1
|
Chapartegui-González I, Stockton JL, Bowser S, Badten AJ, Torres AG. Unraveling the role of toxin-antitoxin systems in Burkholderia pseudomallei: exploring bacterial pathogenesis and interactions within the HigBA families. Microbiol Spectr 2024; 12:e0074824. [PMID: 38916327 PMCID: PMC11302019 DOI: 10.1128/spectrum.00748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Burkholderia pseudomallei (Bpm) is a Gram-negative intracellular pathogen that causes melioidosis in humans, a neglected, underreported, and lethal disease that can reach a fatal outcome in over 50% of the cases. It can produce both acute and chronic infections, the latter being particularly challenging to eliminate because of the intracellular life cycle of the bacteria and its ability to generate a "persister" dormant state. The molecular mechanism that allows the switch between growing and persister phenotypes is not well understood but it is hypothesized to be due at least in part to the participation of toxin-antitoxin (TA) systems. We have previously studied the link between one of those systems (defined as HigBA) with specific expression patterns associated with levofloxacin antibiotic exposure. Through in silico methods, we predicted the presence of another three pairs of genes encoding for additional putative HigBA systems. Therefore, our main goal was to establish which mechanisms are conserved as well as which pathways are specific among different Bpm TA systems from the same family. We hypothesize that the high prevalence, and sometimes even redundancy of these systems in the Bpm chromosomes indicates that they can interact with each other and not function as only individual systems, as it was traditionally thought, and might be playing an undefined role in Bpm lifecycle. Here, we show that both the toxin and the antitoxin of the different systems contribute to bacterial survival and that toxins from the same family can have a cumulative effect under environmental stressful conditions. IMPORTANCE Toxin-antitoxin (TA) systems play a significant role in bacterial persistence, a phenomenon where bacterial cells enter a dormant or slow-growing state to survive adverse conditions such as nutrient deprivation, antibiotic exposure, or host immune responses. By studying TA systems in Burkholderia pseudomallei, we can gain insights into how this pathogen survives and persists in the host environment, contributing to its virulence and ability to cause melioidosis chronic infections.
Collapse
Affiliation(s)
| | - Jacob L. Stockton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sarah Bowser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander J. Badten
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Xu M, Liu M, Liu T, Pan X, Ren Q, Han T, Gou L. HigA2 (Rv2021c) Is a Transcriptional Regulator with Multiple Regulatory Targets in Mycobacterium tuberculosis. Microorganisms 2024; 12:1244. [PMID: 38930627 PMCID: PMC11205783 DOI: 10.3390/microorganisms12061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Toxin-antitoxin (TA) systems are the major mechanism for persister formation in Mycobacterium tuberculosis (Mtb). Previous studies found that HigBA2 (Rv2022c-Rv2021c), a predicted type II TA system of Mtb, could be activated for transcription in response to multiple stresses such as anti-tuberculosis drugs, nutrient starvation, endure hypoxia, acidic pH, etc. In this study, we determined the binding site of HigA2 (Rv2021c), which is located in the coding region of the upstream gene higB2 (Rv2022c), and the conserved recognition motif of HigA2 was characterized via oligonucleotide mutation. Eight binding sites of HigA2 were further found in the Mtb genome according to the conserved motif. RT-PCR showed that HigA2 can regulate the transcription level of all eight of these genes and three adjacent downstream genes. DNA pull-down experiments showed that twelve functional regulators sense external regulatory signals and may regulate the transcription of the HigBA2 system. Of these, Rv0903c, Rv0744c, Rv0474, Rv3124, Rv2603c, and Rv3583c may be involved in the regulation of external stress signals. In general, we identified the downstream target genes and possible upstream regulatory genes of HigA2, which paved the way for the illustration of the persistence establishment mechanism in Mtb.
Collapse
Affiliation(s)
- Mingyan Xu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Meikun Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Tong Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Xuemei Pan
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Qi Ren
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Tiesheng Han
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Lixia Gou
- School of Life Science, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
3
|
Sundaram K, Vajravelu LK, Velayutham R, Mohan U. Identification of Genes Encoded Toxin-Antitoxin System in Mycobacterium Tuberculosis Strains from Clinical Sample. Infect Disord Drug Targets 2024; 24:e140324227967. [PMID: 38486387 DOI: 10.2174/0118715265274164240117104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 09/04/2024]
Abstract
BACKGROUND The toxin-antitoxin system is a genetic element that is highly present in Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis. The toxin-antitoxin system comprises toxin protein and antitoxin protein or non-encoded RNA interacting with each other and inhibiting toxin activity. M. Tuberculosis has more classes of TA loci than non-tubercle bacilli and other microbes, including VapBC, HigBA, MazEF, ParDE, RelBE, MbcTA, PemIK, DarTG, MenTA, one tripartite type II TAC chaperone system, and hypothetical proteins. AIMS The study aims to demonstrate the genes encoded toxin-antitoxin system in mycobacterium tuberculosis strains from clinical samples. MATERIALS AND METHODS The pulmonary and extra-pulmonary tuberculosis clinical samples were collected, and smear microscopy (Ziehl-Neelsen staining) was performed for the detection of high bacilli (3+) count, followed by nucleic acid amplification assay. Bacterial culture and growth assay, genomic DNA extraction, and polymerase chain reaction were also carried out. RESULTS The positive PTB and EPTB samples were determined by 3+ in microscopy smear and the total count of tubercle bacilli determined by NAAT assay was 8.0×1005 in sputum and 1.3×1004 CFU/ml in tissue abscess. Moreover, the genomic DNA was extracted from culture, and the amplification of Rv1044 and Rv1045 genes in 624 and 412 base pairs (between 600-700 and 400-500 in ladder), respectively, in the H37Rv and clinical samples was observed. CONCLUSION It has been found that Rv1044 and Rv1045 are hypothetical proteins with 624 and 882 base pairs belonging to the AbiEi/AbiEii family of toxin-antitoxin loci. Moreover, the significant identification of TA-encoded loci genes may allow for the investigation of multidrugresistant and extensively drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Karthikeyan Sundaram
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, 603203, Tamilnadu, India
| | - Leela Kagithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, 603203, Tamilnadu, India
| | - Ravichandiran Velayutham
- Department of Natural Products, NIPER- Kolkata, Bengal chemicals, Chunilal Bhawan, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, NIPER- Kolkata, Bengal Chemicals, Chunilal Bhawan, Kankurgachi, Kolkata, 700054, West Bengal, India
| |
Collapse
|
4
|
Granados-Tristán AL, Hernández-Luna CE, González-Escalante LA, Camacho-Moll ME, Silva-Ramírez B, Bermúdez de León M, Peñuelas-Urquides K. ESX-3 secretion system in Mycobacterium: An overview. Biochimie 2024; 216:46-55. [PMID: 37879428 DOI: 10.1016/j.biochi.2023.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Mycobacteria are microorganisms distributed in the environment worldwide, and some of them, such as Mycobacterium tuberculosis or M. leprae, are pathogenic. The hydrophobic mycobacterial cell envelope has low permeation and bacteria need to export products across their structure. Mycobacteria possess specialized protein secretion systems, such as the Early Secretory Antigenic Target 6 secretion (ESX) system. Five ESX loci have been described in M. tuberculosis, called ESX-1 to ESX-5. The ESX-3 secretion system has been associated with mycobacterial metabolism and growth. The locus of this system is highly conserved across mycobacterial species. Metallo-proteins regulate negative ESX-3 transcription in high conditions of iron and zinc. Moreover, this secretion system is part of an antioxidant regulatory pathway linked to Zinc. EccA3, EccB3, EccC3, EccD3, and EccE3 are components of the ESX-3 secretion machinery, whereas EsxG-EsxH, PE5-PPE4, and PE15-PPE20 are proteins secreted by this system. In addition, EspG3 and MycP3 are complementary proteins involved in transport and proteolysis respectively. This system is associated to mycobacterial virulence by releasing the bacteria from the phagosome and inhibiting endomembrane damage response. Furthermore, components of this system inhibit the host immune response by reducing the recognition of M. tuberculosis-infected cells. The components of the ESX-3 secretion system play a role in drug resistance and cell wall integrity. Moreover, the expression data of this system indicated that external and internal factors affect ESX-3 locus expression. This review provides an overview of new findings on the ESX-3 secretion system, its regulation, expression, and functions.
