1
|
Esfandi H, Javidan M, Anderson RM, Pashaie R. Depth-Dependent Contributions of Various Vascular Zones to Cerebral Autoregulation and Functional Hyperemia: An In-Silico Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.616950. [PMID: 39416222 PMCID: PMC11482864 DOI: 10.1101/2024.10.07.616950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Autoregulation and neurogliavascular coupling are key mechanisms that modulate myogenic tone (MT) in vessels to regulate cerebral blood flow (CBF) during resting state and periods of increased neural activity, respectively. To determine relative contributions of distinct vascular zones across different cortical depths in CBF regulation, we developed a simplified yet detailed and computationally efficient model of the mouse cerebrovasculature. The model integrates multiple simplifications and generalizations regarding vascular morphology, the hierarchical organization of mural cells, and potentiation/inhibition of MT in vessels. Our analysis showed that autoregulation is the result of the synergy between these factors, but achieving an optimal balance across all cortical depths and throughout the autoregulation range is a complex task. This complexity explains the non-uniformity observed experimentally in capillary blood flow at different cortical depths. In silico simulations of cerebral autoregulation support the idea that the cerebral vasculature does not maintain a plateau of blood flow throughout the autoregulatory range and consists of both flat and sloped phases. We learned that small-diameter vessels with large contractility, such as penetrating arterioles and precapillary arterioles, have major control over intravascular pressure at the entry points of capillaries and play a significant role in CBF regulation. However, temporal alterations in capillary diameter contribute moderately to cerebral autoregulation and minimally to functional hyperemia. In addition, hemodynamic analysis shows that while hemodynamics within capillaries remain relatively stable across all cortical depths throughout the entire autoregulation range, significant variability in hemodynamics can be observed within the first few branch orders of precapillary arterioles or transitional zone vessels. The computationally efficient cerebrovasculature model, proposed in this study, provides a novel framework for analyzing dynamics of the CBF regulation where hemodynamic and vasodynamic interactions are the foundation on which more sophisticated models can be developed.
Collapse
Affiliation(s)
- Hadi Esfandi
- Electrical Engineering and Computer Science Department, Florida Atlantic University, Boca Raton, FL, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mahshad Javidan
- Electrical Engineering and Computer Science Department, Florida Atlantic University, Boca Raton, FL, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Rozalyn M. Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Ramin Pashaie
- Electrical Engineering and Computer Science Department, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
2
|
Li K, Li Y, Chen Y, Chen T, Yang Y, Li P. Ion Channels Remodeling in the Regulation of Vascular Hyporesponsiveness During Shock. Microcirculation 2024; 31:e12874. [PMID: 39011763 DOI: 10.1111/micc.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/07/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024]
Abstract
Shock is characterized with vascular hyporesponsiveness to vasoconstrictors, thereby to cause refractory hypotension, insufficient tissue perfusion, and multiple organ dysfunction. The vascular hyporeactivity persisted even though norepinephrine and fluid resuscitation were administrated, it is of critical importance to find new potential target. Ion channels are crucial in the regulation of cell membrane potential and affect vasoconstriction and vasodilation. It has been demonstrated that many types of ion channels including K+ channels, Ca2+ permeable channels, and Na+ channels exist in vascular smooth muscle cells and endothelial cells, contributing to the regulation of vascular homeostasis and vasomotor function. An increasing number of studies suggested that the structural and functional alterations of ion channels located in arteries contribute to vascular hyporesponsiveness during shock, but the underlying mechanisms remained to be fully clarified. Therefore, the expression and functional changes in ion channels in arteries associated with shock are reviewed, to pave the way for further exploring the potential of ion channel-targeted compounds in treating refractory hypotension in shock.
Collapse
Affiliation(s)
- Keqing Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yinghong Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Tangting Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Yang
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Pengyun Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Qi Y, Lin Z, Lu H, Mao J, Zhang H, Zhao P, Hou Y. Cerebral Hemodynamic and Metabolic Abnormalities in Neonatal Hypocalcemia: Findings from Advanced MRI. AJNR Am J Neuroradiol 2023; 44:1224-1230. [PMID: 37709354 PMCID: PMC10549950 DOI: 10.3174/ajnr.a7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND AND PURPOSE Neonatal hypocalcemia is the most common metabolic disorder, and whether asymptomatic disease should be treated with calcium supplements remains controversial. We aimed to quantify neonatal hypocalcemia's global CBF and cerebral metabolic rate of oxygen (CMRO2) using physiologic MR imaging and elucidate the pathophysiologic vulnerabilities of neonatal hypocalcemia. MATERIALS AND METHODS A total of 37 consecutive patients with neonatal hypocalcemia were enrolled. They were further divided into subgroups with and without structural MR imaging abnormalities, denoted as neonatal hypocalcemia-a (n = 24) and neonatal hypocalcemia-n (n = 13). Nineteen healthy neonates were enrolled as a control group. Brain physiologic parameters determined using phase-contrast MR imaging, T2-relaxation-under-spin-tagging MR imaging, and brain volume were compared between patients with neonatal hypocalcemia (their subgroups) and controls. Predictors for neonatal hypocalcemia-related brain injuries were identified using multivariate logistic regression analysis and expressed as ORs with 95% CIs. RESULTS Patients with neonatal hypocalcemia showed significantly lower CBF and CMRO2 compared with controls. Furthermore, the neonatal hypocalcemia-a subset (versus controls or neonatal hypocalcemia-n) had significantly lower CBF and CMRO2. There was no obvious difference in CBF and CMRO2 between the neonatal hypocalcemia-n subset and controls. CBF and CMRO2 were independently associated with neonatal hypocalcemia. The ORs were 0.80 (95% CI, 0.65-0.99) and 0.97 (95% CI, 0.89-1.05) for CBF and CMRO2, respectively. CONCLUSIONS Neonatal hypocalcemia with structural damage may exhibit lower hemodynamics and cerebral metabolism. CBF may be useful in assessing the need for calcium supplementation in asymptomatic neonatal hypocalcemia to prevent brain injury.
Collapse
Affiliation(s)
- Ying Qi
- From the Department of Radiology (Y.Q., H.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Lin
- Key Laboratory for Biomedical Engineering of Ministry of Education (Z.L.), Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Hanzhang Lu
- Department of Radiology (H.L.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jian Mao
- Department of Pediatrics (J.M.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongyang Zhang
- From the Department of Radiology (Y.Q., H.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengfei Zhao
- Department of Pharmacology (P.Z.), School of Pharmaceutical Sciences, China Medical University, Shenyang, China
| | - Yang Hou
- From the Department of Radiology (Y.Q., H.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Wang YX, Reyes-García J, Di Mise A, Zheng YM. Role of ryanodine receptor 2 and FK506-binding protein 12.6 dissociation in pulmonary hypertension. J Gen Physiol 2023; 155:213798. [PMID: 36625865 PMCID: PMC9836826 DOI: 10.1085/jgp.202213100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by a progressive increase in pulmonary arterial pressure leading to right ventricular failure and death. A major cellular response in this disease is the contraction of smooth muscle cells (SMCs) of the pulmonary vasculature. Cell contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i), which is generated and regulated by various ion channels. Several studies by us and others have shown that ryanodine receptor 2 (RyR2), a Ca2+-releasing channel in the sarcoplasmic reticulum (SR), is an essential ion channel for the control of [Ca2+]i in pulmonary artery SMCs (PASMCs), thereby mediating the sustained vasoconstriction seen in PH. FK506-binding protein 12.6 (FKBP12.6) strongly associates with RyR2 to stabilize its functional activity. FKBP12.6 can be dissociated from RyR2 by a hypoxic stimulus to increase channel function and Ca2+ release, leading to pulmonary vasoconstriction and PH. More specifically, dissociation of the RyR2-FKBP12.6 complex is a consequence of increased mitochondrial ROS generation mediated by the Rieske iron-sulfur protein (RISP) at the mitochondrial complex III after hypoxia. Overall, RyR2/FKBP12.6 dissociation and the corresponding signaling pathway may be an important factor in the development of PH. Novel drugs and biologics targeting RyR2, FKBP12.6, and related molecules may become unique effective therapeutics for PH.
