1
|
Jasper RJ, Yeaman S. Local adaptation can cause both peaks and troughs in nucleotide diversity within populations. G3 (BETHESDA, MD.) 2024; 14:jkae225. [PMID: 39290136 PMCID: PMC11540321 DOI: 10.1093/g3journal/jkae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The amount of standing variation present within populations is a fundamental quantity of interest in population genetics, commonly represented by calculating the average number of differences between pairs of nucleotide sequences (nucleotide diversity, π). It is well understood that both background and positive selection can cause reductions in nucleotide diversity, but less clear how local adaptation affects it. Depending on the assumptions and parameters, some theoretical studies have emphasized how local adaptation can reduce nucleotide diversity, while others have shown that it can increase it. Here, we explore how local adaptation shapes genome-wide patterns in within-population nucleotide diversity, extending previous work to study the effects of polygenic adaptation, genotypic redundancy, and population structure. We show that local adaptation produces two very different patterns depending on the relative strengths of migration and selection, either markedly decreasing or increasing within-population diversity at linked sites at equilibrium. At low migration, regions of depleted diversity can extend large distances from the causal locus, with substantially more diversity eroded than expected with background selection. With higher migration, peaks occur over much smaller genomic distances but with much larger magnitude changes in diversity. Across spatially extended environmental gradients, both patterns can be found within a single species, with increases in diversity at the center of the range and decreases towards the periphery. Our results demonstrate that there is no universal diagnostic signature of local adaptation based on within-population nucleotide diversity, so it will not be broadly useful for explaining increased FST. However, given that neither background nor positive selection inflate diversity, when peaks are found they suggest local adaptation may be acting on a causal allele in the region.
Collapse
Affiliation(s)
- Russ J Jasper
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
2
|
Chen XY, Zhou BF, Shi Y, Liu H, Liang YY, Ingvarsson PK, Wang B. Evolution of the Correlated Genomic Variation Landscape Across a Divergence Continuum in the Genus Castanopsis. Mol Biol Evol 2024; 41:msae191. [PMID: 39248185 PMCID: PMC11421576 DOI: 10.1093/molbev/msae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
The heterogeneous landscape of genomic variation has been well documented in population genomic studies. However, disentangling the intricate interplay of evolutionary forces influencing the genetic variation landscape over time remains challenging. In this study, we assembled a chromosome-level genome for Castanopsis eyrei and sequenced the whole genomes of 276 individuals from 12 Castanopsis species, spanning a broad divergence continuum. We found highly correlated genomic variation landscapes across these species. Furthermore, variations in genetic diversity and differentiation along the genome were strongly associated with recombination rates and gene density. These results suggest that long-term linked selection and conserved genomic features have contributed to the formation of a common genomic variation landscape. By examining how correlations between population summary statistics change throughout the species divergence continuum, we determined that background selection alone does not fully explain the observed patterns of genomic variation; the effects of recurrent selective sweeps must be considered. We further revealed that extensive gene flow has significantly influenced patterns of genomic variation in Castanopsis species. The estimated admixture proportion correlated positively with recombination rate and negatively with gene density, supporting a scenario of selection against gene flow. Additionally, putative introgression regions exhibited strong signals of positive selection, an enrichment of functional genes, and reduced genetic burdens, indicating that adaptive introgression has played a role in shaping the genomes of hybridizing species. This study provides insights into how different evolutionary forces have interacted in driving the evolution of the genomic variation landscape.
Collapse
Affiliation(s)
- Xue-Yan Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
3
|
Glover AN, Sousa VC, Ridenbaugh RD, Sim SB, Geib SM, Linnen CR. Recurrent selection shapes the genomic landscape of differentiation between a pair of host-specialized haplodiploids that diverged with gene flow. Mol Ecol 2024; 33:e17509. [PMID: 39165007 DOI: 10.1111/mec.17509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
Understanding the genetics of adaptation and speciation is critical for a complete picture of how biodiversity is generated and maintained. Heterogeneous genomic differentiation between diverging taxa is commonly documented, with genomic regions of high differentiation interpreted as resulting from differential gene flow, linked selection and reduced recombination rates. Disentangling the roles of each of these non-exclusive processes in shaping genome-wide patterns of divergence is challenging but will enhance our knowledge of the repeatability of genomic landscapes across taxa. Here, we combine whole-genome resequencing and genome feature data to investigate the processes shaping the genomic landscape of differentiation for a sister-species pair of haplodiploid pine sawflies, Neodiprion lecontei and Neodiprion pinetum. We find genome-wide correlations between genome features and summary statistics are consistent with pervasive linked selection, with patterns of diversity and divergence more consistently predicted by exon density and recombination rate than the neutral mutation rate (approximated by dS). We also find that both global and local patterns of FST, dXY and π provide strong support for recurrent selection as the primary selective process shaping variation across pine sawfly genomes, with some contribution from balancing selection and lineage-specific linked selection. Because inheritance patterns for haplodiploid genomes are analogous to those of sex chromosomes, we hypothesize that haplodiploids may be especially prone to recurrent selection, even if gene flow occurred throughout divergence. Overall, our study helps fill an important taxonomic gap in the genomic landscape literature and contributes to our understanding of the processes that shape genome-wide patterns of genetic variation.
Collapse
Affiliation(s)
- Ashleigh N Glover
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Vitor C Sousa
- Department of Animal Biology, CE3C - Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, University of Lisbon, Lisbon, Lisboa, Portugal
| | - Ryan D Ridenbaugh
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Sheina B Sim
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, Hawaii, USA
| | - Scott M Geib
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, Hawaii, USA
| | | |
Collapse
|
4
|
Blankers T, Shaw KL. The biogeographic and evolutionary processes shaping population divergence in Laupala. Mol Ecol 2024; 33:e17444. [PMID: 38984705 DOI: 10.1111/mec.17444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Speciation generates biodiversity and the mechanisms involved are thought to vary across the tree of life and across environments. For example, well-studied adaptive radiations are thought to be fuelled by divergent ecological selection, but additionally are influenced heavily by biogeographic, genomic and demographic factors. Mechanisms of non-adaptive radiations, producing ecologically cryptic taxa, have been less well-studied but should likewise be influenced by these latter factors. Comparing among contexts can help pinpoint universal mechanisms and outcomes, especially if we integrate biogeographic, ecological and evolutionary processes. We investigate population divergence in the swordtail cricket Laupala cerasina, a wide-spread endemic on Hawai'i Island and one of 38 ecologically cryptic Laupala species. The nine sampled populations show striking population genetic structure at small spatio-temporal scales. The rapid differentiation among populations and species of Laupala shows that neither a specific geographical context nor ecological opportunity are pre-requisites for rapid divergence. Spatio-temporal patterns in population divergence, population size change, and gene flow are aligned with the chronosequence of the four volcanoes on which L. cerasina occurs and reveal the composite effects of geological dynamics and Quaternary climate change on population dynamics. Spatio-temporal patterns in genetic variation along the genome reveal the interplay of genetic and genomic architecture in shaping population divergence. In early phases of divergence, we find elevated differentiation in genomic regions harbouring mating song loci. In later stages of divergence, we find a signature of linked selection that interacts with recombination rate variation. Comparing our findings with recent work on complementary systems supports the conclusion that mostly universal factors influence the speciation process.