Collapse
Affiliation(s)
- Ana Laura Granados-Tristán
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico; Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - Carlos Eduardo Hernández-Luna
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - Laura Adiene González-Escalante
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - María Elena Camacho-Moll
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| | - Katia Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, 64720, Nuevo León, Mexico.
| |
Collapse
|
5
|
Khan S, Ahmad F, Ansari MI, Ashfaque M, Islam MH, Khubaib M. Toxin-Antitoxin system of Mycobacterium tuberculosis: Roles beyond stress sensor and growth regulator. Tuberculosis (Edinb) 2023; 143:102395. [PMID: 37722233 DOI: 10.1016/j.tube.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
The advent of effective drug regimen and BCG vaccine has significantly decreased the rate of morbidity and mortality of TB. However, lengthy treatment and slower recovery rate, as well as reactivation of the disease with the emergence of multi-drug, extensively-drug, and totally-drug resistance strains, pose a serious concern. The complexities associated are due to the highly evolved and complex nature of the bacterium itself. One of the unique features of Mycobacterium tuberculosis [M.tb] is that it has undergone reductive evolution while maintaining and amplified a few gene families. One of the critical gene family involved in the virulence and pathogenesis is the Toxin-Antitoxin system. These families are believed to harbor virulence signature and are strongly associated with various stress adaptations and pathogenesis. The M.tb TA systems are linked with growth regulation machinery during various environmental stresses. The genes of TA systems are differentially expressed in the host during an active infection, oxidative stress, low pH stress, and starvation, which essentially indicate their role beyond growth regulators. Here in this review, we have discussed different roles of TA gene families in various stresses and their prospective role at the host-pathogen interface, which could be exploited to understand the M.tb associated pathomechanisms better and further designing the new strategies against the pathogen.
Collapse
Affiliation(s)
- Saima Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | | | | | | | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
6
|
Sinha S, RS N, Devarakonda Y, Rathi A, Reddy Regatti P, Batra S, Syal K. Tale of Twin Bifunctional Second Messenger (p)ppGpp Synthetases and Their Function in Mycobacteria. ACS OMEGA 2023; 8:32258-32270. [PMID: 37720788 PMCID: PMC10500699 DOI: 10.1021/acsomega.3c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
M. tuberculosis, an etiological agent of tuberculosis, requires a long treatment regimen due to its ability to respond to stress and persist inside the host. The second messenger (p)ppGpp-mediated stress response plays a critical role in such long-term survival, persistence, and antibiotic tolerance which may also lead to the emergence of multiple drug resistance. In mycobacteria, (pp)pGpp molecules are synthesized predominantly by two bifunctional enzymes-long RSH-Rel and short SAS-RelZ. The long RSH-Rel is a major (p)ppGpp synthetase and hydrolase. How it switches its activity from synthesis to hydrolysis remains unclear. RelMtb mutant has been reported to be defective in biofilm formation, cell wall function, and persister cell formation. The survival of such mutants has also been observed to be compromised in infection models. In M. smegmatis, short SAS-RelZ has RNase HII activity in addition to (pp)Gpp synthesis activity. The RNase HII function of RelZ has been implicated in resolving replication-transcription conflicts by degrading R-loops. However, the mechanism and regulatory aspects of such a regulation remain elusive. In this article, we have discussed (p)ppGpp metabolism and its role in managing the stress response network of mycobacteria, which is responsible for long-term survival inside the host, making it an important therapeutic target.
Collapse
Affiliation(s)
- Shubham
Kumar Sinha
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Neethu RS
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Yogeshwar Devarakonda
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Ajita Rathi
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Pavan Reddy Regatti
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Sakshi Batra
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Kirtimaan Syal
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| |
Collapse
|
7
|
Sundaram K, Vajravelu LK, Paul AJ. Functional characterization of toxin-antitoxin system in Mycobacterium tuberculosis. Indian J Tuberc 2023; 70:149-157. [PMID: 37100570 DOI: 10.1016/j.ijtb.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 04/28/2023]
Abstract
Toxin-Antitoxin (TA) system is abundant in the microbial genome, especially in bacteria and archaea. Its genetic elements and addiction modules with the role of bacterial persistence and virulence. The TA system consists of a toxin and most unstable antitoxin that could be a protein or non-encoded RNA, TA loci are chromosomally determined and their cellular functions are mostly unknown. Approximately 93 TA systems were demonstrated and more functionally available in M. tuberculosis (Mtb), the organism responsible for tuberculosis (TB). It is an airborne disease, which is causing ill-health to humans. M. tuberculosis possesses higher TA loci than other microbes and non-tubercle bacilli, the following TA types have been identified such as VapBC, MazEF, HigBA, RelBE, ParDE, DarTG, PemIK, MbcTA, and one tripartite type II TAC-Chaperone system. Toxin-antitoxin Database (TADB) brings a detailed update on Toxin-Antitoxin classification in the different pathogens such as staphylococcus aureus, streptococcus pneumonia, Vibrio cholerae, Salmonella typhimurium, Shigella flexneri, and helicobacter pylori, etc. So, this Toxin-Antitoxin system is a master regulator for bacterial growth, and an essential factor in analyzing the properties and function of disease persistence, biofilm formation, and pathogenicity. The TA system is an advanced tool to develop a new therapeutic agent against M. tuberculosis.
Collapse
Affiliation(s)
- Karthikeyan Sundaram
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, 603203, Tamilnadu, India.
| | - Leela Kagithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, 603203, Tamilnadu, India
| | - Alamu Juliana Paul
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, 603203, Tamilnadu, India
| |
Collapse
|
8
|
Mycobacterium tuberculosis Requires the Outer Membrane Lipid Phthiocerol Dimycocerosate for Starvation-Induced Antibiotic Tolerance. mSystems 2023; 8:e0069922. [PMID: 36598240 PMCID: PMC9948706 DOI: 10.1128/msystems.00699-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tolerance of Mycobacterium tuberculosis to antibiotics contributes to the long duration of tuberculosis (TB) treatment and the emergence of drug-resistant strains. M. tuberculosis drug tolerance is induced by nutrient restriction, but the genetic determinants that promote antibiotic tolerance triggered by nutrient limitation have not been comprehensively identified. Here, we show that M. tuberculosis requires production of the outer membrane lipid phthiocerol dimycocerosate (PDIM) to tolerate antibiotics under nutrient-limited conditions. We developed an arrayed transposon (Tn) mutant library in M. tuberculosis Erdman and used orthogonal pooling and transposon sequencing (Tn-seq) to map the locations of individual mutants in the library. We screened a subset of the library (~1,000 mutants) by Tn-seq and identified 32 and 102 Tn mutants with altered tolerance to antibiotics under stationary-phase and phosphate-starved conditions, respectively. Two mutants recovered from the arrayed library, ppgK::Tn and clpS::Tn, showed increased susceptibility to two different drug combinations under both nutrient-limited conditions, but their phenotypes were not complemented by the Tn-disrupted gene. Whole-genome sequencing revealed single nucleotide polymorphisms in both the ppgK::Tn and clpS::Tn mutants that prevented PDIM production. Complementation of the clpS::Tn ppsD Q291* mutant with ppsD restored PDIM production and antibiotic tolerance, demonstrating that loss of PDIM sensitized M. tuberculosis to antibiotics. Our data suggest that drugs targeting production of PDIM, a critical M. tuberculosis virulence determinant, have the potential to enhance the efficacy of existing antibiotics, thereby shortening TB treatment and limiting development of drug resistance. IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of active TB disease and over 1 million deaths worldwide each year. TB treatment is complex, requiring at least 6 months of therapy with a combination of antibiotics. One factor that contributes to the length of TB treatment is M. tuberculosis phenotypic antibiotic tolerance, which allows the bacteria to survive prolonged drug exposure even in the absence of genetic mutations causing drug resistance. Here, we report a genetic screen to identify M. tuberculosis genes that promote drug tolerance during nutrient starvation. Our study revealed the outer membrane lipid phthiocerol dimycocerosate (PDIM) as a key determinant of M. tuberculosis antibiotic tolerance triggered by nutrient starvation. Our study implicates PDIM synthesis as a potential target for development of new TB drugs that would sensitize M. tuberculosis to existing antibiotics to shorten TB treatment.
Collapse
|
9
|
Rajwani R, Galata C, Lee AWT, So PK, Leung KSS, Tam KKG, Shehzad S, Ng TTL, Zhu L, Lao HY, Chan CTM, Leung JSL, Lee LK, Wong KC, Yam WC, Siu GKH. A multi-omics investigation into the mechanisms of hyper-virulence in Mycobacterium tuberculosis. Virulence 2022; 13:1088-1100. [PMID: 35791449 PMCID: PMC9262360 DOI: 10.1080/21505594.2022.2087304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinical manifestations of tuberculosis range from asymptomatic infection to a life-threatening disease such as tuberculous meningitis (TBM). Recent studies showed that the spectrum of disease severity could be related to genetic diversity among clinical strains of Mycobacterium tuberculosis (Mtb). Certain strains are reported to preferentially invade the central nervous system, thus earning the label “hypervirulent strains”.However, specific genetic mutations that accounted for enhanced mycobacterial virulence are still unknown. We previously identified a set of 17 mutations in a hypervirulent Mtb strain that was from TBM patient and exhibited significantly better intracellular survivability. These mutations were also commonly shared by a cluster of globally circulating hyper-virulent strains. Here, we aimed to validate the impact of these hypervirulent-specific mutations on the dysregulation of gene networks associated with virulence in Mtb via multi-omic analysis. We surveyed transcriptomic and proteomic differences between the hyper-virulent and low-virulent strains using RNA-sequencing and label-free quantitative LC-MS/MS approach, respectively. We identified 25 genes consistently differentially expressed between the strains at both transcript and protein level, regardless the strains were growing in a nutrient-rich or a physiologically relevant multi-stress condition (acidic pH, limited nutrients, nitrosative stress, and hypoxia). Based on integrated genomic-transcriptomic and proteomic comparisons, the hypervirulent-specific mutations in FadE5 (g. 295,746 C >T), Rv0178 (p. asp150glu), higB (p. asp30glu), and pip (IS6110-insertion) were linked to deregulated expression of the respective genes and their functionally downstream regulons. The result validated the connections between mutations, gene expression, and mycobacterial pathogenicity, and identified new possible virulence-associated pathways in Mtb.
