1
|
Bhattacharya D, King A, McKnight L, Horigian P, Eswara PJ. GpsB interacts with FtsZ in multiple species and may serve as an accessory Z-ring anchor. Mol Biol Cell 2025; 36:ar10. [PMID: 39602291 DOI: 10.1091/mbc.e24-07-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Bacterial cytokinesis commences when a tubulin-like GTPase, FtsZ, forms a Z-ring to mark the division site. Synchronized movement of Z-ring filaments and peptidoglycan synthesis along the axis of division generates a division septum to separate the daughter cells. Thus, FtsZ needs to be linked to the peptidoglycan synthesis machinery. GpsB is a highly conserved protein among species of the Firmicutes phylum known to regulate peptidoglycan synthesis. Previously, we showed that Staphylococcus aureus GpsB directly binds to FtsZ by recognizing a signature sequence in its C-terminal tail (CTT) region. As the GpsB recognition sequence is also present in Bacillus subtilis, we speculated that GpsB may interact with FtsZ in this organism. Earlier reports revealed that disruption of gpsB and ftsA or gpsB and ezrA is deleterious. Given that both FtsA and EzrA also target the CTT of FtsZ for interaction, we hypothesized that in the absence of other FtsZ partners, GpsB-FtsZ interaction may become apparent. Our data confirm that is the case, and reveal that GpsB interacts with FtsZ in multiple species and stimulates the GTPase activity of the latter. Moreover, it appears that GpsB may serve as an accessory Z-ring anchor such as when FtsA, one of the main anchors, is absent.
Collapse
Affiliation(s)
| | - Asher King
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620
| | - Lily McKnight
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620
| | - Pilar Horigian
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620
| | - Prahathees J Eswara
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620
- Center for Antimicrobial Resistance, University of South Florida, Tampa, FL 33620
| |
Collapse
|
2
|
Stauberová V, Kubeša B, Joseph M, Benedet M, Furlan B, Buriánková K, Ulrych A, Kupčík R, Vomastek T, Massidda O, Tsui HCT, Winkler ME, Branny P, Doubravová L. GpsB Coordinates StkP Signaling as a PASTA Kinase Adaptor in Streptococcus pneumoniae Cell Division. J Mol Biol 2024; 436:168797. [PMID: 39303764 PMCID: PMC11563889 DOI: 10.1016/j.jmb.2024.168797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
StkP, the Ser/Thr protein kinase of the major human pathogen Streptococcus pneumoniae, monitors cell wall signals and regulates growth and division in response. In vivo, StkP interacts with GpsB, a cell division protein required for septal ring formation and closure, that affects StkP-dependent phosphorylation. Here, we report that although StkP has basal intrinsic kinase activity, GpsB promotes efficient autophosphorylation of StkP and phosphorylation of StkP substrates. Phosphoproteomic analyzes showed that GpsB is phosphorylated at several Ser and Thr residues. We confirmed that StkP directly phosphorylates GpsB in vitro and in vivo, with T79 and T83 being the major phosphorylation sites. In vitro, phosphoablative GpsB substitutions had a lower potential to stimulate StkP activity, whereas phosphomimetic substitutions were functional in terms of StkP activation. In vivo, substitutions of GpsB phosphoacceptor residues, either phosphoablative or mimetic, had a negative effect on GpsB function, resulting in reduced StkP-dependent phosphorylation and impaired cell division. The bacterial two-hybrid assay and co-immunoprecipitation of GpsB from cells with differentially active StkP indicated that increased phosphorylation of GpsB resulted in a more efficient interaction of GpsB with StkP. Our data suggest that GpsB acts as an adaptor that directly promotes StkP activity by mediating interactions within the StkP signaling hub, ensuring StkP recruitment into the complex and substrate specificity. We present a model that interaction of StkP with GpsB and its phosphorylation and dephosphorylation dynamically modulate kinase activity during exponential growth and under cell wall stress of S. pneumoniae, ensuring the proper functioning of the StkP signaling pathway.
