1
|
Phung LN, Toews DPL. Comparative bioacoustics of multiple eastern versus western songbird pairs in North America reveals a gradient of song divergence. PLoS One 2024; 19:e0312706. [PMID: 39724219 DOI: 10.1371/journal.pone.0312706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/10/2024] [Indexed: 12/28/2024] Open
Abstract
Vocalizations are one of the key premating reproductive barriers that could affect species formation. In song-learning birds, vocal traits are sometimes overlooked in species delimitation, as compared to morphological or plumage-based differences. In this study, we assessed geographic variation in songs of eight pairs of oscines on two scales: (1) comparing primary songs of species/subspecies pairs whose breeding grounds are eastern and western counterparts of each other in the continental North America, and (2) for each counterpart, identifying and comparing possible variation among their populations. We found that there were strong differences in the songs between eastern and western taxa, though the magnitude of that difference was not correlated to a mitochondrial DNA-based estimates of divergence. Additionally, we found that within-taxa geographic variation was not common in our focal taxa, beyond a single species (Townsend's warbler, Setophaga townsendi). The result of this study provides a standardized, quantitative comparison of eastern and western songbirds, and serves as the foundation to explore the possible effectiveness of vocalizations as a reproductive barrier at this geographic scale.
Collapse
Affiliation(s)
- Lan-Nhi Phung
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - David P L Toews
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
2
|
Mackintosh A, Vila R, Martin SH, Setter D, Lohse K. Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies. Mol Ecol 2024; 33:e17146. [PMID: 37807966 PMCID: PMC11628658 DOI: 10.1111/mec.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Large-scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long-term effective size (N e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.
Collapse
Affiliation(s)
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Simon H. Martin
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Derek Setter
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Konrad Lohse
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| |
Collapse
|
3
|
Whitla R, Hens K, Hogan J, Martin G, Breuker C, Shreeve TG, Arif S. The last days of Aporia crataegi (L.) in Britain: Evaluating genomic erosion in an extirpated butterfly. Mol Ecol 2024; 33:e17518. [PMID: 39192591 DOI: 10.1111/mec.17518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Current rates of habitat degradation and climate change are causing unprecedented declines in global biodiversity. Studies on vertebrates highlight how conservation genomics can be effective in identifying and managing threatened populations, but it is unclear how vertebrate-derived metrics of genomic erosion translate to invertebrates, with their markedly different population sizes and life histories. The Black-veined White butterfly (Aporia crataegi) was extirpated from Britain in the 1920s. Here, we sequenced historical DNA from 17 specimens collected between 1854 and 1924 to reconstruct demography and compare levels of genomic erosion between extirpated British and extant European mainland populations. We contrast these results using modern samples of the Common Blue butterfly (Polyommatus icarus); a species with relatively stable demographic trends in Great Britain. We provide evidence for bottlenecks in both these species around the period of post-glacial colonization of the British Isles. Our results reveal different demographic histories and Ne for both species, consistent with their fates in Britain, likely driven by differences in life history, ecology and genome size. Despite a difference, by an order of magnitude, in historical effective population sizes (Ne), reduction in genome-wide heterozygosity in A. crataegi was comparable to that in P. icarus. Symptomatic of A. crataegi's disappearance were marked increases in runs-of-homozygosity (RoH), potentially indicative of recent inbreeding, and accumulation of putatively mildly and weakly deleterious variants. Our results provide a rare glimpse of genomic erosion in a regionally extinct insect and support the potential use of genomic erosion metrics in identifying invertebrate populations or species in decline.
Collapse
Affiliation(s)
- Rebecca Whitla
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Korneel Hens
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - James Hogan
- Oxford University Museum of Natural History, Oxford, UK
| | - Geoff Martin
- Insects Division, Natural History Museum, London, UK
| | - Casper Breuker
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - Timothy G Shreeve
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| |
Collapse
|
4
|
Augustijnen H, Lucek K. Beyond gene flow: (non)-parallelism of secondary contact in a pair of highly differentiated sibling species. Mol Ecol 2024; 33:e17488. [PMID: 39119885 DOI: 10.1111/mec.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Replicated secondary contact zones can provide insights into the barriers to gene flow that are important during speciation and can reveal to which degree secondary contact may result in similar evolutionary outcomes. Here, we studied two secondary contact zones between highly differentiated Alpine butterflies of the genus Erebia using whole-genome resequencing data. We assessed the genomic relationships between populations and species and found hybridization to be rare, with no to little current or historical introgression in either contact zone. There are large similarities between contact zones, consistent with an allopatric origin of interspecific differentiation, with no indications for ongoing reinforcing selection. Consistent with expected reduced effective population size, we further find that scaffolds related to the Z-chromosome show increased differentiation compared to the already high levels across the entire genome, which could also hint towards a contribution of the Z chromosome to species divergence in this system. Finally, we detected the presence of the endosymbiont Wolbachia, which can cause reproductive isolation between its hosts, in all E. cassioides, while it appears to be fully or largely absent in contact zone populations of E. tyndarus. We discuss how this rare pattern may have arisen and how it may have affected the dynamics of speciation upon secondary contact.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