Collapse
Affiliation(s)
- Rahim Rajwani
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Chala Galata
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Annie Wing Tung Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kenneth Siu Sing Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kingsley King Gee Tam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sheeba Shehzad
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Timothy Ting Leung Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Li Zhu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Hiu Yin Lao
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Chloe Toi-Mei Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Jake Siu-Lun Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Lam-Kwong Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Kin Chung Wong
- Department of Clinical Pathology, United Christian Hospital, Hong Kong Special Administrative Region, China
| | - Wing Cheong Yam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| |
Collapse
|
10
|
Aljghami ME, Barghash MM, Majaesic E, Bhandari V, Houry WA. Cellular functions of the ClpP protease impacting bacterial virulence. Front Mol Biosci 2022; 9:1054408. [PMID: 36533084 PMCID: PMC9753991 DOI: 10.3389/fmolb.2022.1054408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 09/28/2023] Open
Abstract
Proteostasis mechanisms significantly contribute to the sculpting of the proteomes of all living organisms. ClpXP is a central AAA+ chaperone-protease complex present in both prokaryotes and eukaryotes that facilitates the unfolding and subsequent degradation of target substrates. ClpX is a hexameric unfoldase ATPase, while ClpP is a tetradecameric serine protease. Substrates of ClpXP belong to many cellular pathways such as DNA damage response, metabolism, and transcriptional regulation. Crucially, disruption of this proteolytic complex in microbes has been shown to impact the virulence and infectivity of various human pathogenic bacteria. Loss of ClpXP impacts stress responses, biofilm formation, and virulence effector protein production, leading to decreased pathogenicity in cell and animal infection models. Here, we provide an overview of the multiple critical functions of ClpXP and its substrates that modulate bacterial virulence with examples from several important human pathogens.
Collapse
Affiliation(s)
- Mazen E. Aljghami
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Marim M. Barghash
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Emily Majaesic
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Evaluating the Contribution of the Predicted Toxin-Antitoxin System HigBA to Persistence, Biofilm Formation, and Virulence in Burkholderia pseudomallei. Infect Immun 2022; 90:e0003522. [PMID: 35695502 PMCID: PMC9302164 DOI: 10.1128/iai.00035-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melioidosis is an underreported human disease caused by the Gram-negative intracellular pathogen Burkholderia pseudomallei (Bpm). Both the treatment and the clearance of the pathogen are challenging, with high relapse rates leading to latent infections. This has been linked to the bacterial persistence phenomenon, a growth arrest strategy that allows bacteria to survive under stressful conditions, as in the case of antibiotic treatment, within a susceptible clonal population. At a molecular level, this phenomenon has been associated with the presence of toxin-antitoxin (TA) systems. We annotated the Bpm K96243 genome and selected 11 pairs of genes encoding for these TA systems, and their expression was evaluated under different conditions (supralethal antibiotic conditions; intracellular survival bacteria). The predicted HigB toxin (BPSL3343) and its predicted antitoxin HigA (BPS_RS18025) were further studied using mutant construction. The phenotypes of two mutants (ΔhigB and ΔhigB ΔhigA) were evaluated under different conditions compared to the wild-type (WT) strain. The ΔhigB toxin mutant showed a defect in intracellular survival on macrophages, a phenotype that was eliminated after levofloxacin treatment. We found that the absence of the toxin provides an advantage over the WT strain, in both in vitro and in vivo models, during persister conditions induced by levofloxacin. The lack of the antitoxin also resulted in differential responses to the conditions evaluated, and under some conditions, it restored the WT phenotype, overall suggesting that both toxin and antitoxin components play a role in the persister-induced phenotype in Bpm.
Collapse
|
12
|
Mansour M, Giudice E, Xu X, Akarsu H, Bordes P, Guillet V, Bigot DJ, Slama N, D'urso G, Chat S, Redder P, Falquet L, Mourey L, Gillet R, Genevaux P. Substrate recognition and cryo-EM structure of the ribosome-bound TAC toxin of Mycobacterium tuberculosis. Nat Commun 2022; 13:2641. [PMID: 35552387 PMCID: PMC9098466 DOI: 10.1038/s41467-022-30373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Toxins of toxin-antitoxin systems use diverse mechanisms to control bacterial growth. Here, we focus on the deleterious toxin of the atypical tripartite toxin-antitoxin-chaperone (TAC) system of Mycobacterium tuberculosis, whose inhibition requires the concerted action of the antitoxin and its dedicated SecB-like chaperone. We show that the TAC toxin is a bona fide ribonuclease and identify exact cleavage sites in mRNA targets on a transcriptome-wide scale in vivo. mRNA cleavage by the toxin occurs after the second nucleotide of the ribosomal A-site codon during translation, with a strong preference for CCA codons in vivo. Finally, we report the cryo-EM structure of the ribosome-bound TAC toxin in the presence of native M. tuberculosis cspA mRNA, revealing the specific mechanism by which the TAC toxin interacts with the ribosome and the tRNA in the P-site to cleave its mRNA target. Toxin-antitoxin systems are widespread in bacteria. Here the authors present structures of M. tuberculosis HigBTAC alone and bound to the ribosome in the presence of native cspA mRNA, shedding light on its mechanism of translation inhibition.
Collapse
Affiliation(s)
- Moise Mansour
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Giudice
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France
| | - Xibing Xu
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Hatice Akarsu
- Department of Biology, University of Fribourg & Swiss Institute of Bioinformatics, Fribourg, Switzerland.,Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Donna-Joe Bigot
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nawel Slama
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gaetano D'urso
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France
| | - Sophie Chat
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France
| | - Peter Redder
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Falquet
- Department of Biology, University of Fribourg & Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Reynald Gillet
- Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Université de Rennes, CNRS, Rennes, France.
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
13
|
Choi E, Huh A, Oh C, Oh JI, Kang HY, Hwang J. Functional characterization of HigBA toxin-antitoxin system in an Arctic bacterium, Bosea sp. PAMC 26642. J Microbiol 2022; 60:192-206. [PMID: 35102526 DOI: 10.1007/s12275-022-1619-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023]
Abstract
Toxin-antitoxin (TA) systems are growth-controlling genetic elements consisting of an intracellular toxin protein and its cognate antitoxin. TA systems have been spread among microbial genomes through horizontal gene transfer and are now prevalent in most bacterial and archaeal genomes. Under normal growth conditions, antitoxins tightly counteract the activity of the toxins. Upon stresses, antitoxins are inactivated, releasing activated toxins, which induce growth arrest or cell death. In this study, among nine functional TA modules in Bosea sp. PAMC 26642 living in Arctic lichen, we investigated the functionality of BoHigBA2. BohigBA2 is located close to a genomic island and adjacent to flagellar gene clusters. The expression of BohigB2 induced the inhibition of E. coli growth at 37°C, which was more manifest at 18°C, and this growth defect was reversed when BohigA2 was co-expressed, suggesting that this BoHigBA2 module might be an active TA module in Bosea sp. PAMC 26642. Live/dead staining and viable count analyses revealed that the BoHigB2 toxin had a bactericidal effect, causing cell death. Furthermore, we demonstrated that BoHigB2 possessed mRNA-specific ribonuclease activity on various mRNAs and cleaved only mRNAs being translated, which might impede overall translation and consequently lead to cell death. Our study provides the insight to understand the cold adaptation of Bosea sp. PAMC 26642 living in the Arctic.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Ahhyun Huh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Changmin Oh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
14
|
Sharma A, Sagar K, Chauhan NK, Venkataraman B, Gupta N, Gosain TP, Bhalla N, Singh R, Gupta A. HigB1 Toxin in Mycobacterium tuberculosis Is Upregulated During Stress and Required to Establish Infection in Guinea Pigs. Front Microbiol 2021; 12:748890. [PMID: 34917044 PMCID: PMC8669151 DOI: 10.3389/fmicb.2021.748890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
The extraordinary expansion of Toxin Antitoxin (TA) modules in the genome of Mycobacterium tuberculosis has received significant attention over the last few decades. The cumulative evidence suggests that TA systems are activated in response to stress conditions and are essential for M. tuberculosis pathogenesis. In M. tuberculosis, Rv1955-Rv1956-Rv1957 constitutes the only tripartite TAC (Toxin Antitoxin Chaperone) module. In this locus, Rv1955 (HigB1) encodes for the toxin and Rv1956 (HigA1) encodes for antitoxin. Rv1957 encodes for a SecB-like chaperone that regulates HigBA1 toxin antitoxin system by preventing HigA1 degradation. Here, we have investigated the physiological role of HigB1 toxin in stress adaptation and pathogenesis of Mycobacterium tuberculosis. qPCR studies revealed that higBA1 is upregulated in nutrient limiting conditions and upon exposure to levofloxacin. We also show that the promoter activity of higBA1 locus in M. tuberculosis is (p)ppGpp dependent. We observed that HigB1 locus is non-essential for M. tuberculosis growth under different stress conditions in vitro. However, guinea pigs infected with higB1 deletion strain exhibited significantly reduced bacterial loads and pathological damage in comparison to the animals infected with the parental strain. Transcriptome analysis suggested that deletion of higB1 reduced the expression of genes involved in virulence, detoxification and adaptation. The present study describes the role of higB1 toxin in M. tuberculosis physiology and highlights the importance of higBA1 locus during infection in host tissues.