Collapse
Affiliation(s)
- Václava Stauberová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Bohumil Kubeša
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Merrin Joseph
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN 47405-7005, USA
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Berenice Furlan
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Karolína Buriánková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Aleš Ulrych
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Rudolf Kupčík
- Biomedical Research Centre, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Vomastek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Ho-Ching T Tsui
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN 47405-7005, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN 47405-7005, USA
| | - Pavel Branny
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Linda Doubravová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
3
|
Rothe P, Wamp S, Rosemeyer L, Rismondo J, Doellinger J, Gründling A, Halbedel S. Cytosolic Factors Controlling PASTA Kinase-Dependent ReoM Phosphorylation. Mol Microbiol 2024; 122:514-533. [PMID: 39245639 DOI: 10.1111/mmi.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Bacteria adapt the biosynthesis of their envelopes to specific growth conditions and prevailing stress factors. Peptidoglycan (PG) is the major component of the cell wall in Gram-positive bacteria, where PASTA kinases play a central role in PG biosynthesis regulation. Despite their importance for growth, cell division and antibiotic resistance, the mechanisms of PASTA kinase activation are not fully understood. ReoM, a recently discovered cytosolic phosphoprotein, is one of the main substrates of the PASTA kinase PrkA in the Gram-positive human pathogen Listeria monocytogenes. Depending on its phosphorylation, ReoM controls proteolytic stability of MurA, the first enzyme in the PG biosynthesis pathway. The late cell division protein GpsB has been implicated in PASTA kinase signalling. Consistently, we show that L. monocytogenes prkA and gpsB mutants phenocopied each other. Analysis of in vivo ReoM phosphorylation confirmed GpsB as an activator of PrkA leading to the description of structural features in GpsB that are important for kinase activation. We further show that ReoM phosphorylation is growth phase-dependent and that this kinetic is reliant on the protein phosphatase PrpC. ReoM phosphorylation was inhibited in mutants with defects in MurA degradation, leading to the discovery that MurA overexpression prevented ReoM phosphorylation. Overexpressed MurA must be able to bind its substrates and interact with ReoM to exert this effect, but the extracellular PASTA domains of PrkA or MurJ flippases were not required. Our results indicate that intracellular signals control ReoM phosphorylation and extend current models describing the mechanisms of PASTA kinase activation.
Collapse
Affiliation(s)
- Patricia Rothe
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Lisa Rosemeyer
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Jeanine Rismondo
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Joerg Doellinger
- ZBS6 - Proteomics and Spectroscopy, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Angelika Gründling
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Sacco MD, Hammond LR, Noor RE, Bhattacharya D, McKnight LJ, Madsen JJ, Zhang X, Butler SG, Kemp MT, Jaskolka-Brown AC, Khan SJ, Gelis I, Eswara P, Chen Y. Staphylococcus aureus FtsZ and PBP4 bind to the conformationally dynamic N-terminal domain of GpsB. eLife 2024; 13:e85579. [PMID: 38639993 PMCID: PMC11062636 DOI: 10.7554/elife.85579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.
Collapse
Affiliation(s)
- Michael D Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| | - Lauren R Hammond
- Department of Molecular Biosciences, University of South FloridaTampaUnited States
| | - Radwan E Noor
- Department of Chemistry, University of South FloridaTampaUnited States
| | | | - Lily J McKnight
- Department of Molecular Biosciences, University of South FloridaTampaUnited States
| | - Jesper J Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
- Global and Planetary Health, College of Public Health, University of South FloridaTampaUnited States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| | - Shane G Butler
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| | - M Trent Kemp
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| | - Aiden C Jaskolka-Brown
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| | - Sebastian J Khan
- Department of Molecular Biosciences, University of South FloridaTampaUnited States
| | - Ioannis Gelis
- Department of Chemistry, University of South FloridaTampaUnited States
| | - Prahathees Eswara
- Department of Molecular Biosciences, University of South FloridaTampaUnited States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South FloridaTampaUnited States
| |
Collapse
|
5
|
Naha A, Haeusser DP, Margolin W. Anchors: A way for FtsZ filaments to stay membrane bound. Mol Microbiol 2023; 120:525-538. [PMID: 37503768 PMCID: PMC10593102 DOI: 10.1111/mmi.15067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 07/29/2023]
Abstract
Most bacteria use the tubulin homolog FtsZ to organize their cell division. FtsZ polymers initially assemble into mobile complexes that circle around a ring-like structure at the cell midpoint, followed by the recruitment of other proteins that will constrict the cytoplasmic membrane and synthesize septal peptidoglycan to divide the cell. Despite the need for FtsZ polymers to associate with the membrane, FtsZ lacks intrinsic membrane binding ability. Consequently, FtsZ polymers have evolved to interact with the membrane through adaptor proteins that both bind FtsZ and the membrane. Here, we discuss recent progress in understanding the functions of these FtsZ membrane tethers. Some, such as FtsA and SepF, are widely conserved and assemble into varied oligomeric structures bound to the membrane through an amphipathic helix. Other less-conserved proteins, such as EzrA and ZipA, have transmembrane domains, make extended structures, and seem to bind to FtsZ through two separate interactions. This review emphasizes that most FtsZs use multiple membrane tethers with overlapping functions, which not only attach FtsZ polymers to the membrane but also organize them in specific higher-order structures that can optimize cell division activity. We discuss gaps in our knowledge of these concepts and how future studies can address them.
