore conclude that this once questioned marker, which provided the first molecular genetic insights into genetic structure in Atlantic cod, provides knowledge consistent with the isolation by distance pattern revealed through decades of research in this species in this region.
Collapse
Affiliation(s)
| | - Geir Dahle
- Institute of Marine Research (IMR), PO Box 1870, BergenN-5817, Norway
| | - Torild Johansen
- Institute of Marine Research (IMR), PO Box 1870, BergenN-5817, Norway
| | - Per Erik Jorde
- Institute of Marine Research (IMR), PO Box 1870, BergenN-5817, Norway
| | - Kevin A. Glover
- Institute of Marine Research (IMR), PO Box 1870, BergenN-5817, Norway
| |
Collapse
|
2
|
Welch RJ, Childs AR, Murray TS, Darnaude AM, James NC. The role of acoustic telemetry in assessing fish connectivity within marine seascapes: A global review. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39635955 DOI: 10.1111/jfb.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
The study of aquatic animal movements is a rapidly growing field of research, with tracking methodology ever developing and refining. Acoustic telemetry is arguably the most popular method used to study the movements of fish. Despite this method being able to elucidate many aspects of movement behavior, including residency, home range, and migration, among others, one aspect that remains challenging is the study and definition of connectivity, particularly within marine seascapes. As such, this review assesses published literature on acoustic telemetry studies, which have specifically assessed some aspect of fish connectivity, and discusses these in terms of study distribution and overall trends, the diversity of taxa and life stage assessed, the role that large-scale acoustic telemetry networks plays in assessing connectivity of marine fishes, how connectivity studies have been used in an applied context, and proposes definitions linked to specific types of connectivity, which will assist future researchers when conceptualizing studies. Further, methods that can be used in conjunction with acoustic telemetry to complement the data are discussed. Given that marine resources and habitats are intricately connected, this review highlights the critical role that acoustic telemetry can play in assessing this link. It is envisaged that our developed framework of connectivity definitions will assist future studies and stakeholders in assessing ecosystem functioning and ultimately contribute to improved conservation and management of marine fish populations and ecosystems.
Collapse
Affiliation(s)
- Rebecca J Welch
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - Amber-Robyn Childs
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Taryn S Murray
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Audrey M Darnaude
- MARBEC, Université de Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - Nicola C James
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Institute for Coastal and Marine Research, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
3
|
Dunn PO, Sly ND, Freeman-Gallant CR, Henschen AE, Bossu CM, Ruegg KC, Minias P, Whittingham LA. Sexually selected differences in warbler plumage are related to a putative inversion on the Z chromosome. Mol Ecol 2024; 33:e17525. [PMID: 39268700 DOI: 10.1111/mec.17525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies.
Collapse
Affiliation(s)
- Peter O Dunn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Nicholas D Sly
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | - Amberleigh E Henschen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Christen M Bossu
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Linda A Whittingham
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Lu DS, Peris D, Sønstebø JH, James TY, Rieseberg LH, Maurice S, Kauserud H, Ravinet M, Skrede I. Reticulate evolution and rapid development of reproductive barriers upon secondary contact in a forest fungus. Curr Biol 2024; 34:4513-4525.e6. [PMID: 39317194 DOI: 10.1016/j.cub.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/12/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
Reproductive barriers between sister species of the mushroom-forming fungi tend to be stronger in sympatry, leading to speculation on whether they are being reinforced by selection against hybrids. We have used population genomic analyses together with in vitro crosses of a global sample of the wood decay fungus Trichaptum abietinum to investigate reproductive barriers within this species complex and the processes that have shaped them. Our phylogeographic analyses show that T. abietinum is delimited into six major genetic groups: one in Asia, two in Europe, and three in North America. The groups present in Europe are interfertile and admixed, whereas our crosses show that the North American groups are reproductively isolated. In Asia, a more complex pattern appears, with partial intersterility between subgroups that likely originated independently and more recently than the reproductive barriers in North America. We found pre-mating barriers in T. abietinum to be moderately correlated with genomic divergence, whereas mean growth reduction of the mated hybrids showed a strong correlation with increasing genomic divergence. Genome-wide association analyses identified candidate genes with programmed cell death annotations, which are known to be involved in intersterility in distantly related fungi, although their link here remains unproven. Our demographic modeling and phylogenetic network analyses fit a scenario where reproductive barriers in Trichaptum abietinum could have been reinforced upon secondary contact between groups that diverged in allopatry during the Pleistocene glacial cycles. Our combination of experimental and genomic approaches demonstrates how T. abietinum is a tractable system for studying speciation mechanisms.
Collapse
Affiliation(s)
- Dabao Sun Lu
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - David Peris
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway; Department of Biotechnology, Institute of Agrochemistry and Food Biotechnology (IATA), CSIC, Carrer del Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Jørn Henrik Sønstebø
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800 Bø, Norway
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, 105 North University Ave Biological Sciences Building, Ann Arbor, MI 48109-1085, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Sundy Maurice
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Mark Ravinet
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway; School of Life Sciences, University of Nottingham, East Dr., Nottingham NG7 2TQ, UK
| | - Inger Skrede
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| |
Collapse
|
5
|
Skjæraasen JE, Olsen EM, McQueen K, Nyqvist D, Meager JJ, Karlsen Ø, Sivle LD. Sex-specific vertical movements of spawning atlantic cod in coastal habitats inferred from acoustic telemetry. Sci Rep 2024; 14:23242. [PMID: 39369150 PMCID: PMC11455899 DOI: 10.1038/s41598-024-74896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Fish spawning location and behaviour can be challenging to detect, especially in deep water. Here we utilise two large acoustic telemetry datasets from western and mid Norway to study the vertical movement dimension of individual Atlantic cod Gadus morhua spawning behaviour in their natural habitats. The datasets comprise ~ 6 million depth detections from 644 sexed, mature cod, collected at seven different Norwegian coastal cod spawning grounds during 2017-2021. During the spawning period, females were typically found at shallower depths compared to males, while this pattern was much less pronounced or absent outside this period. Furthermore, we identify a hitherto undescribed sex-dependent vertical movement behaviour: periodic descents, where females made deep dives, putatively associated with egg release and spawning, approximately every third day. Females not showing this behaviour tended to occupy deeper positions in the water column than the "periodic descent" females and hence may approach and retreat from spawning males more horizontally. These observed sex-specific behaviours correspond well to the lek-like description of the cod mating system and with cod reproductive physiology, where females are known to mature and release batches of eggs at intervals of several days as part of a bet-hedging strategy.
Collapse
Affiliation(s)
- J E Skjæraasen
- Institute of Marine Research, Nordnes, Bergen, 1870, 5817, PB, Norway.
| | - E M Olsen
- Institute of Marine Research, Flødevigen Marine Research Station, His, 4817, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, 4630, Norway
| | - K McQueen
- Institute of Marine Research, Nordnes, Bergen, 1870, 5817, PB, Norway
| | - D Nyqvist
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| | - J J Meager
- Natural Resources, GHD, 3 South Sea Islander Way, Maroochydore, Qld, Queensland, 4558, Australia
| | - Ø Karlsen
- Institute of Marine Research, Nordnes, Bergen, 1870, 5817, PB, Norway
| | - L D Sivle
- Institute of Marine Research, Nordnes, Bergen, 1870, 5817, PB, Norway
| |
Collapse
|
6
|
Pettersson ME, Quintela M, Besnier F, Deng Q, Berg F, Kvamme C, Bekkevold D, Mosbech MB, Bunikis I, Lille-Langøy R, Leonori I, Wallberg A, Glover KA, Andersson L. Limited Parallelism in Genetic Adaptation to Brackish Water Bodies in European Sprat and Atlantic Herring. Genome Biol Evol 2024; 16:evae133. [PMID: 38918882 PMCID: PMC11226789 DOI: 10.1093/gbe/evae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The European sprat is a small plankton-feeding clupeid present in the northeastern Atlantic Ocean, in the Mediterranean Sea, and in the brackish Baltic Sea and Black Sea. This species is the target of a major fishery and, therefore, an accurate characterization of its genetic population structure is crucial to delineate proper stock assessments that aid ensuring the fishery's sustainability. Here, we present (i) a draft genome assembly, (ii) pooled whole genome sequencing of 19 population samples covering most of the species' distribution range, and (iii) the design and test of a single nucleotide polymorphism (SNP)-chip resource and use this to validate the population structure inferred from pooled sequencing. These approaches revealed, using the populations sampled here, three major groups of European sprat: Oceanic, Coastal, and Brackish with limited differentiation within groups even over wide geographical stretches. Genetic structure is largely driven by six large putative inversions that differentiate Oceanic and Brackish sprats, while Coastal populations display intermediate frequencies of haplotypes at each locus. Interestingly, populations from the Baltic and the Black Seas share similar frequencies of haplotypes at these putative inversions despite their distant geographic location. The closely related clupeids European sprat and Atlantic herring both show genetic adaptation to the brackish Baltic Sea, providing an opportunity to explore the extent of genetic parallelism. This analysis revealed limited parallelism because out of 125 independent loci detected in the Atlantic herring, three showed sharp signals of selection that overlapped between the two species and contained single genes such as PRLRA, which encodes the receptor for prolactin, a freshwater-adapting hormone in euryhaline species, and THRB, a receptor for thyroid hormones, important both for metabolic regulation and the development of red cone photoreceptors.
Collapse
Affiliation(s)
- Mats E Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Qiaoling Deng
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Florian Berg
- Institute of Marine Research, 5817 Bergen, Norway
| | | | - Dorte Bekkevold
- DTU-Aqua National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | | | | | - Iole Leonori
- CNR IRBIM, Italian National Research Council, Institute for Marine Biological Resources and Biotechnology, 60125 Ancona, Italy
| | - Andreas Wallberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Nickel AK, Campana SE, Ólafsdóttir GÁ. Temperature and body size affect movement of juvenile Atlantic cod (Gadus morhua) and saithe (Pollachius virens) at nearshore nurseries. JOURNAL OF FISH BIOLOGY 2024. [PMID: 38924061 DOI: 10.1111/jfb.15850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Seasonal migrations of marine fish between shallow summer feeding habitats and deep overwintering grounds are driven by fluctuations in the biotic and abiotic environment as well as by changes in the internal state. Ontogenetic shifts in physiology and metabolism affect the response to environmental drivers and may lead to changes in migration timing and propensity. In this study, we investigated the effect of temperature and body size on migration timing and depth distribution in acoustically tagged Atlantic cod, Gadus morhua, and saithe, Pollachius virens, during the period of seasonal migration from shallow summer habitats. The results from our study revealed a wide range of horizontal and vertical distribution of age 1 and 2 G. morhua within the fjord. Larger G. morhua inhabited deeper, cooler waters than smaller juveniles, likely reflecting size-dependent thermal preferences and predation pressure. Conversely, juvenile P. virens occupied primarily shallow waters close to land. The variation in depth distribution of G. morhua was mainly explained by body size and not, against our predictions, by water temperature. Conversely, the dispersal from the in-fjord habitats occurred when water temperatures were high, suggesting that seasonal temperature fluctuations can trigger the migration timing of P. virens and larger G. morhua from summer habitats. Partial migration of small juvenile G. morhua from in-fjord foraging grounds, likely influenced by individual body condition, suggested seasonal migration as a flexible strategy that individuals may use to reduce predation and energetic expenditure. Predation mortality rates of tagged juveniles were higher than previously suggested and are the first robust predation mortality rates for juvenile G. morhua and P. virens estimated based on acoustic transmitters with acidity sensors. The results have relevance for climate-informed marine spatial planning as under the scenario of increasing ocean temperatures, increasing summer temperatures may reduce the juveniles' resource utilization in the shallow summer nurseries, resulting in lower growth rates, increased predation pressure, and lower chances of juvenile winter survival.