Collapse
Affiliation(s)
- Arun Sharma
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Kalpana Sagar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| | - Neeraj Kumar Chauhan
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Balaji Venkataraman
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Nidhi Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Nikhil Bhalla
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Amita Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| |
Collapse
|
15
|
Kumar N, Sharma S, Kaushal PS. Protein synthesis in Mycobacterium tuberculosis as a potential target for therapeutic interventions. Mol Aspects Med 2021; 81:101002. [PMID: 34344520 DOI: 10.1016/j.mam.2021.101002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes one of humankind's deadliest diseases, tuberculosis. Mtb protein synthesis machinery possesses several unique species-specific features, including its ribosome that carries two mycobacterial specific ribosomal proteins, bL37 and bS22, and ribosomal RNA segments. Since the protein synthesis is a vital cellular process that occurs on the ribosome, a detailed knowledge of the structure and function of mycobacterial ribosomes is essential to understand the cell's proteome by translation regulation. Like in many bacterial species such as Bacillus subtilis and Streptomyces coelicolor, two distinct populations of ribosomes have been identified in Mtb. Under low-zinc conditions, Mtb ribosomal proteins S14, S18, L28, and L33 are replaced with their non-zinc binding paralogues. Depending upon the nature of physiological stress, species-specific modulation of translation by stress factors and toxins that interact with the ribosome have been reported. In addition, about one-fourth of messenger RNAs in mycobacteria have been reported to be leaderless, i.e., without 5' UTR regions. However, the mechanism by which they are recruited to the Mtb ribosome is not understood. In this review, we highlight the mycobacteria-specific features of the translation apparatus and propose exploiting these features to improve the efficacy and specificity of existing antibiotics used to treat tuberculosis.
Collapse
Affiliation(s)
- Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Shivani Sharma
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India.
| |
Collapse
|
16
|
Abstract
A putative type II toxin-antitoxin (TA) module almost exclusively associated with conjugative IncC plasmids is homologous to the higBA family of TA systems found in chromosomes and plasmids of several species of bacteria. Despite the clinical significance and strong association with high-profile antimicrobial resistance (AMR) genes, the TA system of IncC plasmids remains largely uncharacterized. In this study, we present evidence that IncC plasmids encode a bona fide HigB-like toxin that strongly inhibits bacterial growth and results in cell elongation in Escherichia coli. IncC HigB toxin acts as a ribosome-dependent endoribonuclease that significantly reduces the transcript abundance of a subset of adenine-rich mRNA transcripts. A glycine residue at amino acid position 64 is highly conserved in HigB toxins from different bacterial species, and its replacement with valine (G64V) abolishes the toxicity and the mRNA cleavage activity of the IncC HigB toxin. The IncC plasmid higBA TA system functions as an effective addiction module that maintains plasmid stability in an antibiotic-free environment. This higBA addiction module is the only TA system that we identified in the IncC backbone and appears essential for the stable maintenance of IncC plasmids. We also observed that exposure to subinhibitory concentrations of ciprofloxacin, a DNA-damaging fluoroquinolone antibiotic, results in elevated higBA expression, which raises interesting questions about its regulatory mechanisms. A better understanding of this higBA-type TA module potentially allows for its subversion as part of an AMR eradication strategy. IMPORTANCE Toxin-antitoxin (TA) systems play vital roles in maintaining plasmids in bacteria. Plasmids with incompatibility group C are large plasmids that disseminate via conjugation and carry high-profile antibiotic resistance genes. We present experimental evidence that IncC plasmids carry a TA system that functions as an effective addiction module and maintains plasmid stability in an antibiotic-free environment. The toxin of IncC plasmids acts as an endoribonuclease that targets a subset of mRNA transcripts. Overexpressing the IncC toxin gene strongly inhibits bacterial growth and results in cell elongation in Escherichia coli hosts. We also identify a conserved amino acid residue in the toxin protein that is essential for its toxicity and show that the expression of this TA system is activated by a DNA-damaging antibiotic, ciprofloxacin. This mobile TA system may contribute to managing bacterial stress associated with DNA-damaging antibiotics.
Collapse
|
17
|
Bordes P, Genevaux P. Control of Toxin-Antitoxin Systems by Proteases in Mycobacterium Tuberculosis. Front Mol Biosci 2021; 8:691399. [PMID: 34079824 PMCID: PMC8165232 DOI: 10.3389/fmolb.2021.691399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements composed of a noxious toxin and a counteracting cognate antitoxin. Although they are widespread in bacterial chromosomes and in mobile genetic elements, their cellular functions and activation mechanisms remain largely unknown. It has been proposed that toxin activation or expression of the TA operon could rely on the degradation of generally less stable antitoxins by cellular proteases. The resulting active toxin would then target essential cellular processes and inhibit bacterial growth. Although interplay between proteases and TA systems has been observed, evidences for such activation cycle are very limited. Herein, we present an overview of the current knowledge on TA recognition by proteases with a main focus on the major human pathogen Mycobacterium tuberculosis, which harbours multiple TA systems (over 80), the essential AAA + stress proteases, ClpC1P1P2 and ClpXP1P2, and the Pup-proteasome system.
Collapse
Affiliation(s)
- Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
18
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
19
|
Texier P, Bordes P, Nagpal J, Sala AJ, Mansour M, Cirinesi AM, Xu X, Dougan DA, Genevaux P. ClpXP-mediated Degradation of the TAC Antitoxin is Neutralized by the SecB-like Chaperone in Mycobacterium tuberculosis. J Mol Biol 2021; 433:166815. [PMID: 33450247 DOI: 10.1016/j.jmb.2021.166815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 01/31/2023]
Abstract
Bacterial toxin-antitoxin (TA) systems are composed of a deleterious toxin and its antagonistic antitoxin. They are widespread in bacterial genomes and mobile genetic elements, and their functions remain largely unknown. Some TA systems, known as TAC modules, include a cognate SecB-like chaperone that assists the antitoxin in toxin inhibition. Here, we have investigated the involvement of proteases in the activation cycle of the TAC system of the human pathogen Mycobacterium tuberculosis. We show that the deletion of endogenous AAA+ proteases significantly bypasses the need for a dedicated chaperone and identify the mycobacterial ClpXP1P2 complex as the main protease involved in TAC antitoxin degradation. In addition, we show that the ClpXP1P2 degron is located at the extreme C-terminal end of the chaperone addiction (ChAD) region of the antitoxin, demonstrating that ChAD functions as a hub for both chaperone binding and recognition by proteases.
Collapse
Affiliation(s)
- Pauline Texier
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jyotsna Nagpal
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ambre Julie Sala
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Moise Mansour
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne-Marie Cirinesi
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xibing Xu
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - David Andrew Dougan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
20
|
Yang B, Chen C, Sun Y, Cao L, Zhang D, Sun W, Zhang L, Wang G, Shan X, Kang Y, Qian A. Comparative genomic analysis of different virulence strains reveals reasons for the increased virulence of Aeromonas veronii. JOURNAL OF FISH DISEASES 2021; 44:11-24. [PMID: 33137224 DOI: 10.1111/jfd.13262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Aeromonas veronii is an important zoonotic and aquatic agent. More and more cases have shown that it has caused huge economic losses in the aquaculture industry in addition to threatening human health. But the reasons for the increasing virulence of A. veronii are still unclear. In order to further understand the reasons for the increased virulence of A. veronii, we conducted a comparative analysis of the genomes of A. veronii with different virulence. The analysis revealed that there are multiple virulence factors, such as those related to fimbriae, flagella, toxins, iron ion uptake systems and type II, type III and type VI secretion systems in the virulent strain TH0426 genome. And comparative analysis showed that there were two complete type III secretion systems (API1 and API2), of which the API2 and iron ion transport system were unique to the TH0426 strain. In addition, TH0426 strain also has unique functional gene clusters, which may play important roles in terms of resisting infection, adapting to different environments and genetic evolution. These particular virulence factors and gene clusters may be the important reasons for the increased virulence. These insights will provide a reference for the study of the pathogenesis of A. veronii.