Collapse
Affiliation(s)
- Thomas Blankers
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Thomson L, Espinosa DP, Brandvain Y, Van Cleve J. Linked selection and the evolution of altruism in family-structured populations. Ecol Evol 2024; 14:e10980. [PMID: 38371869 PMCID: PMC10870336 DOI: 10.1002/ece3.10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Much research on the evolution of altruism via kin selection, group selection, and reciprocity focuses on the role of a single locus or quantitative trait. Very few studies have explored how linked selection, or selection at loci neighboring an altruism locus, impacts the evolution of altruism. While linked selection can decrease the efficacy of selection at neighboring loci, it might have other effects including promoting selection for altruism by increasing relatedness in regions of low recombination. Here, we used population genetic simulations to study how negative selection at linked loci, or background selection, affects the evolution of altruism. When altruism occurs between full siblings, we found that background selection interfered with selection on the altruistic allele, increasing its fixation probability when the altruistic allele was disfavored and reducing its fixation when the allele was favored. In other words, background selection has the same effect on altruistic genes in family-structured populations as it does on other, nonsocial, genes. This contrasts with prior research showing that linked selective sweeps can favor the evolution of cooperation, and we discuss possibilities for resolving these contrasting results.
Collapse
Affiliation(s)
- Lia Thomson
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | | | - Yaniv Brandvain
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | | |
Collapse
|
6
|
Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, Keais GL, Kim A, Owens GL, Rieseberg LH. Genomics of plant speciation. PLANT COMMUNICATIONS 2023; 4:100599. [PMID: 37050879 PMCID: PMC10504567 DOI: 10.1016/j.xplc.2023.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhe Cai
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Eric González-Segovia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Amy Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Yuan S, Shi Y, Zhou BF, Liang YY, Chen XY, An QQ, Fan YR, Shen Z, Ingvarsson PK, Wang B. Genomic vulnerability to climate change in Quercus acutissima, a dominant tree species in East Asian deciduous forests. Mol Ecol 2023; 32:1639-1655. [PMID: 36626136 DOI: 10.1111/mec.16843] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Understanding the evolutionary processes that shape the landscape of genetic variation and influence the response of species to future climate change is critical for biodiversity conservation. Here, we sampled 27 populations across the distribution range of a dominant forest tree, Quercus acutissima, in East Asia, and applied genome-wide analyses to track the evolutionary history and predict the fate of populations under future climate. We found two genetic groups (East and West) in Q. acutissima that diverged during Pliocene. We also found a heterogeneous landscape of genomic variation in this species, which may have been shaped by population demography and linked selections. Using genotype-environment association analyses, we identified climate-associated SNPs in a diverse set of genes and functional categories, indicating a model of polygenic adaptation in Q. acutissima. We further estimated three genetic offset metrics to quantify genomic vulnerability of this species to climate change due to the complex interplay between local adaptation and migration. We found that marginal populations are under higher risk of local extinction because of future climate change, and may not be able to track suitable habitats to maintain the gene-environment relationships observed under the current climate. We also detected higher reverse genetic offsets in northern China, indicating that genetic variation currently present in the whole range of Q. acutissima may not adapt to future climate conditions in this area. Overall, this study illustrates how evolutionary processes have shaped the landscape of genomic variation, and provides a comprehensive genome-wide view of climate maladaptation in Q. acutissima.
Collapse
Affiliation(s)
- Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Yan-Ru Fan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Zhao Shen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China.,South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
8
|
Moreira LR, Klicka J, Smith BT. Demography and linked selection interact to shape the genomic landscape of codistributed woodpeckers during the Ice Age. Mol Ecol 2023; 32:1739-1759. [PMID: 36617622 DOI: 10.1111/mec.16841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
The influence of genetic drift on population dynamics during Pleistocene glacial cycles is well understood, but the role of selection in shaping patterns of genomic variation during these events is less explored. We resequenced whole genomes to investigate how demography and natural selection interact to generate the genomic landscapes of Downy and Hairy Woodpecker, species codistributed in previously glaciated North America. First, we explored the spatial and temporal patterns of genomic diversity produced by neutral evolution. Next, we tested (i) whether levels of nucleotide diversity along the genome are correlated with intrinsic genomic properties, such as recombination rate and gene density, and (ii) whether different demographic trajectories impacted the efficacy of selection. Our results revealed cycles of bottleneck and expansion, and genetic structure associated with glacial refugia. Nucleotide diversity varied widely along the genome, but this variation was highly correlated between the species, suggesting the presence of conserved genomic features. In both taxa, nucleotide diversity was positively correlated with recombination rate and negatively correlated with gene density, suggesting that linked selection played a role in reducing diversity. Despite strong fluctuations in effective population size, the maintenance of relatively large populations during glaciations may have facilitated selection. Under these conditions, we found evidence that the individual demographic trajectory of populations modulated linked selection, with purifying selection being more efficient in removing deleterious alleles in large populations. These results highlight that while genome-wide variation reflects the expected signature of demographic change during climatic perturbations, the interaction of multiple processes produces a predictable and highly heterogeneous genomic landscape.
Collapse
Affiliation(s)
- Lucas R Moreira
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA.,Department of Ornithology, American Museum of Natural History, New York City, New York, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John Klicka
- Burke Museum of Natural History and Culture and Department of Biology, University of Washington, Seattle, Washington, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York City, New York, USA
| |
Collapse
|
9
|
Repeated genetic adaptation to altitude in two tropical butterflies. Nat Commun 2022; 13:4676. [PMID: 35945236 PMCID: PMC9363431 DOI: 10.1038/s41467-022-32316-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/26/2022] [Indexed: 01/02/2023] Open
Abstract
Repeated evolution can provide insight into the mechanisms that facilitate adaptation to novel or changing environments. Here we study adaptation to altitude in two tropical butterflies, Heliconius erato and H. melpomene, which have repeatedly and independently adapted to montane habitats on either side of the Andes. We sequenced 518 whole genomes from altitudinal transects and found many regions differentiated between highland (~ 1200 m) and lowland (~ 200 m) populations. We show repeated genetic differentiation across replicate populations within species, including allopatric comparisons. In contrast, there is little molecular parallelism between the two species. By sampling five close relatives, we find that a large proportion of divergent regions identified within species have arisen from standing variation and putative adaptive introgression from high-altitude specialist species. Taken together our study supports a role for both standing genetic variation and gene flow from independently adapted species in promoting parallel local adaptation to the environment. Here, the authors study adaptation to altitude in 518 whole genomes from two species of tropical butterflies. They find repeated genetic differentiation within species, little molecular parallelism between these species, and introgression from closely related species, concluding that standing genetic variation promotes parallel local adaptation.
Collapse
|
10
|
Brachmann MK, Parsons K, Skúlason S, Gaggiotti O, Ferguson M. Variation in the genomic basis of parallel phenotypic and ecological divergence in benthic and pelagic morphs of Icelandic Arctic charr (Salvelinus alpinus). Mol Ecol 2022; 31:4688-4706. [PMID: 35861579 DOI: 10.1111/mec.16625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Sympatric adaptive phenotypic divergence should be underlain by genomic differentiation between sub-populations. When divergence drives similar patterns of phenotypic and ecological variation within species we expect evolution to draw on common allelic variation. We investigated divergence histories and genomic signatures of adaptive divergence between benthic and pelagic morphs of Icelandic Arctic charr. Divergence histories for each of four populations were reconstructed using coalescent modelling and 14,187 single nucleotide polymorphisms. Sympatric divergence with continuous gene flow was supported in two populations while allopatric divergence with secondary contact was supported in one population; we could not differentiate between demographic models in the fourth population. We detected parallel patterns of phenotypic divergence along benthic-pelagic evolutionary trajectories among populations. Patterns of genomic differentiation between benthic and pelagic morphs were characterized by outlier loci in many narrow peaks of differentiation throughout the genome, which may reflect the eroding effects of gene flow on nearby neutral loci. We then used genome-wide association analyses to relate both phenotypic (body shape and size) and ecological (carbon and nitrogen stable isotopes) variation to patterns of genomic differentiation. Many peaks of genomic differentiation were associated with phenotypic and ecological variation in the three highly divergent populations, suggesting a genomic basis for adaptive divergence. We detected little evidence for a parallel genomic basis of differentiation as most regions and outlier loci were not shared among populations. Our results show that adaptive divergence can have varied genomic consequences in populations with relatively recent common origins, similar divergence histories, and parallel phenotypic divergence.