5
|
Islam S, Peart C, Kehlmaier C, Sun YH, Lei F, Dahl A, Klemroth S, Alexopoulou D, Del Mar Delgado M, Laiolo P, Carlos Illera J, Dirren S, Hille S, Lkhagvasuren D, Töpfer T, Kaiser M, Gebauer A, Martens J, Paetzold C, Päckert M. Museomics help resolving the phylogeny of snowfinches (Aves, Passeridae, Montifringilla and allies). Mol Phylogenet Evol 2024; 198:108135. [PMID: 38925425 DOI: 10.1016/j.ympev.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/25/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Historical specimens from museum collections provide a valuable source of material also from remote areas or regions of conflict that are not easily accessible to scientists today. With this study, we are providing a taxon-complete phylogeny of snowfinches using historical DNA from whole skins of an endemic species from Afghanistan, the Afghan snowfinch, Pyrgilauda theresae. To resolve the strong conflict between previous phylogenetic hypotheses, we generated novel mitogenome sequences for selected taxa and genome-wide SNP data using ddRAD sequencing for all extant snowfinch species endemic to the Qinghai-Tibet Plateau (QTP) and for an extended intraspecific sampling of the sole Central and Western Palearctic snowfinch species (Montifringilla nivalis). Our phylogenetic reconstructions unanimously refuted the previously suggested paraphyly of genus Pyrgilauda. Misplacement of one species-level taxon (Onychostruthus tazcanowskii) in previous snowfinch phylogenies was undoubtedly inferred from chimeric mitogenomes that included heterospecific sequence information. Furthermore, comparison of novel and previously generated sequence data showed that the presumed sister-group relationship between M. nivalis and the QTP endemic M. henrici was suggested based on flawed taxonomy. Our phylogenetic reconstructions based on genome-wide SNP data and on mitogenomes were largely congruent and supported reciprocal monophyly of genera Montifringilla and Pyrgilauda with monotypic Onychostruthus being sister to the latter. The Afghan endemic P. theresae likely originated from a rather ancient Pliocene out-of-Tibet dispersal probably from a common ancestor with P. ruficollis. Our extended trans-Palearctic sampling for the white-winged snowfinch, M. nivalis, confirmed strong lineage divergence between an Asian and a European clade dated to 1.5 - 2.7 million years ago (mya). Genome-wide SNP data suggested subtle divergence among European samples from the Alps and from the Cantabrian mountains.
Collapse
Affiliation(s)
- Safiqul Islam
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany; Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany; Division of Systematic Zoology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Claire Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Kehlmaier
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Yue-Hua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andreas Dahl
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Sylvia Klemroth
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Dimitra Alexopoulou
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Maria Del Mar Delgado
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Paola Laiolo
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Juan Carlos Illera
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | | | - Sabine Hille
- University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Strasse 33, 1180 Vienna, Austria
| | - Davaa Lkhagvasuren
- Department of Biology, School of Arts and Sciences, National University of Mongolia, P.O.Box 46A-546, Ulaanbaatar 210646, Mongolia
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee, Bonn, Germany
| | | | | | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55099 Mainz, Germany
| | - Claudia Paetzold
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Martin Päckert
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany.
| |
Collapse
|
6
|
Yusuf LH, Lemus YS, Thorpe P, Garcia CM, Ritchie MG. Evidence for gene flow and trait reversal during radiation of Mexican Goodeid fish. Heredity (Edinb) 2024; 133:78-87. [PMID: 38858547 PMCID: PMC11286751 DOI: 10.1038/s41437-024-00694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024] Open
Abstract
Understanding the phylogeographic history of a group and identifying the factors contributing to speciation is an important challenge in evolutionary biology. The Goodeinae are a group of live-bearing fishes endemic to Mexico. Here, we develop genomic resources for species within the Goodeinae and use phylogenomic approaches to characterise their evolutionary history. We sequenced, assembled and annotated the genomes of four Goodeinae species, including Ataeniobius toweri, the only matrotrophic live-bearing fish without a trophotaenia in the group. We estimated timings of species divergence and examined the extent and timing of introgression between the species to assess if this may have occurred during an early radiation, or in more recent episodes of secondary contact. We used branch-site models to detect genome-wide positive selection across Goodeinae, and we specifically asked whether this differs in A. toweri, where loss of placental viviparity has recently occurred. We found evidence of gene flow between geographically isolated species, suggesting vicariant speciation was supplemented by limited post-speciation gene flow, and gene flow may explain previous uncertainties about Goodeid phylogeny. Genes under positive selection in the group are likely to be associated with the switch to live-bearing. Overall, our studies suggest that both volcanism-driven vicariance and changes in reproductive mode influenced radiation in the Goodeinae.
Collapse
Affiliation(s)
- Leeban H Yusuf
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK.