Collapse
Affiliation(s)
- Bintong Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
- College of Life Science, Changchun Sci-Tech University, Changchun, China
| | - Chong Chen
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yufeng Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Linan Cao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wuwen Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuanhuan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
21
|
Transcriptional Landscape of Waddlia chondrophila Aberrant Bodies Induced by Iron Starvation. Microorganisms 2020; 8:microorganisms8121848. [PMID: 33255276 PMCID: PMC7760296 DOI: 10.3390/microorganisms8121848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Chronic infections caused by obligate intracellular bacteria belonging to the Chlamydiales order are related to the formation of persistent developmental forms called aberrant bodies (ABs), which undergo DNA replication without cell division. These enlarged bacteria develop and persist upon exposure to different stressful conditions such as β-lactam antibiotics, iron deprivation and interferon-γ. However, the mechanisms behind ABs biogenesis remain uncharted. Using an RNA-sequencing approach, we compared the transcriptional profile of ABs induced by iron starvation to untreated bacteria in the Chlamydia-related species Waddliachondrophila, a potential agent of abortion in ruminants and miscarriage in humans. Consistent with the growth arrest observed following iron depletion, our results indicate a significant reduction in the expression of genes related to energy production, carbohydrate and amino acid metabolism and cell wall/envelope biogenesis, compared to untreated, actively replicating bacteria. Conversely, three putative toxin-antitoxin modules were among the most up-regulated genes upon iron starvation, suggesting that their activation might be involved in growth arrest in adverse conditions, an uncommon feature in obligate intracellular bacteria. Our work represents the first complete transcriptomic profile of a Chlamydia-related species in stressful conditions and sets the grounds for further investigations on the mechanisms underlying chlamydial persistence.
Collapse
|
22
|
Modlin SJ, Conkle-Gutierrez D, Kim C, Mitchell SN, Morrissey C, Weinrick BC, Jacobs WR, Ramirez-Busby SM, Hoffner SE, Valafar F. Drivers and sites of diversity in the DNA adenine methylomes of 93 Mycobacterium tuberculosis complex clinical isolates. eLife 2020; 9:58542. [PMID: 33107429 PMCID: PMC7591249 DOI: 10.7554/elife.58542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
This study assembles DNA adenine methylomes for 93 Mycobacterium tuberculosis complex (MTBC) isolates from seven lineages paired with fully-annotated, finished, de novo assembled genomes. Integrative analysis yielded four key results. First, methyltransferase allele-methylome mapping corrected methyltransferase variant effects previously obscured by reference-based variant calling. Second, heterogeneity analysis of partially active methyltransferase alleles revealed that intracellular stochastic methylation generates a mosaic of methylomes within isogenic cultures, which we formalize as ‘intercellular mosaic methylation’ (IMM). Mutation-driven IMM was nearly ubiquitous in the globally prominent Beijing sublineage. Third, promoter methylation is widespread and associated with differential expression in the ΔhsdM transcriptome, suggesting promoter HsdM-methylation directly influences transcription. Finally, comparative and functional analyses identified 351 sites hypervariable across isolates and numerous putative regulatory interactions. This multi-omic integration revealed features of methylomic variability in clinical isolates and provides a rational basis for hypothesizing the functions of DNA adenine methylation in MTBC physiology and adaptive evolution.
Collapse
Affiliation(s)
- Samuel J Modlin
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Derek Conkle-Gutierrez
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Calvin Kim
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Scott N Mitchell
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Christopher Morrissey
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | | | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Sarah M Ramirez-Busby
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| | - Sven E Hoffner
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States.,Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, United States
| |
Collapse
|
23
|
Sizikov S, Burgsdorf I, Handley KM, Lahyani M, Haber M, Steindler L. Characterization of sponge-associated Verrucomicrobia: microcompartment-based sugar utilization and enhanced toxin-antitoxin modules as features of host-associated Opitutales. Environ Microbiol 2020; 22:4669-4688. [PMID: 32840024 DOI: 10.1111/1462-2920.15210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Bacteria of the phylum Verrucomicrobia are ubiquitous in marine environments and can be found as free-living organisms or as symbionts of eukaryotic hosts. Little is known about host-associated Verrucomicrobia in the marine environment. Here we reconstructed two genomes of symbiotic Verrucomicrobia from bacterial metagenomes derived from the Atlanto-Mediterranean sponge Petrosia ficiformis and three genomes from strains that we isolated from offshore seawater of the Eastern Mediterranean Sea. Phylogenomic analysis of these five strains indicated that they are all members of Verrucomicrobia subdivision 4, order Opitutales. We compared these novel sponge-associated and seawater-isolated genomes to closely related Verrucomicrobia. Genomic analysis revealed that Planctomycetes-Verrucomicrobia microcompartment gene clusters are enriched in the genomes of symbiotic Opitutales including sponge symbionts but not in free-living ones. We hypothesize that in sponge symbionts these microcompartments are used for degradation of l-fucose and l-rhamnose, which are components of algal and bacterial cell walls and therefore may be found at high concentrations in the sponge tissue. Furthermore, we observed an enrichment of toxin-antitoxin modules in symbiotic Opitutales. We suggest that, in sponges, verrucomicrobial symbionts utilize these modules as a defence mechanism against antimicrobial activity deriving from the abundant microbial community co-inhabiting the host.
Collapse
Affiliation(s)
- Sofia Sizikov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kim Marie Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Matan Lahyani
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
24
|
Park JY, Kim HJ, Pathak C, Yoon HJ, Kim DH, Park SJ, Lee BJ. Induced DNA bending by unique dimerization of HigA antitoxin. IUCRJ 2020; 7:748-760. [PMID: 32695421 PMCID: PMC7340258 DOI: 10.1107/s2052252520006466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The bacterial toxin-antitoxin (TA) system regulates cell growth under various environmental stresses. Mycobacterium tuberculosis, the causative pathogen of tuberculosis (TB), has three HigBA type II TA systems with reverse gene organization, consisting of the toxin protein HigB and labile antitoxin protein HigA. Most type II TA modules are transcriptionally autoregulated by the antitoxin itself. In this report, we first present the crystal structure of the M. tuberculosis HigA3 antitoxin (MtHigA3) and MtHigA3 bound to its operator DNA complex. We also investigated the interaction between MtHigA3 and DNA using NMR spectroscopy. The MtHigA3 antitoxin structure is a homodimer that contains a structurally well conserved DNA-binding domain at the N-terminus and a dimerization domain at the C-terminus. Upon comparing the HigA homologue structures, a distinct difference was found in the C-terminal region that possesses the β-lid, and diverse orientations of two helix-turn-helix (HTH) motifs from HigA homologue dimers were observed. The structure of MtHigA3 bound to DNA reveals that the promoter DNA is bound to two HTH motifs of the MtHigA3 dimer presenting 46.5° bending, and the distance between the two HTH motifs of each MtHigA3 monomer was increased in MtHigA3 bound to DNA. The β-lid, which is found only in the tertiary structure of MtHigA3 among the HigA homologues, causes the formation of a tight dimerization network and leads to a unique arrangement for dimer formation that is related to the curvature of the bound DNA. This work could contribute to the understanding of the HigBA system of M. tuberculosis at the atomic level and may contribute to the development of new antibiotics for TB treatment.
Collapse
Affiliation(s)
- Jin-Young Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Jung Kim
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Chinar Pathak
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Leicester Institute of Structural and Chemical Biology, University of Leicester, United Kingdom
| | - Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 534-2 Yeonsu-dong,Yeonsu-gu, Incheon 13120, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Sawyer EB, Grabowska AD, Cortes T. Translational regulation in mycobacteria and its implications for pathogenicity. Nucleic Acids Res 2019; 46:6950-6961. [PMID: 29947784 PMCID: PMC6101614 DOI: 10.1093/nar/gky574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/14/2018] [Indexed: 01/13/2023] Open
Abstract
Protein synthesis is a fundamental requirement of all cells for survival and replication. To date, vast numbers of genetic and biochemical studies have been performed to address the mechanisms of translation and its regulation in Escherichia coli, but only a limited number of studies have investigated these processes in other bacteria, particularly in slow growing bacteria like Mycobacterium tuberculosis, the causative agent of human tuberculosis. In this Review, we highlight important differences in the translational machinery of M. tuberculosis compared with E. coli, specifically the presence of two additional proteins and subunit stabilizing elements such as the B9 bridge. We also consider the role of leaderless translation in the ability of M. tuberculosis to establish latent infection and look at the experimental evidence that translational regulatory mechanisms operate in mycobacteria during stress adaptation, particularly focussing on differences in toxin-antitoxin systems between E. coli and M. tuberculosis and on the role of tuneable translational fidelity in conferring phenotypic antibiotic resistance. Finally, we consider the implications of these differences in the context of the biological adaptation of M. tuberculosis and discuss how these regulatory mechanisms could aid in the development of novel therapeutics for tuberculosis.
Collapse
Affiliation(s)
- Elizabeth B Sawyer
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,TB Centre, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Anna D Grabowska
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,TB Centre, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Teresa Cortes
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,TB Centre, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
26
|
Habib G, Zhu Q, Sun B. Bioinformatics and Functional Assessment of Toxin-Antitoxin Systems in Staphylococcus aureus. Toxins (Basel) 2018; 10:toxins10110473. [PMID: 30441856 PMCID: PMC6266405 DOI: 10.3390/toxins10110473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a nosocomial pathogen that can cause chronic to persistent infections. Among different mediators of pathogenesis, toxin-antitoxin (TA) systems are emerging as the most prominent. These systems are frequently studied in Escherichia coli and Mycobacterial species but rarely explored in S. aureus. In the present study, we thoroughly analyzed the S. aureus genome and screened all possible TA systems using the Rasta bacteria and toxin-antitoxin database. We further searched E. coli and Mycobacterial TA homologs and selected 67 TA loci as putative TA systems in S. aureus. The host inhibition of growth (HigBA) TA family was predominantly detected in S. aureus. In addition, we detected seven pathogenicity islands in the S. aureus genome that are enriched with virulence genes and contain 26 out of 67 TA systems. We ectopically expressed multiple TA genes in E. coli and S. aureus that exhibited bacteriostatic and bactericidal effects on cell growth. The type I Fst toxin created holes in the cell wall while the TxpA toxin reduced cell size and induced cell wall septation. Besides, we identified a new TA system whose antitoxin functions as a transcriptional autoregulator while the toxin functions as an inhibitor of autoregulation. Altogether, this study provides a plethora of new as well as previously known TA systems that will revitalize the research on S. aureus TA systems.