Collapse
Affiliation(s)
- Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Correspondence to Yong-Xiao Wang:
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México,Ciudad de México, México
| | - Annarita Di Mise
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Yun-Min Zheng:
| |
Collapse
|
5
|
Blackwell JA, Silva JF, Louis EM, Savu A, Largent-Milnes TM, Brooks HL, Pires PW. Cerebral arteriolar and neurovascular dysfunction after chemically induced menopause in mice. Am J Physiol Heart Circ Physiol 2022; 323:H845-H860. [PMID: 36149767 PMCID: PMC9602916 DOI: 10.1152/ajpheart.00276.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
Cognitive decline is linked to decreased cerebral blood flow, particularly in women after menopause. Impaired cerebrovascular function precedes the onset of dementia, possibly because of reduced functional dilation in parenchymal arterioles. These vessels are bottlenecks of the cerebral microcirculation, and dysfunction can limit functional hyperemia in the brain. Large-conductance Ca2+-activated K+ channels (BKCa) are the final effectors of several pathways responsible for functional hyperemia, and their expression is modulated by estrogen. However, it remains unknown whether BKCa function is altered in cerebral parenchymal arterioles after menopause. Using a chemically induced model of menopause, the 4-vinylcyclohexene diepoxide (VCD) model, which depletes follicles while maintaining intact ovaries, we hypothesized that menopause would be associated with reduced functional vasodilatory responses in cerebral parenchymal arterioles of wild-type mice via reduced BKCa function. Using pressure myography of isolated parenchymal arterioles, we observed that menopause (Meno) induced a significant increase in spontaneous myogenic tone. Endothelial function, assessed as nitric oxide production and dilation after cholinergic stimulation or endothelium-dependent hyperpolarization pathways, was unaffected by Meno. BKCa function was significantly impaired in Meno compared with control, without changes in voltage-gated K+ channel activity. Cerebral functional hyperemia, measured by laser-speckle contrast imaging during whisker stimulation, was significantly blunted in Meno mice, without detectable changes in basal perfusion. However, behavioral testing identified no change in cognition. These findings suggest that menopause induces cerebral microvascular and neurovascular deficits.NEW & NOTEWORTHY Cerebral parenchymal arterioles from menopause mice showed increased myogenic tone. We identified an impairment in smooth muscle cell BKCa channel activity, without a reduction in endothelium-dependent dilation or nitric oxide production. Microvascular dysfunction was associated with a reduction in neurovascular responses after somatosensory stimulation. Despite the neurovascular impairment, cognitive abilities were maintained in menopausal mice.
Collapse
Affiliation(s)
- Jade A Blackwell
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Josiane F Silva
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Emma M Louis
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Andrea Savu
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, Arizona
- Bio5 Institute, University of Arizona, Tucson, Arizona
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona, Tucson, Arizona
- Bio5 Institute, University of Arizona, Tucson, Arizona
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Paulo W Pires
- Department of Physiology, University of Arizona, Tucson, Arizona
- Bio5 Institute, University of Arizona, Tucson, Arizona
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
6
|
Ca 2+ leak through ryanodine receptor 1 regulates thermogenesis in resting skeletal muscle. Proc Natl Acad Sci U S A 2022; 119:2119203119. [PMID: 35046046 PMCID: PMC8794839 DOI: 10.1073/pnas.2119203119] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
The evolution of mammals to use skeletal muscle as a source of heat allowed them to spread to all parts of the globe. The generation of heat requires increased adenosine triphosphate (ATP) hydrolysis in the resting muscle in a regulated manner, but how this mechanism works is unknown. The results suggest that mammals increase their RyR1 Ca2+ leak rate to amplify a basal ATP turnover rate at the sarcoplasmic reticulum Ca2+ pump that is higher than that of lower vertebrates. Muscle-based thermogenesis allows regulation of body temperature that is essential for life in mammals and provides a potential pathway for manipulating body weight or temperature by altering metabolic rate. Mammals rely on nonshivering thermogenesis (NST) from skeletal muscle so that cold temperatures can be tolerated. NST results from activity of the sarcoplasmic reticulum (SR) Ca2+ pump in skeletal muscle, but the mechanisms that regulate this activity are unknown. Here, we develop a single-fiber assay to investigate the role of Ca2+ leak through ryanodine receptor 1 (RyR1) to generate heat at the SR Ca2+ pump in resting muscle. By inhibiting a subpopulation of RyR1s in a single-fiber preparation via targeted delivery of ryanodine through transverse tubules, we achieve in-preparation isolation of RyR1 Ca2+ leak. This maneuver provided a critical increase in signal-to-noise of the SR-temperature-sensitive dye ER thermoyellow fluorescence signal from the fiber to allow detection of SR temperature changes as either RyR1 or SR Ca2+ pump activity was altered. We found that RyR1 Ca2+ leak raises cytosolic [Ca2+] in the local vicinity of the SR Ca2+ pump to amplify thermogenesis. Furthermore, gene-dose-dependent increases in RyR1 leak in RYR1 mutant mice result in progressive rises in leak-dependent heat, consistent with raised local [Ca2+] at the SR Ca2+ pump via RyR1 Ca2+ leak. We also show that basal RyR Ca2+ leak and the heat generated by the SR Ca2+ pump in the absence of RyR Ca2+ leak is greater in fibers from mice than from toads. The distinct function of RyRs and SR Ca2+ pump in endothermic mammals compared to ectothermic amphibians provides insights into the mechanisms by which mammalian skeletal muscle achieves thermogenesis at rest.
Collapse
|
7
|
Wang H, Noordam R, Cade BE, Schwander K, Winkler TW, Lee J, Sung YJ, Bentley AR, Manning AK, Aschard H, Kilpeläinen TO, Ilkov M, Brown MR, Horimoto AR, Richard M, Bartz TM, Vojinovic D, Lim E, Nierenberg JL, Liu Y, Chitrala K, Rankinen T, Musani SK, Franceschini N, Rauramaa R, Alver M, Zee PC, Harris SE, van der Most PJ, Nolte IM, Munroe PB, Palmer ND, Kühnel B, Weiss S, Wen W, Hall KA, Lyytikäinen LP, O'Connell J, Eiriksdottir G, Launer LJ, de Vries PS, Arking DE, Chen H, Boerwinkle E, Krieger JE, Schreiner PJ, Sidney S, Shikany JM, Rice K, Chen YDI, Gharib SA, Bis JC, Luik AI, Ikram MA, Uitterlinden AG, Amin N, Xu H, Levy D, He J, Lohman KK, Zonderman AB, Rice TK, Sims M, Wilson G, Sofer T, Rich SS, Palmas W, Yao J, Guo X, Rotter JI, Biermasz NR, Mook-Kanamori DO, Martin LW, Barac A, Wallace RB, Gottlieb DJ, Komulainen P, Heikkinen S, Mägi R, Milani L, Metspalu A, Starr JM, Milaneschi Y, Waken RJ, Gao C, Waldenberger M, Peters A, Strauch K, Meitinger T, Roenneberg T, Völker U, Dörr M, Shu XO, Mukherjee S, Hillman DR, Kähönen M, Wagenknecht LE, Gieger C, Grabe HJ, Zheng W, Palmer LJ, Lehtimäki T, Gudnason V, Morrison AC, Pereira AC, Fornage M, Psaty BM, van Duijn CM, Liu CT, Kelly TN, Evans MK, Bouchard C, Fox ER, Kooperberg C, Zhu X, Lakka TA, Esko T, North KE, Deary IJ, Snieder H, Penninx BWJH, Gauderman WJ, Rao DC, Redline S, van Heemst D. Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure. Mol Psychiatry 2021; 26:6293-6304. [PMID: 33859359 PMCID: PMC8517040 DOI: 10.1038/s41380-021-01087-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 Pjoint < 5 × 10-8), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (Pint < 5 × 10-8). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (Pint = 2 × 10-6). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (Pint < 10-3). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.