Collapse
Affiliation(s)
- Arindam Naha
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| | - Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| |
Collapse
|
6
|
VanZeeland NE, Schultz KM, Klug CS, Kristich CJ. Multisite Phosphorylation Regulates GpsB Function in Cephalosporin Resistance of Enterococcus faecalis. J Mol Biol 2023; 435:168216. [PMID: 37517789 PMCID: PMC10528945 DOI: 10.1016/j.jmb.2023.168216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Enterococci are normal human commensals and major causes of hospital-acquired infections. Enterococcal infections can be difficult to treat because enterococci harbor intrinsic and acquired antibiotic resistance, such as resistance to cephalosporins. In Enterococcus faecalis, the transmembrane kinase IreK, a member of the bacterial PASTA kinase family, is essential for cephalosporin resistance. The activity of IreK is boosted by the cytoplasmic protein GpsB, which promotes IreK autophosphorylation and signaling to drive cephalosporin resistance. A previous phosphoproteomics study identified eight putative IreK-dependent phosphorylation sites on GpsB, but the functional importance of GpsB phosphorylation was unknown. Here we used genetic and biochemical approaches to define three sites of phosphorylation on GpsB that functionally impact IreK activity and cephalosporin resistance. Phosphorylation at two sites (S80 and T84) serves to impair the ability of GpsB to activate IreK in vivo, suggesting phosphorylation of these sites acts as a means of negative feedback for IreK. The third site of phosphorylation (T133) occurs in a segment of GpsB termed the C-terminal extension that is unique to enterococcal GpsB homologs. The C-terminal extension is highly mobile in solution, suggesting it is largely unstructured, and phosphorylation of T133 appears to enable efficient phosphorylation at S80 / T84. Overall our results are consistent with a model in which multisite phosphorylation of GpsB impairs its ability to activate IreK, thereby diminishing signal transduction through the IreK-dependent pathway and modulating phenotypic cephalosporin resistance.
Collapse
Affiliation(s)
- Nicole E VanZeeland
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
7
|
Tsui HCT, Joseph M, Zheng JJ, Perez AJ, Manzoor I, Rued BE, Richardson JD, Branny P, Doubravová L, Massidda O, Winkler ME. Negative regulation of MurZ and MurA underlies the essentiality of GpsB- and StkP-mediated protein phosphorylation in Streptococcus pneumoniae D39. Mol Microbiol 2023; 120:351-383. [PMID: 37452010 PMCID: PMC10530524 DOI: 10.1111/mmi.15122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
GpsB links peptidoglycan synthases to other proteins that determine the shape of the respiratory pathogen Streptococcus pneumoniae (pneumococcus; Spn) and other low-GC Gram-positive bacteria. GpsB is also required for phosphorylation of proteins by the essential StkP(Spn) Ser/Thr protein kinase. Here we report three classes of frequently arising chromosomal duplications (≈21-176 genes) containing murZ (MurZ-family homolog of MurA) or murA that suppress ΔgpsB or ΔstkP. These duplications arose from three different repeated sequences and demonstrate the facility of pneumococcus to modulate gene dosage of numerous genes. Overproduction of MurZ or MurA alone or overproduction of MurZ caused by ΔkhpAB mutations suppressed ΔgpsB or ΔstkP phenotypes to varying extents. ΔgpsB and ΔstkP were also suppressed by MurZ amino-acid changes distant from the active site, including one in commonly studied laboratory strains, and by truncation or deletion of the homolog of IreB(ReoM). Unlike in other Gram-positive bacteria, MurZ is predominant to MurA in pneumococcal cells. However, ΔgpsB and ΔstkP were not suppressed by ΔclpCP, which did not alter MurZ or MurA amounts. These results support a model in which regulation of MurZ and MurA activity, likely by IreB(Spn), is the only essential requirement for StkP-mediated protein phosphorylation in exponentially growing D39 pneumococcal cells.