Collapse
Affiliation(s)
- Gul Habib
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Qing Zhu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Baolin Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
27
|
Zhang Y, Xia B, Li M, Shi J, Long Y, Jin Y, Bai F, Cheng Z, Jin S, Wu W. HigB Reciprocally Controls Biofilm Formation and the Expression of Type III Secretion System Genes through Influencing the Intracellular c-di-GMP Level in Pseudomonas aeruginosa. Toxins (Basel) 2018; 10:toxins10110424. [PMID: 30355991 PMCID: PMC6265988 DOI: 10.3390/toxins10110424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems play important roles in bacteria persister formation. Increasing evidence demonstrate the roles of TA systems in regulating virulence factors in pathogenic bacteria. The toxin HigB in Pseudomonas aeruginosa contributes to persister formation and regulates the expression of multiple virulence factors and biofilm formation. However, the regulatory mechanism remains elusive. In this study, we explored the HigB mediated regulatory pathways. We demonstrate that HigB decreases the intracellular level of c-di-GMP, which is responsible for the increased expression of the type III secretion system (T3SS) genes and repression of biofilm formation. By analyzing the expression levels of the known c-di-GMP metabolism genes, we find that three c-di-GMP hydrolysis genes are up regulated by HigB, namely PA2133, PA2200 and PA3825. Deletion of the three genes individually or simultaneously diminishes the HigB mediated regulation on the expression of T3SS genes and biofilm formation. Therefore, our results reveal novel functions of HigB in P. aeruginosa.
Collapse
Affiliation(s)
- Yueying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Bin Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mei Li
- Meishan Product Quality Supervision and Inspection Institute and National Pickle Quality Inspection Center, Meishan 620000, China.
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yuqing Long
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
28
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
29
|
Directed evolution of SecB chaperones toward toxin-antitoxin systems. Proc Natl Acad Sci U S A 2017; 114:12584-12589. [PMID: 29114057 DOI: 10.1073/pnas.1710456114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
SecB chaperones assist protein export in bacteria. However, certain SecB family members have diverged to become specialized toward the control of toxin-antitoxin (TA) systems known to promote bacterial adaptation to stress and persistence. In such tripartite TA-chaperone (TAC) systems, the chaperone was shown to assist folding and to prevent degradation of its cognate antitoxin, thus facilitating inhibition of the toxin. Here, we used both the export chaperone SecB of Escherichia coli and the tripartite TAC system of Mycobacterium tuberculosis as a model to investigate how generic chaperones can specialize toward the control of TA systems. Through directed evolution of SecB, we have identified and characterized mutations that specifically improve the ability of SecB to control our model TA system without affecting its function in protein export. Such a remarkable plasticity of SecB chaperone function suggests that its substrate binding surface can be readily remodeled to accommodate specific clients.
Collapse
|
30
|
Abstract
The interaction between the host and the pathogen is extremely complex and is affected by anatomical, physiological, and immunological diversity in the microenvironments, leading to phenotypic diversity of the pathogen. Phenotypic heterogeneity, defined as nongenetic variation observed in individual members of a clonal population, can have beneficial consequences especially in fluctuating stressful environmental conditions. This is all the more relevant in infections caused by Mycobacterium tuberculosis wherein the pathogen is able to survive and often establish a lifelong persistent infection in the host. Recent studies in tuberculosis patients and in animal models have documented the heterogeneous and diverging trajectories of individual lesions within a single host. Since the fate of the individual lesions appears to be determined by the local tissue environment rather than systemic response of the host, studying this heterogeneity is very relevant to ensure better control and complete eradication of the pathogen from individual lesions. The heterogeneous microenvironments greatly enhance M. tuberculosis heterogeneity influencing the growth rates, metabolic potential, stress responses, drug susceptibility, and eventual lesion resolution. Single-cell approaches such as time-lapse microscopy using microfluidic devices allow us to address cell-to-cell variations that are often lost in population-average measurements. In this review, we focus on some of the factors that could be considered as drivers of phenotypic heterogeneity in M. tuberculosis as well as highlight some of the techniques that are useful in addressing this issue.
Collapse
|
31
|
Gupta A, Venkataraman B, Vasudevan M, Gopinath Bankar K. Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Sci Rep 2017; 7:5868. [PMID: 28724903 PMCID: PMC5517426 DOI: 10.1038/s41598-017-06003-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
Research on toxin-antitoxin loci (TA loci) is gaining impetus due to their ubiquitous presence in bacterial genomes and their observed roles in stress survival, persistence and drug tolerance. The present study investigates the expression profile of all the seventy-nine TA loci found in Mycobacterium tuberculosis. The bacterium was subjected to multiple stress conditions to identify key players of cellular stress response and elucidate a TA-coexpression network. This study provides direct experimental evidence for transcriptional activation of each of the seventy-nine TA loci following mycobacterial exposure to growth-limiting environments clearly establishing TA loci as stress-responsive modules in M. tuberculosis. TA locus activation was found to be stress-specific with multiple loci activated in a duration-based response to a particular stress. Conditions resulting in arrest of cellular translation led to greater up-regulation of TA genes suggesting that TA loci have a primary role in arresting translation in the cell. Our study identifed higBA2 and vapBC46 as key loci that were activated in all the conditions tested. Besides, relBE1, higBA3, vapBC35, vapBC22 and higBA1 were also upregulated in multpile stresses. Certain TA modules exhibited co-activation across multiple conditions suggestive of a common regulatory mechanism.
Collapse
Affiliation(s)
- Amita Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India. .,Department of Biochemistry and Centre for Innovation in Infectious Diseases Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, 110021, India.
| | - Balaji Venkataraman
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Madavan Vasudevan
- Genome Informatics Research Group, Bionivid Technology Pvt Ltd, Bengaluru, 560043, India
| | - Kiran Gopinath Bankar
- Genome Informatics Research Group, Bionivid Technology Pvt Ltd, Bengaluru, 560043, India
| |
Collapse
|
32
|
Choi W, Yamaguchi Y, Lee JW, Jang KM, Inouye M, Kim SG, Yoon MH, Park JH. Translation-dependent mRNA cleavage by YhaV in Escherichia coli. FEBS Lett 2017; 591:1853-1861. [PMID: 28573789 DOI: 10.1002/1873-3468.12705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022]
Abstract
Many bacteria have toxin-antitoxin (TA) systems, where toxin gene expression inhibits their own cell growth. mRNA is one of the well-known targets of the toxins in the type II toxin-antitoxin systems. Here, we examined the ribosome dependency of the endoribonuclease activity of YhaV, one of the toxins in type II TA systems, on mRNA in vitro and in vivo. A polysome profiling assay revealed that YhaV is bound to the 70S ribosomes and 50S ribosomal subunits. Moreover, we found that while YhaV cleaves ompF and lpp mRNAs in a translation-dependent manner, they did not cleave the 5' untranslated region in primer extension experiments. From these results, we conclude that YhaV is a ribosome-dependent toxin that cleaves mRNA in a translation-dependent manner.
Collapse
Affiliation(s)
- Wonho Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Yoshihiro Yamaguchi
- OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Japan
| | - Jae-Woo Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Kyung-Min Jang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Masayori Inouye
- Department of Biochemistry, Rutgers-Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Piscataway, NJ, USA
| | - Sung-Gun Kim
- Department of Biomedical Sicience, U1 University, Youngdong, South Korea
| | - Min-Ho Yoon
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| |
Collapse
|
33
|
Richard D, Ravigné V, Rieux A, Facon B, Boyer C, Boyer K, Grygiel P, Javegny S, Terville M, Canteros BI, Robène I, Vernière C, Chabirand A, Pruvost O, Lefeuvre P. Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements. Mol Ecol 2017; 26:2131-2149. [PMID: 28101896 DOI: 10.1111/mec.14007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
Abstract
Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system's great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family.