Collapse
Affiliation(s)
- Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alisa K Manning
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andrea R Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Melissa Richard
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jovia L Nierenberg
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute Duke University School of Medicine, Durham, NC, USA
| | - Kumaraswamynaidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Maris Alver
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Sarah E Harris
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, London, UK
| | | | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelly A Hall
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jeff O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Public Health & School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Daniel Levy
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Kurt K Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute Duke University School of Medicine, Durham, NC, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gregory Wilson
- JHS Graduate Training and Education Center, Jackson State University, Jackson, MS, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Walter Palmas
- Division of General Medicine, Department of Medicine, Columbia University, New York, NY, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nienke R Biermasz
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Ana Barac
- MedStar Heart and Vascular Institute, Washington, DC, USA
| | - Robert B Wallace
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - John M Starr
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, UK
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, HJ, The Netherlands
| | - R J Waken
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Neuherberg, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Till Roenneberg
- Institute and Polyclinic for Occupational-, Social- and Environmental Medicine, LMU Munich, Munich, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, SA, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David R Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Hans J Grabe
- Department Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lyle J Palmer
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Departments of Epidemiology and Health Services, University of Washington, Seattle, WA, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Ervin R Fox
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ian J Deary
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, HJ, The Netherlands
| | - W James Gauderman
- Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
8
|
Román M, García L, Morales M, Crespo MJ. The combination of dantrolene and nimodipine effectively reduces 5-HT-induced vasospasms in diabetic rats. Sci Rep 2021; 11:9852. [PMID: 33972638 PMCID: PMC8110522 DOI: 10.1038/s41598-021-89338-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetics have a higher risk of developing cerebral vasospasms (CVSP) after subarachnoid hemorrhagic stroke than non-diabetics. Serotonin (5-HT) is one of the key vasoconstrictors released in the hemorrhagic blood and an important contributor to the etiology of CVSP. The combination of the ryanodine receptor blocker dantrolene and the Ca2+ channel blocker nimodipine significantly reduces phenylephrine (PHE)-induced vascular contraction in both diabetic and nondiabetic rats, but the effectiveness of this drug combination in reducing 5-HT-induced contraction is unknown. Dose–response curves for the 5-HT-induced contraction (from 0.1 nM to 100 µM) were performed on aortic rings from diabetic and non-diabetic rats after a 30-min incubation period with dantrolene, nimodipine, and both drugs in combination. In diabetic rats, 10 μM of dantrolene alone failed to reduce 5-HT-induced maximal contraction (Emax), but 50 μM reduced this parameter by 34% (n = 7, p < 0.05). In non-diabetic rats, by contrast, dantrolene did not modify the vascular response to 5-HT. 50 nM of nimodipine alone, however, reduced this parameter by 57% in diabetic rats (n = 10, p < 0.05), and by 34% in non-diabetic rats (n = 10, p < 0.05). In addition, concomitant administration of dantrolene and nimodipine reduced vascular reactivity to a similar extent in both diabetic (~ 60% reduction, n = 10, p < 0.05) and non-diabetic rats (~ 70% reduction, n = 10, p < 0.05). Moreover, the combination of nimodipine with the higher concentration of dantrolene significantly increased the EC50 values for the 5-HT-induced contraction curves in both diabetics (from 10.31 ± 1.17 µM to 19.26 ± 2.82; n = 10, p < 0.05) and non-diabetic rats (5.93 ± 0.54 µM to 15.80 ± 3.24; n = 10, p < 0.05). These results suggest that simultaneous administration of dantrolene and nimodipine has a synergistic effect in reducing 5-HT-induced vascular contraction under both diabetic and non-diabetic conditions. If our findings with rats are applicable to humans, concomitant administration of these drugs may represent a promising alternative for the management of CVSP in both diabetics and non-diabetics.
Collapse
Affiliation(s)
- Marie Román
- Department of Physiology, University of Puerto Rico-School of Medicine, GPO Box 365067, San Juan, PR, 00936-5067, USA
| | - Laura García
- Department of Anesthesiology, University of Puerto Rico-School of Medicine, GPO Box 365067, San Juan, PR, 00936-5067, USA
| | - Myrna Morales
- Department of Anesthesiology, University of Puerto Rico-School of Medicine, GPO Box 365067, San Juan, PR, 00936-5067, USA
| | - María J Crespo
- Department of Physiology, University of Puerto Rico-School of Medicine, GPO Box 365067, San Juan, PR, 00936-5067, USA. .,Department of Anesthesiology, University of Puerto Rico-School of Medicine, GPO Box 365067, San Juan, PR, 00936-5067, USA.
| |
Collapse
|
9
|
Fontaine JT, Rosehart AC, Joutel A, Dabertrand F. HB-EGF depolarizes hippocampal arterioles to restore myogenic tone in a genetic model of small vessel disease. Mech Ageing Dev 2020; 192:111389. [PMID: 33127441 PMCID: PMC7683376 DOI: 10.1016/j.mad.2020.111389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Vascular cognitive impairment, the second most common cause of dementia, profoundly affects hippocampal-dependent functions. However, while the growing literature covers complex neuronal interactions, little is known about the sustaining hippocampal microcirculation. Here we examined vasoconstriction to physiological pressures of hippocampal arterioles, a fundamental feature of small arteries, in a genetic mouse model of CADASIL, an archetypal cerebral small vessel disease. Using diameter and membrane potential recordings on isolated arterioles, we observed both blunted pressure-induced vasoconstriction and smooth muscle cell depolarization in CADASIL. This impairment was abolished in the presence of voltage-gated potassium (KV1) channel blocker 4-aminopyridine, or by application of heparin-binding EGF-like growth factor (HB-EGF), which promotes KV1 channel down-regulations. Interestingly, we observed that HB-EGF induced a depolarization of the myocyte plasma membrane within the arteriolar wall in CADASIL, but not wild-type, arterioles. Collectively, our results indicate that hippocampal arterioles in CADASIL mice display a blunted contractile response to luminal pressure, similar to the defect we previously reported in cortical arterioles and pial arteries, that is rescued by HB-EGF. Hippocampal vascular dysfunction in CADASIL could then contribute to the decreased vascular reserve associated with decreased cognitive performance, and its correction may provide a therapeutic option for treating vascular cognitive impairment.
Collapse
Affiliation(s)
- Jackson T Fontaine
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amanda C Rosehart
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne Joutel
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA; Institute of Psychiatry and Neurosciences of Paris, INSERM UMR1266, University of Paris, GHU Paris Psychiatrie et Neurosciences, France
| | - Fabrice Dabertrand
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Quelhas P, Baltazar G, Cairrao E. The Neurovascular Unit: Focus on the Regulation of Arterial Smooth Muscle Cells. Curr Neurovasc Res 2020; 16:502-515. [PMID: 31738142 DOI: 10.2174/1567202616666191026122642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/01/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is a physiological unit present in the brain, which is constituted by elements of the nervous system (neurons and astrocytes) and the vascular system (endothelial and mural cells). This unit is responsible for the homeostasis and regulation of cerebral blood flow. There are two major types of mural cells in the brain, pericytes and smooth muscle cells. At the arterial level, smooth muscle cells are the main components that wrap around the outside of cerebral blood vessels and the major contributors to basal tone maintenance, blood pressure and blood flow distribution. They present several mechanisms by which they regulate both vasodilation and vasoconstriction of cerebral blood vessels and their regulation becomes even more important in situations of injury or pathology. In this review, we discuss the main regulatory mechanisms of brain smooth muscle cells and their contributions to the correct brain homeostasis.