Collapse
Affiliation(s)
- Anja K Nickel
- University of Iceland, Research Centre of the Westfjords, Bolungarvík, Iceland
| | - Steven E Campana
- University of Iceland, Faculty of Life and Environmental Sciences, Reykjavík, Iceland
| | | |
Collapse
|
8
|
Sjodin BMF, Schmidt DA, Galbreath KE, Russello MA. Putative climate adaptation in American pikas (Ochotona princeps) is associated with copy number variation across environmental gradients. Sci Rep 2024; 14:8568. [PMID: 38609461 PMCID: PMC11014952 DOI: 10.1038/s41598-024-59157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Improved understanding of the genetic basis of adaptation to climate change is necessary for maintaining global biodiversity moving forward. Studies to date have largely focused on sequence variation, yet there is growing evidence that suggests that changes in genome structure may be an even more significant source of adaptive potential. The American pika (Ochotona princeps) is an alpine specialist that shows some evidence of adaptation to climate along elevational gradients, but previous work has been limited to single nucleotide polymorphism based analyses within a fraction of the species range. Here, we investigated the role of copy number variation underlying patterns of local adaptation in the American pika using genome-wide data previously collected across the entire species range. We identified 37-193 putative copy number variants (CNVs) associated with environmental variation (temperature, precipitation, solar radiation) within each of the six major American pika lineages, with patterns of divergence largely following elevational and latitudinal gradients. Genes associated (n = 158) with independent annotations across lineages, variables, and/or CNVs had functions related to mitochondrial structure/function, immune response, hypoxia, olfaction, and DNA repair. Some of these genes have been previously linked to putative high elevation and/or climate adaptation in other species, suggesting they may serve as important targets in future studies.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Danielle A Schmidt
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Kurt E Galbreath
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI, 49855, USA
| | - Michael A Russello
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
9
|
Jentoft S, Tørresen OK, Tooming-Klunderud A, Skage M, Kollias S, Jakobsen KS. The genome sequence of the Atlantic cod, Gadus morhua (Linnaeus, 1758). Wellcome Open Res 2024; 9:189. [PMID: 39224768 PMCID: PMC11367075 DOI: 10.12688/wellcomeopenres.21122.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 09/04/2024] Open
Abstract
We present a genome assembly from an individual male Gadus morhua (the Atlantic cod; Chordata; Actinopteri; Gadiformes; Gadidae). The genome sequence is 669.9 megabases in span. Most of the assembly is scaffolded into 23 chromosomal pseudomolecules. Gene annotation of this assembly on Ensembl identified 23,515 protein coding genes.
Collapse
Affiliation(s)
- Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ave Tooming-Klunderud
- Norwegian Sequencing Centre, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Morten Skage
- Norwegian Sequencing Centre, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Spyridon Kollias
- Norwegian Sequencing Centre, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | - Tree of Life Core Informatics collective
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian Sequencing Centre, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Darwin Tree of Life Consortium
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian Sequencing Centre, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Layton KKS, Brieuc MSO, Castilho R, Diaz-Arce N, Estévez-Barcia D, Fonseca VG, Fuentes-Pardo AP, Jeffery NW, Jiménez-Mena B, Junge C, Kaufmann J, Leinonen T, Maes SM, McGinnity P, Reed TE, Reisser CMO, Silva G, Vasemägi A, Bradbury IR. Predicting the future of our oceans-Evaluating genomic forecasting approaches in marine species. GLOBAL CHANGE BIOLOGY 2024; 30:e17236. [PMID: 38519845 DOI: 10.1111/gcb.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
Climate change is restructuring biodiversity on multiple scales and there is a pressing need to understand the downstream ecological and genomic consequences of this change. Recent advancements in the field of eco-evolutionary genomics have sought to include evolutionary processes in forecasting species' responses to climate change (e.g., genomic offset), but to date, much of this work has focused on terrestrial species. Coastal and offshore species, and the fisheries they support, may be even more vulnerable to climate change than their terrestrial counterparts, warranting a critical appraisal of these approaches in marine systems. First, we synthesize knowledge about the genomic basis of adaptation in marine species, and then we discuss the few examples where genomic forecasting has been applied in marine systems. Next, we identify the key challenges in validating genomic offset estimates in marine species, and we advocate for the inclusion of historical sampling data and hindcasting in the validation phase. Lastly, we describe a workflow to guide marine managers in incorporating these predictions into the decision-making process.
Collapse
Affiliation(s)
- K K S Layton
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - R Castilho
- University of the Algarve, Faro, Portugal
- Centre for Marine Sciences, University of the Algarve, Faro, Portugal
- Pattern Institute, Faro, Portugal
| | - N Diaz-Arce
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - D Estévez-Barcia
- Department of Fish and Shellfish, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - V G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - A P Fuentes-Pardo
- Department of Immunology, Genetics and Pathology, SciLifeLab Data Centre, Uppsala University, Uppsala, Sweden
| | - N W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - B Jiménez-Mena
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - C Junge
- Institute of Marine Research, Tromso, Norway
| | | | - T Leinonen
- Natural Resources Institute Finland, Helsinki, Finland
| | - S M Maes
- Flanders Research Institute for Agriculture, Fisheries and Food, Ostend, Belgium
| | - P McGinnity
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - T E Reed
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - C M O Reisser
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - G Silva
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, Lisbon, Portugal
| | - A Vasemägi
- Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Estonian University of Life Sciences, Tartu, Estonia
| | - I R Bradbury
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
11
|
Díaz-Arce N, Gagnaire PA, Richardson DE, Walter JF, Arnaud-Haond S, Fromentin JM, Brophy D, Lutcavage M, Addis P, Alemany F, Allman R, Deguara S, Fraile I, Goñi N, Hanke AR, Karakulak FS, Pacicco A, Quattro JM, Rooker JR, Arrizabalaga H, Rodríguez-Ezpeleta N. Unidirectional trans-Atlantic gene flow and a mixed spawning area shape the genetic connectivity of Atlantic bluefin tuna. Mol Ecol 2024; 33:e17188. [PMID: 37921120 DOI: 10.1111/mec.17188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
The commercially important Atlantic bluefin tuna (Thunnus thynnus), a large migratory fish, has experienced notable recovery aided by accurate resource assessment and effective fisheries management efforts. Traditionally, this species has been perceived as consisting of eastern and western populations, spawning respectively in the Mediterranean Sea and the Gulf of Mexico, with mixing occurring throughout the Atlantic. However, recent studies have challenged this assumption by revealing weak genetic differentiation and identifying a previously unknown spawning ground in the Slope Sea used by Atlantic bluefin tuna of uncertain origin. To further understand the current and past population structure and connectivity of Atlantic bluefin tuna, we have assembled a unique dataset including thousands of genome-wide single-nucleotide polymorphisms (SNPs) from 500 larvae, young of the year and spawning adult samples covering the three spawning grounds and including individuals of other Thunnus species. Our analyses support two weakly differentiated but demographically connected ancestral populations that interbreed in the Slope Sea. Moreover, we also identified signatures of introgression from albacore (Thunnus alalunga) into the Atlantic bluefin tuna genome, exhibiting varied frequencies across spawning areas, indicating strong gene flow from the Mediterranean Sea towards the Slope Sea. We hypothesize that the observed genetic differentiation may be attributed to increased gene flow caused by a recent intensification of westward migration by the eastern population, which could have implications for the genetic diversity and conservation of western populations. Future conservation efforts should consider these findings to address potential genetic homogenization in the species.
Collapse
Affiliation(s)
- Natalia Díaz-Arce
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | | | - David E Richardson
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration (NOAA), Narragansett, Rhode Island, USA
| | - John F Walter
- Southeast Fisheries Sciences Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration (NOAA), Miami, Florida, USA
| | | | | | - Deirdre Brophy
- Marine and Freshwater Research Center, Atlantic Technological University (ATU), Galway City, Ireland
| | - Molly Lutcavage
- Large Pelagics Research Center, School for the Environment, University of Massachusetts Boston, Gloucester, Massachusetts, USA
| | - Piero Addis
- Department of Environmental and Life Science, University of Cagliari, Cagliari, Italy
| | - Francisco Alemany
- International Commission for the Conservation of Atlantic Tunas, GBYP, Madrid, Spain
| | - Robert Allman
- National Marine Fisheries Service, Southeast Fisheries Science Center, Panama City Laboratory, Panama City, Florida, USA
| | | | - Igaratza Fraile
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Spain
| | - Nicolas Goñi
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Spain
| | - Alex R Hanke
- St Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, New Brunswick, Canada
| | | | - Ashley Pacicco
- Cooperative Institute for Marine and Atmospheric Studies Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, Florida, USA
| | - Joseph M Quattro
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Jay R Rooker
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, USA
| | - Haritz Arrizabalaga
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Spain
| | | |
Collapse
|
12
|
Małachowicz M, Krasnov A, Wenne R. Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations. Cells 2023; 12:2760. [PMID: 38067188 PMCID: PMC10706248 DOI: 10.3390/cells12232760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Adaptation to environmental variation caused by global climate change is a significant aspect of fisheries management and ecology. A reduction in ocean salinity is visible in near-shore areas, especially in the Baltic Sea, where it is affecting the Atlantic cod population. Cod is one of the most significant teleost species, with high ecological and economical value worldwide. The population of cod in the Baltic Sea has been traditionally divided into two subpopulations (western and eastern) existing in higher- and lower-salinity waters, respectively. In recent decades, both Baltic cod subpopulations have declined massively. One of the reasons for the poor condition of cod in the Baltic Sea is environmental factors, including salinity. Thus, in this study, an oligonucleotide microarray was applied to explore differences between Baltic cod subpopulations in response to salinity fluctuations. For this purpose, an exposure experiment was conducted consisting of salinity elevation and reduction, and gene expression was measured in gill tissue. We found 400 differentially expressed genes (DEGs) involved in the immune response, metabolism, programmed cell death, cytoskeleton, and extracellular matrix that showed a subpopulation-dependent pattern. These findings indicate that osmoregulation in Baltic cod is a complex process, and that western and eastern Baltic cod subpopulations respond differently to salinity changes.