Collapse
Affiliation(s)
| | - Merrin Joseph
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Jiaqi J. Zheng
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Amilcar J. Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Irfan Manzoor
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Britta E. Rued
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - John D. Richardson
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Pavel Branny
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Doubravová
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Orietta Massidda
- Department of Cellular, Computational, and Integrative Biology, University of Trento, Italy
| | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
8
|
Tsui HCT, Joseph M, Zheng JJ, Perez AJ, Manzoor I, Rued BE, Richardson JD, Branny P, Doubravová L, Massidda O, Winkler ME. Chromosomal Duplications of MurZ (MurA2) or MurA (MurA1), Amino Acid Substitutions in MurZ (MurA2), and Absence of KhpAB Obviate the Requirement for Protein Phosphorylation in Streptococcus pneumoniae D39. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534294. [PMID: 37034771 PMCID: PMC10081211 DOI: 10.1101/2023.03.26.534294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
GpsB links peptidoglycan synthases to other proteins that determine the shape of the respiratory pathogen Streptococcus pneumoniae (pneumococcus; Spn ) and other low-GC Gram-positive bacteria. GpsB is also required for phosphorylation of proteins by the essential StkP( Spn ) Ser/Thr protein kinase. Here we report three classes of frequently arising chromosomal duplications (≈21-176 genes) containing murZ (MurZ-family homolog of MurA) or murA that suppress Δ gpsB or Δ stkP . These duplications arose from three different repeated sequences and demonstrate the facility of pneumococcus to modulate gene dosage of numerous genes. Overproduction of MurZ or MurA alone or overexpression of MurZ caused by Δ khpAB mutations suppressed Δ gpsB or Δ stkP phenotypes to varying extents. Δ gpsB and Δ stkP were also suppressed by MurZ amino-acid changes distant from the active site, including one in commonly studied laboratory strains, and by truncation or deletion of the homolog of IreB(ReoM). Unlike in other Gram-positive bacteria, MurZ is predominant to MurA in pneumococcal cells. However, Δ gpsB and Δ stkP were not suppressed by Δ clpCP , which did not alter MurZ or MurA amounts. These results support a model in which regulation of MurZ and MurA activity, likely by IreB( Spn ), is the only essential requirement for protein phosphorylation in exponentially growing D39 pneumococcal cells.
Collapse
|
9
|
Barbuti MD, Myrbråten IS, Morales Angeles D, Kjos M. The cell cycle of Staphylococcus aureus: An updated review. Microbiologyopen 2023; 12:e1338. [PMID: 36825883 PMCID: PMC9733580 DOI: 10.1002/mbo3.1338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
As bacteria proliferate, DNA replication, chromosome segregation, cell wall synthesis, and cytokinesis occur concomitantly and need to be tightly regulated and coordinated. Although these cell cycle processes have been studied for decades, several mechanisms remain elusive, specifically in coccus-shaped cells such as Staphylococcus aureus. In recent years, major progress has been made in our understanding of how staphylococci divide, including new, fundamental insights into the mechanisms of cell wall synthesis and division site selection. Furthermore, several novel proteins and mechanisms involved in the regulation of replication initiation or progression of the cell cycle have been identified and partially characterized. In this review, we will summarize our current understanding of the cell cycle processes in the spheroid model bacterium S. aureus, with a focus on recent advances in the understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Maria D. Barbuti
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Ine S. Myrbråten
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
10
|
GpsB Promotes PASTA Kinase Signaling and Cephalosporin Resistance in Enterococcus faecalis. J Bacteriol 2022; 204:e0030422. [PMID: 36094306 PMCID: PMC9578390 DOI: 10.1128/jb.00304-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Enterococci are opportunistic pathogens that can cause severe bacterial infections. Treatment of these infections is challenging because enterococci possess intrinsic and acquired mechanisms of resistance to commonly used antibiotics, including cephalosporins. The transmembrane serine/threonine PASTA kinase, IreK, is an important determinant of enterococcal cephalosporin resistance. Upon exposure to cephalosporins, IreK becomes autophosphorylated, which stimulates its kinase activity to phosphorylate downstream substrates and drive cephalosporin resistance. However, the molecular mechanisms that modulate IreK autophosphorylation in response to cell wall stress, such as that induced by cephalosporins, remain unknown. A cytoplasmic protein, GpsB, promotes signaling by PASTA kinase homologs in other bacterial species, but the function of enterococcal GpsB has not been previously investigated. We used in vitro and in vivo approaches to test the hypothesis that enterococcal GpsB promotes IreK signaling in response to cephalosporins to drive cephalosporin resistance. We found that GpsB promotes IreK activity both in vivo and in vitro. This effect is required for cephalosporins to trigger IreK autophosphorylation and activation of an IreK-dependent signaling pathway, and thereby is also required for enterococcal intrinsic cephalosporin resistance. Moreover, analyses of GpsB mutants and a ΔireK gpsB double mutant suggest that GpsB has an additional function, beyond regulation of IreK activity, which is required for optimal growth and full cephalosporin resistance. Collectively, our data provide new insights into the mechanism of signal transduction by the PASTA kinase IreK and the mechanism of enterococcal intrinsic cephalosporin resistance. IMPORTANCE Enterococci are opportunistic pathogens that can cause severe bacterial infections. Treatment of these infections is challenging because enterococci possess intrinsic and acquired resistance to commonly used antibiotics. In particular, enterococci are intrinsically resistant to cephalosporin antibiotics, a trait that requires the activity of a transmembrane serine/threonine kinase, IreK, which belongs to the bacterial PASTA kinase family. The mechanisms by which PASTA kinases are regulated in cells are poorly understood. Here, we report that the cytoplasmic protein GpsB directly promotes IreK signaling in enterococci to drive cephalosporin resistance. Thus, we provide new insights into PASTA kinase regulation and control of enterococcal cephalosporin resistance, and suggest that GpsB could be a promising target for new therapeutics to disable cephalosporin resistance.