Collapse
Affiliation(s)
- Patrícia Quelhas
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Graça Baltazar
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| |
Collapse
|
11
|
Aleksandrowicz M, Kozniewska E. Compromised regulation of the rat brain parenchymal arterioles in vasopressin-associated acute hyponatremia. Microcirculation 2020; 27:e12644. [PMID: 32603523 DOI: 10.1111/micc.12644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/21/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In this study, we examined the effect of acute hyponatremia associated with vasopressin (AVP) on the responses of the isolated rat's MCAs and PAs to acidosis, nitric oxide donor (SNAP) and to endothelium-dependent vasodilator ATP. METHODS The studies were performed on isolated, perfused and pressurized MCAs and PAs in control conditions and during AVP-associated hyponatremia. Hyponatremia was induced in vitro by lowering Na+ concentration from 144 to 121 mmol/L in intra- and extravascular fluid in the presence of AVP. RESULTS Parenchymal arterioles showed greater response to an increase in H+ and K+ ions concentration and to ATP in comparison with MCAs in control normonatremic conditions. Both PAs and MCAs constricted in response to acute hyponatremia associated with AVP. Interestingly, disordered regulation of vascular tone was observed in PAs but not in MCAs. The abnormalities in the regulation comprised a significant reduction of PA response to acidosis and the absence of the response to the administration of SNAP or ATP. CONCLUSIONS Arginine vasopressin-associated hyponatremia leads to constriction and dysregulation of PAs which may impair neurovascular coupling.
Collapse
Affiliation(s)
- Marta Aleksandrowicz
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Kozniewska
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
12
|
Significant reduction of vascular reactivity with dantrolene and nimodipine in diabetic rats: a potential approach to cerebral vasospasm management in diabetes. Pharmacol Rep 2019; 72:126-134. [PMID: 32016838 DOI: 10.1007/s43440-019-00038-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Diabetics have a higher risk of developing cerebral vasospasms (CVSPs) than non-diabetics. Current therapies are ineffective in reducing CVSPs, but a a combination of dantrolene and nimodipine may be a viable treatment. Considering the potentially harmful secondary effects of dantrolene, however, we evaluated the efficacy of 10 μM dantrolene compared to 50 μM dantrolene alone or in combination with 50 nM nimodipine. METHODS Dose-response curves for the phenylephrine (PHE)-induced contraction and acetylcholine (ACh)-induced relaxation were performed on aortic rings from diabetic and non-diabetic rats, before and after a 30-min incubation period with dantrolene (50 μM and 10 μM), alone or in combination with 50 nM nimodipine. RESULTS Whereas 50 μM dantrolene reduced PHE-induced contraction by 47% in diabetic rats and 29% in controls, 10 μM dantrolene failed to reduce this parameter in either group. Furthermore, 50 μM dantrolene reduced PHE-induced contraction by about 80% in both diabetic and controls when combined with nimodipine (N = 9, P < 0.05). The combination of 10 μM dantrolene and 50 nM nimodipine, however, was ineffective. Only 50 μM dantrolene improved endothelial dysfunction. CONCLUSIONS Improved endothelial-dependent relaxation and reduced vascular contractility with dantrolene are dose dependent. Thus, although dantrolene appears to be a promising alternative for the treatment of CVSPs when added to conventional therapies, careful titration should be performed to achieve a significant reduction in vascular hyperreactivity. Moreover, if our findings with rats are applicable to humans, the combined use of dantrolene and nimodipine at optimal doses may reduce CVSPs, especially in the diabetic population.
Collapse
|
13
|
Wang N, He D, Zhou Y, Wen J, Liu X, Li P, Yang Y, Cheng J. Hydroxysafflor yellow A actives BK Ca channels and inhibits L-type Ca channels to induce vascular relaxation. Eur J Pharmacol 2019; 870:172873. [PMID: 31866408 DOI: 10.1016/j.ejphar.2019.172873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022]
Abstract
Hydroxy-safflor yellow A (HSYA) can exert a variety of effects upon the vascular system. However, the underlying mechanisms are not clear. The present study is to investigate its vasodilating effect and the mechanisms. Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were enrolled for studying effects of HSYA on blood pressure, vasodilation, intracellular Ca2+ transient and membrane ion channels. Vasodilation and intracellular Ca2+ transient were measured by using vasomotor assay and fluorescence imaging system, respectively. The effect of HSYA on the large conductance Ca2+ activated and voltage-gated potassium channel (BKCa channel) currents in rat mesentery artery and on L-type calcium channel (Ca-L) currents in HEK293cells expressed with Ca-L were investigated using patch clamp techniques. Blood pressure of SHR and WKY rats were concentration dependently reduced by HSYA with a larger effect of HSYA in SHR than that in WKY rats. The tension of mesenteric arteries induced by 3 μM phenylephrine was attenuated by HSYA (IC50 = 90.8 μΜ). Patch clamp study showed that HSYA could activate BKCa channels and suppress Ca-L channels in a concentration dependent manner. The results of calcium signaling assays indicated that HSYA could reduce the intracellular free Ca2+ level. These findings demonstrate that HSYA could activate BKCa channels and inhibit Ca-L channels and reduce intracellular free Ca2+ level, which are probably important for its vasodilatory effect.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dongmei He
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuanqun Zhou
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Wen
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaoqin Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
14
|
Rosehart AC, Johnson AC, Dabertrand F. Ex Vivo Pressurized Hippocampal Capillary-Parenchymal Arteriole Preparation for Functional Study. J Vis Exp 2019. [PMID: 31904015 DOI: 10.3791/60676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
From subtle behavioral alterations to late-stage dementia, vascular cognitive impairment typically develops following cerebral ischemia. Stroke and cardiac arrest are remarkably sexually dimorphic diseases, and both induce cerebral ischemia. However, progress in understanding the vascular cognitive impairment, and then developing sex-specific treatments, has been partly limited by challenges in investigating the brain microcirculation from mouse models in functional studies. Here, we present an approach to examine the capillary-to-arteriole signaling in an ex vivo hippocampal capillary-parenchymal arteriole (HiCaPA) preparation from mouse brain. We describe how to isolate, cannulate, and pressurize the microcirculation to measure arteriolar diameter in response to capillary stimulation. We show which appropriate functional controls can be used to validate the HiCaPA preparation integrity and display typical results, including testing potassium as a neurovascular coupling agent and the effect of the recently characterized inhibitor of the Kir2 inward rectifying potassium channel family, ML133. Further, we compare the responses in preparations obtained from male and female mice. While these data reflect functional investigations, our approach can also be used in molecular biology, immunochemistry, and electrophysiology studies.
Collapse
Affiliation(s)
- Amanda C Rosehart
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus
| | - Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine
| | - Fabrice Dabertrand
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus; Department of Pharmacology, University of Colorado Anschutz Medical Campus;
| |
Collapse
|
15
|
Degovics D, Hartmann P, Németh IB, Árva-Nagy N, Kaszonyi E, Szél E, Strifler G, Bende B, Krenács L, Kemény L, Erős G. A novel target for the promotion of dermal wound healing: Ryanodine receptors. Toxicol Appl Pharmacol 2019; 366:17-24. [PMID: 30684528 DOI: 10.1016/j.taap.2019.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
Ryanodine receptors have an important role in the regulation of intracellular calcium levels in the nervous system and muscle. It has been described that ryanodine receptors influence keratinocyte differentiation and barrier homeostasis. Our goal was to examine the role of ryanodine receptors in the healing of full-thickness dermal wounds by means of in vitro and in vivo methods. The effect of ryanodine receptors on wound healing, microcirculation and inflammation was assessed in an in vivo mouse wound healing model, using skin fold chambers in the dorsal region, and in HaCaT cell scratch wound assay in vitro. SKH-1 mice were subjected to sterile saline (n = 36) or ryanodine receptor agonist 4-chloro-m-cresol (0.5 mM) (n = 42) or ryanodine receptor antagonist dantrolene (100 μM) (n = 42). Application of ryanodine receptor agonist 4-chloro-m-cresol did not influence the studied parameters significantly, whereas ryanodine receptor antagonist dantrolene accelerated the wound closure. Inhibition of the calcium channel also increased the vessel diameters in the wound edges during the process of healing and increased the blood flow in the capillaries at all times of measurement. Furthermore, application of dantrolene decreased xanthine-oxidoreductase activity during the inflammatory phase of wound healing. Inhibition of ryanodine receptor-mediated effects positively influence wound healing. Thus, dantrolene may be of therapeutic potential in the treatment of wounds.