Collapse
Affiliation(s)
| | - Kevin Parsons
- Institute of Biodiversity, Animal Health and Comparative Medicine, School of Life Science, University of Glasgow, Glasgow, UK
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University, Saudárkrókur, Iceland.,Icelandic Museum of Natural History, Reykjavik, Iceland
| | - Oscar Gaggiotti
- School of biology, Scottish Oceans Institute, University of St. Andrews, St. Andrews, UK
| | - Moira Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
The genomic origins of the world's first farmers. Cell 2022; 185:1842-1859.e18. [PMID: 35561686 PMCID: PMC9166250 DOI: 10.1016/j.cell.2022.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/04/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022]
Abstract
The precise genetic origins of the first Neolithic farming populations in Europe and Southwest Asia, as well as the processes and the timing of their differentiation, remain largely unknown. Demogenomic modeling of high-quality ancient genomes reveals that the early farmers of Anatolia and Europe emerged from a multiphase mixing of a Southwest Asian population with a strongly bottlenecked western hunter-gatherer population after the last glacial maximum. Moreover, the ancestors of the first farmers of Europe and Anatolia went through a period of extreme genetic drift during their westward range expansion, contributing highly to their genetic distinctiveness. This modeling elucidates the demographic processes at the root of the Neolithic transition and leads to a spatial interpretation of the population history of Southwest Asia and Europe during the late Pleistocene and early Holocene.
Collapse
|
12
|
van der Zee MJ, Whiting JR, Paris JR, Bassar RD, Travis J, Weigel D, Reznick DN, Fraser BA. Rapid genomic convergent evolution in experimental populations of Trinidadian guppies ( Poecilia reticulata). Evol Lett 2022; 6:149-161. [PMID: 35386829 PMCID: PMC8966473 DOI: 10.1002/evl3.272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
Although rapid phenotypic evolution has been documented often, the genomic basis of rapid adaptation to natural environments is largely unknown in multicellular organisms. Population genomic studies of experimental populations of Trinidadian guppies (Poecilia reticulata) provide a unique opportunity to study this phenomenon. Guppy populations that were transplanted from high-predation (HP) to low-predation (LP) environments have been shown to evolve toward the phenotypes of naturally colonized LP populations in as few as eight generations. These changes persist in common garden experiments, indicating that they have a genetic basis. Here, we report results of whole genome variation in four experimental populations colonizing LP sites along with the corresponding HP source population. We examined genome-wide patterns of genetic variation to estimate past demography and used a combination of genome scans, forward simulations, and a novel analysis of allele frequency change vectors to uncover the signature of selection. We detected clear signals of population growth and bottlenecks at the genome-wide level that matched the known history of population numbers. We found a region on chromosome 15 under strong selection in three of the four populations and with our multivariate approach revealing subtle parallel changes in allele frequency in all four populations across this region. Investigating patterns of genome-wide selection in this uniquely replicated experiment offers remarkable insight into the mechanisms underlying rapid adaptation, providing a basis for comparison with other species and populations experiencing rapidly changing environments.
Collapse
Affiliation(s)
| | | | | | - Ron D. Bassar
- Department of BiologyWilliams CollegeWilliamstownMassachusetts01267
| | - Joseph Travis
- Department of Biological ScienceFlorida State UniversityTallahasseeFlorida32306
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingen72076Germany
| | - David N. Reznick
- Department of BiologyUniversity of California, RiversideRiversideCalifornia92521
| | | |
Collapse
|
13
|
Ou WJA, Henriques GJB, Senthilnathan A, Ke PJ, Grainger TN, Germain RM. Writing Accessible Theory in Ecology and Evolution: Insights from Cognitive Load Theory. Bioscience 2022. [DOI: 10.1093/biosci/biab133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Theories underpin science. In biology, theories are often formalized in the form of mathematical models, which may render them inaccessible to those lacking mathematical training. In the present article, we consider how theories could be presented to better aid understanding. We provide concrete recommendations inspired by cognitive load theory, a branch of psychology that addresses impediments to knowledge acquisition. We classify these recommendations into two classes: those that increase the links between new and existing information and those that reduce unnecessary or irrelevant complexities. For each, we provide concrete examples to illustrate the scenarios in which they apply. By enhancing a reader's familiarity with the material, these recommendations lower the mental capacity required to learn new information. Our hope is that these recommendations can provide a pathway for theoreticians to increase the accessibility of their work and for empiricists to engage with theory, strengthening the feedback between theory and experimentation.
Collapse
Affiliation(s)
| | | | | | - Po-Ju Ke
- National Taiwan University, Taipei, Taiwan
| | | | - Rachel M Germain
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Cheng JY, Stern AJ, Racimo F, Nielsen R. Detecting Selection in Multiple Populations by Modeling Ancestral Admixture Components. Mol Biol Evol 2022; 39:msab294. [PMID: 34626111 PMCID: PMC8763095 DOI: 10.1093/molbev/msab294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
One of the most powerful and commonly used approaches for detecting local adaptation in the genome is the identification of extreme allele frequency differences between populations. In this article, we present a new maximum likelihood method for finding regions under positive selection. It is based on a Gaussian approximation to allele frequency changes and it incorporates admixture between populations. The method can analyze multiple populations simultaneously and retains power to detect selection signatures specific to ancestry components that are not representative of any extant populations. Using simulated data, we compare our method to related approaches, and show that it is orders of magnitude faster than the state-of-the-art, while retaining similar or higher power for most simulation scenarios. We also apply it to human genomic data and identify loci with extreme genetic differentiation between major geographic groups. Many of the genes identified are previously known selected loci relating to hair pigmentation and morphology, skin, and eye pigmentation. We also identify new candidate regions, including various selected loci in the Native American component of admixed Mexican-Americans. These involve diverse biological functions, such as immunity, fat distribution, food intake, vision, and hair development.
Collapse
Affiliation(s)
- Jade Yu Cheng
- Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron J Stern
- Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Nielsen
- Lundbeck GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
15
|
Yeaman S. Evolution of polygenic traits under global vs local adaptation. Genetics 2022; 220:iyab134. [PMID: 35134196 PMCID: PMC8733419 DOI: 10.1093/genetics/iyab134] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Observations about the number, frequency, effect size, and genomic distribution of alleles associated with complex traits must be interpreted in light of evolutionary process. These characteristics, which constitute a trait's genetic architecture, can dramatically affect evolutionary outcomes in applications from agriculture to medicine, and can provide a window into how evolution works. Here, I review theoretical predictions about the evolution of genetic architecture under spatially homogeneous, global adaptation as compared with spatially heterogeneous, local adaptation. Due to the tension between divergent selection and migration, local adaptation can favor "concentrated" genetic architectures that are enriched for alleles of larger effect, clustered in a smaller number of genomic regions, relative to expectations under global adaptation. However, the evolution of such architectures may be limited by many factors, including the genotypic redundancy of the trait, mutation rate, and temporal variability of environment. I review the circumstances in which predictions differ for global vs local adaptation and discuss where progress can be made in testing hypotheses using data from natural populations and lab experiments. As the field of comparative population genomics expands in scope, differences in architecture among traits and species will provide insights into how evolution works, and such differences must be interpreted in light of which kind of selection has been operating.