Collapse
Affiliation(s)
- Magdalena Małachowicz
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| | - Aleksei Krasnov
- Department of Fish Health, Nofima—Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, NO-1431 Ås, Norway;
| | - Roman Wenne
- Institute of Oceanology Polish Academy of Sciences, Powstanców Warszawy 55, 81-712 Sopot, Poland;
| |
Collapse
|
13
|
Helmerson C, Weist P, Brieuc MSO, Maurstad MF, Schade FM, Dierking J, Petereit C, Knutsen H, Metcalfe J, Righton D, André C, Krumme U, Jentoft S, Hanel R. Evidence of hybridization between genetically distinct Baltic cod stocks during peak population abundance(s). Evol Appl 2023; 16:1359-1376. [PMID: 37492148 PMCID: PMC10363836 DOI: 10.1111/eva.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
Range expansions can lead to increased contact of divergent populations, thus increasing the potential of hybridization events. Whether viable hybrids are produced will most likely depend on the level of genomic divergence and associated genomic incompatibilities between the different entities as well as environmental conditions. By taking advantage of historical Baltic cod (Gadus morhua) otolith samples combined with genotyping and whole genome sequencing, we here investigate the genetic impact of the increased spawning stock biomass of the eastern Baltic cod stock in the mid 1980s. The eastern Baltic cod is genetically highly differentiated from the adjacent western Baltic cod and locally adapted to the brackish environmental conditions in the deeper Eastern basins of the Baltic Sea unsuitable for its marine counterparts. Our genotyping results show an increased proportion of eastern Baltic cod in western Baltic areas (Mecklenburg Bay and Arkona Basin)-indicative of a range expansion westwards-during the peak population abundance in the 1980s. Additionally, we detect high frequencies of potential hybrids (including F1, F2 and backcrosses), verified by whole genome sequencing data for a subset of individuals. Analysis of mitochondrial genomes further indicates directional gene flow from eastern Baltic cod males to western Baltic cod females. Our findings unravel that increased overlap in distribution can promote hybridization between highly divergent populations and that the hybrids can be viable and survive under specific and favourable environmental conditions. However, the observed hybridization had seemingly no long-lasting impact on the continuous separation and genetic differentiation between the unique Baltic cod stocks.
Collapse
Affiliation(s)
- Cecilia Helmerson
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| | - Peggy Weist
- Thünen Institute of Fisheries EcologyBremerhavenGermany
| | - Marine Servane Ono Brieuc
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
- Institute of Marine ResearchBergenNorway
| | - Marius F. Maurstad
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| | | | - Jan Dierking
- GEOMAR Helmholtz Centre for Ocean Research KielGermany
| | | | - Halvor Knutsen
- Institute of Marine ResearchBergenNorway
- Centre for Coastal ResearchUniversity of AgderKristiansandNorway
| | - Julian Metcalfe
- Centre for Environment Fisheries and Aquaculture ScienceLowestoftUK
| | - David Righton
- Centre for Environment Fisheries and Aquaculture ScienceLowestoftUK
| | - Carl André
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Uwe Krumme
- Thünen Institute of Baltic Sea FisheriesRostockGermany
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| | | |
Collapse
|
14
|
Johannesson K, Leder EH, André C, Dupont S, Eriksson SP, Harding K, Havenhand JN, Jahnke M, Jonsson PR, Kvarnemo C, Pavia H, Rafajlović M, Rödström EM, Thorndyke M, Blomberg A. Ten years of marine evolutionary biology-Challenges and achievements of a multidisciplinary research initiative. Evol Appl 2023; 16:530-541. [PMID: 36793681 PMCID: PMC9923476 DOI: 10.1111/eva.13389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
The Centre for Marine Evolutionary Biology (CeMEB) at the University of Gothenburg, Sweden, was established in 2008 through a 10-year research grant of 8.7 m€ to a team of senior researchers. Today, CeMEB members have contributed >500 scientific publications, 30 PhD theses and have organised 75 meetings and courses, including 18 three-day meetings and four conferences. What are the footprints of CeMEB, and how will the centre continue to play a national and international role as an important node of marine evolutionary research? In this perspective article, we first look back over the 10 years of CeMEB activities and briefly survey some of the many achievements of CeMEB. We furthermore compare the initial goals, as formulated in the grant application, with what has been achieved, and discuss challenges and milestones along the way. Finally, we bring forward some general lessons that can be learnt from a research funding of this type, and we also look ahead, discussing how CeMEB's achievements and lessons can be used as a springboard to the future of marine evolutionary biology.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Erica H. Leder
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
- Natural History MuseumUniversity of OsloOsloNorway
| | - Carl André
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Sam Dupont
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
- International Atomic Energy AgencyPrincipality of MonacoMonaco
| | - Susanne P. Eriksson
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
| | - Karin Harding
- Department of Biology and Environmental ScienceUniversity of GothenburgGothenburgSweden
| | - Jonathan N. Havenhand
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Marlene Jahnke
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Per R. Jonsson
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Charlotta Kvarnemo
- Department of Biology and Environmental ScienceUniversity of GothenburgGothenburgSweden
| | - Henrik Pavia
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Marina Rafajlović
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Eva Marie Rödström
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Michael Thorndyke
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
- Department of Genomics Research in Ecology & Evolution in Nature (GREEN)Groningen Institute for Evolutionary Life Sciences (GELIFES)De Rijksuniversiteit GroningenGroningenThe Netherlands
| | - Anders Blomberg
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
15
|
Pampoulie C, Berg PR, Jentoft S. Hidden but revealed: After years of genetic studies behavioural monitoring combined with genomics uncover new insight into the population dynamics of Atlantic cod in Icelandic waters. Evol Appl 2023; 16:223-233. [PMID: 36793686 PMCID: PMC9923494 DOI: 10.1111/eva.13471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/29/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022] Open
Abstract
Stock structure is of paramount importance for sustainable management of exploited resources. In that context, genetic markers have been used for more than two decades to resolve spatial structure of marine exploited resources and to fully fathom stock dynamics and interactions. While genetic markers such as allozymes and RFLP dominated the debate in the early era of genetics, technology advances have provided scientists with new tools every decade to better assess stock discrimination and interactions (i.e. gene flow). Here, we provide a review of genetic studies performed to understand stock structure of Atlantic cod in Icelandic waters, from the early allozyme approaches to the genomic work currently carried out. We further highlight the importance of the generation of a chromosome-anchored genome assembly together with whole-genome population data, which drastically changed our perception of the possible management units to consider. After nearly 60 years of genetic investigation of Atlantic cod structure in Icelandic waters, genetic (and later genomic) data combined with behavioural monitoring using Data Storage Tags shifted the attention from geographical population structures to behavioural ecotypes. This review also demonstrates the need for future research to further disentangle the impact of these ecotypes (and gene flow among them) on the population structure of Atlantic cod in Icelandic waters. It also highlights the importance of whole-genome data to unravel unexpected within-species diversity related to chromosomal inversions and associated supergenes, which are important to consider for future development of sustainable management programmes of the species within the North Atlantic.
Collapse
Affiliation(s)
| | - Paul Ragnar Berg
- Norwegian Institute for Water ResearchOsloNorway
- Department of Natural Sciences, Centre for Coastal Research (CCR)University of AgderKristiansandNorway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary SynthesisOsloNorway
| |
Collapse
|
16
|
Lowell N, Suhrbier A, Tarpey C, May S, Carson H, Hauser L. Population structure and adaptive differentiation in the sea cucumber Apostichopus californicus and implications for spatial resource management. PLoS One 2023; 18:e0280500. [PMID: 36928497 PMCID: PMC10019739 DOI: 10.1371/journal.pone.0280500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/03/2023] [Indexed: 03/18/2023] Open
Abstract
A growing body of evidence suggests that spatial population structure can develop in marine species despite large population sizes and high gene flow. Characterizing population structure is important for the effective management of exploited species, as it can be used to identify appropriate scales of management in fishery and aquaculture contexts. The California sea cucumber, Apostichopus californicus, is one such exploited species whose management could benefit from further characterization of population structure. Using restriction site-associated DNA (RAD) sequencing, we developed 2075 single nucleotide polymorphisms (SNPs) to quantify genetic structure over a broad section of the species' range along the North American west coast and within the Salish Sea, a region supporting the Washington State A. californicus fishery and developing aquaculture production of the species. We found evidence for population structure (global fixation index (FST) = 0.0068) with limited dispersal driving two patterns of differentiation: isolation-by-distance and a latitudinal gradient of differentiation. Notably, we found detectable population differences among collection sites within the Salish Sea (pairwise FST = 0.001-0.006). Using FST outlier detection and gene-environment association, we identified 10.2% of total SNPs as putatively adaptive. Environmental variables (e.g., temperature, salinity) from the sea surface were more correlated with genetic variation than those same variables measured near the benthos, suggesting that selection on pelagic larvae may drive adaptive differentiation to a greater degree than selection on adults. Our results were consistent with previous estimates of and patterns in population structure for this species in other extents of the range. Additionally, we found that patterns of neutral and adaptive differentiation co-varied, suggesting that adaptive barriers may limit dispersal. Our study provides guidance to decision-makers regarding the designation of management units for A. californicus and adds to the growing body of literature identifying genetic population differentiation in marine species despite large, nominally connected populations.
Collapse
Affiliation(s)
- Natalie Lowell
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Andy Suhrbier
- Pacific Shellfish Institute, Olympia, Washington, United States of America
| | - Carolyn Tarpey
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Samuel May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Henry Carson
- Washington Department of Fish and Wildlife, Olympia, Washington, United States of America
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Martínez-García L, Ferrari G, Cuevas A, Atmore LM, López-Arias B, Culling M, Llorente-Rodríguez L, Morales-Muñiz A, Roselló-Izquierdo E, Quirós JA, Marlasca-Martín R, Hänfling B, Hutchinson WF, Jakobsen KS, Jentoft S, Orton D, Star B, Barrett JH. Ancient DNA evidence for the ecological globalization of cod fishing in medieval and post-medieval Europe. Proc Biol Sci 2022; 289:20221107. [PMID: 36259206 DOI: 10.1098/rspb.2022.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the historical emergence and growth of long-range fisheries can provide fundamental insights into the timing of ecological impacts and the development of coastal communities during the last millennium. Whole-genome sequencing approaches can improve such understanding by determining the origin of archaeological fish specimens that may have been obtained from historic trade or distant water. Here, we used genome-wide data to individually infer the biological source of 37 ancient Atlantic cod specimens (ca 1050-1950 CE) from England and Spain. Our findings provide novel genetic evidence that eleventh- to twelfth-century specimens from London were predominantly obtained from nearby populations, while thirteenth- to fourteenth-century specimens were derived from distant sources. Our results further suggest that Icelandic cod was indeed exported to London earlier than previously reported. Our observations confirm the chronology and geography of the trans-Atlantic cod trade from Newfoundland to Spain starting by the early sixteenth century. Our findings demonstrate the utility of whole-genome sequencing and ancient DNA approaches to describe the globalization of marine fisheries and increase our understanding regarding the extent of the North Atlantic fish trade and long-range fisheries in medieval and early modern times.