Collapse
Affiliation(s)
- Döníz Degovics
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.
| | - Petra Hartmann
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Noémi Árva-Nagy
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Enikő Kaszonyi
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Edit Szél
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Gerda Strifler
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Balázs Bende
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - László Krenács
- Laboratory of Tumour Pathology and Molecular Diagnostics, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Gábor Erős
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| |
Collapse
|
16
|
Koide M, Moshkforoush A, Tsoukias NM, Hill-Eubanks DC, Wellman GC, Nelson MT, Dabertrand F. The yin and yang of K V channels in cerebral small vessel pathologies. Microcirculation 2018; 25. [PMID: 29247493 DOI: 10.1111/micc.12436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
Cerebral SVDs encompass a group of genetic and sporadic pathological processes leading to brain lesions, cognitive decline, and stroke. There is no specific treatment for SVDs, which progress silently for years before becoming clinically symptomatic. Here, we examine parallels in the functional defects of PAs in CADASIL, a monogenic form of SVD, and in response to SAH, a common type of hemorrhagic stroke that also targets the brain microvasculature. Both animal models exhibit dysregulation of the voltage-gated potassium channel, KV 1, in arteriolar myocytes, an impairment that compromises responses to vasoactive stimuli and impacts CBF autoregulation and local dilatory responses to neuronal activity (NVC). However, the extent to which this channelopathy-like defect ultimately contributes to these pathologies is unknown. Combining experimental data with computational modeling, we describe the role of KV 1 channels in the regulation of myocyte membrane potential at rest and during the modest increase in extracellular potassium associated with NVC. We conclude that PA resting membrane potential and myogenic tone depend strongly on KV 1.2/1.5 channel density, and that reciprocal changes in KV channel density in CADASIL and SAH produce opposite effects on extracellular potassium-mediated dilation during NVC.
Collapse
Affiliation(s)
- Masayo Koide
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Arash Moshkforoush
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Nikolaos M Tsoukias
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | | | - George C Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, USA.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
17
|
Crespo MJ, Roman M, Matias J, Morales M, Torres H, Quidgley J. Synergistic Effects of Dantrolene and Nimodipine on the Phenylephrine-Induced Contraction and ACh-Induced Relaxation in Aortic Rings from Diabetic Rats. Int J Endocrinol 2018; 2018:9790303. [PMID: 29849627 PMCID: PMC5933070 DOI: 10.1155/2018/9790303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 12/24/2022] Open
Abstract
Diabetics have a higher risk of developing cerebral vasospasms (CVSP) than nondiabetics. The addition of the ryanodine receptor (RyR) blocker dantrolene to standard therapies reduces vasospasms in nondiabetics. Whether diabetics with CVSP also benefit from this drug, however, is unknown. We evaluated the effects of a 30 min incubation with dantrolene (50 μM), nimodipine (50 nM), and both drugs in combination, on phenylephrine- (PHE-) induced contraction and on acetylcholine- (ACh-) induced relaxation in aortic rings from streptozotocin (STZ) diabetic rats. Age-matched, nondiabetic rats served as controls. The oxidative stress markers malondialdehyde (MDA) and 4-hydroxyalkenal (4-HAE) were also evaluated in the presence and absence of dantrolene and nimodipine. The combination of these two drugs acted synergistically to reduce the PHE-induced contraction by 80% in both diabetics and controls. In contrast, it increased the Emax value for ACh-induced relaxation (from 56.46 ± 5.14% to 96.21 ± 7.50%; n = 6, P < 0.05), and it decreased MDA + 4-HAE values in diabetic rats only. These results suggest that the combination of dantrolene and nimodipine benefits both diabetics and nondiabetics by decreasing arterial tone synergistically.
Collapse
Affiliation(s)
- Maria J. Crespo
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR, USA
- Department of Anesthesiology, University of Puerto Rico-School of Medicine, San Juan, PR, USA
| | - Marie Roman
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR, USA
| | - Jonathan Matias
- Department of Anesthesiology, University of Puerto Rico-School of Medicine, San Juan, PR, USA
| | - Myrna Morales
- Department of Anesthesiology, University of Puerto Rico-School of Medicine, San Juan, PR, USA
| | - Hector Torres
- Department of Anesthesiology, University of Puerto Rico-School of Medicine, San Juan, PR, USA
| | - Jose Quidgley
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR, USA
| |
Collapse
|
18
|
Kalicka R, Mazur K, Wolf J, Frydrychowski AF, Narkiewicz K, Winklewski PJ. Modelling of subarachnoid space width changes in apnoea resulting as a function of blood flow parameters. Microvasc Res 2017; 113:16-21. [DOI: 10.1016/j.mvr.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 11/30/2022]
|
19
|
Toussay X, Morel JL, Biendon N, Rotureau L, Legeron FP, Boutonnet MC, Cho YH, Macrez N. Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries. Neurobiol Aging 2017; 58:201-212. [PMID: 28753475 DOI: 10.1016/j.neurobiolaging.2017.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca2+) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca2+-release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca2+ signals in PS1dE9 mutant mice.
Collapse
Affiliation(s)
- Xavier Toussay
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - Jean-Luc Morel
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nathalie Biendon
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Lolita Rotureau
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - François-Pierre Legeron
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Marie-Charlotte Boutonnet
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Yoon H Cho
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Nathalie Macrez
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| |
Collapse
|
20
|
Hendrix P, Foreman PM, Harrigan MR, Fisher WS, Vyas NA, Lipsky RH, Lin M, Walters BC, Tubbs RS, Shoja MM, Pittet JF, Mathru M, Griessenauer CJ. Ryanodine Receptor 1 Polymorphism Is Not Associated with Aneurysmal Subarachnoid Hemorrhage or its Clinical Sequelae. World Neurosurg 2017; 100:190-194. [PMID: 28087430 DOI: 10.1016/j.wneu.2016.12.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The pathophysiologic mechanisms underlying cerebral vasospasm after aneurysmal subarachnoid hemorrhage (aSAH) remain poorly understand. Ryanodine receptors (RYR) are intracellular calcium channels involved in the regulation of vascular smooth muscle cells and cerebrovascular tone and diameter. Previous work reported an association between an RYR polymorphism and cerebral vasospasm. Here, we sought to assess the impact of that RYR polymorphism on aSAH and its clinical sequelae. METHODS Blood samples from all patients enrolled in the CARAS (Cerebral Aneurysm Renin Angiotensin System) study were used for genetic evaluation. The RYR1 single nucleotide polymorphism (SNP) rs35364374 was detected using 5'exonuclease (Taqman) genotyping assays. Associations between the RYR1 polymorphism and aSAH and its clinical sequelae were analyzed. RESULTS Samples from 149 patients with aSAH and 50 controls were available for analysis. Multivariable regression analysis did not show an association of RYR1 SNP rs35364374 with aSAH. Moreover, there was no association of RYR1 SNP rs35364374 with clinical vasospasm, delayed cerebral ischemia, functional outcome at discharge, or functional outcome at last follow-up. CONCLUSIONS Contrary to a previous report, the RYR1 SNP rs35364374 was not associated with aSAH or its clinical sequelae.