Collapse
Affiliation(s)
- Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
16
|
Liang YY, Shi Y, Yuan S, Zhou BF, Chen XY, An QQ, Ingvarsson PK, Plomion C, Wang B. Linked selection shapes the landscape of genomic variation in three oak species. THE NEW PHYTOLOGIST 2022; 233:555-568. [PMID: 34637540 DOI: 10.1111/nph.17793] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Natural selection shapes genome-wide patterns of diversity within species and divergence between species. However, quantifying the efficacy of selection and elucidating the relative importance of different types of selection in shaping genomic variation remain challenging. We sequenced whole genomes of 101 individuals of three closely related oak species to track the divergence history, and to dissect the impacts of selective sweeps and background selection on patterns of genomic variation. We estimated that the three species diverged around the late Neogene and experienced a bottleneck during the Pleistocene. We detected genomic regions with elevated relative differentiation ('FST -islands'). Population genetic inferences from the site frequency spectrum and ancestral recombination graph indicated that FST -islands were formed by selective sweeps. We also found extensive positive selection; the fixation of adaptive mutations and reduction neutral diversity around substitutions generated a signature of selective sweeps. Prevalent negative selection and background selection have reduced genetic diversity in both genic and intergenic regions, and contributed substantially to the baseline variation in genetic diversity. Our results demonstrate the importance of linked selection in shaping genomic variation, and illustrate how the extent and strength of different selection models vary across the genome.
Collapse
Affiliation(s)
- Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Center for Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | | | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
17
|
Reeve J, Li Q, Lindtke D, Yeaman S. Comparing genome scans among species of the stickleback order reveals three different patterns of genetic diversity. Ecol Evol 2022; 12:e8502. [PMID: 35127027 PMCID: PMC8796908 DOI: 10.1002/ece3.8502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Comparing genome scans among species is a powerful approach for investigating the patterns left by evolutionary processes. In particular, this offers a way to detect candidate genes that drive convergent evolution. We compared genome scan results to investigate if patterns of genetic diversity and divergence are shared among divergent species within the stickleback order (Gasterosteiformes): the threespine stickleback (Gasterosteus aculeatus), ninespine stickleback (Pungitius pungitus), and tubesnout (Aulorhynchus flavidus). Populations were sampled from the southern and northern edges of each species' range, to identify patterns associated with latitudinal changes in genetic diversity. Weak correlations in genetic diversity (F ST and expected heterozygosity) and three different patterns in the genomic landscape were found among these species. Additionally, no candidate genes for convergent evolution were detected. This is a counterexample to the growing number of studies that have shown overlapping genetic patterns, demonstrating that genome scan comparisons can be noisy due to the effects of several interacting evolutionary forces.
Collapse
Affiliation(s)
- James Reeve
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Tjärnö Marina LaboratoriumGöteborgs UniversitetStrömstadSweden
| | - Qiushi Li
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Dorothea Lindtke
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Samuel Yeaman
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
18
|
Peng J, Svetec N, Zhao L. Intermolecular interactions drive protein adaptive and co-adaptive evolution at both species and population levels. Mol Biol Evol 2021; 39:6456312. [PMID: 34878126 PMCID: PMC8789070 DOI: 10.1093/molbev/msab350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins are the building blocks for almost all the functions in cells. Understanding the molecular evolution of proteins and the forces that shape protein evolution is essential in understanding the basis of function and evolution. Previous studies have shown that adaptation frequently occurs at the protein surface, such as in genes involved in host–pathogen interactions. However, it remains unclear whether adaptive sites are distributed randomly or at regions associated with particular structural or functional characteristics across the genome, since many proteins lack structural or functional annotations. Here, we seek to tackle this question by combining large-scale bioinformatic prediction, structural analysis, phylogenetic inference, and population genomic analysis of Drosophila protein-coding genes. We found that protein sequence adaptation is more relevant to function-related rather than structure-related properties. Interestingly, intermolecular interactions contribute significantly to protein adaptation. We further showed that intermolecular interactions, such as physical interactions, may play a role in the coadaptation of fast-adaptive proteins. We found that strongly differentiated amino acids across geographic regions in protein-coding genes are mostly adaptive, which may contribute to the long-term adaptive evolution. This strongly indicates that a number of adaptive sites tend to be repeatedly mutated and selected throughout evolution in the past, present, and maybe future. Our results highlight the important roles of intermolecular interactions and coadaptation in the adaptive evolution of proteins both at the species and population levels.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
19
|
McCulloch GA, Guhlin J, Dutoit L, Harrop TWR, Dearden PK, Waters JM. Genomic signatures of parallel alpine adaptation in recently evolved flightless insects. Mol Ecol 2021; 30:6677-6686. [PMID: 34592029 DOI: 10.1111/mec.16204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/01/2022]
Abstract
Natural selection along elevational gradients has potential to drive predictable adaptations across distinct lineages, but the extent of such repeated evolution remains poorly studied for many widespread alpine taxa. We present parallel genomic analyses of two recently evolved flightless alpine insect lineages to test for molecular signatures of repeated alpine adaptation. Specifically, we compare low-elevation vs. alpine stonefly ecotypes from parallel stream populations in which flightless upland ecotypes have been independently derived. We map 67,922 polymorphic genetic markers, generated across 176 Zelandoperla fenestrata specimens from two independent alpine stream populations in New Zealand's Rock and Pillar Range, to a newly developed plecopteran reference genome. Genome-wide scans revealed 31 regions with outlier single nucleotide polymorphisms (SNPs) differentiating lowland vs. alpine ecotypes in Lug Creek, and 37 regions with outliers differentiating ecotypes in Six Mile Creek. Of these regions, 13% (8/60) yielded outlier SNPs across both within-stream ecotype comparisons, implying comparable genomic shifts contribute to this repeated alpine adaptation. Candidate genes closely linked to repeated outlier regions include several with documented roles in insect wing-development (e.g., dishevelled), suggesting that they may contribute to repeated alpine wing reduction. Additional candidate genes have been shown to influence insect fecundity (e.g., ovo) and lifespan (e.g., Mrp4), implying that they might contribute to life history differentiation between upland and lowland ecotypes. Additional outlier genes have potential roles in the evolution of reproductive isolation among ecotypes (hedgehog and Desaturase 1). These results demonstrate how replicated outlier tests across independent lineages can potentially contribute to the discovery of genes underpinning repeated adaptation.
Collapse
Affiliation(s)
| | - Joseph Guhlin
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Thomas W R Harrop
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
20
|
Manthey JD, Klicka J, Spellman GM. The Genomic Signature of Allopatric Speciation in a Songbird Is Shaped by Genome Architecture (Aves: Certhia americana). Genome Biol Evol 2021; 13:evab120. [PMID: 34042960 PMCID: PMC8364988 DOI: 10.1093/gbe/evab120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
The genomic signature of speciation with gene flow is often attributed to the strength of divergent selection and recombination rate in regions harboring targets for selection. In contrast, allopatric speciation provides a different geographic context and evolutionary scenario, whereby introgression is limited by isolation rather than selection against gene flow. Lacking shared divergent selection or selection against hybridization, we would predict the genomic signature of allopatric speciation would largely be shaped by genomic architecture-the nonrandom distribution of functional elements and chromosomal characteristics-through its role in affecting the processes of selection and drift. Here, we built and annotated a chromosome-scale genome assembly for a songbird (Passeriformes: Certhia americana). We show that the genomic signature of allopatric speciation between its two primary lineages is largely shaped by genomic architecture. Regionally, gene density and recombination rate variation explain a large proportion of variance in genomic diversity, differentiation, and divergence. We identified a heterogeneous landscape of selection and neutrality, with a large portion of the genome under the effects of indirect selection. We found higher proportions of small chromosomes under the effects of indirect selection, likely because they have relatively higher gene density. At the chromosome scale, differential genomic architecture of macro- and microchromosomes shapes the genomic signatures of speciation: chromosome size has: 1) a positive relationship with genetic differentiation, genetic divergence, rate of lineage sorting in the contact zone, and proportion neutral evolution and 2) a negative relationship with genetic diversity and recombination rate.
