1
|
Ohlopkova OV, Goncharov AE, Aslanov BI, Fadeev AV, Davidyuk YN, Moshkin AD, Stolbunova KA, Stepanyuk MA, Sobolev IA, Tyumentseva MA, Tyumentsev AI, Shestopalov AM, Akimkin VG. First detection of influenza A virus subtypes H1N1 and H3N8 in the Antarctic region: King George Island, 2023. Vopr Virusol 2024; 69:377-389. [PMID: 39361931 DOI: 10.36233/0507-4088-257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 10/05/2024]
Abstract
RELEVANCE Influenza A virus is characterized by a segmented single-stranded RNA genome. Such organization of the virus genome determines the possibility of reassortment, which can lead to the emergence of new virus variants. The main natural reservoir of most influenza A virus subtypes are wild waterfowl. Seasonal migrations gather waterfowl from all major migration routes to nesting areas near the northern and southern polar circles. This makes intercontinental spread of influenza A viruses possible. Objective ‒ to conduct molecular genetic monitoring and study the phylogenetic relationships of influenza A virus variants circulating in Antarctica in 2023. MATERIALS AND METHODS We studied 84 samples of biological material obtained from birds and marine mammals in April‒May 2023 in coastal areas of Antarctica. For 3 samples, sequencing was performed on the Miseq, Illumina platform and phylogenetic analysis of the obtained nucleotide sequences of the influenza A virus genomes was performed. RESULTS The circulation of avian influenza virus in the Antarctic region was confirmed. Heterogeneity of the pool of circulating variants of the influenza A virus (H3N8, H1N1) was revealed. Full-length genomes of the avian influenza virus were sequenced and posted in the GISAID database (EPI_ISL_19032103, 19174530, 19174467). CONCLUSION The study of the genetic diversity of influenza A viruses circulating in the polar regions of the Earth and the identification of the conditions for the emergence of new genetic variants is a relevant task for the development of measures to prevent biological threats.
Collapse
Affiliation(s)
- O V Ohlopkova
- Central Research Institute of Epidemiology, Rospotrebnadzor
- Federal Research Center for Fundamental and Translational Medicine
| | - A E Goncharov
- Institute of Experimental Medicine
- Northwestern State Medical University named after I.I. Mechnikov
| | - B I Aslanov
- Northwestern State Medical University named after I.I. Mechnikov
| | - A V Fadeev
- A.A. Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation
| | - Y N Davidyuk
- Federal State Educational Institution of Higher Education «Kazan (Volga Region) Federal University»
| | - A D Moshkin
- Federal Research Center for Fundamental and Translational Medicine
| | - K A Stolbunova
- Federal Research Center for Fundamental and Translational Medicine
| | - M A Stepanyuk
- Federal Research Center for Fundamental and Translational Medicine
| | - I A Sobolev
- Federal Research Center for Fundamental and Translational Medicine
| | | | - A I Tyumentsev
- Central Research Institute of Epidemiology, Rospotrebnadzor
| | - A M Shestopalov
- Federal Research Center for Fundamental and Translational Medicine
| | - V G Akimkin
- Central Research Institute of Epidemiology, Rospotrebnadzor
| |
Collapse
|
2
|
Zhang Z, Lei Z. The Alarming Situation of Highly Pathogenic Avian Influenza Viruses in 2019-2023. Glob Med Genet 2024; 11:200-213. [PMID: 38947761 PMCID: PMC11213626 DOI: 10.1055/s-0044-1788039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Avian influenza viruses (AIVs) have the potential to cause severe illness in wild birds, domestic poultry, and humans. The ongoing circulation of highly pathogenic avian influenza viruses (HPAIVs) has presented significant challenges to global poultry industry and public health in recent years. This study aimed to elucidate the circulation of HPAIVs during 2019 to 2023. Specifically, we assess the alarming global spread and continuous evolution of HPAIVs. Moreover, we discuss their transmission and prevention strategies to provide valuable references for future prevention and control measures against AIVs.