| | - Yolitzi Saldívar Lemus
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Peter Thorpe
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Constantino Macías Garcia
- Instituto de Ecologia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito exterior s/n anexo al Jardín Botánico C. P. 04510, Mexico City CdMx, Mexico
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
7
|
Augustijnen H, Bätscher L, Cesanek M, Chkhartishvili T, Dincă V, Iankoshvili G, Ogawa K, Vila R, Klopfstein S, de Vos JM, Lucek K. A macroevolutionary role for chromosomal fusion and fission in Erebia butterflies. SCIENCE ADVANCES 2024; 10:eadl0989. [PMID: 38630820 PMCID: PMC11023530 DOI: 10.1126/sciadv.adl0989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
The impact of large-scale chromosomal rearrangements, such as fusions and fissions, on speciation is a long-standing conundrum. We assessed whether bursts of change in chromosome numbers resulting from chromosomal fusion or fission are related to increased speciation rates in Erebia, one of the most species-rich and karyotypically variable butterfly groups. We established a genome-based phylogeny and used state-dependent birth-death models to infer trajectories of karyotype evolution. We demonstrated that rates of anagenetic chromosomal changes (i.e., along phylogenetic branches) exceed cladogenetic changes (i.e., at speciation events), but, when cladogenetic changes occur, they are mostly associated with chromosomal fissions rather than fusions. We found that the relative importance of fusion and fission differs among Erebia clades of different ages and that especially in younger, more karyotypically diverse clades, speciation is more frequently associated with cladogenetic chromosomal changes. Overall, our results imply that chromosomal fusions and fissions have contrasting macroevolutionary roles and that large-scale chromosomal rearrangements are associated with bursts of species diversification.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Livio Bätscher
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Martin Cesanek
- Slovak Entomological Society, Slovak Academy of Sciences, Bratislava 1, Slovakia
| | | | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, 90570 Oulu, Finland
| | | | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan
- Insect Sciences and Creative Entomology Center, Kyushu University, Fukuoka 819-0395, Japan
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona, Spain
| | - Seraina Klopfstein
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Life Sciences, Natural History Museum Basel, 4051 Basel, Switzerland
| | - Jurriaan M. de Vos
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Kay Lucek
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
8
|
Kirschner P, Seifert B, Kröll J, Schlick‐Steiner BC, Steiner FM. Phylogenomic inference and demographic model selection suggest peripatric separation of the cryptic steppe ant species Plagiolepis pyrenaica stat. rev. Mol Ecol 2023; 32:1149-1168. [PMID: 36530155 PMCID: PMC10946478 DOI: 10.1111/mec.16828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The ant Plagiolepis taurica Santschi, 1920 (Hymenoptera, Formicidae) is a typical species of the Eurasian steppes, a large grassland dominated biome that stretches continuously from Central Asia to Eastern Europe and is represented by disjunct outposts also in Central and Western Europe. The extent of this biome has been influenced by the Pleistocene climate, and steppes expanded recurrently during cold stages and contracted in warm stages. Consequently, stenotopic steppe species such as P. taurica repeatedly went through periods of demographic expansion and severe isolation. Here, we explore the impact of these dynamics on the genetic diversification within P. taurica. Delimitation of P. taurica from other Plagiolepis species has been unclear since its initial description, which raised questions on both its classification and its spatiotemporal diversification early on. We re-evaluate species limits and explore underlying mechanisms driving speciation by using an integrative approach based on genomic and morphometric data. We found large intraspecific divergence within P. taurica and resolved geographically coherent western and eastern genetic groups, which likewise differed morphologically. A morphometric survey of type material showed that Plagiolepis from the western group were more similar to P. barbara pyrenaica Emery, 1921 than to P. taurica; we thus lift the former from synonymy and establish it as separate species, P. pyrenaica stat. rev. Explicit evolutionary model testing based on genomic data supported a peripatric speciation for the species pair, probably as a consequence of steppe contraction and isolation during the mid-Pleistocene. We speculate that this scenario could be exemplary for many stenotopic steppe species, given the emphasized dynamics of Eurasian steppes.
Collapse
Affiliation(s)
- Philipp Kirschner
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Joelle Kröll
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | | | | | | |
Collapse
|
9
|
Bruschini C, Edwards ED, Talavera G, Vaurasi VD, Latu GF, Dapporto L. A complete
COI
library of Samoan butterflies reveals layers of endemic diversity on oceanic islands. ZOOL SCR 2023. [DOI: 10.1111/zsc.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Claudia Bruschini
- ZEN Lab, Dipartimento di Biologia Università degli Studi di Firenze Sesto Fiorentino Italia
| | - Eric D. Edwards
- Department of Conservation Conservation House Wellington New Zealand
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB) CSIC‐Ajuntament de Barcelona Barcelona Spain
| | - Varea D. Vaurasi
- Faculty of Science, National University of Samoa To'omatagi Samoa
| | | | - Leonardo Dapporto
- ZEN Lab, Dipartimento di Biologia Università degli Studi di Firenze Sesto Fiorentino Italia
| |
Collapse
|
10
|
Jospin A, Chittaro Y, Bolt D, Demergès D, Gurcel K, Hensle J, Sanchez A, Praz C, Lucek K. Genomic evidence for three distinct species in the Erebia manto complex in Central Europe (Lepidoptera, Nymphalidae). CONSERV GENET 2023; 24:293-304. [PMID: 37187800 PMCID: PMC10175325 DOI: 10.1007/s10592-023-01501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
A problem to implement conservation strategies is that in many cases recognized taxa are in fact complexes of several cryptic species. Failure to properly delineate species may lead to misplaced priorities or to inadequate conservation measures. One such species complex is the yellow-spotted ringlet Erebia manto, which comprises several phenotypically distinct lineages, whose degree of genomic isolation has so far not been assessed. Some of these lineages are geographically restricted and thus possibly represent distinct units with conservation priorities. Using several thousand nuclear genomic markers, we evaluated to which degree the bubastis lineage from the Alps and the vogesiaca lineage from the Vosges, are genetically isolated from the widespread manto lineage. Our results suggest that both lineages are genetically as strongly differentiated from manto as other taxonomically well separated sibling species in this genus from each other, supporting a delineation of bubastis and vogesiaca as independent species. Given the restricted and isolated range of vogesiaca as well as the disjunct distribution of bubastis, our findings have significant implication for future conservation efforts on these formerly cryptic species and highlight the need to investigate the genomic identity within species complexes. Supplementary Information The online version contains supplementary material available at 10.1007/s10592-023-01501-w.