Collapse
Affiliation(s)
- Joseph D Manthey
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - John Klicka
- Burke Museum of Natural History, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Garth M Spellman
- Department of Zoology, Denver Museum of Nature & Science, Denver, Colorado, USA
| |
Collapse
|
21
|
Genetic diversity and selection signatures in maize landraces compared across 50 years of in situ and ex situ conservation. Heredity (Edinb) 2021; 126:913-928. [PMID: 33785893 PMCID: PMC8178342 DOI: 10.1038/s41437-021-00423-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 02/01/2023] Open
Abstract
Genomics-based, longitudinal comparisons between ex situ and in situ agrobiodiversity conservation strategies can contribute to a better understanding of their underlying effects. However, landrace designations, ambiguous common names, and gaps in sampling information complicate the identification of matching ex situ and in situ seed lots. Here we report a 50-year longitudinal comparison of the genetic diversity of a set of 13 accessions from the state of Morelos, Mexico, conserved ex situ since 1967 and retrieved in situ from the same donor families in 2017. We interviewed farmer families who donated in situ landraces to understand their germplasm selection criteria. Samples were genotyped by sequencing, producing 74,739 SNPs. Comparing the two sample groups, we show that ex situ and in situ genome-wide diversity was similar. In situ samples had 3.1% fewer SNPs and lower pairwise genetic distances (Fst 0.008-0.113) than ex situ samples (Fst 0.031-0.128), but displayed the same heterozygosity. Despite genome-wide similarities across samples, we could identify several loci under selection when comparing in situ and ex situ seed lots, suggesting ongoing evolution in farmer fields. Eight loci in chromosomes 3, 5, 6, and 10 showed evidence of selection in situ that could be related with farmers' selection criteria surveyed with focus groups and interviews at the sampling site in 2017, including wider kernels and larger ear size. Our results have implications for ex situ collection resampling strategies and the in situ conservation of threatened landraces.
Collapse
|
22
|
Mathur S, DeWoody JA. Genetic load has potential in large populations but is realized in small inbred populations. Evol Appl 2021; 14:1540-1557. [PMID: 34178103 PMCID: PMC8210801 DOI: 10.1111/eva.13216] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Populations with higher genetic diversity and larger effective sizes have greater evolutionary capacity (i.e., adaptive potential) to respond to ecological stressors. We are interested in how the variation captured in protein-coding genes fluctuates relative to overall genomic diversity and whether smaller populations suffer greater costs due to their genetic load of deleterious mutations compared with larger populations. We analyzed individual whole-genome sequences (N = 74) from three different populations of Montezuma quail (Cyrtonyx montezumae), a small ground-dwelling bird that is sustainably harvested in some portions of its range but is of conservation concern elsewhere. Our historical demographic results indicate that Montezuma quail populations in the United States exhibit low levels of genomic diversity due in large part to long-term declines in effective population sizes over nearly a million years. The smaller and more isolated Texas population is significantly more inbred than the large Arizona and the intermediate-sized New Mexico populations we surveyed. The Texas gene pool has a significantly smaller proportion of strongly deleterious variants segregating in the population compared with the larger Arizona gene pool. Our results demonstrate that even in small populations, highly deleterious mutations are effectively purged and/or lost due to drift. However, we find that in small populations the realized genetic load is elevated because of inbreeding coupled with a higher frequency of slightly deleterious mutations that are manifested in homozygotes. Overall, our study illustrates how population genomics can be used to proactively assess both neutral and functional aspects of contemporary genetic diversity in a conservation framework while simultaneously considering deeper demographic histories.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Present address:
Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - J. Andrew DeWoody
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
23
|
Fang B, Kemppainen P, Momigliano P, Merilä J. Population structure limits parallel evolution in sticklebacks. Mol Biol Evol 2021; 38:4205-4221. [PMID: 33956140 PMCID: PMC8476136 DOI: 10.1093/molbev/msab144] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Population genetic theory predicts that small effective population sizes (Ne) and restricted gene flow limit the potential for local adaptation. In particular, the probability of evolving similar phenotypes based on shared genetic mechanisms (i.e., parallel evolution), is expected to be reduced. We tested these predictions in a comparative genomic study of two ecologically similar and geographically codistributed stickleback species (viz. Gasterosteus aculeatus and Pungitius pungitius). We found that P. pungitius harbors less genetic diversity and exhibits higher levels of genetic differentiation and isolation-by-distance than G. aculeatus. Conversely, G. aculeatus exhibits a stronger degree of genetic parallelism across freshwater populations than P. pungitius: 2,996 versus 379 single nucleotide polymorphisms located within 26 versus 9 genomic regions show evidence of selection in multiple freshwater populations of G. aculeatus and P. pungitius, respectively. Most regions involved in parallel evolution in G. aculeatus showed increased levels of divergence, suggestive of selection on ancient haplotypes. In contrast, haplotypes involved in freshwater adaptation in P. pungitius were younger. In accordance with theory, the results suggest that connectivity and genetic drift play crucial roles in determining the levels and geographic distribution of standing genetic variation, providing evidence that population subdivision limits local adaptation and therefore also the likelihood of parallel evolution.
Collapse
Affiliation(s)
- Bohao Fang
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Petri Kemppainen
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Paolo Momigliano
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland.,Research Division of Ecology and Biodiversity, Faculty of Science, Kadoorie Building, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
24
|
Takou M, Hämälä T, Koch EM, Steige KA, Dittberner H, Yant L, Genete M, Sunyaev S, Castric V, Vekemans X, Savolainen O, de Meaux J. Maintenance of Adaptive Dynamics and No Detectable Load in a Range-Edge Outcrossing Plant Population. Mol Biol Evol 2021; 38:1820-1836. [PMID: 33480994 PMCID: PMC8097302 DOI: 10.1093/molbev/msaa322] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During range expansion, edge populations are expected to face increased genetic drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the removal of deleterious mutations and slowing down adaptation. Here, we contrast populations of the European subspecies Arabidopsis lyrata ssp. petraea, which expanded its Northern range after the last glaciation. We document a sharp decline in effective population size in the range-edge population and observe that nonsynonymous variants segregate at higher frequencies. We detect a 4.9% excess of derived nonsynonymous variants per individual in the range-edge population, suggesting an increase of the genomic burden of deleterious mutations. Inference of the fitness effects of mutations and modeling of allele frequencies under the explicit demographic history of each population predicts a depletion of rare deleterious variants in the range-edge population, but an enrichment for fixed ones, consistent with the bottleneck effect. However, the demographic history of the range-edge population predicts a small net decrease in per-individual fitness. Consistent with this prediction, the range-edge population is not impaired in its growth and survival measured in a common garden experiment. We further observe that the allelic diversity at the self-incompatibility locus, which ensures strict outcrossing and evolves under negative frequency-dependent selection, has remained unchanged. Genomic footprints indicative of selective sweeps are broader in the Northern population but not less frequent. We conclude that the outcrossing species A. lyrata ssp. petraea shows a strong resilience to the effect of range expansion.
Collapse
Affiliation(s)
- Margarita Takou
- Institute of Botany, University of Cologne, Cologne, Germany
| | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Evan M Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kim A Steige
- Institute of Botany, University of Cologne, Cologne, Germany
| | | | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Mathieu Genete
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Vincent Castric
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Xavier Vekemans
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | |
Collapse
|
25
|
Tennessen JA, Duraisingh MT. Three Signatures of Adaptive Polymorphism Exemplified by Malaria-Associated Genes. Mol Biol Evol 2021; 38:1356-1371. [PMID: 33185667 PMCID: PMC8042748 DOI: 10.1093/molbev/msaa294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malaria has been one of the strongest selective pressures on our species. Many of the best-characterized cases of adaptive evolution in humans are in genes tied to malaria resistance. However, the complex evolutionary patterns at these genes are poorly captured by standard scans for nonneutral evolution. Here, we present three new statistical tests for selection based on population genetic patterns that are observed more than once among key malaria resistance loci. We assess these tests using forward-time evolutionary simulations and apply them to global whole-genome sequencing data from humans, and thus we show that they are effective at distinguishing selection from neutrality. Each test captures a distinct evolutionary pattern, here called Divergent Haplotypes, Repeated Shifts, and Arrested Sweeps, associated with a particular period of human prehistory. We clarify the selective signatures at known malaria-relevant genes and identify additional genes showing similar adaptive evolutionary patterns. Among our top outliers, we see a particular enrichment for genes involved in erythropoiesis and for genes previously associated with malaria resistance, consistent with a major role for malaria in shaping these patterns of genetic diversity. Polymorphisms at these genes are likely to impact resistance to malaria infection and contribute to ongoing host-parasite coevolutionary dynamics.