Collapse
|
11
|
Fischer MA, Engelgeh T, Rothe P, Fuchs S, Thürmer A, Halbedel S. Listeria monocytogenes genes supporting growth under standard laboratory cultivation conditions and during macrophage infection. Genome Res 2022; 32:1711-1726. [PMID: 36114002 PMCID: PMC9528990 DOI: 10.1101/gr.276747.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
The Gram-positive bacterium Listeria monocytogenes occurs widespread in the environment and infects humans when ingested along with contaminated food. Such infections are particularly dangerous for risk group patients, for whom they represent a life-threatening disease. To invent novel strategies to control contamination and disease, it is important to identify those cellular processes that maintain pathogen growth inside and outside the host. Here, we have applied transposon insertion sequencing (Tn-Seq) to L. monocytogenes for the identification of such processes on a genome-wide scale. Our approach identified 394 open reading frames that are required for growth under standard laboratory conditions and 42 further genes, which become necessary during intracellular growth in macrophages. Most of these genes encode components of the translation machinery and act in chromosome-related processes, cell division, and biosynthesis of the cellular envelope. Several cofactor biosynthesis pathways and 29 genes with unknown functions are also required for growth, suggesting novel options for the development of antilisterial drugs. Among the genes specifically required during intracellular growth are known virulence factors, genes compensating intracellular auxotrophies, and several cell division genes. Our experiments also highlight the importance of PASTA kinase signaling for general viability and of glycine metabolism and chromosome segregation for efficient intracellular growth of L. monocytogenes.
Collapse
Affiliation(s)
- Martin A Fischer
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Tim Engelgeh
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Patricia Rothe
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Stephan Fuchs
- MF1 Bioinformatic Support, Robert Koch Institute, 13353 Berlin, Germany
| | - Andrea Thürmer
- MF2 Genome Sequencing, Robert Koch Institute, 13353 Berlin, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| |
Collapse
|
12
|
Bianchi D, Pelletier JF, Hutchison CA, Glass JI, Luthey-Schulten Z. Toward the Complete Functional Characterization of a Minimal Bacterial Proteome. J Phys Chem B 2022; 126:6820-6834. [PMID: 36048731 PMCID: PMC9483919 DOI: 10.1021/acs.jpcb.2c04188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Recently, we presented a whole-cell kinetic model of the genetically minimal bacterium JCVI-syn3A that described the coupled metabolic and genetic information processes and predicted behaviors emerging from the interactions among these networks. JCVI-syn3A is a genetically reduced bacterial cell that has the fewest number and smallest fraction of genes of unclear function, with approximately 90 of its 452 protein-coding genes (that is less than 20%) unannotated. Further characterization of unclear JCVI-syn3A genes strengthens the robustness and predictive power of cell modeling efforts and can lead to a deeper understanding of biophysical processes and pathways at the cell scale. Here, we apply computational analyses to elucidate the functions of the products of several essential but previously uncharacterized genes involved in integral cellular processes, particularly those directly affecting cell growth, division, and morphology. We also suggest directed wet-lab experiments informed by our analyses to further understand these "missing puzzle pieces" that are an essential part of the mosaic of biological interactions present in JCVI-syn3A. Our workflow leverages evolutionary sequence analysis, protein structure prediction, interactomics, and genome architecture to determine upgraded annotations. Additionally, we apply the structure prediction analysis component of our work to all 452 protein coding genes in JCVI-syn3A to expedite future functional annotation studies as well as the inverse mapping of the cell state to more physical models requiring all-atom or coarse-grained representations for all JCVI-syn3A proteins.
Collapse
Affiliation(s)
- David
M. Bianchi
- Department
of Chemistry, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| | - James F. Pelletier
- Centro
Nacional de Biotecnologia, Calle Darwin no. 3, 28049 Madrid, Spain
| | - Clyde A. Hutchison
- J.
Craig Venter Institute, 4120 Capricorn Ln. La Jolla, California 92037, United States
| | - John I. Glass
- J.