Collapse
Affiliation(s)
- Amanda Jospin
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | | | | | - David Demergès
- Conservatoire d’espaces Naturels de Lorraine, 20 Chemin de L’école Des Xettes, 88400 Gérardmer, France
| | | | | | - Andreas Sanchez
- Info Fauna, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Christophe Praz
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Info Fauna, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
11
|
Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis. Nat Commun 2022; 13:7564. [PMID: 36481740 PMCID: PMC9732334 DOI: 10.1038/s41467-022-35368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The main processes classically evoked for promoting reproductive isolation and speciation are geographic separation reducing gene flow among populations, divergent selection, and chance genomic change. In a case study, we present evidence that the additional factors of climate change, range expansion and a shift in mating towards inbreeding can initiate the processes leading to parapatric speciation. At the end of the last Pleistocene glaciation cycle, the North American plant Arabidopsis lyrata expanded its range and concomitantly lost its reproductive mode of outcrossing multiple times. We show that in one of the newly colonized areas, the self-fertilizing recolonization lineage of A. lyrata gave rise to selfing A. arenicola, which expanded its range to subarctic and arctic Canada and Greenland, while the parental species remained restricted to temperate North America. Despite the vast range expansion by the new species, mutational load did not increase, probably because of selfing and quasi-clonal selection. We conclude that such peripheral parapatric speciation combined with range expansion and inbreeding may be an important but so far overlooked mode of speciation.
Collapse
|
12
|
Lucati F, Miró A, Bosch J, Caner J, Jowers MJ, Rivera X, Donaire-Barroso D, Rebelo R, Ventura M. New insights on patterns of genetic admixture and phylogeographic history in Iberian high mountain populations of midwife toads. PLoS One 2022; 17:e0277298. [PMID: 36454960 PMCID: PMC9714896 DOI: 10.1371/journal.pone.0277298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
Multiple Quaternary glacial refugia in the Iberian Peninsula, commonly known as "refugia within refugia", allowed diverging populations to come into contact and admix, potentially boosting substantial mito-nuclear discordances. In this study, we employ a comprehensive set of mitochondrial and nuclear markers to shed light onto the drivers of geographical differentiation in Iberian high mountain populations of the midwife toads Alytes obstetricans and A. almogavarii from the Pyrenees, Picos de Europa and Guadarrama Mountains. In the three analysed mountain regions, we detected evidence of extensive mito-nuclear discordances and/or admixture between taxa. Clustering analyses identified three major divergent lineages in the Pyrenees (corresponding to the eastern, central and central-western Pyrenees), which possibly recurrently expanded and admixed during the succession of glacial-interglacial periods that characterised the Late Pleistocene, and that currently follow a ring-shaped diversification pattern. On the other hand, populations from the Picos de Europa mountains (NW Iberian Peninsula) showed a mitochondrial affinity to central-western Pyrenean populations and a nuclear affinity to populations from the central Iberian Peninsula, suggesting a likely admixed origin for Picos de Europa populations. Finally, populations from the Guadarrama Mountain Range (central Iberian Peninsula) were depleted of genetic diversity, possibly as a consequence of a recent epidemic of chytridiomycosis. This work highlights the complex evolutionary history that shaped the current genetic composition of high mountain populations, and underscores the importance of using a multilocus approach to better infer the dynamics of population divergence.
Collapse
Affiliation(s)
- Federica Lucati
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Catalonia, Spain
- Sociodemography Research Group (DemoSoc), University Pompeu Fabra (UPF), Barcelona, Spain
| | - Alexandre Miró
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Catalonia, Spain
| | - Jaime Bosch
- IMIB-Research Unit of Biodiversity (CSIC/UO/PA), Universidad de Oviedo, Mieres, Spain
- Centro de Investigación, Seguimiento y Evaluación, Parque Nacional Sierra de Guadarrama, Rascafría, Spain
| | - Jenny Caner
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Catalonia, Spain
| | - Michael Joseph Jowers
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- National Institute of Ecology (NIE), Maseo-myeon, Seocheon-gun, Republic of Korea
| | - Xavier Rivera
- Catalan Society of Herpetology, Museu Blau, Barcelona, Catalonia, Spain
| | | | - Rui Rebelo
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Marc Ventura
- Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Catalonia, Spain
| |
Collapse
|
13
|
Noguerales V, Ortego J. Genomic evidence of speciation by fusion in a recent radiation of grasshoppers. Evolution 2022; 76:2618-2633. [PMID: 35695020 PMCID: PMC9796961 DOI: 10.1111/evo.14508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 01/22/2023]
Abstract
Postdivergence gene flow can trigger a number of creative evolutionary outcomes, ranging from the transfer of beneficial alleles across species boundaries (i.e., adaptive introgression) to the formation of new species (i.e., hybrid speciation). Although neutral and adaptive introgression has been broadly documented in nature, hybrid speciation is assumed to be rare and the evolutionary and ecological context facilitating this phenomenon still remains controversial. Through combining genomic and phenotypic data, we evaluate the hypothesis that the dual feeding regime (based on both scrub legumes and gramineous herbs) of the taxonomically controversial grasshopper Chorthippus saulcyi algoaldensis resulted from hybridization between the sister taxa C. binotatus (that exclusively feeds on scrub legumes) and C. saulcyi (that only feeds on gramineous herbs). Genetic clustering analyses and inferences from coalescent-based demographic simulations confirm that C. s. algoaldensis represents an independently evolving lineage and support the ancient hybrid origin of this taxon (about 1.4 Ma), which sheds light on its uncertain phylogenetic position and might explain its broader trophic niche. We propose a Pleistocene hybrid speciation model where range shifts resulting from climatic oscillations can promote the formation of hybrid swarms and facilitate their long-term persistence through geographic isolation from parental forms in topographically complex landscapes.