Collapse
Affiliation(s)
- Zhiwei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, People's Republic of China
- Department of Industrial & Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| |
Collapse
|
3
|
Erdelyan CNG, Kandeil A, Signore AV, Jones MEB, Vogel P, Andreev K, Bøe CA, Gjerset B, Alkie TN, Yason C, Hisanaga T, Sullivan D, Lung O, Bourque L, Ayilara I, Pama L, Jeevan T, Franks J, Jones JC, Seiler JP, Miller L, Mubareka S, Webby RJ, Berhane Y. Multiple transatlantic incursions of highly pathogenic avian influenza clade 2.3.4.4b A(H5N5) virus into North America and spillover to mammals. Cell Rep 2024; 43:114479. [PMID: 39003741 DOI: 10.1016/j.celrep.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses have spread at an unprecedented scale, leading to mass mortalities in birds and mammals. In 2023, a transatlantic incursion of HPAI A(H5N5) viruses into North America was detected, followed shortly thereafter by a mammalian detection. As these A(H5N5) viruses were similar to contemporary viruses described in Eurasia, the transatlantic spread of A(H5N5) viruses was most likely facilitated by pelagic seabirds. Some of the Canadian A(H5N5) viruses from birds and mammals possessed the PB2-E627K substitution known to facilitate adaptation to mammals. Ferrets inoculated with A(H5N5) viruses showed rapid, severe disease onset, with some evidence of direct contact transmission. However, these viruses have maintained receptor binding traits of avian influenza viruses and were susceptible to oseltamivir and zanamivir. Understanding the factors influencing the virulence and transmission of A(H5N5) in migratory birds and mammals is critical to minimize impacts on wildlife and public health.
Collapse
Affiliation(s)
| | - Ahmed Kandeil
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Anthony V Signore
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Megan E B Jones
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, PEI C1A 4P3, Canada
| | - Peter Vogel
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Konstantin Andreev
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | - Tamiru N Alkie
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Carmencita Yason
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada
| | - Tamiko Hisanaga
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Daniel Sullivan
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| | - Laura Bourque
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, PEI C1A 4P3, Canada
| | - Ifeoluwa Ayilara
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Lemarie Pama
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Trushar Jeevan
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John Franks
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy C Jones
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jon P Seiler
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lance Miller
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Richard J Webby
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
4
|
Lean FZX, Falchieri M, Furman N, Tyler G, Robinson C, Holmes P, Reid SM, Banyard AC, Brown IH, Man C, Núñez A. Highly pathogenic avian influenza virus H5N1 infection in skua and gulls in the United Kingdom, 2022. Vet Pathol 2024; 61:421-431. [PMID: 38140946 DOI: 10.1177/03009858231217224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The reemergence of the highly pathogenic avian influenza virus (HPAIV) subtype H5N1 in the United Kingdom in 2021-2022 has caused unprecedented epizootic events in wild birds and poultry. During the summer of 2022, there was a shift in virus transmission dynamics resulting in increased HPAIV infection in seabirds, and consequently, a profound impact on seabird populations. To understand the pathological impact of HPAIV in seabirds, we evaluated the virus antigen distribution and associated pathological changes in the tissues of great skua (Stercorarius skua, n = 8), long-tailed skua (Stercorarius longicaudus, n = 1), European herring gull (Larus argentatus, n = 5), and black-headed gull (Chroicocephalus ridibundus, n = 4), which succumbed to natural infection of HPAIV during the summer of 2022. Cases were collected from Shetland, including Scatness (mainland), No Ness (mainland), Clumlie (mainland), Hermaness (island), Fair Isle (island), Noss (island), and the West Midlands, South East, and South West of England. Grossly, gizzard ulceration was observed in one great skua and pancreatic necrosis was observed in 4 herring gulls, with intralesional viral antigen detected subsequently. Microscopical analysis revealed neuro-, pneumo-, lymphoid-, and cardiomyotropism of HPAIV H5N1, with the most common virus-associated pathological changes being pancreatic and splenic necrosis. Examination of the reproductive tract of the great skua revealed HPAIV-associated oophoritis and salpingitis, and virus replication within the oviductal epithelium. The emergence of HPAIV in seabirds Stercorariidae and Laridae, particularly during summer 2022, has challenged the dogma of HPAIV dynamics, posing a significant threat to wild bird life with potential implications for the reproductive performance of seabirds of conservation importance.