Craig Venter Institute, 4120 Capricorn Ln. La Jolla, California 92037, United States
| | - Zaida Luthey-Schulten
- Department
of Chemistry, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Hammond LR, Sacco MD, Khan SJ, Spanoudis C, Hough-Neidig A, Chen Y, Eswara PJ. GpsB Coordinates Cell Division and Cell Surface Decoration by Wall Teichoic Acids in Staphylococcus aureus. Microbiol Spectr 2022; 10:e0141322. [PMID: 35647874 PMCID: PMC9241681 DOI: 10.1128/spectrum.01413-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial cell division is a complex and highly regulated process requiring the coordination of many different proteins. Despite substantial work in model organisms, our understanding of the systems regulating cell division in noncanonical organisms, including critical human pathogens, is far from complete. One such organism is Staphylococcus aureus, a spherical bacterium that lacks known cell division regulatory proteins. Recent studies on GpsB, a protein conserved within the Firmicutes phylum, have provided insight into cell division regulation in S. aureus and other related organisms. It has been revealed that GpsB coordinates cell division and cell wall synthesis in multiple species. In S. aureus, we have previously shown that GpsB directly regulates FtsZ polymerization. In this study, using Bacillus subtilis as a tool, we isolated spontaneous suppressors that abrogate the lethality of S. aureus GpsB overproduction in B. subtilis. Through characterization, we identified several residues important for the function of GpsB. Furthermore, we discovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis in S. aureus. Specifically, we show that GpsB directly interacts with the WTA export protein TarG. We also identified a region in GpsB that is crucial for this interaction. Analysis of TarG localization in S. aureus suggests that WTA machinery is part of the divisome complex. Taken together, this research illustrates how GpsB performs an essential function in S. aureus by directly linking the tightly regulated cell cycle processes of cell division and WTA-mediated cell surface decoration. IMPORTANCE Cytokinesis in bacteria involves an intricate orchestration of several key cell division proteins and other factors involved in building a robust cell envelope. Presence of teichoic acids is a signature characteristic of the Gram-positive cell wall. By characterizing the role of Staphylococcus aureus GpsB, an essential cell division protein in this organism, we have uncovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis. We show that GpsB directly interacts with TarG of the WTA export complex. We also show that this function of GpsB may be conserved in other GpsB homologs as GpsB and the WTA exporter complex follow similar localization patterns. It has been suggested that WTA acts as a molecular signal to control the activity of autolytic enzymes, especially during the separation of conjoined daughter cells. Thus, our results reveal that GpsB, in addition to playing a role in cell division, may also help coordinate WTA biogenesis.
Collapse
Affiliation(s)
- Lauren R. Hammond
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Michael D. Sacco
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Sebastian J. Khan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Catherine Spanoudis
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Abigail Hough-Neidig
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Prahathees J. Eswara
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
14
|
Wamp S, Rothe P, Stern D, Holland G, Döhling J, Halbedel S. MurA escape mutations uncouple peptidoglycan biosynthesis from PrkA signaling. PLoS Pathog 2022; 18:e1010406. [PMID: 35294506 PMCID: PMC8959180 DOI: 10.1371/journal.ppat.1010406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/28/2022] [Accepted: 02/28/2022] [Indexed: 01/23/2023] Open
Abstract
Gram-positive bacteria are protected by a thick mesh of peptidoglycan (PG) completely engulfing their cells. This PG network is the main component of the bacterial cell wall, it provides rigidity and acts as foundation for the attachment of other surface molecules. Biosynthesis of PG consumes a high amount of cellular resources and therefore requires careful adjustments to environmental conditions. An important switch in the control of PG biosynthesis of Listeria monocytogenes, a Gram-positive pathogen with a high infection fatality rate, is the serine/threonine protein kinase PrkA. A key substrate of this kinase is the small cytosolic protein ReoM. We have shown previously that ReoM phosphorylation regulates PG formation through control of MurA stability. MurA catalyzes the first step in PG biosynthesis and the current model suggests that phosphorylated ReoM prevents MurA degradation by the ClpCP protease. In contrast, conditions leading to ReoM dephosphorylation stimulate MurA degradation. How ReoM controls degradation of MurA and potential other substrates is not understood. Also, the individual contribution of the ~20 other known PrkA targets to PG biosynthesis regulation is unknown. We here present murA mutants which escape proteolytic degradation. The release of MurA from ClpCP-dependent proteolysis was able to activate PG biosynthesis and further enhanced the intrinsic cephalosporin resistance of L. monocytogenes. This latter effect required the RodA3/PBP B3 transglycosylase/transpeptidase pair. One murA escape mutation not only fully rescued an otherwise non-viable prkA mutant during growth in batch culture and inside macrophages but also overcompensated cephalosporin hypersensitivity. Our data collectively indicate that the main purpose of PrkA-mediated signaling in L. monocytogenes is control of MurA stability during standard laboratory growth conditions and intracellular growth in macrophages. These findings have important implications for the understanding of PG biosynthesis regulation and β-lactam resistance of L. monocytogenes and related Gram-positive bacteria. Peptidoglycan (PG) is the main component of the bacterial cell wall and many of the PG synthesizing enzymes are antibiotic targets. We previously have discovered a new signaling route controlling PG production in the human pathogen Listeria monocytogenes. This route also determines the intrinsic resistance of L. monocytogenes against cephalosporins, a group of β-lactam antibiotics. Signaling involves PrkA, a membrane-embedded protein kinase, that is activated during cell wall stress to phosphorylate its target ReoM. Depending on its phosphorylation, ReoM activates or inactivates PG production by controlling the proteolytic stability of MurA, which catalyzes the first step in PG biosynthesis. MurA degradation depends on the ClpCP protease and we here have isolated murA mutations that escape this degradation. Using these mutants, we could show that regulation of PG biosynthesis through control of MurA stability is an important purpose of PrkA-mediated signaling in L. monocytogenes. Further experiments identified the transglycosylase RodA and the transpeptidase PBP B3 as additional downstream factors. Our results suggest that both proteins act together to translate the signals received by PrkA into adjustment of PG biosynthesis. These findings shed new light on the regulation of PG biosynthesis in Gram-positive bacteria with intrinsic β-lactam resistance.