Collapse
Affiliation(s)
- Philipp Hendrix
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg/Saar, Germany.
| | - Paul M Foreman
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, USA
| | - Mark R Harrigan
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, USA
| | - Winfield S Fisher
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, USA
| | - Nilesh A Vyas
- Department of Neurosciences, Inova Health System, Falls Church, Virginia, USA
| | - Robert H Lipsky
- Department of Neurosciences, Inova Health System, Falls Church, Virginia, USA; Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia, USA
| | - Minkuan Lin
- Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia, USA
| | - Beverly C Walters
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, USA; Department of Neurosciences, Inova Health System, Falls Church, Virginia, USA; Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia, USA
| | - R Shane Tubbs
- Seattle Science Foundation, Seattle, Washington, USA
| | - Mohammadali M Shoja
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mali Mathru
- Department of Anesthesiology, University of Alabama at Birmingham, Alabama, USA
| | - Christoph J Griessenauer
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Geisinger Health System, Danville, Pennsylvania, USA
| |
Collapse
|
21
|
Bukiya AN, Seleverstov O, Bisen S, Dopico AM. Age-Dependent Susceptibility to Alcohol-Induced Cerebral Artery Constriction. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2016; 5:236002. [PMID: 29391966 PMCID: PMC5790172 DOI: 10.4303/jdar/236002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Age has been recognized as an important contributor into susceptibility to alcohol-driven pathology. PURPOSE We aimed at determining whether alcohol-induced constriction of cerebral arteries was age-dependent. STUDY DESIGN We used rat middle cerebral artery (MCA) in vitro diameter monitoring, patch-clamping and fluorescence labeling of myocytes to study an age-dependent increase in the susceptibility to alcohol in 3 (50 g), 8 (250 g), and 15 (440 g) weeks-old rats. RESULTS An age-dependent increase in alcohol-induced constriction of MCA could be observed in absence of endothelium, which is paralleled by an age-dependent increase in both protein level of the calcium-/voltage-gated potassium channel of large conductance (BK) accessory β1 subunit and basal BK channel activity. Ethanol-induced BK channel inhibition is increased with age. CONCLUSIONS We demonstrate an increased susceptibility of MCA to ethanol-induced constriction in a period equivalent to adolescence and early adulthood when compared to pre-adolescence. Our work suggests that BK β1 constitutes a significant contributor to age-dependent changes in the susceptibility of cerebral arteries to ethanol.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Olga Seleverstov
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Shivantika Bisen
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Alex M Dopico
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
22
|
Pires PW, Dabertrand F, Earley S. Isolation and Cannulation of Cerebral Parenchymal Arterioles. J Vis Exp 2016. [PMID: 27286481 DOI: 10.3791/53835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intracerebral parenchymal arterioles (PAs), which include parenchymal arterioles, penetrating arterioles and pre-capillary arterioles, are high resistance blood vessels branching out from pial arteries and arterioles and diving into the brain parenchyma. Individual PA perfuse a discrete cylindrical territory of the parenchyma and the neurons contained within. These arterioles are a central player in the regulation of cerebral blood flow both globally (cerebrovascular autoregulation) and locally (functional hyperemia). PAs are part of the neurovascular unit, a structure that matches regional blood flow to metabolic activity within the brain and also includes neurons, interneurons, and astrocytes. Perfusion through PAs is directly linked to the activity of neurons in that particular territory and increases in neuronal metabolism lead to an augmentation in local perfusion caused by dilation of the feed PA. Regulation of PAs differs from that of better-characterized pial arteries. Pressure-induced vasoconstriction is greater in PAs and vasodilatory mechanisms vary. In addition, PAs do not receive extrinsic innervation from perivascular nerves - innervation is intrinsic and indirect in nature through contact with astrocytic endfeet. Thus, data regarding contractile regulation accumulated by studies using pial arteries does not directly translate to understanding PA function. Further, it remains undetermined how pathological states, such as hypertension and diabetes, affect PA structure and reactivity. This knowledge gap is in part a consequence of the technical difficulties pertaining to PA isolation and cannulation. In this manuscript we present a protocol for isolation and cannulation of rodent PAs. Further, we show examples of experiments that can be performed with these arterioles, including agonist-induced constriction and myogenic reactivity. Although the focus of this manuscript is on PA cannulation and pressure myography, isolated PAs can also be used for biochemical, biophysical, molecular, and imaging studies.
Collapse
Affiliation(s)
- Paulo W Pires
- Department of Pharmacology, University of Nevada School of Medicine
| | | | - Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine;
| |
Collapse
|
23
|
Gebremedhin D, Zhang DX, Carver KA, Rau N, Rarick KR, Roman RJ, Harder DR. Expression of CYP 4A ω-hydroxylase and formation of 20-hydroxyeicosatetreanoic acid (20-HETE) in cultured rat brain astrocytes. Prostaglandins Other Lipid Mediat 2016; 124:16-26. [PMID: 27174801 DOI: 10.1016/j.prostaglandins.2016.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023]
Abstract
Astrocytes secrete vasodilator and vasoconstrictor factors via end feet processes, altering blood flow to meet neuronal metabolic demand. Compared to what is known about the ability of astrocytes to release factors that dilate local cerebral vasculature, very little is known regarding the source and identity of astrocyte derived constricting factors. The present study investigated if astrocytes express CYP 4A ω-hydroxylase and metabolize arachidonic acid (AA) to 20-hydroxyeicotetraenoic acid (20-HETE) that regulates KCa channel activity in astrocytes and cerebral arterial myocyte contractility. Here we report that cultured astrocytes express CYP 4A2/3 ω-hydroxylase mRNA and CYP 4A protein and produce 20-HETE and the CYP epoxygenase metabolites epoxyeicosatrienoic acids (EETs) when incubated with AA. The production of 20-HETE and EETs was enhanced following stimulation of metabotropic glutamate receptors (mGluR) on the astrocytes. Exogenous application of 20-HETE attenuated, whereas inhibition of 20-HETE production with HET-0016 increased the open state probabilities (NPo) of 71pS and 161pS KCa single-channel currents recorded from astrocytes. Exposure of isolated cerebral arterial myocytes to conditioned media from cultured astrocytes caused shortening of the length of freshly isolated cerebral arterial myocytes that was not evident following inhibition of astrocyte 20-HETE synthesis and action. These findings suggest that astrocytes not only release vasodilator EETs in response to mGluR stimulation but also synthetize and release the cerebral arterial myocyte constrictor 20-HETE that also functions as an endogenous inhibitor of the activity of two types of KCa channel currents found in astrocytes.
Collapse
Affiliation(s)
- Debebe Gebremedhin
- Department of Physiology, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - David X Zhang
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Koryn A Carver
- Department of Physiology, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Nicole Rau
- Department of Physiology, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Kevin R Rarick
- Department of Physiology, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - David R Harder
- Department of Physiology, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Clement Zablocki VA Medical Center, Milwaukee, WI 53226, United States.
| |
Collapse
|
24
|
Lin AHY, Sun H, Paudel O, Lin MJ, Sham JSK. Conformation of ryanodine receptor-2 gates store-operated calcium entry in rat pulmonary arterial myocytes. Cardiovasc Res 2016; 111:94-104. [PMID: 27013634 DOI: 10.1093/cvr/cvw067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS Store-operated Ca(2+) entry (SOCE) contributes to a multitude of physiological and pathophysiological functions in pulmonary vasculatures. SOCE attributable to inositol 1,4,5-trisphosphate receptor (InsP3R)-gated Ca(2+) store has been studied extensively, but the role of ryanodine receptor (RyR)-gated store in SOCE remains unclear. The present study aims to delineate the relationship between RyR-gated Ca(2+) stores and SOCE, and characterize the properties of RyR-gated Ca(2+) entry in pulmonary artery smooth muscle cells (PASMCs). METHODS AND RESULTS PASMCs were isolated from intralobar pulmonary arteries of male Wister rats. Application of the RyR1/2 agonist 4-chloro-m-cresol (4-CmC) activated robust Ca(2+) entry in PASMCs. It was blocked by Gd(3+) and the RyR2 modulator K201 but was unaffected by the RyR1/3 antagonist dantrolene and the InsP3R inhibitor xestospongin C, suggesting RyR2 is mainly involved in the process. siRNA knockdown of STIM1, TRPC1, and Orai1, or interruption of STIM1 translocation with ML-9 significantly attenuated the 4-CmC-induced SOCE, similar to SOCE induced by thapsigargin. However, depletion of RyR-gated store with caffeine failed to activate Ca(2+) entry. Inclusion of ryanodine, which itself did not cause Ca(2+) entry, uncovered caffeine-induced SOCE in a concentration-dependent manner, suggesting binding of ryanodine to RyR is permissive for the process. This Ca(2+) entry had the same molecular and pharmacological properties of 4-CmC-induced SOCE, and it persisted once activated even after caffeine washout. Measurement of Ca(2+) in sarcoplasmic reticulum (SR) showed that 4-CmC and caffeine application with or without ryanodine reduced SR Ca(2+) to similar extent, suggesting store-depletion was not the cause of the discrepancy. Moreover, caffeine/ryanodine and 4-CmC failed to initiate SOCE in cells transfected with the ryanodine-binding deficient mutant RyR2-I4827T. CONCLUSIONS RyR2-gated Ca(2+) store contributes to SOCE in PASMCs; however, store-depletion alone is insufficient but requires a specific RyR conformation modifiable by ryanodine binding to activate Ca(2+) entry.