Collapse
Affiliation(s)
- Fabian Z X Lean
- Animal and Plant Health Agency, Weybridge, UK
- Royal Veterinary College, Hertfordshire, UK
| | | | | | | | | | - Paul Holmes
- APHA Shrewsbury Veterinary Investigation Centre, UK
| | | | | | - Ian H Brown
- Animal and Plant Health Agency, Weybridge, UK
| | | | | |
Collapse
|
5
|
Shu C, Sun Q, Fan G, Peng K, Yu Z, Luo Y, Gao S, Ma J, Deng T, Hu S, Wu L. VarEPS-Influ:an risk evaluation system of occurred and virtual variations of influenza virus genomes. Nucleic Acids Res 2024; 52:D798-D807. [PMID: 37889020 PMCID: PMC10767863 DOI: 10.1093/nar/gkad912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Influenza viruses undergo frequent genomic mutations, leading to potential cross-species transmission, phenotypic changes, and challenges in diagnostic reagents and vaccines. Accurately evaluating and predicting the risk of such variations remain significant challenges. To address this, we developed the VarEPS-Influ database, an influenza virus variations risk evaluation system (VarEPS-Influ). This database employs a 'multi-dimensional evaluation of mutations' strategy, utilizing various tools to assess the physical and chemical properties, primary, secondary, and tertiary structures, receptor affinity, antibody binding capacity, antigen epitopes, and other aspects of the variation's impact. Additionally, we consider space-time distribution, host species distribution, pedigree analysis, and frequency of mutations to provide a comprehensive risk evaluation of mutations and viruses. The VarEPS-Influ database evaluates both observed variations and virtual variations (variations that have not yet occurred), thereby addressing the time-lag issue in risk predictions. Our current one-stop evaluation system for influenza virus genomic variation integrates 1065290 sequences from 224 927 Influenza A, B and C isolates retrieved from public resources. Researchers can freely access the data at https://nmdc.cn/influvar/.
Collapse
Affiliation(s)
- Chang Shu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinglan Sun
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Guomei Fan
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Kesheng Peng
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Zhengfei Yu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Yingfeng Luo
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghan Gao
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juncai Ma
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Tao Deng
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songnian Hu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhuan Wu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| |
Collapse
|
6
|
Chauhan RP, Fogel R, Limson J. Nanopore MinION Sequencing Generates a White Spot Syndrome Virus Genome from a Pooled Cloacal Swab Sample of Domestic Chickens in South Africa. Microorganisms 2023; 11:2802. [PMID: 38004813 PMCID: PMC10672864 DOI: 10.3390/microorganisms11112802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
White spot syndrome virus is a highly contagious pathogen affecting shrimp farming worldwide. The host range of this virus is primarily limited to crustaceans, such as shrimps, crabs, prawns, crayfish, and lobsters; however, several species of non-crustaceans, including aquatic insects, piscivorous birds, and molluscs may serve as the vectors for ecological dissemination. The present study was aimed at studying the faecal virome of domestic chickens (Gallus gallus domesticus) in Makhanda, Eastern Cape, South Africa. The cloacal swab specimens (n = 35) were collected from domestic chickens in December 2022. The cloacal swab specimens were pooled-each pool containing five cloacal swabs-for metagenomic analysis using a sequence-independent single-primer amplification protocol, followed by Nanopore MinION sequencing. While the metagenomic sequencing generated several contigs aligning with reference genomes of animal viruses, one striking observation was the presence of a White spot syndrome virus genome in one pool of cloacal swab specimens. The generated White spot syndrome virus genome was 273,795 bp in size with 88.5% genome coverage and shared 99.94% nucleotide sequence identity with a reference genome reported in China during 2018 (GenBank accession: NC_003225.3). The Neighbour-Joining tree grouped South African White spot syndrome virus genome with other White spot syndrome virus genomes reported from South East Asia. To our knowledge, this is the first report of a White spot syndrome virus genome generated from domestic chickens. The significance of White spot syndrome virus infection in domestic chickens is yet to be determined.