Collapse
|
26
|
Chase MA, Ellegren H, Mugal CF. Positive selection plays a major role in shaping signatures of differentiation across the genomic landscape of two independent Ficedula flycatcher species pairs. Evolution 2021; 75:2179-2196. [PMID: 33851440 DOI: 10.1111/evo.14234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022]
Abstract
A current debate within population genomics surrounds the relevance of patterns of genomic differentiation between closely related species for our understanding of adaptation and speciation. Mounting evidence across many taxa suggests that the same genomic regions repeatedly develop elevated differentiation in independent species pairs. These regions often coincide with high gene density and/or low recombination, leading to the hypothesis that the genomic differentiation landscape mostly reflects a history of background selection, and reveals little about adaptation or speciation. A comparative genomics approach with multiple independent species pairs at a timescale where gene flow and ILS are negligible permits investigating whether different evolutionary processes are responsible for generating lineage-specific versus shared patterns of species differentiation. We use whole-genome resequencing data of 195 individuals from four Ficedula flycatcher species comprising two independent species pairs: collared and pied flycatchers, and red-breasted and taiga flycatchers. We found that both shared and lineage-specific FST peaks could partially be explained by selective sweeps, with recurrent selection likely to underlie shared signatures of selection, whereas indirect evidence supports a role of recombination landscape evolution in driving lineage-specific signatures of selection. This work therefore provides evidence for an interplay of positive selection and recombination to genomic landscape evolution.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala university, Uppsala, SE-75236, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala university, Uppsala, SE-75236, Sweden
| | - Carina F Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala university, Uppsala, SE-75236, Sweden
| |
Collapse
|
27
|
Schield DR, Scordato ESC, Smith CCR, Carter JK, Cherkaoui SI, Gombobaatar S, Hajib S, Hanane S, Hund AK, Koyama K, Liang W, Liu Y, Magri N, Rubtsov A, Sheta B, Turbek SP, Wilkins MR, Yu L, Safran RJ. Sex-linked genetic diversity and differentiation in a globally distributed avian species complex. Mol Ecol 2021; 30:2313-2332. [PMID: 33720472 DOI: 10.1111/mec.15885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Sex chromosomes often bear distinct patterns of genetic variation due to unique patterns of inheritance and demography. The processes of mutation, recombination, genetic drift and selection also influence rates of evolution on sex chromosomes differently than autosomes. Measuring such differences provides information about how these processes shape genomic variation and their roles in the origin of species. To test hypotheses and predictions about patterns of autosomal and sex-linked genomic diversity and differentiation, we measured population genetic statistics within and between populations and subspecies of the barn swallow (Hirundo rustica) and performed explicit comparisons between autosomal and Z-linked genomic regions. We first tested for evidence of low Z-linked genetic diversity and high Z-linked population differentiation relative to autosomes, then for evidence that the Z chromosome bears greater ancestry information due to faster lineage sorting. Finally, we investigated geographical clines across hybrid zones for evidence that the Z chromosome is resistant to introgression due to selection against hybrids. We found evidence that the barn swallow mating system, demographic history and linked selection each contribute to low Z-linked diversity and high Z-linked differentiation. While incomplete lineage sorting is rampant across the genome, our results indicate faster sorting of ancestral polymorphism on the Z. Finally, hybrid zone analyses indicate barriers to introgression on the Z chromosome, suggesting that sex-linked traits are important in reproductive isolation, especially in migratory divide regions. Our study highlights how selection, gene flow and demography shape sex-linked genetic diversity and underlines the relevance of the Z chromosome in speciation.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Elizabeth S C Scordato
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Chris C R Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Javan K Carter
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Sidi Imad Cherkaoui
- Ecole Supérieure de Technologie de Khénifra, Sultan Moulay Slimane University, Béni-Mellal, Morocco
| | - Sundev Gombobaatar
- National University of Mongolia and Mongolian Ornithological Society, Ulaanbaatar, Mongolia
| | - Said Hajib
- Water and Forests Department, Forest Research Center, Rabat-Agdal, Morocco
| | - Saad Hanane
- Water and Forests Department, Forest Research Center, Rabat-Agdal, Morocco
| | - Amanda K Hund
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | | | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Najib Magri
- Water and Forests Department, Forest Research Center, Rabat-Agdal, Morocco
| | | | - Basma Sheta
- Zoology Department, Faculty of Science, Damietta University, New Damietta City, Egypt
| | - Sheela P Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Matthew R Wilkins
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Collaborative for STEM Education and Outreach, Vanderbilt University, Nashville, TN, USA
| | - Liu Yu
- Key Laboratory for Biodiversity Sciences and Ecological Engineering, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
28
|
Matthey-Doret R. SimBit: A high performance, flexible and easy-to-use population genetic simulator. Mol Ecol Resour 2021; 21:1745-1754. [PMID: 33713044 DOI: 10.1111/1755-0998.13372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
SimBit is a general purpose, high performance forward-in-time population genetics simulator. SimBit can simulate a wide variety of selection scenarios (any selection and dominance coefficients variation, any epistatic interaction, any spatial and temporal changes of selection scenario, etc.), demographic scenarios (any changes in patch sizes, migration rates, realistic demography dependent on fecundity, hard vs. soft selection, exponential vs. logistic growth, gametic or zygotic dispersion, etc.) and mating systems (cloning and selfing rates, hermaphrodites or males and females). SimBit can also track QTLs (with hyperdimensional phenotypes, explicit fitness landscape, plasticity, developmental noise, etc.). Finally, SimBit can simulate multiple species with their ecological relationships. SimBit comes with a R wrapper that simplifies the management of an entire research project from the creation of a grid of parameters and corresponding inputs, running simulations and gathering outputs for analysis. SimBit's performance was extensively benchmarked in comparison to SLiM, Nemo and SFS_CODE, varying population size, recombination rate, mutation rate, and the number of loci. I also reproduced simulations from previous studies, benchmarked QTLs and coalescent tree recording techniques. SimBit was most often the highest performing program with the only notable exception of SLiM outperforming SimBit in scenarios with few loci and low genetic diversity.
Collapse
Affiliation(s)
- Remi Matthey-Doret
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Do We Need to Identify Adaptive Genetic Variation When Prioritizing Populations for Conservation? CONSERV GENET 2021. [DOI: 10.1007/s10592-020-01327-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
McCulloch GA, Foster BJ, Dutoit L, Harrop TWR, Guhlin J, Dearden PK, Waters JM. Genomics Reveals Widespread Ecological Speciation in Flightless Insects. Syst Biol 2020; 70:863-876. [DOI: 10.1093/sysbio/syaa094] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/04/2023] Open
Abstract
Abstract
Recent genomic analyses have highlighted parallel divergence in response to ecological gradients, but the extent to which altitude can underpin such repeated speciation remains unclear. Wing reduction and flight loss have apparently evolved repeatedly in montane insect assemblages and have been suggested as important drivers of hexapod diversification. We test this hypothesis using genomic analyses of a widespread wing-polymorphic stonefly species complex in New Zealand. We identified over 50,000 polymorphic genetic markers generated across almost 200 Zelandoperla fenestrata stonefly specimens using a newly generated plecopteran reference genome, to reveal widespread parallel speciation between sympatric full-winged and wing-reduced ecotypes. Rather than the existence of a single, widespread, flightless taxon (Zelandoperla pennulata), evolutionary genomic data reveal that wing-reduced upland lineages have speciated repeatedly and independently from full-winged Z. fenestrata. This repeated evolution of reproductive isolation between local ecotype pairs that lack mitochondrial DNA differentiation suggests that ecological speciation has evolved recently. A cluster of outlier single-nucleotide polymorphisms detected in independently wing-reduced lineages, tightly linked in an approximately 85 kb genomic region that includes the developmental “supergene” doublesex, suggests that this “island of divergence” may play a key role in rapid ecological speciation. [Ecological speciation; genome assembly; genomic island of differentiation; genotyping-by-sequencing; incipient species; plecoptera; wing reduction.]