Collapse
Affiliation(s)
- Sabrina Wamp
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Patricia Rothe
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Daniel Stern
- ZBS3 - Biological Toxins, Robert Koch Institute, Berlin, Germany
| | - Gudrun Holland
- ZBS4 - Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Janina Döhling
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sven Halbedel
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- * E-mail:
| |
Collapse
|
15
|
Mikhailovskii O, Xue Y, Skrynnikov NR. Modeling a unit cell: crystallographic refinement procedure using the biomolecular MD simulation platform Amber. IUCRJ 2022; 9:114-133. [PMID: 35059216 PMCID: PMC8733891 DOI: 10.1107/s2052252521011891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
A procedure has been developed for the refinement of crystallographic protein structures based on the biomolecular simulation program Amber. The procedure constructs a model representing a crystal unit cell, which generally contains multiple protein molecules and is fully hydrated with TIP3P water. Periodic boundary conditions are applied to the cell in order to emulate the crystal lattice. The refinement is conducted in the form of a specially designed short molecular-dynamics run controlled by the Amber ff14SB force field and the maximum-likelihood potential that encodes the structure-factor-based restraints. The new Amber-based refinement procedure has been tested on a set of 84 protein structures. In most cases, the new procedure led to appreciably lower R free values compared with those reported in the original PDB depositions or obtained by means of the industry-standard phenix.refine program. In particular, the new method has the edge in refining low-accuracy scrambled models. It has also been successful in refining a number of molecular-replacement models, including one with an r.m.s.d. of 2.15 Å. In addition, Amber-refined structures consistently show superior MolProbity scores. The new approach offers a highly realistic representation of protein-protein interactions in the crystal, as well as of protein-water interactions. It also offers a realistic representation of protein crystal dynamics (akin to ensemble-refinement schemes). Importantly, the method fully utilizes the information from the available diffraction data, while relying on state-of-the-art molecular-dynamics modeling to assist with those elements of the structure that do not diffract well (for example mobile loops or side chains). Finally, it should be noted that the protocol employs no tunable parameters, and the calculations can be conducted in a matter of several hours on desktop computers equipped with graphical processing units or using a designated web service.
Collapse
Affiliation(s)
- Oleg Mikhailovskii
- Laboratory of Biomolecular NMR, St Petersburg State University, St Petersburg 199034, Russian Federation
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Xue
- School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, People’s Republic of China
- Tsinghua University–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St Petersburg State University, St Petersburg 199034, Russian Federation
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Sassine J, Pazos M, Breukink E, Vollmer W. Lytic transglycosylase MltG cleaves in nascent peptidoglycan and produces short glycan strands. Cell Surf 2021; 7:100053. [PMID: 34036206 PMCID: PMC8135044 DOI: 10.1016/j.tcsw.2021.100053] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Bacteria encase their cytoplasmic membrane with peptidoglycan (PG) to maintain the shape of the cell and protect it from bursting. The enlargement of the PG layer is facilitated by the coordinated activities of PG synthesising and -cleaving enzymes. In Escherichia coli, the cytoplasmic membrane-bound lytic transglycosylase MltG associates with PG synthases and was suggested to terminate the polymerisation of PG glycan strands. Using pull-down and surface plasmon resonance, we detected interactions between MltG from Bacillus subtilis and two PG synthases; the class A PBP1 and the class B PBP2B. Using in vitro PG synthesis assays with radio-labelled or fluorophore-labelled B. subtilis-type and/or E. coli-type lipid II, we showed that both, BsMltG and EcMltG, are lytic tranglycosylases and that their activity is higher during ongoing glycan strand polymerisation. MltG competed with the transpeptidase activity of class A PBPs, but had no effect on their glycosyltransferase activity, and produced glycan strands with a length of 7 disaccharide units from cleavage in the nascent strands. We hypothesize that MltG cleaves the nascent strands to produce short glycan strands that are used in the cell for a yet unknown process.