Collapse
Affiliation(s)
| | | | - Janice Limson
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa; (R.P.C.); (R.F.)
| |
Collapse
|
7
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
8
|
Xie R, Edwards KM, Wille M, Wei X, Wong SS, Zanin M, El-Shesheny R, Ducatez M, Poon LLM, Kayali G, Webby RJ, Dhanasekaran V. The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature 2023; 622:810-817. [PMID: 37853121 DOI: 10.1038/s41586-023-06631-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.
Collapse
Affiliation(s)
- Ruopeng Xie
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kimberly M Edwards
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Xiaoman Wei
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sook-San Wong
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mark Zanin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mariette Ducatez
- IHAP, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Vijaykrishna Dhanasekaran
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Barratclough A, Ferguson SH, Lydersen C, Thomas PO, Kovacs KM. A Review of Circumpolar Arctic Marine Mammal Health-A Call to Action in a Time of Rapid Environmental Change. Pathogens 2023; 12:937. [PMID: 37513784 PMCID: PMC10385039 DOI: 10.3390/pathogens12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The impacts of climate change on the health of marine mammals are increasingly being recognised. Given the rapid rate of environmental change in the Arctic, the potential ramifications on the health of marine mammals in this region are a particular concern. There are eleven endemic Arctic marine mammal species (AMMs) comprising three cetaceans, seven pinnipeds, and the polar bear (Ursus maritimus). All of these species are dependent on sea ice for survival, particularly those requiring ice for breeding. As air and water temperatures increase, additional species previously non-resident in Arctic waters are extending their ranges northward, leading to greater species overlaps and a concomitant increased risk of disease transmission. In this study, we review the literature documenting disease presence in Arctic marine mammals to understand the current causes of morbidity and mortality in these species and forecast future disease issues. Our review highlights potential pathogen occurrence in a changing Arctic environment, discussing surveillance methods for 35 specific pathogens, identifying risk factors associated with these diseases, as well as making recommendations for future monitoring for emerging pathogens. Several of the pathogens discussed have the potential to cause unusual mortality events in AMMs. Brucella, morbillivirus, influenza A virus, and Toxoplasma gondii are all of concern, particularly with the relative naivety of the immune systems of endemic Arctic species. There is a clear need for increased surveillance to understand baseline disease levels and address the gravity of the predicted impacts of climate change on marine mammal species.
Collapse
Affiliation(s)
- Ashley Barratclough
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA 92106, USA
| | - Steven H. Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada;
| | - Christian Lydersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| | - Peter O. Thomas
- Marine Mammal Commission, 4340 East-West Highway, Room 700, Bethesda, MD 20814, USA;
| | - Kit M. Kovacs
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| |
Collapse
|
10
|
Gass JD, Hill NJ, Damodaran L, Naumova EN, Nutter FB, Runstadler JA. Ecogeographic Drivers of the Spatial Spread of Highly Pathogenic Avian Influenza Outbreaks in Europe and the United States, 2016-Early 2022. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6030. [PMID: 37297634 PMCID: PMC10252585 DOI: 10.3390/ijerph20116030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
H5Nx highly pathogenic avian influenza (HPAI) viruses of clade 2.3.4.4 have caused outbreaks in Europe among wild and domestic birds since 2016 and were introduced to North America via wild migratory birds in December 2021. We examined the spatiotemporal extent of HPAI viruses across continents and characterized ecological and environmental predictors of virus spread between geographic regions by constructing a Bayesian phylodynamic generalized linear model (phylodynamic-GLM). The findings demonstrate localized epidemics of H5Nx throughout Europe in the first several years of the epizootic, followed by a singular branching point where H5N1 viruses were introduced to North America, likely via stopover locations throughout the North Atlantic. Once in the United States (US), H5Nx viruses spread at a greater rate between US-based regions as compared to prior spread in Europe. We established that geographic proximity is a predictor of virus spread between regions, implying that intercontinental transport across the Atlantic Ocean is relatively rare. An increase in mean ambient temperature over time was predictive of reduced H5Nx virus spread, which may reflect the effect of climate change on declines in host species abundance, decreased persistence of the virus in the environment, or changes in migratory patterns due to ecological alterations. Our data provide new knowledge about the spread and directionality of H5Nx virus dispersal in Europe and the US during an actively evolving intercontinental outbreak, including predictors of virus movement between regions, which will contribute to surveillance and mitigation strategies as the outbreak unfolds, and in future instances of uncontained avian spread of HPAI viruses.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, Boston, MA 02125, USA
| | | | - Elena N. Naumova
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02155, USA
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
11
|
De Marco MA, Delogu M, Cotti C. Special Issue "Ecology of Influenza A Viruses": Editorial. Microorganisms 2023; 11:1287. [PMID: 37317261 DOI: 10.3390/microorganisms11051287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Wild aquatic birds constitute the main natural reservoir of the influenza A virus (IAV) gene pool, from which novel IAVs can emerge to infect other animals including avian and mammalian species [...].