Collapse
Affiliation(s)
- Víctor Noguerales
- Department of Biological SciencesUniversity of CyprusNicosia1678Cyprus,Island Ecology and Evolution GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de La Laguna38206Spain
| | - Joaquín Ortego
- Department of Integrative EcologyEstación Biológica de Doñana (EBD‐CSIC)Sevilla41092Spain
| |
Collapse
|
14
|
Augustijnen H, Patsiou T, Lucek K. Secondary contact rather than coexistence-Erebia butterflies in the Alps. Evolution 2022; 76:2669-2686. [PMID: 36117267 PMCID: PMC9828779 DOI: 10.1111/evo.14615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 01/22/2023]
Abstract
Secondary contact zones are ideal systems to study the processes that govern the evolution of reproductive barriers, especially at advanced stages of the speciation process. An increase in reproductive isolation resulting from selection against maladaptive hybrids is thought to contribute to reproductive barrier buildup in secondary contact zones. Although such processes have been invoked for many systems, it remains unclear to which extent they influence contact zone dynamics in nature. Here, we study a very narrow contact zone between the butterfly species Erebia cassioides and Erebia tyndarus in the Swiss Alps. We quantified phenotypic traits related to wing shape and reproduction as well as ecology to compare the degree of intra- and interspecific differentiation. Even though only very few first-generation hybrids occur, we find no strong indications for current reinforcing selection, suggesting that if reinforcement occurred in our system, it likely operated in the past. Additionally, we show that both species differ less in their ecological niche at the contact zone than elsewhere, which could explain why coexistence between these butterflies may currently not be possible.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental SciencesUniversity of BaselBaselCH‐4056Switzerland
| | - Theofania Patsiou
- Institute of Plant SciencesUniversity of BernBernCH‐3013Switzerland
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Kay Lucek
- Department of Environmental SciencesUniversity of BaselBaselCH‐4056Switzerland
| |
Collapse
|
15
|
Reilly SB, Karin BR, Stubbs AL, Arida E, Arifin U, Kaiser H, Bi K, Hamidy A, Iskandar DT, McGuire JA. Diverge and Conquer: Phylogenomics of southern Wallacean forest skinks (Genus: Sphenomorphus) and their colonization of the Lesser Sunda Archipelago. Evolution 2022; 76:2281-2301. [PMID: 35932243 DOI: 10.1111/evo.14592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/22/2023]
Abstract
The archipelagos of Wallacea extend between the Sunda and Sahul Shelves, serving as a semipermeable two-way filter influencing faunal exchange between Asia and Australo-Papua. Forest skinks (Genus Sphenomorphus) are widespread throughout southern Wallacea and exhibit complex clinal, ontogenetic, sexual, and seasonal morphological variation, rendering species delimitation difficult. We screened a mitochondrial marker for 245 Sphenomorphus specimens from this area to inform the selection of 104 samples from which we used targeted sequence capture to generate a dataset of 1154 nuclear genes (∼1.8 Mb) plus complete mitochondrial genomes. Phylogenomic analyses recovered many deeply divergent lineages, three pairs of which are now sympatric, that began to diversify in the late Miocene shortly after the oldest islands are thought to have become emergent. We infer a complex and nonstepping-stone pattern of island colonization, with the group having originated in the Sunda Arc islands before using Sumba as a springboard for colonization of the Banda Arcs. Estimates of population structure and gene flow across the region suggest total isolation except between two Pleistocene Aggregate Island Complexes that become episodically land-bridged during glacial maxima. These historical processes have resulted in at least 11 Sphenomorphus species in the region, nine of which require formal description. This fine-scale geographic partitioning of undescribed species highlights the importance of utilizing comprehensive genomic studies for defining biodiversity hotspots to be considered for conservation protection.
Collapse
Affiliation(s)
- Sean B Reilly
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Benjamin R Karin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Alexander L Stubbs
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Evy Arida
- Museum Zoologicum Bogoriense, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Umilaela Arifin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.,Zoology Museum Hamburg, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Hinrich Kaiser
- Department of Biology, Victor Valley College, 18422 Bear Valley Road, Victorville, California, 92395, USA.,Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.,Computational Genomics Resource Laboratory, California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Amir Hamidy
- Museum Zoologicum Bogoriense, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Djoko T Iskandar
- Basic Sciences Commission, Indonesian Academy of Sciences, 11, Jl. Medan Merdeka, Selatan Jakarta, 10110, Indonesia.,School of Life Sciences and Technology, Institut Teknologi Bandung, 10 Jalan Ganesha, Bandung, 40132, Indonesia
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
16
|
Mackintosh A, Laetsch DR, Baril T, Ebdon S, Jay P, Vila R, Hayward A, Lohse K. The genome sequence of the scarce swallowtail, Iphiclides podalirius. G3 (BETHESDA, MD.) 2022; 12:jkac193. [PMID: 35929795 PMCID: PMC9434224 DOI: 10.1093/g3journal/jkac193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022]
Abstract
The scarce swallowtail, Iphiclides podalirius (Linnaeus, 1758), is a species of butterfly in the family Papilionidae. Here, we present a chromosome-level genome assembly for Iphiclides podalirius as well as gene and transposable element annotations. We investigate how the density of genomic features differs between the 30 Iphiclides podalirius chromosomes. We find that shorter chromosomes have higher heterozygosity at four-fold-degenerate sites and a greater density of transposable elements. While the first result is an expected consequence of differences in recombination rate, the second suggests a counter-intuitive relationship between recombination and transposable element evolution. This high-quality genome assembly, the first for any species in the tribe Leptocircini, will be a valuable resource for population genomics in the genus Iphiclides and comparative genomics more generally.