Collapse
Affiliation(s)
- Lourdes Martínez-García
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0315, Norway
| | - Giada Ferrari
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0315, Norway.,Royal Botanic Garden Edinburgh, Edinburgh EH3 5NZ, UK
| | - Angélica Cuevas
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0315, Norway
| | - Lane M Atmore
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0315, Norway
| | - Begoña López-Arias
- Laboratorio de Arqueozoología LAZ-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mark Culling
- Evolutionary Biology Group, Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK
| | - Laura Llorente-Rodríguez
- Laboratory for Archaezoological Studies, Faculty of Archaeology, University of Leiden, Leiden 2311 EZ, The Netherlands
| | - Arturo Morales-Muñiz
- Laboratorio de Arqueozoología LAZ-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | - Juan Antonio Quirós
- Department of Geography, Prehistory and Archaeology, University of the Basque Country, Vitoria-Gasteiz 48940, Spain
| | | | - Bernd Hänfling
- Institute for Biodiversity and Freshwater Conservation, UHI-Inverness, Inverness, UK
| | - William F Hutchinson
- Evolutionary Biology Group, Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0315, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0315, Norway
| | - David Orton
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0315, Norway
| | - James H Barrett
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim 7012, Norway
| |
Collapse
|
18
|
Hollenbeck CM, Portnoy DS, Garcia de la Serrana D, Magnesen T, Matejusova I, Johnston IA. Temperature-associated selection linked to putative chromosomal inversions in king scallop ( Pecten maximus). Proc Biol Sci 2022; 289:20221573. [PMID: 36196545 PMCID: PMC9532988 DOI: 10.1098/rspb.2022.1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The genomic landscape of divergence—the distribution of differences among populations or species across the genome—is increasingly characterized to understand the role that microevolutionary forces such as natural selection and recombination play in causing and maintaining genetic divergence. This line of inquiry has also revealed chromosome structure variation to be an important factor shaping the landscape of adaptive genetic variation. Owing to a high prevalence of chromosome structure variation and the strong pressure for local adaptation necessitated by their sessile nature, bivalve molluscs are an ideal taxon for exploring the relationship between chromosome structure variation and local adaptation. Here, we report a population genomic survey of king scallop (Pecten maximus) across its natural range in the northeastern Atlantic Ocean, using a recent chromosome-level genome assembly. We report the presence of at least three large (12–22 Mb), putative chromosomal inversions associated with sea surface temperature and whose frequencies are in contrast to neutral population structure. These results highlight a potentially large role for recombination-suppressing chromosomal inversions in local adaptation and suggest a hypothesis to explain the maintenance of differences in reproductive timing found at relatively small spatial scales across king scallop populations.
Collapse
Affiliation(s)
- Christopher M Hollenbeck
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.,Texas A&M AgriLife Research, College Station, TX, USA
| | - David S Portnoy
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Thorolf Magnesen
- Department of Biological Sciences, University of Bergen, Thormøhlensgt 53B, Bergen, Norway
| | - Iveta Matejusova
- Marine Science Scotland, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.,Xelect Ltd, Horizon House, Abbey Walk, St Andrews KY16 9LB, UK
| |
Collapse
|
19
|
Canales‐Aguirre CB, Larson WA, McKinney GJ, Claure CE, Rocha JD, Ceballos SG, Cádiz MI, Yáñez JM, Gomez‐Uchida D. Neutral and adaptive loci reveal fine-scale population structure in Eleginops maclovinus from north Patagonia. Ecol Evol 2022; 12:e9343. [PMID: 36225825 PMCID: PMC9530513 DOI: 10.1002/ece3.9343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Patagonia is an understudied area, especially when it comes to population genomic studies with relevance to fishery management. However, the dynamic and heterogeneous landscape in this area can harbor an important but cryptic genetic population structure. Once such information is revealed, it can be integrated into the management of infrequently investigated species. Eleginops maclovinus is a protandrous hermaphrodite species with economic importance for local communities that are currently managed as a single genetic unit. In this study, we sampled five locations distributed across a salinity cline from Northern Patagonia to investigate the genetic population structure of E. maclovinus. We used restriction site-associated DNA (RAD) sequencing and outlier tests to obtain neutral and adaptive loci, using FST and GEA approaches. We identified a spatial pattern of structuration with gene flow and spatial selection by environmental association. Neutral and adaptive loci showed two and three genetic groups, respectively. The effective population sizes estimated ranged from 572 (Chepu) to 14,454 (Chaitén) and were influenced more by locality than by salinity cline. We found loci putatively associated with salinity suggesting that salinity may act as a selective driver in E. maclovinus populations. These results suggest a complex interaction between genetic drift, gene flow, and natural selection in this area. Our findings also suggest several evolutionary significant units in this area, and the information should be integrated into the management of this species. We discussed the significance of these results for fishery management and suggest future directions to improve our understanding of how E. maclovinus has adapted to the dynamic waters of Northern Patagonia.
Collapse
Affiliation(s)
| | - Wesley A. Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science CenterAuke Bay LaboratoriesJuneauAlaskaUSA
| | | | - C. Eliza Claure
- Centro i~mar, Universidad de Los LagosPuerto MonttChile
- Núcleo Milenio INVASALConcepciónChile
| | - J. Dellis Rocha
- Centro i~mar, Universidad de Los LagosPuerto MonttChile
- Núcleo Milenio INVASALConcepciónChile
| | - Santiago G. Ceballos
- Centro Austral de Investigaciones Científicas (CADIC‐CONICET)UshuaiaTierra del FuegoArgentina
- Universidad Nacional de Tierra del Fuego (ICPA‐UNTDF)UshuaiaArgentina
| | - María I. Cádiz
- Núcleo Milenio INVASALConcepciónChile
- Department of BiologyAarhus UniversityAarhus CDenmark
| | - José M. Yáñez
- Núcleo Milenio INVASALConcepciónChile
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileLa PintanaSantiagoChile
| | - Daniel Gomez‐Uchida
- Núcleo Milenio INVASALConcepciónChile
- Genomics in Ecology, Evolution & Conservation Lab (GEECLAB), Departamento de Zoología. Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
| |
Collapse
|
20
|
Breistein B, Dahle G, Johansen T, Besnier F, Quintela M, Jorde PE, Knutsen H, Westgaard J, Nedreaas K, Farestveit E, Glover KA. Geographic variation in gene flow from a genetically distinct migratory ecotype drives population genetic structure of coastal Atlantic cod ( Gadus morhua L.). Evol Appl 2022; 15:1162-1176. [PMID: 35899259 PMCID: PMC9309456 DOI: 10.1111/eva.13422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Identifying how physical and biotic factors shape genetic connectivity among populations in time and space is essential to our understanding of the evolutionary trajectory as well as the management of marine species. Atlantic cod is a widespread and commercially important marine species displaying several ecotypes with different life history strategies. Using three sets of SNPs: neutral, informative, and genome-inversion linked, we studied population genetic structure of ~2500 coastal Atlantic cod (CC) from 40 locations along Norway's 2500 km coastline, including nine fjords. We observed: (1) a genetic cline, suggesting a mechanism of isolation by distance, characterized by a declining F ST between CC and North East Arctic Cod (NEAC-genetically distinct migratory ecotype) with increasing latitude, (2) that in the north, samples of CC from outer-fjord areas were genetically more similar to NEAC than were samples of CC from their corresponding inner-fjord areas, (3) greater population genetic differentiation among CC sampled from outer-fjord areas along the coast, than among CC sampled from their corresponding inner-fjord areas, (4) genetic differentiation among samples of CC from both within and among fjords. Collectively, these results permit us to draw two main conclusions. First, that differences in the relative presence of the genetically highly distinct, migratory ecotype NEAC, declining from north to south and from outer to inner fjord, plays the major role in driving population genetic structure of the Norwegian CC. Second, that there is limited connectivity between CC from different fjords. These results suggest that the current management units implemented for this species in Norway should be divided into smaller entities. Furthermore, the situation where introgression from one ecotype drives population genetic structure of another, as is the case here, may exist in other species and geographical regions, thus creating additional challenges for sustainable fisheries management.
Collapse
Affiliation(s)
- Bjoerghild Breistein
- Institute of Marine ResearchBergenNorway
- Department of BiologyUniversity of BergenBergenNorway
| | - Geir Dahle
- Institute of Marine ResearchBergenNorway
- Department of BiologyUniversity of BergenBergenNorway
| | | | | | | | | | - Halvor Knutsen
- Institute of Marine ResearchFlødevigenNorway
- Centre for Coastal Research, Department of Natural SciencesUniversity of AgderKristiansandNorway
| | | | | | | | - Kevin Alan Glover
- Institute of Marine ResearchBergenNorway
- Department of BiologyUniversity of BergenBergenNorway
| |
Collapse
|
21
|
Martínez-García L, Ferrari G, Hufthammer AK, Jakobsen KS, Jentoft S, Barrett JH, Star B. Ancient DNA reveals a southern presence of the Northeast Arctic cod during the Holocene. Biol Lett 2022; 18:20220021. [PMID: 35506242 PMCID: PMC9065953 DOI: 10.1098/rsbl.2022.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Climate change has been implicated in an increased number of distributional shifts of marine species during the last century. Nonetheless, it is unclear whether earlier climatic fluctuations had similar impacts. We use ancient DNA to investigate the long-term spawning distribution of the Northeast Arctic cod (skrei) which performs yearly migrations from the Barents Sea towards spawning grounds along the Norwegian coast. The distribution of these spawning grounds has shifted northwards during the last century, which is thought to be associated with food availability and warming temperatures. We genetically identify skrei specimens from Ruskeneset in west Norway, an archaeological site located south of their current spawning range. Remarkably, 14C analyses date these specimens to the late Holocene, when temperatures were warmer than present-day conditions. Our results either suggest that temperature is not the only driver influencing the spawning distribution of Atlantic cod, or could be indicative of uncertainty in palaeoclimate reconstructions in this region. Regardless, our findings highlight the utility of aDNA to reconstruct the historical distribution of economically important fish populations and reveal the complexity of long-term ecological interactions in the marine environment.
Collapse
Affiliation(s)
- Lourdes Martínez-García
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Blindernveien 31, NO-0371 Oslo, Norway
| | - Giada Ferrari
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Blindernveien 31, NO-0371 Oslo, Norway
| | - Anne Karin Hufthammer
- Department of Natural HistoryThe University Museum, , University of Bergen, N-5020 Bergen, Norway
| | - Kjetill S Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Blindernveien 31, NO-0371 Oslo, Norway
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Blindernveien 31, NO-0371 Oslo, Norway
| | - James H Barrett
- Department of Archaeology and Cultural History, NTNU University Museum, Erling Skakkes 47b, Trondheim, Norway
| | - Bastiaan Star
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Blindernveien 31, NO-0371 Oslo, Norway
| |
Collapse
|
22
|
Jahnke M, Moknes P, Le Moan A, Martens GA, Jonsson PR. Seascape genomics identify adaptive barriers correlated to tidal amplitude in the shore crab Carcinus maenas. Mol Ecol 2022; 31:1980-1994. [PMID: 35080070 PMCID: PMC9540756 DOI: 10.1111/mec.16371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
Most marine invertebrates disperse during a planktonic larval stage that may drift for weeks with ocean currents. A challenge for larvae of coastal species is to return to coastal nursery habitats. Shore crab (Carcinus maenas L.) larvae are known to show tidal rhythmicity in vertical migration in tidal areas and circadian rhythmicity in microtidal areas, which seems to increase successful coastal settlement. We studied genome-wide differentiation based on 24,000 single nucleotide polymorphisms of 12 native populations of shore crab sampled from a large tidal amplitude gradient from macrotidal (~8 m) to microtidal (~0.2 m). Dispersal and recruitment success of larvae was assessed with a Lagrangian biophysical model, which showed a strong effect of larval behaviour on long-term connectivity, and dispersal barriers that partly coincided with different tidal environments. The genetic population structure showed a subdivision of the samples into three clusters, which represent micro-, meso- and macrotidal areas. The genetic differentiation was mostly driven by 0.5% outlier loci, which showed strong allelic clines located at the limits between the three tidal areas. Demographic modelling suggested that the two genetic barriers have different origins. Differential gene expression of two clock genes (cyc and pdp1) further highlighted phenotypic differences among genetic clusters that are potentially linked to the differences in larval behaviour. Taken together, our seascape genomic study suggests that tidal regime acts as a strong selection force on shore crab population structure, consistent with larval behaviour affecting dispersal and recruitment success.