Collapse
Affiliation(s)
- Maria Alessandra De Marco
- Italian Institute for Environmental Protection and Research (ISPRA), 40064 Ozzano dell'Emilia, Italy
| | - Mauro Delogu
- Wildlife and Exotic Animal Service, Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - Claudia Cotti
- Wildlife and Exotic Animal Service, Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, Italy
| |
Collapse
|
12
|
Boulinier T. Avian influenza spread and seabird movements between colonies. Trends Ecol Evol 2023; 38:391-395. [PMID: 36841680 DOI: 10.1016/j.tree.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Seabirds have recently been experiencing high rates of mortality across wide scales due to highly pathogenic avian influenza (HPAI). During breeding, seabird populations are highly spatially structured, while over their lifetimes they spend much time at sea. This makes them unique systems in which to document how movement and interspecies interactions affect eco-epidemiological dynamics.
Collapse
|
13
|
Kasimov V, Wille M, Sarker S, Dong Y, Shao R, Hall C, Potvin D, Conroy G, Valenza L, Gillett A, Timms P, Jelocnik M. Unexpected Pathogen Diversity Detected in Australian Avifauna Highlights Potential Biosecurity Challenges. Viruses 2023; 15:143. [PMID: 36680183 PMCID: PMC9865187 DOI: 10.3390/v15010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Birds may act as hosts for numerous pathogens, including members of the family Chlamydiaceae, beak and feather disease virus (BFDV), avipoxviruses, Columbid alphaherpesvirus 1 (CoAHV1) and Psittacid alphaherpesvirus 1 (PsAHV1), all of which are a significant biosecurity concern in Australia. While Chlamydiaceae and BFDV have previously been detected in Australian avian taxa, the prevalence and host range of avipoxviruses, CoAHV1 and PsAHV1 in Australian birds remain undetermined. To better understand the occurrence of these pathogens, we screened 486 wild birds (kingfisher, parrot, pigeon and raptor species) presented to two wildlife hospitals between May 2019 and December 2021. Utilising various qPCR assays, we detected PsAHV1 for the first time in wild Australian birds (37/486; 7.61%), in addition to BFDV (163/468; 33.54%), Chlamydiaceae (98/468; 20.16%), avipoxviruses (46/486; 9.47%) and CoAHV1 (43/486; 8.85%). Phylogenetic analysis revealed that BFDV sequences detected from birds in this study cluster within two predominant superclades, infecting both psittacine and non-psittacine species. However, BFDV disease manifestation was only observed in psittacine species. All Avipoxvirus sequences clustered together and were identical to other global reference strains. Similarly, PsAHV1 sequences from this study were detected from a series of novel hosts (apart from psittacine species) and identical to sequences detected from Brazilian psittacine species, raising significant biosecurity concerns, particularly for endangered parrot recovery programs. Overall, these results highlight the high pathogen diversity in wild Australian birds, the ecology of these pathogens in potential natural reservoirs, and the spillover potential of these pathogens into novel host species in which these agents cause disease.
Collapse
Affiliation(s)
- Vasilli Kasimov
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Yalun Dong
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Renfu Shao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Clancy Hall
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Dominique Potvin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Gabriel Conroy
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | | | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD 4519, Australia
| | - Peter Timms
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia
| |
Collapse
|