Collapse
Affiliation(s)
- Alexander Mackintosh
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Dominik R Laetsch
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Sam Ebdon
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Paul Jay
- Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC—Universitat Pompeu Fabra), Barcelona 08003, Spain
| | - Alex Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Konrad Lohse
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
17
|
Jardim de Queiroz L, Doenz CJ, Altermatt F, Alther R, Borko Š, Brodersen J, Gossner MM, Graham C, Matthews B, McFadden IR, Pellissier L, Schmitt T, Selz OM, Villalba S, Rüber L, Zimmermann NE, Seehausen O. Climate, immigration and speciation shape terrestrial and aquatic biodiversity in the European Alps. Proc Biol Sci 2022; 289:20221020. [PMID: 35946161 PMCID: PMC9363983 DOI: 10.1098/rspb.2022.1020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Quaternary climate fluctuations can affect speciation in regional biodiversity assembly in two non-mutually exclusive ways: a glacial species pump, where isolation in glacial refugia accelerates allopatric speciation, and adaptive radiation in underused adaptive zones during ice-free periods. We detected biogeographic and genetic signatures associated with both mechanisms in the assembly of the biota of the European Alps. Age distributions of endemic and widespread species within aquatic and terrestrial taxa (amphipods, fishes, amphibians, butterflies and flowering plants) revealed that endemic fish evolved only in lakes, are highly sympatric, and mainly of Holocene age, consistent with adaptive radiation. Endemic amphipods are ancient, suggesting preglacial radiation with limited range expansion and local Pleistocene survival, perhaps facilitated by a groundwater-dwelling lifestyle. Terrestrial endemics are mostly of Pleistocene age and are thus more consistent with the glacial species pump. The lack of evidence for Holocene adaptive radiation in the terrestrial biome is consistent with faster recolonization through range expansion of these taxa after glacial retreats. More stable and less seasonal ecological conditions in lakes during the Holocene may also have contributed to Holocene speciation in lakes. The high proportion of young, endemic species makes the Alpine biota vulnerable to climate change, but the mechanisms and consequences of species loss will likely differ between biomes because of their distinct evolutionary histories.
Collapse
Affiliation(s)
- Luiz Jardim de Queiroz
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Carmela J Doenz
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Florian Altermatt
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8006 Zürich, Switzerland
| | - Roman Alther
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8006 Zürich, Switzerland
| | - Špela Borko
- SubBio Lab, Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jakob Brodersen
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Catherine Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Blake Matthews
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Ian R McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Thomas Schmitt
- Senckenberg German Entomological Institute, 15374 Müncheberg, Germany.,Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Oliver M Selz
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland
| | - Soraya Villalba
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland
| | - Lukas Rüber
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| | - Niklaus E Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Ole Seehausen
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
18
|
Solovyev VI, Dubatolov VV, Vavilova VY, Kosterin OE. Estimating range disjunction time of the Palearctic Admirals (Limenitis L.) with COI and histone H1 genes. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Mackintosh A, Laetsch DR, Baril T, Foster RG, Dincă V, Vila R, Hayward A, Lohse K. The genome sequence of the lesser marbled fritillary, Brenthis ino, and evidence for a segregating neo-Z chromosome. G3 (BETHESDA, MD.) 2022; 12:jkac069. [PMID: 35348678 PMCID: PMC9157119 DOI: 10.1093/g3journal/jkac069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 01/06/2023]
Abstract
The lesser marbled fritillary, Brenthis ino (Rottemburg, 1775), is a species of Palearctic butterfly. Male Brenthis ino individuals have been reported to have between 12 and 14 pairs of chromosomes, a much-reduced chromosome number than is typical in butterflies. Here, we present a chromosome-level genome assembly for Brenthis ino, as well as gene and transposable element annotations. The assembly is 411.8 Mb in length with a contig N50 of 9.6 Mb and a scaffold N50 of 29.5 Mb. We also show evidence that the male individual from which we generated HiC data was heterozygous for a neo-Z chromosome, consistent with inheriting 14 chromosomes from one parent and 13 from the other. This genome assembly will be a valuable resource for studying chromosome evolution in Lepidoptera, as well as for comparative and population genomics more generally.
Collapse
Affiliation(s)
- Alexander Mackintosh
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9FE, UK
| | - Robert G Foster
- Edinburgh Genomics, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu 90014, Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona 08003, Spain
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9FE, UK
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
20
|
Kirschner P, Perez MF, Záveská E, Sanmartín I, Marquer L, Schlick-Steiner BC, Alvarez N, Steiner FM, Schönswetter P. Congruent evolutionary responses of European steppe biota to late Quaternary climate change. Nat Commun 2022; 13:1921. [PMID: 35396388 PMCID: PMC8993823 DOI: 10.1038/s41467-022-29267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Quaternary climatic oscillations had a large impact on European biogeography. Alternation of cold and warm stages caused recurrent glaciations, massive vegetation shifts, and large-scale range alterations in many species. The Eurasian steppe biome and its grasslands are a noteworthy example; they underwent climate-driven, large-scale contractions during warm stages and expansions during cold stages. Here, we evaluate the impact of these range alterations on the late Quaternary demography of several phylogenetically distant plant and insect species, typical of the Eurasian steppes. We compare three explicit demographic hypotheses by applying an approach combining convolutional neural networks with approximate Bayesian computation. We identified congruent demographic responses of cold stage expansion and warm stage contraction across all species, but also species-specific effects. The demographic history of the Eurasian steppe biota reflects major paleoecological turning points in the late Quaternary and emphasizes the role of climate as a driving force underlying patterns of genetic variance on the biome level.