Collapse
Affiliation(s)
- Marlene Jahnke
- Department of Marine SciencesTjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| | - Per‐Olav Moknes
- Department of Marine ScienceUniversity of GothenburgGothenburgSweden
| | - Alan Le Moan
- Department of Marine SciencesTjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| | - Gerrit A. Martens
- Department of Marine SciencesTjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
- Present address:
Institute of ZoologyUniversity of HamburgHamburgGermany.
| | - Per R. Jonsson
- Department of Marine SciencesTjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| |
Collapse
|
23
|
Matschiner M, Barth JMI, Tørresen OK, Star B, Baalsrud HT, Brieuc MSO, Pampoulie C, Bradbury I, Jakobsen KS, Jentoft S. Supergene origin and maintenance in Atlantic cod. Nat Ecol Evol 2022; 6:469-481. [PMID: 35177802 PMCID: PMC8986531 DOI: 10.1038/s41559-022-01661-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Supergenes are sets of genes that are inherited as a single marker and encode complex phenotypes through their joint action. They are identified in an increasing number of organisms, yet their origins and evolution remain enigmatic. In Atlantic cod, four megabase-scale supergenes have been identified and linked to migratory lifestyle and environmental adaptations. Here we investigate the origin and maintenance of these four supergenes through analysis of whole-genome-sequencing data, including a new long-read-based genome assembly for a non-migratory Atlantic cod individual. We corroborate the finding that chromosomal inversions underlie all four supergenes, and we show that they originated at different times between 0.40 and 1.66 million years ago. We reveal gene flux between supergene haplotypes where migratory and stationary Atlantic cod co-occur and conclude that this gene flux is driven by gene conversion, on the basis of an increase in GC content in exchanged sites. Additionally, we find evidence for double crossover between supergene haplotypes, leading to the exchange of an ~275 kilobase fragment with genes potentially involved in adaptation to low salinity in the Baltic Sea. Our results suggest that supergenes can be maintained over long timescales in the same way as hybridizing species, through the selective purging of introduced genetic variation. Atlantic cod carries four supergenes linked to migratory lifestyle and environmental adaptations. Using whole-genome sequencing, the authors show that the genome inversions that underlie the supergenes originated at different times and show gene flux between supergene haplotypes.
Collapse
Affiliation(s)
- Michael Matschiner
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway. .,Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland. .,Natural History Museum, University of Oslo, Oslo, Norway.
| | - Julia Maria Isis Barth
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Ole Kristian Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Helle Tessand Baalsrud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marine Servane Ono Brieuc
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Ian Bradbury
- Fisheries and Oceans Canada, St John's, Newfoundland and Labrador, Canada
| | - Kjetill Sigurd Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
24
|
Guzmán NV, Kemppainen P, Monti D, Castillo ERD, Rodriguero MS, Sánchez-Restrepo AF, Cigliano MM, Confalonieri VA. Stable inversion clines in a grasshopper species group despite complex geographical history. Mol Ecol 2021; 31:1196-1215. [PMID: 34862997 DOI: 10.1111/mec.16305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Chromosomal inversions are known to play roles in adaptation and differentiation in many species. They involve clusters of correlated genes (i.e., loci in linkage disequilibrium, LD) possibly associated with environmental variables. The grasshopper "species complex" Trimerotropis pallidipennis comprises several genetic lineages distributed from North to South America in arid and semi-arid high-altitude environments. The southernmost lineage, Trimerotropis sp., segregates for four to seven putative inversions that display clinal variation, possibly through adaptation to temperate environments. We analysed chromosomal, mitochondrial and genome-wide single nucleotide polymorphism data in 19 Trimerotropis sp. populations mainly distributed along two altitudinal gradients (MS and Ju). Populations across Argentina comprise two main chromosomally and genetically differentiated lineages: one distributed across the southernmost border of the "Andes Centrales," adding evidence for a differentiation hotspot in this area; and the other widely distributed in Argentina. Within the latter, network analytical approaches to LD found three clusters of correlated loci (LD-clusters), with inversion karyotypes explaining >79% of the genetic variation. Outlier loci associated with environmental variables mapped to two of these LD-clusters. Furthermore, despite the complex geographical history indicated by population genetic analyses, the clines in inversion karyotypes have remained stable for more than 20 generations, implicating their role in adaptation and differentiation within this lineage. We hypothesize that these clines could be the consequence of a coupling between extrinsic postzygotic barriers and spatially varying selection along environmental gradients resulting in a hybrid zone. These results provide a framework for future investigations about candidate genes implicated in rapid adaptation to new environments.
Collapse
Affiliation(s)
- Noelia V Guzmán
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Petri Kemppainen
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Daniela Monti
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Elio R D Castillo
- Laboratorio de Genética Evolutiva "Dr. Claudio J. Bidau", FCEQyN, Universidad Nacional de Misiones (UNaM), Instituto de Biología Subtropical (IBS) (CONICET/UNaM), LQH, Posadas, Misiones, Argentina
| | - Marcela S Rodriguero
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Andrés F Sánchez-Restrepo
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina.,Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
| | - Maria Marta Cigliano
- Museo de La Plata, Centro de Estudios Parasitológicos y de Vectores (CEPAVE- CONICET/UNLP), Universidad Nacional de la Plata, Buenos Aires, Argentina
| | - Viviana A Confalonieri
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
25
|
Ferrari G, Atmore LM, Jentoft S, Jakobsen KS, Makowiecki D, Barrett JH, Star B. An accurate assignment test for extremely low-coverage whole-genome sequence data. Mol Ecol Resour 2021; 22:1330-1344. [PMID: 34779123 DOI: 10.1111/1755-0998.13551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Genomic assignment tests can provide important diagnostic biological characteristics, such as population of origin or ecotype. Yet, assignment tests often rely on moderate- to high-coverage sequence data that can be difficult to obtain for fields such as molecular ecology and ancient DNA. We have developed a novel approach that efficiently assigns biologically relevant information (i.e., population identity or structural variants such as inversions) in extremely low-coverage sequence data. First, we generate databases from existing reference data using a subset of diagnostic single nucleotide polymorphisms (SNPs) associated with a biological characteristic. Low-coverage alignment files are subsequently compared to these databases to ascertain allelic state, yielding a joint probability for each association. To assess the efficacy of this approach, we assigned haplotypes and population identity in Heliconius butterflies, Atlantic herring, and Atlantic cod using chromosomal inversion sites and whole-genome data. We scored both modern and ancient specimens, including the first whole-genome sequence data recovered from ancient Atlantic herring bones. The method accurately assigns biological characteristics, including population membership, using extremely low-coverage data (as low as 0.0001x) based on genome-wide SNPs. This approach will therefore increase the number of samples in evolutionary, ecological and archaeological research for which relevant biological information can be obtained.
Collapse
Affiliation(s)
- Giada Ferrari
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lane M Atmore
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniel Makowiecki
- Department of Environmental Archaeology and Human Paleoecology, Institute of Archaeology, Nicolaus Copernicus University, Torun, Poland
| | - James H Barrett
- McDonald Institute for Archaeological Research, Department of Archaeology, University of Cambridge, Cambridge, UK.,Department of Archaeology and Cultural History, NTNU University Museum, Trondheim, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Keeling CI, Campbell EO, Batista PD, Shegelski VA, Trevoy SAL, Huber DPW, Janes JK, Sperling FAH. Chromosome-level genome assembly reveals genomic architecture of northern range expansion in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Mol Ecol Resour 2021; 22:1149-1167. [PMID: 34637588 DOI: 10.1111/1755-0998.13528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Genome sequencing methods and assembly tools have improved dramatically since the 2013 publication of draft genome assemblies for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). We conducted proximity ligation library sequencing and scaffolding to improve contiguity, and then used linkage mapping and recent bioinformatic tools for correction and further improvement. The new assemblies have dramatically improved contiguity and gaps compared to the originals: N50 values increased 26- to 36-fold, and the number of gaps were reduced by half. Ninety per cent of the content of the assemblies is now contained in 12 and 11 scaffolds for the female and male assemblies, respectively. Based on linkage mapping information, the 12 largest scaffolds in both assemblies represent all 11 autosomal chromosomes and the neo-X chromosome. These assemblies now have nearly chromosome-sized scaffolds and will be instrumental for studying genomic architecture, chromosome evolution, population genomics, functional genomics, and adaptation in this and other pest insects. We also identified regions in two chromosomes, including the ancestral-X portion of the neo-X chromosome, with elevated differentiation between northern and southern Canadian populations.
Collapse
Affiliation(s)
- Christopher I Keeling
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Québec, QC, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC, Canada
| | - Erin O Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Philip D Batista
- Faculty of Environment, University of Northern British Columbia, Prince George, BC, Canada
| | - Victor A Shegelski
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stephen A L Trevoy
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dezene P W Huber
- Faculty of Environment, University of Northern British Columbia, Prince George, BC, Canada
| | - Jasmine K Janes
- Biology Department, Vancouver Island University, Nanaimo, BC, Canada.,School of Environmental and Rural Studies, University of New England, Armidale, NSW, Australia
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Faria R, Johannesson K, Stankowski S. Speciation in marine environments: Diving under the surface. J Evol Biol 2021; 34:4-15. [PMID: 33460491 DOI: 10.1111/jeb.13756] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Marine environments are inhabited by a broad representation of the tree of life, yet our understanding of speciation in marine ecosystems is extremely limited compared with terrestrial and freshwater environments. Developing a more comprehensive picture of speciation in marine environments requires that we 'dive under the surface' by studying a wider range of taxa and ecosystems is necessary for a more comprehensive picture of speciation. Although studying marine evolutionary processes is often challenging, recent technological advances in different fields, from maritime engineering to genomics, are making it increasingly possible to study speciation of marine life forms across diverse ecosystems and taxa. Motivated by recent research in the field, including the 14 contributions in this issue, we highlight and discuss six axes of research that we think will deepen our understanding of speciation in the marine realm: (a) study a broader range of marine environments and organisms; (b) identify the reproductive barriers driving speciation between marine taxa; (c) understand the role of different genomic architectures underlying reproductive isolation; (d) infer the evolutionary history of divergence using model-based approaches; (e) study patterns of hybridization and introgression between marine taxa; and (f) implement highly interdisciplinary, collaborative research programmes. In outlining these goals, we hope to inspire researchers to continue filling this critical knowledge gap surrounding the origins of marine biodiversity.