Collapse
Affiliation(s)
- D Richard
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France.,Plant Health Laboratory, ANSES, F-97410, St Pierre, Réunion, France.,Université de la Réunion, UMR PVBMT, F-97490, St Denis, Réunion, France
| | - V Ravigné
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - A Rieux
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - B Facon
- INRA, UMR PVBMT, F-97410, St Pierre, Réunion, France.,INRA, UMR CBGP, F-34090, Montpellier, France
| | - C Boyer
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - K Boyer
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - P Grygiel
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - S Javegny
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - M Terville
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - B I Canteros
- INTA, Estación Experimental Agropecuaria Bella Vista, Bella Vista, Argentina
| | - I Robène
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - C Vernière
- CIRAD, UMR BGPI, F-34398, Montpellier, France
| | - A Chabirand
- Plant Health Laboratory, ANSES, F-97410, St Pierre, Réunion, France
| | - O Pruvost
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - P Lefeuvre
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| |
Collapse
|
34
|
Abstract
Bacterial toxin–antitoxin (TA) systems, in which a labile antitoxin binds and inhibits the toxin, can promote adaptation and persistence by modulating bacterial growth in response to stress. Some atypical TA systems, known as tripartite toxin–antitoxin–chaperone (TAC) modules, include a molecular chaperone that facilitates folding and protects the antitoxin from degradation. Here we use a TAC module from Mycobacterium tuberculosis as a model to investigate the molecular mechanisms by which classical TAs can become ‘chaperone-addicted'. The chaperone specifically binds the antitoxin at a short carboxy-terminal sequence (chaperone addiction sequence, ChAD) that is not present in chaperone-independent antitoxins. In the absence of chaperone, the ChAD sequence destabilizes the antitoxin, thus preventing toxin inhibition. Chaperone–ChAD pairs can be transferred to classical TA systems or to unrelated proteins and render them chaperone-dependent. This mechanism might be used to optimize the expression and folding of heterologous proteins in bacterial hosts for biotechnological or medical purposes. Some bacterial toxin-antitoxin systems consist of a labile antitoxin that inhibits a toxin, and a chaperone that stabilizes the antitoxin. Here, Bordes et al. identify a sequence within the antitoxin to which the chaperone binds and which can be transferred to other proteins to make them chaperone-dependent.
Collapse
|
35
|
Li M, Long Y, Liu Y, Liu Y, Chen R, Shi J, Zhang L, Jin Y, Yang L, Bai F, Jin S, Cheng Z, Wu W. HigB of Pseudomonas aeruginosa Enhances Killing of Phagocytes by Up-Regulating the Type III Secretion System in Ciprofloxacin Induced Persister Cells. Front Cell Infect Microbiol 2016; 6:125. [PMID: 27790409 PMCID: PMC5064212 DOI: 10.3389/fcimb.2016.00125] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/27/2016] [Indexed: 12/01/2022] Open
Abstract
Bacterial persister cells are dormant and highly tolerant to lethal antibiotics, which are believed to be the major cause of recurring and chronic infections. Activation of toxins of bacterial toxin-antitoxin systems inhibits bacterial growth and plays an important role in persister formation. However, little is known about the overall gene expression profile upon toxin activation. More importantly, how the dormant bacterial persisters evade host immune clearance remains poorly understood. Here we demonstrate that a Pseudomonas aeruginosa toxin-antitoxin system HigB-HigA is required for the ciprofloxacin induced persister formation. Transcriptome analysis of a higA::Tn mutant revealed up regulation of type III secretion systems (T3SS) genes. Overexpression of HigB increased the expression of T3SS genes as well as bacterial cytotoxicity. We further demonstrate that wild type bacteria that survived ciprofloxacin treatment contain higher levels of T3SS proteins and display increased cytotoxicity to macrophage compared to vegetative bacterial cells. These results suggest that P. aeruginosa accumulates T3SS proteins during persister formation, which can protect the persister cells from host clearance by efficiently killing host immune cells.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yuqing Long
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Ying Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yang Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore
| | - Ronghao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Lu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological UniversitySingapore, Singapore; School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological UniversitySingapore, Singapore
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Life Sciences, Nankai University Tianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China; Department of Molecular Genetics and Microbiology, College of Medicine, University of FloridaGainesville, FL, USA
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
36
|
The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by Mycobacterium tuberculosis PtpA during mycobacterial infection. Sci Rep 2016; 6:34827. [PMID: 27698396 PMCID: PMC5048167 DOI: 10.1038/srep34827] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/19/2016] [Indexed: 11/08/2022] Open
Abstract
Macrophage-mediated innate immune responses play crucial roles in host defense against pathogens. Recent years have seen an explosion of host proteins that act as restriction factors blocking viral replication in infected cells. However, the essential factors restricting Mycobacterium tuberculosis (Mtb) and their regulatory roles during mycobacterial infection remain largely unknown. We previously reported that Mtb tyrosine phosphatase PtpA, a secreted effector protein required for intracellular survival of Mtb, inhibits innate immunity by co-opting the host ubiquitin system. Here, we identified a new PtpA-interacting host protein TRIM27, which is reported to possess a conserved RING domain and usually acts as an E3 ubiquitin ligase that interferes with various cellular processes. We further demonstrated that TRIM27 restricts survival of mycobacteria in macrophages by promoting innate immune responses and cell apoptosis. Interestingly, Mtb PtpA could antagonize TRIM27-promoted JNK/p38 MAPK pathway activation and cell apoptosis through competitively binding to the RING domain of TRIM27. TRIM27 probably works as a potential restriction factor for Mtb and its function is counteracted by Mtb effector proteins such as PtpA. Our study suggests a potential tuberculosis treatment via targeting of the TRIM27-PtpA interfaces.
Collapse
|
37
|
Yang J, Zhou K, Liu P, Dong Y, Gao Z, Zhang J, Liu Q. Structural insight into the E. coli HigBA complex. Biochem Biophys Res Commun 2016; 478:1521-7. [DOI: 10.1016/j.bbrc.2016.08.131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022]
|
38
|
Toxin-Antitoxin Systems in Clinical Pathogens. Toxins (Basel) 2016; 8:toxins8070227. [PMID: 27447671 PMCID: PMC4963858 DOI: 10.3390/toxins8070227] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022] Open
Abstract
Toxin-antitoxin (TA) systems are prevalent in bacteria and archaea. Although not essential for normal cell growth, TA systems are implicated in multiple cellular functions associated with survival under stress conditions. Clinical strains of bacteria are currently causing major human health problems as a result of their multidrug resistance, persistence and strong pathogenicity. Here, we present a review of the TA systems described to date and their biological role in human pathogens belonging to the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and others of clinical relevance (Escherichia coli, Burkholderia spp., Streptococcus spp. and Mycobacterium tuberculosis). Better understanding of the mechanisms of action of TA systems will enable the development of new lines of treatment for infections caused by the above-mentioned pathogens.
Collapse
|
39
|
Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016; 21:molecules21060790. [PMID: 27322231 PMCID: PMC6273597 DOI: 10.3390/molecules21060790] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.
Collapse
|
40
|
Wood TL, Wood TK. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation. Microbiologyopen 2016; 5:499-511. [PMID: 26987441 PMCID: PMC4906001 DOI: 10.1002/mbo3.346] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 01/30/2023] Open
Abstract
Toxin/antitoxin (TA) systems are prevalent in most bacterial and archaeal genomes, and one of the emerging physiological roles of TA systems is to help regulate pathogenicity. Although TA systems have been studied in several model organisms, few studies have investigated the role of TA systems in pseudomonads. Here, we demonstrate that the previously uncharacterized proteins HigB (unannotated) and HigA (PA4674) of Pseudomonas aeruginosa PA14 form a type II TA system in which antitoxin HigA masks the RNase activity of toxin HigB through direct binding. Furthermore, toxin HigB reduces production of the virulence factors pyochelin, pyocyanin, swarming, and biofilm formation; hence, this system affects the pathogencity of this strain in a manner that has not been demonstrated previously for TA systems.
Collapse
Affiliation(s)
- Thammajun L Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802
| |
Collapse
|
41
|
Kirkpatrick CL, Martins D, Redder P, Frandi A, Mignolet J, Chapalay JB, Chambon M, Turcatti G, Viollier PH. Growth control switch by a DNA-damage-inducible toxin-antitoxin system in Caulobacter crescentus. Nat Microbiol 2016; 1:16008. [PMID: 27572440 DOI: 10.1038/nmicrobiol.2016.8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 01/19/2016] [Indexed: 11/09/2022]
Abstract
Bacterial toxin-antitoxin systems (TASs) are thought to respond to various stresses, often inducing growth-arrested (persistent) sub-populations of cells whose housekeeping functions are inhibited. Many such TASs induce this effect through the translation-dependent RNA cleavage (RNase) activity of their toxins, which are held in check by their cognate antitoxins in the absence of stress. However, it is not always clear whether specific mRNA targets of orthologous RNase toxins are responsible for their phenotypic effect, which has made it difficult to accurately place the multitude of TASs within cellular and adaptive regulatory networks. Here, we show that the TAS HigBA of Caulobacter crescentus can promote and inhibit bacterial growth dependent on the dosage of HigB, a toxin regulated by the DNA damage (SOS) repressor LexA in addition to its antitoxin HigA, and the target selectivity of HigB's mRNA cleavage activity. HigB reduced the expression of an efflux pump that is toxic to a polarity control mutant, cripples the growth of cells lacking LexA, and targets the cell cycle circuitry. Thus, TASs can have outcome switching activity in bacterial adaptive (stress) and systemic (cell cycle) networks.