Collapse
Affiliation(s)
- Amanda H Y Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Hui Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Omkar Paudel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Mo-Jun Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| |
Collapse
|
25
|
Longden TA, Hill-Eubanks DC, Nelson MT. Ion channel networks in the control of cerebral blood flow. J Cereb Blood Flow Metab 2016; 36:492-512. [PMID: 26661232 PMCID: PMC4794103 DOI: 10.1177/0271678x15616138] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/17/2015] [Accepted: 10/14/2015] [Indexed: 12/26/2022]
Abstract
One hundred and twenty five years ago, Roy and Sherrington made the seminal observation that neuronal stimulation evokes an increase in cerebral blood flow.(1) Since this discovery, researchers have attempted to uncover how the cells of the neurovascular unit-neurons, astrocytes, vascular smooth muscle cells, vascular endothelial cells and pericytes-coordinate their activity to control this phenomenon. Recent work has revealed that ionic fluxes through a diverse array of ion channel species allow the cells of the neurovascular unit to engage in multicellular signaling processes that dictate local hemodynamics.In this review we center our discussion on two major themes: (1) the roles of ion channels in the dynamic modulation of parenchymal arteriole smooth muscle membrane potential, which is central to the control of arteriolar diameter and therefore must be harnessed to permit changes in downstream cerebral blood flow, and (2) the striking similarities in the ion channel complements employed in astrocytic endfeet and endothelial cells, enabling dual control of smooth muscle from either side of the blood-brain barrier. We conclude with a discussion of the emerging roles of pericyte and capillary endothelial cell ion channels in neurovascular coupling, which will provide fertile ground for future breakthroughs in the field.
Collapse
Affiliation(s)
- Thomas A Longden
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, USA Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Salmina AB, Komleva YK, Szijártó IA, Gorina YV, Lopatina OL, Gertsog GE, Filipovic MR, Gollasch M. H2S- and NO-Signaling Pathways in Alzheimer's Amyloid Vasculopathy: Synergism or Antagonism? Front Physiol 2015; 6:361. [PMID: 26696896 PMCID: PMC4675996 DOI: 10.3389/fphys.2015.00361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/16/2015] [Indexed: 12/02/2022] Open
Abstract
Alzheimer's type of neurodegeneration dramatically affects H2S and NO synthesis and interactions in the brain, which results in dysregulated vasomotor function, brain tissue hypoperfusion and hypoxia, development of perivascular inflammation, promotion of Aβ deposition, and impairment of neurogenesis/angiogenesis. H2S- and NO-signaling pathways have been described to offer protection against Alzheimer's amyloid vasculopathy and neurodegeneration. This review describes recent developments of the increasing relevance of H2S and NO in Alzheimer's disease (AD). More studies are however needed to fully determine their potential use as therapeutic targets in Alzheimer's and other forms of vascular dementia.
Collapse
Affiliation(s)
- Alla B. Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Yulia K. Komleva
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - István A. Szijártó
- Experimental and Clinical Research Center, Charité - University Medicine Berlin and the Max Delbrück Center for Molecular MedicineBerlin, Germany
| | - Yana V. Gorina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Olga L. Lopatina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina E. Gertsog
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Milos R. Filipovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-NürnbergErlangen, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center, Charité - University Medicine Berlin and the Max Delbrück Center for Molecular MedicineBerlin, Germany
| |
Collapse
|
27
|
Pires PW, Sullivan MN, Pritchard HAT, Robinson JJ, Earley S. Unitary TRPV3 channel Ca2+ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles. Am J Physiol Heart Circ Physiol 2015; 309:H2031-41. [PMID: 26453324 DOI: 10.1152/ajpheart.00140.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023]
Abstract
Cerebral parenchymal arterioles (PA) regulate blood flow between pial arteries on the surface of the brain and the deeper microcirculation. Regulation of PA contractility differs from that of pial arteries and is not completely understood. Here, we investigated the hypothesis that the Ca(2+) permeable vanilloid transient receptor potential (TRPV) channel TRPV3 can mediate endothelium-dependent dilation of cerebral PA. Using total internal reflection fluorescence microscopy (TIRFM), we found that carvacrol, a monoterpenoid compound derived from oregano, increased the frequency of unitary Ca(2+) influx events through TRPV3 channels (TRPV3 sparklets) in endothelial cells from pial arteries and PAs. Carvacrol-induced TRPV3 sparklets were inhibited by the selective TRPV3 blocker isopentenyl pyrophosphate (IPP). TRPV3 sparklets have a greater unitary amplitude (ΔF/F0 = 0.20) than previously characterized TRPV4 (ΔF/F0 = 0.06) or TRPA1 (ΔF/F0 = 0.13) sparklets, suggesting that TRPV3-mediated Ca(2+) influx could have a robust influence on cerebrovascular tone. In pressure myography experiments, carvacrol caused dilation of cerebral PA that was blocked by IPP. Carvacrol-induced dilation was nearly abolished by removal of the endothelium and block of intermediate (IK) and small-conductance Ca(2+)-activated K(+) (SK) channels. Together, these data suggest that TRPV3 sparklets cause dilation of cerebral parenchymal arterioles by activating IK and SK channels in the endothelium.
Collapse
Affiliation(s)
- Paulo W Pires
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, Nevada; and
| | - Michelle N Sullivan
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, Nevada; and Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Harry A T Pritchard
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, Nevada; and
| | - Jennifer J Robinson
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, Nevada; and
| |
Collapse
|
28
|
Martin DS, Wang X. The COP9 signalosome and vascular function: intriguing possibilities? AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2015; 5:33-52. [PMID: 26064791 PMCID: PMC4460692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
Disorders of vascular function contribute importantly to cardiovascular disease which represents a substantial cause of morbidity and mortality worldwide. An emerging paradigm in the study of cardiovascular diseases is that protein ubiquitination and turnover represent key pathological mechanisms. Our understanding of these processes in the vasculature is growing but remains incomplete. Since protein ubiquitination and turnover can represent a terminal event in the life of a given protein, entry into these pathways must be highly regulated. However, at present understanding of these regulatory mechanisms, particularly in the vasculature, is fragmentary. The COP9 (constitutive photomorphogenic mutant 9) signalosome (CSN) is a heteromeric protein complex implicated in the control of protein degradation. The CSN participates critically in the control of Cullin Ring Ligases (CRLs), at least in part via the detachment of a small protein, Nedd8 (deneddylation). CRLs are one of the largest groups of ubiquitin ligases, which represent the most selective control point for protein ubiquitination. Thus, the CSN by virtue of its ability to control the CRLs ubiquitin ligase activity is ideally positioned to effect selective modulation of protein turnover. This review surveys currently available data regarding the potential role of the CSN in control of vascular function. Data potentially linking the CSN to control of regulatory proteins involved in vascular smooth muscle proliferation and to vascular smooth muscle contraction are presented with the intent of providing potentially intriguing possibilities for future investigation.