Collapse
Affiliation(s)
- Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Kerstin Johannesson
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Sean Stankowski
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,IST Austria, Klosterneuburg, Austria
| |
Collapse
|
28
|
Kristensen ML, Olsen EM, Moland E, Knutsen H, Grønkjær P, Koed A, Källo K, Aarestrup K. Disparate movement behavior and feeding ecology in sympatric ecotypes of Atlantic cod. Ecol Evol 2021; 11:11477-11490. [PMID: 34429934 PMCID: PMC8366838 DOI: 10.1002/ece3.7939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Coexistence of ecotypes, genetically divergent population units, is a widespread phenomenon, potentially affecting ecosystem functioning and local food web stability. In coastal Skagerrak, Atlantic cod (Gadus morhua) occur as two such coexisting ecotypes. We applied a combination of acoustic telemetry, genotyping, and stable isotope analysis to 72 individuals to investigate movement ecology and food niche of putative local "Fjord" and putative oceanic "North Sea" ecotypes-thus named based on previous molecular studies. Genotyping and individual origin assignment suggested 41 individuals were Fjord and 31 were North Sea ecotypes. Both ecotypes were found throughout the fjord. Seven percent of Fjord ecotype individuals left the study system during the study while 42% of North Sea individuals left, potentially homing to natal spawning grounds. Home range sizes were similar for the two ecotypes but highly variable among individuals. Fjord ecotype cod had significantly higher δ13C and δ15N stable isotope values than North Sea ecotype cod, suggesting they exploited different food niches. The results suggest coexisting ecotypes may possess innate differences in feeding and movement ecologies and may thus fill different functional roles in marine ecosystems. This highlights the importance of conserving interconnected populations to ensure stable ecosystem functioning and food web structures.
Collapse
Affiliation(s)
| | - Esben Moland Olsen
- Institute of Marine ResearchFlødevigen Marine Research StationHisNorway
- Centre for Coastal ResearchDepartment of Natural SciencesUniversity of AgderKristiansandNorway
| | - Even Moland
- Institute of Marine ResearchFlødevigen Marine Research StationHisNorway
- Centre for Coastal ResearchDepartment of Natural SciencesUniversity of AgderKristiansandNorway
| | - Halvor Knutsen
- Institute of Marine ResearchFlødevigen Marine Research StationHisNorway
- Centre for Coastal ResearchDepartment of Natural SciencesUniversity of AgderKristiansandNorway
| | - Peter Grønkjær
- Aquatic BiologyDepartment for BioscienceUniversity of AarhusAarhusDenmark
| | - Anders Koed
- National Institute for Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Kristi Källo
- National Institute for Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Kim Aarestrup
- National Institute for Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| |
Collapse
|
29
|
Maes SM, Christiansen H, Mark FC, Lucassen M, Van de Putte A, Volckaert FAM, Flores H. High gene flow in polar cod (Boreogadus saida) from West-Svalbard and the Eurasian Basin. JOURNAL OF FISH BIOLOGY 2021; 99:49-60. [PMID: 33559136 DOI: 10.1111/jfb.14697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/24/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The current and projected environmental change of the Arctic Ocean contrasts sharply with the limited knowledge of its genetic biodiversity. Polar cod Boreogadus saida (Lepechin, 1774) is an abundant circumpolar marine fish and ecological key species. The central role of polar cod in the Arctic marine food web warrants a better understanding of its population structure and connectivity. In this study, the genetic population structure of 171 juveniles, collected from several fjords off West-Svalbard (Billefjorden, Hornsund and Kongsfjorden), the northern Sophia Basin and the Eurasian Basin of the Arctic Ocean, was analysed using nine DNA microsatellite loci. Genetic analyses indicated moderate to high genetic diversity, but absence of spatial population structure and isolation-by-distance, suggesting ongoing gene flow between the studied sampling regions. High levels of connectivity may be key for polar cod to maintain populations across wide spatial scales. The adaptive capacity of the species will be increasingly important to face challenges such as habitat fragmentation, ocean warming and changes in prey composition. In view of a limited understanding of the population dynamics and evolution of polar cod, a valuable next step to predict future developments should be an integrated biological evaluation, including population genomics, a life-history approach, and habitat and biophysical dispersal modelling.
Collapse
Affiliation(s)
- Sarah M Maes
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Henrik Christiansen
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Felix C Mark
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Magnus Lucassen
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anton Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Hauke Flores
- Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
30
|
Martínez-García L, Ferrari G, Oosting T, Ballantyne R, van der Jagt I, Ystgaard I, Harland J, Nicholson R, Hamilton-Dyer S, Baalsrud HT, Brieuc MSO, Atmore LM, Burns F, Schmölcke U, Jakobsen KS, Jentoft S, Orton D, Hufthammer AK, Barrett JH, Star B. Historical Demographic Processes Dominate Genetic Variation in Ancient Atlantic Cod Mitogenomes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.671281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ancient DNA (aDNA) approaches have been successfully used to infer the long-term impacts of climate change, domestication, and human exploitation in a range of terrestrial species. Nonetheless, studies investigating such impacts using aDNA in marine species are rare. Atlantic cod (Gadus morhua), is an economically important species that has experienced dramatic census population declines during the last century. Here, we investigated 48 ancient mitogenomes from historical specimens obtained from a range of archeological excavations in northern Europe dated up to 6,500 BCE. We compare these mitogenomes to those of 496 modern conspecifics sampled across the North Atlantic Ocean and adjacent seas. Our results confirm earlier observations of high levels of mitogenomic variation and a lack of mutation-drift equilibrium—suggestive of population expansion. Furthermore, our temporal comparison yields no evidence of measurable mitogenomic changes through time. Instead, our results indicate that mitogenomic variation in Atlantic cod reflects past demographic processes driven by major historical events (such as oscillations in sea level) and subsequent gene flow rather than contemporary fluctuations in stock abundance. Our results indicate that historical and contemporaneous anthropogenic pressures such as commercial fisheries have had little impact on mitogenomic diversity in a wide-spread marine species with high gene flow such as Atlantic cod. These observations do not contradict evidence that overfishing has had negative consequences for the abundance of Atlantic cod and the importance of genetic variation in implementing conservation strategies. Instead, these observations imply that any measures toward the demographic recovery of Atlantic cod in the eastern Atlantic, will not be constrained by recent loss of historical mitogenomic variation.
Collapse
|
31
|
Venney CJ, Sutherland BJG, Beacham TD, Heath DD. Population differences in Chinook salmon ( Oncorhynchus tshawytscha) DNA methylation: Genetic drift and environmental factors. Ecol Evol 2021; 11:6846-6861. [PMID: 34141260 PMCID: PMC8207424 DOI: 10.1002/ece3.7531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Local adaptation and phenotypic differences among populations have been reported in many species, though most studies focus on either neutral or adaptive genetic differentiation. With the discovery of DNA methylation, questions have arisen about its contribution to individual variation in and among natural populations. Previous studies have identified differences in methylation among populations of organisms, although most to date have been in plants and model animal species. Here we obtained eyed eggs from eight populations of Chinook salmon (Oncorhynchus tshawytscha) and assayed DNA methylation at 23 genes involved in development, immune function, stress response, and metabolism using a gene-targeted PCR-based assay for next-generation sequencing. Evidence for population differences in methylation was found at eight out of 23 gene loci after controlling for developmental timing in each individual. However, we found no correlation between freshwater environmental parameters and methylation variation among populations at those eight genes. A weak correlation was identified between pairwise DNA methylation dissimilarity among populations and pairwise F ST based on 15 microsatellite loci, indicating weak effects of genetic drift or geographic distance on methylation. The weak correlation was primarily driven by two genes, GTIIBS and Nkef. However, single-gene Mantel tests comparing methylation and pairwise F ST were not significant after Bonferroni correction. Thus, population differences in DNA methylation are more likely related to unmeasured oceanic environmental conditions, local adaptation, and/or genetic drift. DNA methylation is an additional mechanism that contributes to among population variation, with potential influences on organism phenotype, adaptive potential, and population resilience.
Collapse
Affiliation(s)
- Clare J. Venney
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorONCanada
| | | | - Terry D. Beacham
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBCCanada
| | - Daniel D. Heath
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorONCanada
- Department of Integrative BiologyUniversity of WindsorWindsorONCanada
| |
Collapse
|
32
|
Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic. Proc Natl Acad Sci U S A 2021; 118:2025453118. [PMID: 33827928 PMCID: PMC8054022 DOI: 10.1073/pnas.2025453118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mode and extent of rapid evolution and genomic change in response to human harvesting are key conservation issues. Although experiments and models have shown a high potential for both genetic and phenotypic change in response to fishing, empirical examples of genetic responses in wild populations are rare. Here, we compare whole-genome sequence data of Atlantic cod (Gadus morhua) that were collected before (early 20th century) and after (early 21st century) periods of intensive exploitation and rapid decline in the age of maturation from two geographically distinct populations in Newfoundland, Canada, and the northeast Arctic, Norway. Our temporal, genome-wide analyses of 346,290 loci show no substantial loss of genetic diversity and high effective population sizes. Moreover, we do not find distinct signals of strong selective sweeps anywhere in the genome, although we cannot rule out the possibility of highly polygenic evolution. Our observations suggest that phenotypic change in these populations is not constrained by irreversible loss of genomic variation and thus imply that former traits could be reestablished with demographic recovery.
Collapse
|
33
|
Petrou EL, Fuentes-Pardo AP, Rogers LA, Orobko M, Tarpey C, Jiménez-Hidalgo I, Moss ML, Yang D, Pitcher TJ, Sandell T, Lowry D, Ruzzante DE, Hauser L. Functional genetic diversity in an exploited marine species and its relevance to fisheries management. Proc Biol Sci 2021; 288:20202398. [PMID: 33622133 PMCID: PMC7934995 DOI: 10.1098/rspb.2020.2398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
The timing of reproduction influences key evolutionary and ecological processes in wild populations. Variation in reproductive timing may be an especially important evolutionary driver in the marine environment, where the high mobility of many species and few physical barriers to migration provide limited opportunities for spatial divergence to arise. Using genomic data collected from spawning aggregations of Pacific herring (Clupea pallasii) across 1600 km of coastline, we show that reproductive timing drives population structure in these pelagic fish. Within a specific spawning season, we observed isolation by distance, indicating that gene flow is also geographically limited over our study area. These results emphasize the importance of considering both seasonal and spatial variation in spawning when delineating management units for herring. On several chromosomes, we detected linkage disequilibrium extending over multiple Mb, suggesting the presence of chromosomal rearrangements. Spawning phenology was highly correlated with polymorphisms in several genes, in particular SYNE2, which influences the development of retinal photoreceptors in vertebrates. SYNE2 is probably within a chromosomal rearrangement in Pacific herring and is also associated with spawn timing in Atlantic herring (Clupea harengus). The observed genetic diversity probably underlies resource waves provided by spawning herring. Given the ecological, economic and cultural significance of herring, our results support that conserving intraspecific genetic diversity is important for maintaining current and future ecosystem processes.