Collapse
Affiliation(s)
- Graham A McCulloch
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Brodie J Foster
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Thomas W R Harrop
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Joseph Guhlin
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Jonathan M Waters
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
31
|
Schneider K, White TJ, Mitchell S, Adams CE, Reeve R, Elmer KR. The pitfalls and virtues of population genetic summary statistics: Detecting selective sweeps in recent divergences. J Evol Biol 2020; 34:893-909. [DOI: 10.1111/jeb.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Kevin Schneider
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Tom J. White
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Sonia Mitchell
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Colin E. Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
- Scottish Centre for Ecology and the Natural Environment Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Richard Reeve
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| |
Collapse
|
32
|
Booker TR, Yeaman S, Whitlock MC. Global adaptation complicates the interpretation of genome scans for local adaptation. Evol Lett 2020; 5:4-15. [PMID: 33552532 PMCID: PMC7857299 DOI: 10.1002/evl3.208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
Spatially varying selection promotes variance in allele frequencies, increasing genetic differentiation between the demes of a metapopulation. For that reason, outliers in the genome‐wide distribution of summary statistics measuring genetic differentiation, such as FST, are often interpreted as evidence for alleles that contribute to local adaptation. However, theoretical studies have shown that in spatially structured populations the spread of beneficial mutations with spatially uniform fitness effects can also induce transient genetic differentiation. In recent years, numerous empirical studies have suggested that such species‐wide, or global, adaptation makes a substantial contribution to molecular evolution. In this perspective, we discuss how commonly such global adaptation may influence the genome‐wide distribution of FST and generate genetic differentiation patterns, which could be mistaken for local adaptation. To illustrate this, we use forward‐in‐time population genetic simulations assuming parameters for the rate and strength of beneficial mutations consistent with estimates from natural populations. We demonstrate that the spread of globally beneficial mutations in parapatric populations may frequently generate FST outliers, which could be misinterpreted as evidence for local adaptation. The spread of beneficial mutations causes selective sweeps at flanking sites, so in some cases, the effects of global versus local adaptation may be distinguished by examining patterns of nucleotide diversity within and between populations in addition to FST. However, when local adaptation has been only recently established, it may be much more difficult to distinguish from global adaptation, due to less accumulation of linkage disequilibrium at flanking sites. Through our discussion, we conclude that a large fraction of FST outliers that are presumed to arise from local adaptation may instead be due to global adaptation.
Collapse
Affiliation(s)
- Tom R Booker
- Department of Forest and Conservation Sciences University of British Columbia Vancouver Canada.,Biodiversity Research Centre University of British Columbia Vancouver Canada
| | - Sam Yeaman
- Department of Biological Sciences University of Calgary Calgary Canada
| | - Michael C Whitlock
- Biodiversity Research Centre University of British Columbia Vancouver Canada.,Department of Zoology University of British Columbia Vancouver Canada
| |
Collapse
|
33
|
Wang S, Rohwer S, de Zwaan DR, Toews DPL, Lovette IJ, Mackenzie J, Irwin D. Selection on a small genomic region underpins differentiation in multiple color traits between two warbler species. Evol Lett 2020; 4:502-515. [PMID: 33312686 PMCID: PMC7719548 DOI: 10.1002/evl3.198] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
Speciation is one of the most important processes in biology, yet the study of the genomic changes underlying this process is in its infancy. North American warbler species Setophaga townsendi and Setophaga occidentalis hybridize in a stable hybrid zone, following a period of geographic separation. Genomic differentiation accumulated during geographic isolation can be homogenized by introgression at secondary contact, whereas genetic regions that cause low hybrid fitness can be shielded from such introgression. Here, we examined the genomic underpinning of speciation by investigating (1) the genetic basis of divergent pigmentation traits between species, (2) variation in differentiation across the genome, and (3) the evidence for selection maintaining differentiation in the pigmentation genes. Using tens of thousands of single nucleotide polymorphisms (SNPs) genotyped in hundreds of individuals within and near the hybrid zone, genome-wide association mapping revealed a single SNP associated with cheek, crown, breast coloration, and flank streaking, reflecting pleiotropy (one gene affecting multiple traits) or close physical linkage of different genes affecting different traits. This SNP is within an intron of the RALY gene, hence we refer to it as the RALY SNP. We then examined between-species genomic differentiation, using both genotyping-by-sequencing and whole genome sequencing. We found that the RALY SNP is within one of the highest peaks of differentiation, which contains three genes known to influence pigmentation: ASIP, EIF2S2, and RALY (the ASIP-RALY gene block). Heterozygotes at this gene block are likely of reduced fitness, as the geographic cline of the RALY SNP has been narrow over two decades. Together, these results reflect at least one barrier to gene flow within this narrow (∼200 kb) genomic region that modulates plumage difference between species. Despite extensive gene flow between species across the genome, this study provides evidence that selection on a phenotype-associated genomic region maintains a stable species boundary.
Collapse
Affiliation(s)
- Silu Wang
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - Sievert Rohwer
- Department of Biology and Burke MuseumUniversity of WashingtonSeattleWashington98195
| | - Devin R. de Zwaan
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - David P. L. Toews
- Department of Biology619 Mueller LaboratoryPennsylvania State UniversityUniversity ParkPennsylvania16802
| | - Irby J. Lovette
- Fuller Evolutionary Biology ProgramCornell Lab of OrnithologyIthacaNew York14850
| | - Jacqueline Mackenzie
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - Darren Irwin
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| |
Collapse
|
34
|
Genomic islands of differentiation in a rapid avian radiation have been driven by recent selective sweeps. Proc Natl Acad Sci U S A 2020; 117:30554-30565. [PMID: 33199636 DOI: 10.1073/pnas.2015987117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Numerous studies of emerging species have identified genomic "islands" of elevated differentiation against a background of relative homogeneity. The causes of these islands remain unclear, however, with some signs pointing toward "speciation genes" that locally restrict gene flow and others suggesting selective sweeps that have occurred within nascent species after speciation. Here, we examine this question through the lens of genome sequence data for five species of southern capuchino seedeaters, finch-like birds from South America that have undergone a species radiation during the last ∼50,000 generations. By applying newly developed statistical methods for ancestral recombination graph inference and machine-learning methods for the prediction of selective sweeps, we show that previously identified islands of differentiation in these birds appear to be generally associated with relatively recent, species-specific selective sweeps, most of which are predicted to be soft sweeps acting on standing genetic variation. Many of these sweeps coincide with genes associated with melanin-based variation in plumage, suggesting a prominent role for sexual selection. At the same time, a few loci also exhibit indications of possible selection against gene flow. These observations shed light on the complex manner in which natural selection shapes genome sequences during speciation.
Collapse
|
35
|
Salces-Castellano A, Stankowski S, Arribas P, Patiño J, Karger DN, Butlin R, Emerson BC. Long-term cloud forest response to climate warming revealed by insect speciation history. Evolution 2020; 75:231-244. [PMID: 33078844 DOI: 10.1111/evo.14111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Montane cloud forests are areas of high endemism, and are one of the more vulnerable terrestrial ecosystems to climate change. Thus, understanding how they both contribute to the generation of biodiversity, and will respond to ongoing climate change, are important and related challenges. The widely accepted model for montane cloud forest dynamics involves upslope forcing of their range limits with global climate warming. However, limited climate data provides some support for an alternative model, where range limits are forced downslope with climate warming. Testing between these two models is challenging, due to the inherent limitations of climate and pollen records. We overcome this with an alternative source of historical information, testing between competing model predictions using genomic data and demographic analyses for a species of beetle tightly associated to an oceanic island cloud forest. Results unequivocally support the alternative model: populations that were isolated at higher elevation peaks during the Last Glacial Maximum are now in contact and hybridizing at lower elevations. Our results suggest that genomic data are a rich source of information to further understand how montane cloud forest biodiversity originates, and how it is likely to be impacted by ongoing climate change.