Collapse
Affiliation(s)
- Philipp Kirschner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
- Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| | - Manolo F Perez
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
- Departamento de Genetica e Evolucao, Universidade Federal de Sao Carlos, Rodovia Washington Luis, km 235, 13565905, Sao Carlos, Brazil
| | - Eliška Záveská
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic
| | - Isabel Sanmartín
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| | - Laurent Marquer
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | | | - Nadir Alvarez
- Geneva Natural History Museum of Geneva, Route de Malagnou 1, 1208, Genève, Switzerland
- Department of Genetics and Evolution, University of Geneva, Boulevard D'Yvoy 4, 1205, Genève, Switzerland
| | - Florian M Steiner
- Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Peter Schönswetter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
| |
Collapse
|
21
|
Hinojosa JC, Dapporto L, Pitteloud C, Koubínová D, Hernández-Roldán J, Vicente JC, Alvarez N, Vila R. Hybridization fuelled diversification in Spialia butterflies. Mol Ecol 2022; 31:2951-2967. [PMID: 35263484 PMCID: PMC9310813 DOI: 10.1111/mec.16426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022]
Abstract
The importance of hybridization and introgression is well documented in the evolution of plants but, in insects, their role is not fully understood. Given the fact that insects are the most diverse group of organisms, assessing the impact of reticulation events on their evolution may be key to comprehend the emergence of such remarkable diversity. Here, we used an insect model, the Spialia butterflies, to gather genomic evidence of hybridization as a promoter of novel diversity. By using double‐digest RADseq (ddRADseq), we explored the phylogenetic relationships between Spialia orbifer, S. rosae and S. sertorius, and documented two independent events of interspecific gene flow. Our data support that the Iberian endemism S. rosae probably received genetic material from S. orbifer in both mitochondrial and nuclear DNA, which could have contributed to a shift in the ecological preferences of S. rosae. We also show that admixture between S. sertorius and S. orbifer probably occurred in Italy. As a result, the admixed Sicilian populations of S. orbifer are differentiated from the rest of populations both genetically and morphologically, and display signatures of reproductive character displacement in the male genitalia. Additionally, our analyses indicated that genetic material from S. orbifer is present in S. sertorius along the Italian Peninsula. Our findings add to the view that hybridization is a pervasive phenomenon in nature and in butterflies in particular, with important consequences for evolution due to the emergence of novel phenotypes.
Collapse
Affiliation(s)
- Joan C Hinojosa
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Leonardo Dapporto
- ZEN lab, Biology Department, Università degli Studi di Firenze, 50019, Sesto Fiorentino, Italy
| | - Camille Pitteloud
- Geneva Natural History Museum, Route de Malagnou 1, 1208, Geneva, Switzerland
| | - Darina Koubínová
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Juan Hernández-Roldán
- Departamento de Biología, Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Calle Darwin 2, 28049, Madrid, Spain
| | - Juan Carlos Vicente
- Asociación Española para la Protección de las Mariposas y su Medio (ZERYNTHIA), Madrid, Spain
| | - Nadir Alvarez
- Geneva Natural History Museum, Route de Malagnou 1, 1208, Geneva, Switzerland.,Department of Genetics and Evolution, University of Geneva, Boulevard d'Ivoy 4, 1205, Geneva, Switzerland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| |
Collapse
|
22
|
Hagberg L, Celemín E, Irisarri I, Hawlitschek O, Bella JL, Mott T, Pereira RJ. Extensive introgression at late stages of species formation: Insights from grasshopper hybrid zones. Mol Ecol 2022; 31:2384-2399. [PMID: 35191134 DOI: 10.1111/mec.16406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
The process of species formation is characterised by the accumulation of multiple reproductive barriers. The evolution of hybrid male sterility, or Haldane's rule, typically characterises later stages of species formation, when reproductive isolation is strongest. Yet, understanding how quickly reproductive barriers evolve and their consequences for maintaining genetic boundaries between emerging species remains a challenging task because it requires studying taxa that hybridise in nature. Here, we address these questions using the meadow grasshopper Pseudochorthippus parallelus, where populations that show multiple reproductive barriers, including hybrid male sterility, hybridise in two natural hybrid zones. Using mitochondrial data, we infer that such populations have diverged some 100,000 years ago, at the beginning of the last glacial cycle in Europe. Nuclear data shows that contractions at multiple glacial refugia, and post-glacial expansions have facilitated genetic differentiation between lineages that today interact in hybrid zones. We find extensive introgression throughout the sampled species range, irrespective of current strength of reproductive isolation. Populations exhibiting hybrid male sterility in two hybrid zones show repeatable patterns of genomic differentiation, consistent with shared genomic constraints affecting ancestral divergence or with the role of those regions in reproductive isolation. Together, our results suggest that reproductive barriers that characterise late stages of species formation can evolve relatively quickly, particularly when associated with strong demographic changes. Moreover, we show that such barriers persist in the face of extensive gene flow, allowing future studies to identify associated genomic regions.