Collapse
Affiliation(s)
- Eleni L. Petrou
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | | | - Luke A. Rogers
- Fisheries and Oceans Canada, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Melissa Orobko
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Carolyn Tarpey
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | - Isadora Jiménez-Hidalgo
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | - Madonna L. Moss
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Dongya Yang
- Department of Archaeology, Simon Fraser University, Education Building 9635, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Tony J. Pitcher
- University of British Columbia, Institute for the Oceans and Fisheries, Vancouver, British Columbia, Canada
| | - Todd Sandell
- Washington Department of Fish and Wildlife, 16018 Mill Creek Boulevard, Mill Creek, WA 98012-1541, USA
| | - Dayv Lowry
- Washington Department of Fish and Wildlife, 1111 Washington Street SE, 6th Floor, Olympia, WA 98504-3150, USA
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| |
Collapse
|
34
|
Norderhaug KM, Nedreaas K, Huserbråten M, Moland E. Depletion of coastal predatory fish sub-stocks coincided with the largest sea urchin grazing event observed in the NE Atlantic. AMBIO 2021; 50:163-173. [PMID: 32720251 PMCID: PMC7708581 DOI: 10.1007/s13280-020-01362-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/23/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
In this contribution, we propose fishery driven predator release as the cause for the largest grazing event ever observed in the NE Atlantic. Based on the evolving appreciation of limits to population connectivity, published and previously unpublished data, we discuss whether overfishing caused a grazer bloom of the sea urchin (Strongylocentrotus droebachiensis) resulting in overgrazing of more than 2000 km2 kelp (Laminaria hyperborea) forest along Norwegian and Russian coasts during the 1970 s. We show that coastal fisheries likely depleted predatory coastal fish stocks through modernization of fishing methods and fleet. These fish were important predators on urchins and the reduction coincided with the urchin bloom. From this circumstantial evidence, we hypothesize that coastal predatory fish were important in regulating sea urchins, and that a local population dynamics perspective is necessary in management of coastal ecosystems.
Collapse
Affiliation(s)
- Kjell Magnus Norderhaug
- Institute of Marine Research IMR, Norway, Nye Flødevigveien 20, 4817 His, Norway
- University of Oslo Norway, Oslo, Norway
| | - Kjell Nedreaas
- Institute of Marine Research, Norway, Nordnesgaten 33, 5005 Bergen, Norway
| | - Mats Huserbråten
- Institute of Marine Research, Norway, Nordnesgaten 50, 5005 Bergen, Norway
| | - Even Moland
- Institute of Marine Research, Norway, Nye Flødevigveien 20, 4817 His, Norway
- Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway
| |
Collapse
|
35
|
Longo GC, Lam L, Basnett B, Samhouri J, Hamilton S, Andrews K, Williams G, Goetz G, McClure M, Nichols KM. Strong population differentiation in lingcod ( Ophiodon elongatus) is driven by a small portion of the genome. Evol Appl 2020; 13:2536-2554. [PMID: 33294007 PMCID: PMC7691466 DOI: 10.1111/eva.13037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Delimiting intraspecific genetic variation in harvested species is crucial to the assessment of population status for natural resource management and conservation purposes. Here, we evaluated genetic population structure in lingcod (Ophiodon elongatus), a commercially and recreationally important fishery species along the west coast of North America. We used 16,749 restriction site-associated DNA sequencing (RADseq) markers, in 611 individuals collected from across the bulk of the species range from Southeast Alaska to Baja California, Mexico. In contrast to previous population genetic work on this species, we found strong evidence for two distinct genetic clusters. These groups separated latitudinally with a break near Point Reyes off Northern California, and there was a high frequency of admixed individuals in close proximity to the break. F-statistics corroborate this genetic break between northern and southern sampling sites, although most loci are characterized by low FST values, suggesting high gene flow throughout most of the genome. Outlier analyses identified 182 loci putatively under divergent selection, most of which mapped to a single genomic region. When individuals were grouped by cluster assignment (northern, southern, and admixed), 71 loci were fixed between the northern and southern cluster, all of which were identified in the outlier scans. All individuals identified as admixed exhibited near 50:50 assignment to northern and southern clusters and were heterozygous for most fixed loci. Alignments of RADseq loci to a draft lingcod genome assembly and three other teleost genomes with chromosome-level assemblies suggest that outlier and fixed loci are concentrated on a single chromosome. Similar genomic patterns have been attributed to chromosomal inversions in diverse taxonomic groups. Regardless of the evolutionary mechanism, these results represent novel observations of genetic structure in lingcod and designate clear evolutionary units that could be used to inform fisheries management.
Collapse
Affiliation(s)
- Gary C. Longo
- NRC Research Associateship ProgramNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Laurel Lam
- Pacific States Marine Fisheries CommissionUnder contract to Northwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
- Moss Landing Marine LaboratoriesMoss LandingCAUSA
| | | | - Jameal Samhouri
- Conservation Biology DivisionNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | | | - Kelly Andrews
- Conservation Biology DivisionNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Greg Williams
- Pacific States Marine Fisheries CommissionUnder contract to Northwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Giles Goetz
- UWJISAOUnder contract to Northwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Michelle McClure
- Fisheries Resource Analysis and Monitoring DivisionNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
- Pacific Marine Environmental LaboratoryNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Krista M. Nichols
- Conservation Biology DivisionNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| |
Collapse
|
36
|
Johannesson K, Le Moan A, Perini S, André C. A Darwinian Laboratory of Multiple Contact Zones. Trends Ecol Evol 2020; 35:1021-1036. [DOI: 10.1016/j.tree.2020.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
|
37
|
A Nanopore Based Chromosome-Level Assembly Representing Atlantic Cod from the Celtic Sea. G3-GENES GENOMES GENETICS 2020; 10:2903-2910. [PMID: 32641450 PMCID: PMC7466986 DOI: 10.1534/g3.120.401423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently available genome assemblies for Atlantic cod (Gadus morhua) have been constructed from fish belonging to the Northeast Arctic Cod (NEAC) population; a migratory population feeding in the Barents Sea. These assemblies have been crucial for the development of genetic markers which have been used to study population differentiation and adaptive evolution in Atlantic cod, pinpointing four discrete islands of genomic divergence located on linkage groups 1, 2, 7 and 12. In this paper, we present a high-quality reference genome from a male Atlantic cod representing a southern population inhabiting the Celtic sea. The genome assembly (gadMor_Celtic) was produced from long-read nanopore data and has a combined contig length of 686 Mb with an N50 of 10 Mb. Integrating contigs with genetic linkage mapping information enabled us to construct 23 chromosome sequences which mapped with high confidence to the latest NEAC population assembly (gadMor3) and allowed us to characterize, to an extent not previously reported large chromosomal inversions on linkage groups 1, 2, 7 and 12. In most cases, inversion breakpoints could be located within single nanopore contigs. Our results suggest the presence of inversions in Celtic cod on linkage groups 6, 11 and 21, although these remain to be confirmed. Further, we identified a specific repetitive element that is relatively enriched at predicted centromeric regions. Our gadMor_Celtic assembly provides a resource representing a 'southern' cod population which is complementary to the existing 'northern' population based genome assemblies and represents the first step toward developing pan-genomic resources for Atlantic cod.
Collapse
|
38
|
Dorant Y, Cayuela H, Wellband K, Laporte M, Rougemont Q, Mérot C, Normandeau E, Rochette R, Bernatchez L. Copy number variants outperform SNPs to reveal genotype–temperature association in a marine species. Mol Ecol 2020; 29:4765-4782. [PMID: 32803780 DOI: 10.1111/mec.15565] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yann Dorant
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Hugo Cayuela
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Kyle Wellband
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Martin Laporte
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Claire Mérot
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Rémy Rochette
- Department of Biology University of New Brunswick Saint John NB Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| |
Collapse
|
39
|
Oomen RA, Kuparinen A, Hutchings JA. Consequences of Single-Locus and Tightly Linked Genomic Architectures for Evolutionary Responses to Environmental Change. J Hered 2020; 111:319-332. [PMID: 32620014 PMCID: PMC7423069 DOI: 10.1093/jhered/esaa020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
Genetic and genomic architectures of traits under selection are key factors influencing evolutionary responses. Yet, knowledge of their impacts has been limited by a widespread assumption that most traits are controlled by unlinked polygenic architectures. Recent advances in genome sequencing and eco-evolutionary modeling are unlocking the potential for integrating genomic information into predictions of population responses to environmental change. Using eco-evolutionary simulations, we demonstrate that hypothetical single-locus control of a life history trait produces highly variable and unpredictable harvesting-induced evolution relative to the classically applied multilocus model. Single-locus control of complex traits is thought to be uncommon, yet blocks of linked genes, such as those associated with some types of structural genomic variation, have emerged as taxonomically widespread phenomena. Inheritance of linked architectures resembles that of single loci, thus enabling single-locus-like modeling of polygenic adaptation. Yet, the number of loci, their effect sizes, and the degree of linkage among them all occur along a continuum. We review how linked architectures are often associated, directly or indirectly, with traits expected to be under selection from anthropogenic stressors and are likely to play a large role in adaptation to environmental disturbance. We suggest using single-locus models to explore evolutionary extremes and uncertainties when the trait architecture is unknown, refining parameters as genomic information becomes available, and explicitly incorporating linkage among loci when possible. By overestimating the complexity (e.g., number of independent loci) of the genomic architecture of traits under selection, we risk underestimating the complexity (e.g., nonlinearity) of their evolutionary dynamics.
Collapse
Affiliation(s)
- Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
| | - Anna Kuparinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jeffrey A Hutchings
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
| |
Collapse
|
40
|
Villegas‐Ríos D, Freitas C, Moland E, Thorbjørnsen SH, Olsen EM. Inferring individual fate from aquatic acoustic telemetry data. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13446] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- David Villegas‐Ríos
- Department of Ecology and Marine Resources Instituto Mediterráneo de Estudios Avanzados (CSIC‐UiB) Esporles Spain
- Department of Ecology and Marine Resources Instituto de Investigaciones Marinas (CSIC) Vigo Spain
| | - Carla Freitas
- Institute of Marine Research His Norway
- Marine and Environmental Sciences Center MARE Funchal Portugal
| | - Even Moland
- Institute of Marine Research His Norway
- Department of Natural Sciences Centre for Coastal Research (CCR) University of Agder Kristiansand Norway
| | - Susanna Huneide Thorbjørnsen
- Institute of Marine Research His Norway
- Department of Natural Sciences Centre for Coastal Research (CCR) University of Agder Kristiansand Norway
| | - Esben M. Olsen
- Institute of Marine Research His Norway
- Department of Natural Sciences Centre for Coastal Research (CCR) University of Agder Kristiansand Norway
| |
Collapse
|
41
|
Leder EH, André C, Le Moan A, Töpel M, Blomberg A, Havenhand JN, Lindström K, Volckaert FAM, Kvarnemo C, Johannesson K, Svensson O. Post-glacial establishment of locally adapted fish populations over a steep salinity gradient. J Evol Biol 2020; 34:138-156. [PMID: 32573797 DOI: 10.1111/jeb.13668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Studies of colonization of new habitats that appear from rapidly changing environments are interesting and highly relevant to our understanding of divergence and speciation. Here, we analyse phenotypic and genetic variation involved in the successful establishment of a marine fish (sand goby, Pomatoschistus minutus) over a steep salinity drop from 35 PSU in the North Sea (NE Atlantic) to two PSU in the inner parts of the post-glacial Baltic Sea. We first show that populations are adapted to local salinity in a key reproductive trait, the proportion of motile sperm. Thereafter, we show that genome variation at 22,190 single nucleotide polymorphisms (SNPs) shows strong differentiation among populations along the gradient. Sequences containing outlier SNPs and transcriptome sequences, mapped to a draft genome, reveal associations with genes with relevant functions for adaptation in this environment but without overall evidence of functional enrichment. The many contigs involved suggest polygenic differentiation. We trace the origin of this differentiation using demographic modelling and find the most likely scenario is that at least part of the genetic differentiation is older than the Baltic Sea and is a result of isolation of two lineages prior to the current contact over the North Sea-Baltic Sea transition zone.