Collapse
Affiliation(s)
- Antonia Salces-Castellano
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), La Laguna, 38206, Spain.,School of Doctoral and Postgraduate Studies, University of La Laguna, La Laguna, 38200, Spain
| | - Sean Stankowski
- Institute of Science and Technology, Klosterneuburg, 3400, Austria.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, United Kingdom
| | - Paula Arribas
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), La Laguna, 38206, Spain
| | - Jairo Patiño
- Department of Botany, Ecology, and Plant Physiology, University of La Laguna, La Laguna, 38071, Spain
| | - Dirk N Karger
- Department - Dynamic Macroecology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Roger Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, United Kingdom.,Department of Marine Sciences, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Brent C Emerson
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), La Laguna, 38206, Spain
| |
Collapse
|
36
|
Schrider DR. Background Selection Does Not Mimic the Patterns of Genetic Diversity Produced by Selective Sweeps. Genetics 2020; 216:499-519. [PMID: 32847814 PMCID: PMC7536861 DOI: 10.1534/genetics.120.303469] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
It is increasingly evident that natural selection plays a prominent role in shaping patterns of diversity across the genome. The most commonly studied modes of natural selection are positive selection and negative selection, which refer to directional selection for and against derived mutations, respectively. Positive selection can result in hitchhiking events, in which a beneficial allele rapidly replaces all others in the population, creating a valley of diversity around the selected site along with characteristic skews in allele frequencies and linkage disequilibrium among linked neutral polymorphisms. Similarly, negative selection reduces variation not only at selected sites but also at linked sites, a phenomenon called background selection (BGS). Thus, discriminating between these two forces may be difficult, and one might expect efforts to detect hitchhiking to produce an excess of false positives in regions affected by BGS. Here, we examine the similarity between BGS and hitchhiking models via simulation. First, we show that BGS may somewhat resemble hitchhiking in simplistic scenarios in which a region constrained by negative selection is flanked by large stretches of unconstrained sites, echoing previous results. However, this scenario does not mirror the actual spatial arrangement of selected sites across the genome. By performing forward simulations under more realistic scenarios of BGS, modeling the locations of protein-coding and conserved noncoding DNA in real genomes, we show that the spatial patterns of variation produced by BGS rarely mimic those of hitchhiking events. Indeed, BGS is not substantially more likely than neutrality to produce false signatures of hitchhiking. This holds for simulations modeled after both humans and Drosophila, and for several different demographic histories. These results demonstrate that appropriately designed scans for hitchhiking need not consider BGS's impact on false-positive rates. However, we do find evidence that BGS increases the false-negative rate for hitchhiking, an observation that demands further investigation.
Collapse
Affiliation(s)
- Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
| |
Collapse
|
37
|
On the causes of geographically heterogeneous parallel evolution in sticklebacks. Nat Ecol Evol 2020; 4:1105-1115. [DOI: 10.1038/s41559-020-1222-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
|
38
|
Wang J, Street NR, Park EJ, Liu J, Ingvarsson PK. Evidence for widespread selection in shaping the genomic landscape during speciation of Populus. Mol Ecol 2020; 29:1120-1136. [PMID: 32068935 DOI: 10.1111/mec.15388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Increasing our understanding of how evolutionary processes drive the genomic landscape of variation is fundamental to a better understanding of the genomic consequences of speciation. However, genome-wide patterns of within- and between- species variation have not been fully investigated in most forest tree species despite their global ecological and economic importance. Here, we use whole-genome resequencing data from four Populus species spanning the speciation continuum to reconstruct their demographic histories and investigate patterns of diversity and divergence within and between species. Using Populus trichocarpa as an outgroup species, we further infer the genealogical relationships and estimate the extent of ancient introgression among the three aspen species (Populus tremula, Populus davidiana and Populus tremuloides) throughout the genome. Our results show substantial variation in these patterns along the genomes with this variation being strongly predicted by local recombination rates and the density of functional elements. This implies that the interaction between recurrent selection and intrinsic genomic features has dramatically sculpted the genomic landscape over long periods of time. In addition, our findings provide evidence that, apart from background selection, recent positive selection and long-term balancing selection have also been crucial components in shaping patterns of genome-wide variation during the speciation process.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Eung-Jun Park
- Department of Bioresources, National Institute of Forest Science, Suwon, Korea
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
39
|
The Temporal Dynamics of Background Selection in Nonequilibrium Populations. Genetics 2020; 214:1019-1030. [PMID: 32071195 DOI: 10.1534/genetics.119.302892] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/30/2020] [Indexed: 01/06/2023] Open
Abstract
Neutral genetic diversity across the genome is determined by the complex interplay of mutation, demographic history, and natural selection. While the direct action of natural selection is limited to functional loci across the genome, its impact can have effects on nearby neutral loci due to genetic linkage. These effects of selection at linked sites, referred to as genetic hitchhiking and background selection (BGS), are pervasive across natural populations. However, only recently has there been a focus on the joint consequences of demography and selection at linked sites, and some empirical studies have come to apparently contradictory conclusions as to their combined effects. To understand the relationship between demography and selection at linked sites, we conducted an extensive forward simulation study of BGS under a range of demographic models. We found that the relative levels of diversity in BGS and neutral regions vary over time and that the initial dynamics after a population size change are often in the opposite direction of the long-term expected trajectory. Our detailed observations of the temporal dynamics of neutral diversity in the context of selection at linked sites in nonequilibrium populations provide new intuition about why patterns of diversity under BGS vary through time in natural populations and help reconcile previously contradictory observations. Most notably, our results highlight that classical models of BGS are poorly suited for predicting diversity in nonequilibrium populations.
Collapse
|
40
|
Whiting JR, Fraser BA. Contingent Convergence: The Ability To Detect Convergent Genomic Evolution Is Dependent on Population Size and Migration. G3 (BETHESDA, MD.) 2020; 10:677-693. [PMID: 31871215 PMCID: PMC7003088 DOI: 10.1534/g3.119.400970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/19/2019] [Indexed: 12/02/2022]
Abstract
Outlier scans, in which the genome is scanned for signatures of selection, have become a prominent tool in studies of local adaptation, and more recently studies of genetic convergence in natural populations. However, such methods have the potential to be confounded by features of demographic history, such as population size and migration, which are considerably varied across natural populations. In this study, we use forward-simulations to investigate and illustrate how several measures of genetic differentiation commonly used in outlier scans (FST, DXY and Δπ) are influenced by demographic variation across multiple sampling generations. In a factorial design with 16 treatments, we manipulate the presence/absence of founding bottlenecks (N of founding individuals), prolonged bottlenecks (proportional size of diverging population) and migration rate between two populations with ancestral and diverged phenotypic optima. Our results illustrate known constraints of individual measures associated with reduced population size and a lack of migration; but notably we demonstrate how relationships between measures are similarly dependent on these features of demography. We find that false-positive signals of convergent evolution (the same simulated outliers detected in independent treatments) are attainable as a product of similar population size and migration treatments (particularly for DXY), and that outliers across different measures (for e.g., FST and DXY) can occur with little influence of selection. Taken together, we show how underappreciated, yet quantifiable measures of demographic history can influence commonly employed methods for detecting selection.
Collapse
Affiliation(s)
- James R Whiting
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD
| | - Bonnie A Fraser
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD
| |
Collapse
|