Collapse
Affiliation(s)
- Linda Hagberg
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Enrique Celemín
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.,Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.,Campus Institute Data Science (CIDAS), Göttingen, Germany
| | - Oliver Hawlitschek
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.,Zoologische Staatssammlung (SNSB-ZSM), Münchhausenstr. 21, 81247, Munich, Germany
| | - José L Bella
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tamí Mott
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, 57072-900, Maceió, Alagoas, Brazil
| | - Ricardo J Pereira
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
23
|
Kebaïli C, Sherpa S, Rioux D, Després L. Demographic inferences and climatic niche modelling shed light on the evolutionary history of the emblematic cold-adapted Apollo butterfly at regional scale. Mol Ecol 2021; 31:448-466. [PMID: 34687582 DOI: 10.1111/mec.16244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
Cold-adapted species escape climate warming by latitudinal and/or altitudinal range shifts, and currently occur in Southern Europe in isolated mountain ranges within "sky islands". Here, we studied the genetic structure of the Apollo butterfly in five such sky islands (above 1,000 m) in France, and infer its demographic history since the last interglacial, using single nucleotide polymorphisms (ddRADseq SNPs). The Auvergne and Alps populations show strong genetic differentiation but not alpine massifs, although separated by deep valleys. Combining three complementary demographic inference methods and species distribution models (SDMs) we show that the LIG period was highly unfavourable for Apollo that probably survived in small population in the highest summits of Auvergne. The population shifted downslope and expanded eastward between LIG and LGM throughout the large climatically suitable Rhône valley between the glaciated summits of Auvergne and Alps. The Auvergne and Alps populations started diverging before the LGM but remained largely connected till the mid-Holocene. Population decline in Auvergne was more gradual but started before (~7 kya vs. 800 ya), and was much stronger with current population size ten times lower than in the Alps. In the Alps, the low genetic structure and limited evidence for isolation by distance suggest a nonequilibrium metapopulation functioning. The core Apollo population experienced cycles of contraction-expansion with climate fluctuations with largely interconnected populations overtime according to a "metapopulation-pulsar" functioning. This study demonstrates the power of combining demographic inferences and SDMs to determine past and future evolutionary trajectories of an endangered species at a regional scale.
Collapse
Affiliation(s)
- Caroline Kebaïli
- Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes, Grenoble, France.,Parc Naturel Régional du Haut Jura, Lajoux, France
| | - Stéphanie Sherpa
- Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes, Grenoble, France
| | - Delphine Rioux
- Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes, Grenoble, France
| | - Laurence Després
- Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
24
|
Ortego J, Knowles LL. Geographical isolation versus dispersal: Relictual alpine grasshoppers support a model of interglacial diversification with limited hybridization. Mol Ecol 2021; 31:296-312. [PMID: 34651368 DOI: 10.1111/mec.16225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 01/25/2023]
Abstract
Alpine biotas are paradigmatic of the countervailing roles of geographical isolation and dispersal during diversification. In temperate regions, repeated distributional shifts driven by Pleistocene climatic oscillations produced both recurrent pulses of population fragmentation and opportunities for gene flow during range expansions. Here, we test whether a model of divergence in isolation vs. with gene flow is more likely in the diversification of flightless alpine grasshoppers of the genus Podisma from the Iberian Peninsula. The answer to this question can also provide key insights about the pace of evolution. Specifically, if the data fit a divergence in isolation model, this suggests rapid evolution of reproductive isolation. Genomic data confirm a Pleistocene origin of the species complex, and multiple analytical approaches revealed limited asymmetric historical hybridization between two taxa. Genomic-based demographic reconstructions, spatial patterns of genetic structure and range shifts inferred from palaeodistribution modelling suggest severe range contraction accompanied by declines in effective population sizes during interglacials (i.e., contemporary populations confined to sky islands are relicts) and expansions during the coldest stages of the Pleistocene in each taxon. Although limited hybridization during secondary contact leads to phylogenetic uncertainty if gene flow is not accommodated when estimating evolutionary relationships, all species exhibit strong genetic cohesiveness. Our study lends support to the notion that the accumulation of incipient differences during periods of isolation were sufficient to lead to lineage persistence, but also that the demographic changes, dispersal constraints and spatial distribution of the sky islands themselves mediated species diversification in temperate alpine biotas.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Walton W, Stone GN, Lohse K. Discordant Pleistocene population size histories in a guild of hymenopteran parasitoids. Mol Ecol 2021; 30:4538-4550. [PMID: 34252238 DOI: 10.1111/mec.16074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023]
Abstract
Signatures of past changes in population size have been detected in genome-wide variation in many species. However, the causes of such demographic changes and the extent to which they are shared across co-distributed species remain poorly understood. During Pleistocene glacial maxima, many temperate European species were confined to southern refugia. While vicariance and range expansion processes associated with glacial cycles have been widely documented, it is unclear whether refugial populations of co-distributed species have experienced shared histories of population size change. We analyse whole-genome sequence data to reconstruct and compare demographic histories during the Quaternary for Iberian refuge populations in a single ecological guild (seven species of chalcid parasitoid wasps associated with oak cynipid galls). For four of these species, we find support for large changes in effective population size (Ne ) through the Pleistocene that coincide with major climate events. However, there is little evidence that the timing, direction and magnitude of demographic change are shared across species, suggesting that demographic histories in this guild are largely idiosyncratic, even at the scale of a single glacial refugium.
Collapse
Affiliation(s)
- William Walton
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|