Collapse
Affiliation(s)
- Douglas S Martin
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota Vermillion, SD 57069, USA
| |
Collapse
|
29
|
Boursereau R, Donadieu A, Dabertrand F, Dubayle D, Morel JL. Blood brain barrier precludes the cerebral arteries to intravenously-injected antisense oligonucleotide. Eur J Pharmacol 2014; 747:141-9. [PMID: 25510229 DOI: 10.1016/j.ejphar.2014.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022]
Abstract
Alternative splicing of the ryanodine receptor subtype 3 (RyR3) produces a short isoform (RyR3S) able to negatively regulate the ryanodine receptor subtype 2 (RyR2), as shown in cultured smooth muscle cells from mice. The RyR2 subtype has a crucial role in the control of vascular reactivity via the fine tuning of Ca(2+) signaling to regulate cerebral vascular tone. In this study, we have shown that the inhibition of RyR3S expression by a specific antisense oligonucleotide (asRyR3S) was able to increase the Ca(2+) signals implicating RyR2 in cerebral arteries ex vivo. Moreover, we tried to inhibit the expression of RyR3S in vivo. The asRyR3S was complexed with JetPEI and injected intravenously coupled with several methods known to induce a blood brain barrier disruption. We tested solutions to induce osmotic choc (mannitol), inflammation (bacteria lipopolysaccharide and pertussis toxin), vasoconstriction or dilatation (sumatriptan, phenylephrine, histamine), CD73 activation (NECA) and lipid instability (Tween80). All tested technics failed to target asRyR3 in the cerebral arteries wall, whereas the molecule was included in hepatocytes or cardiomyocytes. Our results showed that the RyR3 alternative splicing could have a function in cerebral arteries ex vivo; however, the disruption of the blood brain barrier could not induce the internalization of antisense oligonucleotides in the cerebral arteries, in order to prove the function of RYR3 short isoform in vivo.
Collapse
Affiliation(s)
- Raphael Boursereau
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Arnaud Donadieu
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Fabrice Dabertrand
- University of Vermont, Department of Pharmacology, UVM College of Medicine, Burlington, VT, USA.
| | - David Dubayle
- Centre de Neurophysique, Physiologie, Pathologie, CNRS UMR 8119, Faculté des Sciences fondamentales et Biomédicales, Université Paris Descartes, 45, rue des Saints-Pères, 75006 Paris, France.
| | - Jean-Luc Morel
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
30
|
Khadka S, Narayanan B, Meda SA, Gelernter J, Han S, Sawyer B, Aslanzadeh F, Stevens MC, Hawkins KA, Anticevic A, Potenza MN, Pearlson GD. Genetic association of impulsivity in young adults: a multivariate study. Transl Psychiatry 2014; 4:e451. [PMID: 25268255 PMCID: PMC4199418 DOI: 10.1038/tp.2014.95] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 02/07/2023] Open
Abstract
Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype-phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors.
Collapse
Affiliation(s)
- S Khadka
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
| | - B Narayanan
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
| | - S A Meda
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
| | - J Gelernter
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - S Han
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Iowa Carver
College of Medicine, Iowa City, IA, USA
| | - B Sawyer
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
| | - F Aslanzadeh
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
| | - M C Stevens
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - K A Hawkins
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - A Anticevic
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - M N Potenza
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of
Medicine, New Haven, CT, USA
| | - G D Pearlson
- Olin Neuropsychiatry Research Center/Institute of
Living, Hartford Healthcare, Hartford, CT, USA
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of
Medicine, New Haven, CT, USA
| |
Collapse
|
31
|
Shirvanyants D, Ramachandran S, Mei Y, Xu L, Meissner G, Dokholyan NV. Pore dynamics and conductance of RyR1 transmembrane domain. Biophys J 2014; 106:2375-84. [PMID: 24896116 PMCID: PMC4052289 DOI: 10.1016/j.bpj.2014.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022] Open
Abstract
Ryanodine receptors (RyR) are calcium release channels, playing a major role in the regulation of muscular contraction. Mutations in skeletal muscle RyR (RyR1) are associated with congenital diseases such as malignant hyperthermia and central core disease (CCD). The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Previously, we have reported a hypothetical structure of the RyR1 pore-forming region, obtained by homology modeling and supported by mutational scans, electrophysiological measurements, and cryo-electron microscopy. Here, we utilize the expanded model encompassing six transmembrane helices to calculate the RyR1 pore region conductance, to analyze its structural stability, and to hypothesize the mechanism of the Ile4897 CCD-associated mutation. The calculated conductance of the wild-type RyR1 suggests that the proposed pore structure can sustain ion currents measured in single-channel experiments. We observe a stable pore structure on timescales of 0.2 μs, with multiple cations occupying the selectivity filter and cytosolic vestibule, but not the inner chamber. We further suggest that stability of the selectivity filter critically depends on the interactions between the I4897 residue and several hydrophobic residues of the neighboring subunit. Loss of these interactions in the case of polar substitution I4897T results in destabilization of the selectivity filter, a possible cause of the CCD-specific reduced Ca(2+) conductance.
Collapse
Affiliation(s)
- David Shirvanyants
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Srinivas Ramachandran
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Yingwu Mei
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Le Xu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
32
|
Zhu Y, Wang QE, Wang Y, Gong YY, Sun XM, Lin L. Advanced glycation end products inhibit intracellular calcium concentration in colon smooth muscle cells in a protein kinase C-dependent manner. Shijie Huaren Xiaohua Zazhi 2014; 22:874-879. [DOI: 10.11569/wcjd.v22.i6.874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of advanced glycation end products (AGEs) on intracellular calcium concentration in isolated colonic smooth muscle cells and the possible mechanisms involved.
METHODS: Colonic smooth muscle cells were isolated from normal adult rats, and immumofluorescence staining for α-actin was used to identify smooth muscle cells. The responsiveness of colonic smooth muscle cells to AGEs was measured by confocal laser scanning microscopy. Intracellular Ca2+ concentration ([Ca2+]i) was determined by Fluo3/AM based digital microfluorimetric measurement. Protein kinase C (PKC) activity was detected by PKC activity assay. PKC inhibitor chelerythrine was used to examine the role of PKC in AGEs-mediated inhibition of [Ca2+]i in colonic smooth muscle cells.
RESULTS: Colonic smooth muscle cells were successfully isolated from normal rats and identified by immunofluorescence staining. AGEs inhibited [Ca2+]i in a concentration-dependent manner. AGEs at a concentration of 50 or 100 µg/mL significantly inhibited the mean [Ca2+]i compared with the control group (56.7% ± 3.6%, 78.6% ± 5% vs 99.6% ± 3.1%, P < 0.05, P < 0.01). PKC activity increased in SMCs treated with 50 µg/mL or 100 µg/mL of AGEs compared with the control group. Pretreatment with chelerythrine (1 µmol/L) reduced AGEs-mediated inhibition of [Ca2+]i (70.7% ± 3.7% vs 87.1% ± 2.5%, P < 0.05).
CONCLUSION: AGEs inhibit [Ca2+]i in colonic smooth muscle cells in a PKC-dependent manner.
Collapse
|
33
|
Earley S. Smooth muscle cell Ca²⁺: think locally, act globally. Microcirculation 2013; 20:279-80. [PMID: 23421765 DOI: 10.1111/micc.12049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 02/03/2023]
Abstract
Dynamic changes in intracellular Ca²⁺ levels in vascular smooth muscle cells are critically important for cardiovascular regulation. This Special Topic Issue highlights a series of expert opinion articles focused on this important subject. After a brief overview, novel discoveries surrounding smooth muscle cell Ca²⁺ influx via L-type and T-type channels are reviewed. Current work revealing the functional importance of dynamic Ca²⁺ signaling in the control of the parenchymal microvasculature and the emerging role of mitochondrial Ca²⁺ signaling and store-operated Ca²⁺ entry in smooth muscle cells is discussed. Finally, recent data describing a new target of localized Ca²⁺ signaling in arterial myocytes that is responsible for membrane depolarization is reviewed. Authors were encouraged to write in an opinionated and provocative manner with the hope of stimulating discussion in this area of research.
Collapse
Affiliation(s)
- Scott Earley
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|