Collapse
Affiliation(s)
- Erica H Leder
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biology, University of Turku, Turku, Finland.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Carl André
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Alan Le Moan
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Mats Töpel
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan N Havenhand
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Kai Lindström
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Filip A M Volckaert
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Charlotta Kvarnemo
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Johannesson
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Ola Svensson
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Department for Pre-School and School Teacher Education, University of Borås, Borås, Sweden
| |
Collapse
|
42
|
Wenne R, Bernaś R, Kijewska A, Poćwierz-Kotus A, Strand J, Petereit C, Plauška K, Sics I, Árnyasi M, Kent MP. SNP genotyping reveals substructuring in weakly differentiated populations of Atlantic cod (Gadus morhua) from diverse environments in the Baltic Sea. Sci Rep 2020; 10:9738. [PMID: 32546719 PMCID: PMC7298039 DOI: 10.1038/s41598-020-66518-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/11/2020] [Indexed: 01/02/2023] Open
Abstract
Atlantic cod (Gadus morhua) is one of the most important fish species in northern Europe for several reasons including its predator status in marine ecosystems, its historical role in fisheries, its potential in aquaculture and its strong public profile. However, due to over-exploitation in the North Atlantic and changes in the ecosystem, many cod populations have been reduced in size and genetic diversity. Cod populations in the Baltic Proper, Kattegat and North Sea have been analyzed using a species specific single nucleotide polymorphism (SNP) array. Using a subset of 8,706 SNPs, moderate genetic differences were found between subdivisions in three traditionally delineated cod management stocks: Kattegat, western and eastern Baltic. However, an FST measure of population differentiation based on allele frequencies from 588 outlier loci for 2 population groups, one including 5 western and the other 4 eastern Baltic populations, indicated high genetic differentiation. In this paper, differentiation has been demonstrated not only between, but also within western and eastern Baltic cod stocks for the first time, with salinity appearing to be the most important environmental factor influencing the maintenance of cod population divergence between the western and eastern Baltic Sea.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland.
| | - Rafał Bernaś
- Department of Migratory Fishes in Rutki, Inland Fisheries Institute, Olsztyn, 10-719, Poland
| | - Agnieszka Kijewska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Anita Poćwierz-Kotus
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Jakob Strand
- Arctic Research Centre, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Christoph Petereit
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Research Division 3: Marine Ecology, Research Unit: Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Bruno-Lorenzen-Schule Schleswig, Spielkoppel 6, 24837, Schleswig, Germany
| | - Kęstas Plauška
- Fisheries Service under the Ministry of Agriculture Division of Fisheries Research & Science, Smiltynes 1, 91001, Klaipeda, Lithuania
| | - Ivo Sics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
| | - Mariann Árnyasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), PO Box, 5003, Aas, Norway
| | - Matthew P Kent
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), PO Box, 5003, Aas, Norway
| |
Collapse
|
43
|
De Wit P, Jonsson PR, Pereyra RT, Panova M, André C, Johannesson K. Spatial genetic structure in a crustacean herbivore highlights the need for local considerations in Baltic Sea biodiversity management. Evol Appl 2020; 13:974-990. [PMID: 32431747 PMCID: PMC7232771 DOI: 10.1111/eva.12914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023] Open
Abstract
Incorporating species' eco-evolutionary responses to human-caused disturbances remains a challenge in marine management efforts. A prerequisite is knowledge of geographic structure and scale of genetic diversity and connectivity-the so-called seascape genetic patterns. The Baltic Sea is an excellent model system for studies linking seascape genetics with effects of anthropogenic stress. However, seascape genetic patterns in this area are only described for a few species and are completely unknown for invertebrate herbivores, which constitute a critical part of the ecosystem. This information is crucial for sustainable management, particularly under future scenarios of rapid environmental change. Here, we investigate the population genetic structure among 31 locations throughout the Baltic Sea, of which 45% were located in marine protected areas, in one of the most important herbivores of this region, the isopod crustacean Idotea balthica, using an array of 33,774 genome-wide SNP markers derived from 2b-RAD sequencing. In addition, we generate a biophysical connectivity matrix for I. balthica from a combination of oceanographic current models and estimated life history traits. We find population structure on scales of hundreds of kilometers across the Baltic Sea, where genomic patterns in most cases closely match biophysical connectivity, indicating passive transport with oceanographic currents as an important mean of dispersal in this species. We also find a reduced genetic diversity in terms of heterozygosity along the main salinity gradient of the Baltic Sea, suggesting periods of low population size. Our results provide crucial information for the management of a key ecosystem species under expected changes in temperature and salinity following global climate change in a marine coastal area.
Collapse
Affiliation(s)
- Pierre De Wit
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
| | - Per R. Jonsson
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
- Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
| | | | - Marina Panova
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
| | - Carl André
- Department of Marine SciencesUniversity of GothenburgTjärnöSweden
| | | |
Collapse
|
44
|
Wellenreuther M, Mérot C, Berdan E, Bernatchez L. Going beyond SNPs: The role of structural genomic variants in adaptive evolution and species diversification. Mol Ecol 2019; 28:1203-1209. [PMID: 30834648 DOI: 10.1111/mec.15066] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Emma Berdan
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
45
|
Weist P, Schade FM, Damerau M, Barth JMI, Dierking J, André C, Petereit C, Reusch T, Jentoft S, Hanel R, Krumme U. Assessing SNP-markers to study population mixing and ecological adaptation in Baltic cod. PLoS One 2019; 14:e0218127. [PMID: 31220098 PMCID: PMC6586271 DOI: 10.1371/journal.pone.0218127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/27/2019] [Indexed: 02/01/2023] Open
Abstract
Atlantic cod (Gadus morhua) is a species of great ecological and economical importance in the Baltic Sea. Here, two genetically differentiated stocks, the western and the eastern Baltic cod, display substantial mechanical mixing, hampering our understanding of cod ecology and impeding stock assessments and management. Based on whole-genome re-sequencing data from reference samples obtained from the study area, we designed two different panels of Single Nucleotide Polymorphisms markers (SNPs), which take into account the exceptional genome architecture of cod. A minimum panel of 20 diagnostic SNPs and an extended panel (20 diagnostic and 18 biologically informative SNPs, 38 in total) were developed and validated to distinguish unambiguously between the western and the eastern Baltic cod stocks and to enable studies of local adaptation to the specific environment in the Baltic Sea, respectively. We tested both panels on cod sampled from the southern Baltic Sea (n = 603) caught in 2015 and 2016. Genotyping results showed that catches from the mixing zone in the Arkona Sea, were composed of similar proportions of individuals of the western and the eastern stock. Catches from adjacent areas to the east, the Bornholm Basin and Gdańsk Deep, were exclusively composed of eastern Baltic cod, whereas catches from adjacent western areas (Belt Sea and Öresund) were composed of western Baltic cod. Interestingly, the two Baltic cod stocks showed strong genetic differences at loci associated with life-history trait candidate genes, highlighting the species’ potential for ecological adaptation even at small geographical scales. The minimum and the extended panel of SNP markers presented in this study provide powerful tools for future applications in research and fisheries management to further illuminate the mixing dynamics of cod in the Baltic Sea and to better understand Baltic cod ecology.
Collapse
Affiliation(s)
- Peggy Weist
- Thünen-Institute of Fisheries Ecology, Bremerhaven, Germany
- * E-mail:
| | | | - Malte Damerau
- Thünen-Institute of Fisheries Ecology, Bremerhaven, Germany
| | - Julia M. I. Barth
- Zoological Institute, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Dierking
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Carl André
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | | | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Reinhold Hanel
- Thünen-Institute of Fisheries Ecology, Bremerhaven, Germany
| | - Uwe Krumme
- Thünen-Institute of Baltic Sea Fisheries, Rostock, Germany
| |
Collapse
|
46
|
Barth JMI, Villegas-Ríos D, Freitas C, Moland E, Star B, André C, Knutsen H, Bradbury I, Dierking J, Petereit C, Righton D, Metcalfe J, Jakobsen KS, Olsen EM, Jentoft S. Disentangling structural genomic and behavioural barriers in a sea of connectivity. Mol Ecol 2019; 28:1394-1411. [PMID: 30633410 PMCID: PMC6518941 DOI: 10.1111/mec.15010] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/17/2022]
Abstract
Genetic divergence among populations arises through natural selection or drift and is counteracted by connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with gene flow is not entirely understood. Here, we revisit the question of whether inversions play a role in the divergence of connected populations of the marine fish Atlantic cod (Gadus morhua), by exploring a unique data set combining whole‐genome sequencing data and behavioural data obtained with acoustic telemetry. Within a confined fjord environment, we find three genetically differentiated Atlantic cod types belonging to the oceanic North Sea population, the western Baltic population and a local fjord‐type cod. Continuous behavioural tracking over 4 year revealed temporally stable sympatry of these types within the fjord. Despite overall weak genetic differentiation consistent with high levels of gene flow, we detected significant frequency shifts of three previously identified inversions, indicating an adaptive barrier to gene flow. In addition, behavioural data indicated that North Sea cod and individuals homozygous for the LG12 inversion had lower fitness in the fjord environment. However, North Sea and fjord‐type cod also occupy different depths, possibly contributing to prezygotic reproductive isolation and representing a behavioural barrier to gene flow. Our results provide the first insights into a complex interplay of genomic and behavioural isolating barriers in Atlantic cod and establish a new model system towards an understanding of the role of genomic structural variants in adaptation and diversification.
Collapse
Affiliation(s)
- Julia M I Barth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.,Zoological Institute, University of Basel, Basel, Switzerland
| | - David Villegas-Ríos
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies, IMEDEA CSIC-UIB, Esporles, Spain.,Department of Ecology and Marine Resources, Institute of Marine Research, (IIM CSIC), Vigo, Spain
| | - Carla Freitas
- Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway.,Oceanic Observatory of Madeira, Funchal, Portugal
| | - Even Moland
- Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Carl André
- Department of Marine Sciences - Tjärnö, University of Gothenburg, Gothenburg, Sweden
| | - Halvor Knutsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.,Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway
| | - Ian Bradbury
- Science Branch, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Jan Dierking
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - David Righton
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK
| | - Julian Metcalfe
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Esben M Olsen
- Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|