Collapse
Affiliation(s)
- Clare L Kirkpatrick
- Department of Microbiology &Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel-Servet 1, 1211 Genève 4, Switzerland
| | - Daniel Martins
- Department of Microbiology &Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel-Servet 1, 1211 Genève 4, Switzerland
| | - Peter Redder
- Department of Microbiology &Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel-Servet 1, 1211 Genève 4, Switzerland
| | - Antonio Frandi
- Department of Microbiology &Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel-Servet 1, 1211 Genève 4, Switzerland
| | - Johann Mignolet
- Department of Microbiology &Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel-Servet 1, 1211 Genève 4, Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marc Chambon
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Patrick H Viollier
- Department of Microbiology &Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine/CMU, University of Geneva, Rue Michel-Servet 1, 1211 Genève 4, Switzerland
| |
Collapse
|
42
|
Abstract
Most bacterial toxins derived from chromosomally encoded toxin-antitoxin (TA) systems that have been studied to date appear to protect cells from relatively short pulses of stress by triggering a reversible state of growth arrest. In contrast to many bacterial toxins that are produced as defense mechanisms and secreted from their hosts, TA toxins exert their protective effect from within the cell that produces them. TA toxin-mediated growth arrest is most frequently achieved through their ability to selectively cleave RNA species that participate in protein synthesis. Until very recently, it was thought that the primary conduit for toxin-mediated translation inhibition was cleavage of a single class of RNA, mRNA, thus depleting transcripts and precluding production of essential proteins. This minireview focuses on how the development and implementation of a specialized RNA-seq method to study Mycobacterium tuberculosis TA systems enabled the identification of unexpected RNA targets for toxins, i.e. a handful of tRNAs that are cleaved into tRNA halves. Our result brings to light a new perspective on how these toxins may act in this pathogen and uncovers a striking parallel to signature features of the eukaryotic stress response.
Collapse
Affiliation(s)
- Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
43
|
MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat Commun 2015; 6:6059. [PMID: 25608501 DOI: 10.1038/ncomms7059] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 12/05/2014] [Indexed: 11/08/2022] Open
Abstract
Toxin-antitoxin (TA) systems are highly conserved in members of the Mycobacterium tuberculosis (Mtb) complex and have been proposed to play an important role in physiology and virulence. Nine of these TA systems belong to the mazEF family, encoding the intracellular MazF toxin and its antitoxin, MazE. By overexpressing each of the nine putative MazF homologues in Mycobacterium bovis BCG, here we show that Rv1102c (MazF3), Rv1991c (MazF6) and Rv2801c (MazF9) induce bacteriostasis. The construction of various single-, double- and triple-mutant Mtb strains reveals that these MazF ribonucleases contribute synergistically to the ability of Mtb to adapt to conditions such as oxidative stress, nutrient depletion and drug exposure. Moreover, guinea pigs infected with the triple-mutant strain exhibits significantly reduced bacterial loads and pathological damage in infected tissues in comparison with parental strain-infected guinea pigs. The present study highlights the importance of MazF ribonucleases in Mtb stress adaptation, drug tolerance and virulence.
Collapse
|
44
|
Sala A, Bordes P, Genevaux P. Multitasking SecB chaperones in bacteria. Front Microbiol 2014; 5:666. [PMID: 25538690 PMCID: PMC4257090 DOI: 10.3389/fmicb.2014.00666] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/17/2014] [Indexed: 12/17/2022] Open
Abstract
Protein export in bacteria is facilitated by the canonical SecB chaperone, which binds to unfolded precursor proteins, maintains them in a translocation competent state and specifically cooperates with the translocase motor SecA to ensure their proper targeting to the Sec translocon at the cytoplasmic membrane. Besides its key contribution to the Sec pathway, SecB chaperone tasking is critical for the secretion of the Sec-independent heme-binding protein HasA and actively contributes to the cellular network of chaperones that control general proteostasis in Escherichia coli, as judged by the significant interplay found between SecB and the trigger factor, DnaK and GroEL chaperones. Although SecB is mainly a proteobacterial chaperone associated with the presence of an outer membrane and outer membrane proteins, secB-like genes are also found in Gram-positive bacteria as well as in certain phages and plasmids, thus suggesting alternative functions. In addition, a SecB-like protein is also present in the major human pathogen Mycobacterium tuberculosis where it specifically controls a stress-responsive toxin–antitoxin system. This review focuses on such very diverse chaperone functions of SecB, both in E. coli and in other unrelated bacteria.
Collapse
Affiliation(s)
- Ambre Sala
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
45
|
Lougheed KEA, Bennett MH, Williams HD. An in vivo crosslinking system for identifying mycobacterial protein-protein interactions. J Microbiol Methods 2014; 105:67-71. [PMID: 25034228 PMCID: PMC4169665 DOI: 10.1016/j.mimet.2014.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 11/29/2022]
Abstract
The analysis of protein-protein interactions in Mycobacterium tuberculosis has the potential to shed light on the functions of the large number of predicted open-reading frames annotated as conserved hypothetical proteins. We have developed a formaldehyde crosslinking system to detect in vivo interactions in mycobacteria. Our Gateway-adapted vector system uses three promoter strengths, including constitutive and regulatable versions, for the expression of target proteins with either an N- or C-terminal His-Strep-Strep tag. Tandem affinity purification using the His- and Strep-tags is well-suited to the isolation of protein complexes with a high purity and no detectable background. We have validated this approach using the well-described pyruvate dehydrogenase complex.
Collapse
Affiliation(s)
| | - Mark H Bennett
- Department of Life Sciences, Imperial College London, SW7 2AZ, United Kingdom
| | - Huw D Williams
- Department of Life Sciences, Imperial College London, SW7 2AZ, United Kingdom.
| |
Collapse
|
46
|
The ToxAvapA toxin-antitoxin locus contributes to the survival of nontypeable Haemophilus influenzae during infection. PLoS One 2014; 9:e91523. [PMID: 24621787 PMCID: PMC3951411 DOI: 10.1371/journal.pone.0091523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/13/2014] [Indexed: 12/02/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that is a common cause of acute and recurrent mucosal infections. One uncharacterized NTHi toxin-antitoxin (TA) module, NTHI1912-1913, is a host inhibition of growth (higBA) homologue. We hypothesized that this locus, which we designated toxAvapA, contributed to NTHi survival during infection. We deleted toxAvapA and determined that growth of the mutant in defined media was not different from the parent strain. We tested the mutant for persistence during long-term in vitro co-culture with primary human respiratory tissues, which revealed that the ΔtoxAvapA mutant was attenuated for survival. We then performed challenge studies using the chinchilla model of otitis media and determined that mutant survival was also reduced in vivo. Following purification, the toxin exhibited ribonuclease activity on RNA in vitro, while the antitoxin did not. A microarray comparison of the transcriptome revealed that the tryptophan biosynthetic regulon was significantly repressed in the mutant compared to the parent strain. HPLC studies of conditioned medium confirmed that there was no significant difference in the concentration of tryptophan remaining in the supernatant, indicating that the uptake of tryptophan by the mutant was not affected. We conclude that the role of the NTHi toxAvapA TA module in persistence following stress is multifactorial and includes effects on essential metabolic pathways.
Collapse
|
47
|
Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 2014; 6:1002-20. [PMID: 24662523 PMCID: PMC3968373 DOI: 10.3390/toxins6031002] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022] Open
Abstract
The hallmark of Mycobacterium tuberculosis is its ability to persist for a long-term in host granulomas, in a non-replicating and drug-tolerant state, and later awaken to cause disease. To date, the cellular factors and the molecular mechanisms that mediate entry into the persistence phase are poorly understood. Remarkably, M. tuberculosis possesses a very high number of toxin-antitoxin (TA) systems in its chromosome, 79 in total, regrouping both well-known (68) and novel (11) families, with some of them being strongly induced in drug-tolerant persisters. In agreement with the capacity of stress-responsive TA systems to generate persisters in other bacteria, it has been proposed that activation of TA systems in M. tuberculosis could contribute to its pathogenesis. Herein, we review the current knowledge on the multiple TA families present in this bacterium, their mechanism, and their potential role in physiology and virulence.
Collapse
|
48
|
Bertram R, Schuster CF. Post-transcriptional regulation of gene expression in bacterial pathogens by toxin-antitoxin systems. Front Cell Infect Microbiol 2014; 4:6. [PMID: 24524029 PMCID: PMC3905216 DOI: 10.3389/fcimb.2014.00006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/13/2014] [Indexed: 01/27/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements ubiquitous in prokaryotic genomes that encode toxic proteins targeting various vital cellular functions. Typically, toxin activity is controlled by adjacently encoded protein or RNA antitoxins and unleashed as a consequence of genetic fluctuations or stressful conditions. Whereas some TA systems interfere with replication or cell wall synthesis, most of them influence transcriptional and post-transcriptional gene regulation. Antitoxin proteins often act as DNA binding transcriptional regulators and many TA toxins exhibit endoribonuclease activity to selectively degrade different RNA species and thus alter gene expression patterns. Some TA RNases cleave tRNA, tmRNAs or rRNAs, whereas most commonly mRNAs either in association with the ribosome or as free transcripts, are targeted. Examples are provided on how TA toxins differentially shape gene expression in bacterial pathogens by creating specialized ribosomes or by altering the transcriptome and how this may be tied in the control of pathogenicity factors.
Collapse
Affiliation(s)
- Ralph Bertram
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen Tübingen, Germany
| | - Christopher F Schuster
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen Tübingen, Germany
| |
Collapse
|