Collapse
Affiliation(s)
- Jad Sassine
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Manuel Pazos
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre of Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Linking the Peptidoglycan Synthesis Protein Complex with Asymmetric Cell Division during Bacillus subtilis Sporulation. Int J Mol Sci 2020; 21:ijms21124513. [PMID: 32630428 PMCID: PMC7349982 DOI: 10.3390/ijms21124513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Peptidoglycan is generally considered one of the main determinants of cell shape in bacteria. In rod-shaped bacteria, cell elongation requires peptidoglycan synthesis to lengthen the cell wall. In addition, peptidoglycan is synthesized at the division septum during cell division. Sporulation of Bacillus subtilis begins with an asymmetric cell division. Formation of the sporulation septum requires almost the same set of proteins as the vegetative septum; however, these two septa are significantly different. In addition to their differences in localization, the sporulation septum is thinner and it contains SpoIIE, a crucial sporulation specific protein. Here we show that peptidoglycan biosynthesis is linked to the cell division machinery during sporulation septum formation. We detected a direct interaction between SpoIIE and GpsB and found that both proteins co-localize during the early stages of asymmetric septum formation. We propose that SpoIIE is part of a multi-protein complex which includes GpsB, other division proteins and peptidoglycan synthesis proteins, and could provide a link between the peptidoglycan synthesis machinery and the complex morphological changes required for forespore formation during B. subtilis sporulation.
Collapse
|
18
|
Wamp S, Rutter ZJ, Rismondo J, Jennings CE, Möller L, Lewis RJ, Halbedel S. PrkA controls peptidoglycan biosynthesis through the essential phosphorylation of ReoM. eLife 2020; 9:56048. [PMID: 32469310 PMCID: PMC7286690 DOI: 10.7554/elife.56048] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Peptidoglycan (PG) is the main component of bacterial cell walls and the target for many antibiotics. PG biosynthesis is tightly coordinated with cell wall growth and turnover, and many of these control activities depend upon PASTA-domain containing eukaryotic-like serine/threonine protein kinases (PASTA-eSTK) that sense PG fragments. However, only a few PG biosynthetic enzymes are direct kinase substrates. Here, we identify the conserved ReoM protein as a novel PASTA-eSTK substrate in the Gram-positive pathogen Listeria monocytogenes. Our data show that the phosphorylation of ReoM is essential as it controls ClpCP-dependent proteolytic degradation of the essential enzyme MurA, which catalyses the first committed step in PG biosynthesis. We also identify ReoY as a second novel factor required for degradation of ClpCP substrates. Collectively, our data imply that the first committed step of PG biosynthesis is activated through control of ClpCP protease activity in response to signals of PG homeostasis imbalance.
Collapse
Affiliation(s)
- Sabrina Wamp
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Zoe J Rutter
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Jeanine Rismondo
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany.,Department of General Microbiology, GZMB, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Claire E Jennings
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Newcastle upon Tyne, United Kingdom
| | - Lars Möller
- ZBS 4 - Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Sven Halbedel
- FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
19
|
Jurásek M, Flärdh K, Vácha R. Effect of membrane composition on DivIVA-membrane interaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183144. [PMID: 31821790 DOI: 10.1016/j.bbamem.2019.183144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022]
Abstract
DivIVA is a crucial membrane-binding protein that helps to localize other proteins to negatively curved membranes at cellular poles and division septa in Gram-positive bacteria. The N-terminal domain of DivIVA is responsible for membrane binding. However, to which lipids the domain binds or how it recognizes the membrane negative curvature remains elusive. Using computer simulations, we demonstrate that the N-terminal domain of Streptomyces coelicolor DivIVA adsorbs to membranes with affinity and orientation dependent on the lipid composition. The domain interacts non-specifically with lipid phosphates via its arginine-rich tip and the strongest interaction is with cardiolipin. Moreover, we observed a specific attraction between a negatively charged side patch of the domain and ethanolamine lipids, which addition caused the change of the domain orientation from perpendicular to parallel alignment to the membrane plane. Similar but less electrostatically dependent behavior was observed for the N-terminal domain of Bacillus subtilis. The domain propensity for lipids which prefer negatively curved membranes could be a mechanism for the cellular localization of DivIVA protein.
Collapse
Affiliation(s)
- Miroslav Jurásek
- Faculty of Science, Masaryk University,Kamenice 753/5, Brno 625 00, Czech Republic
| | - Klas Flärdh
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Robert Vácha
- Faculty of Science, Masaryk University,Kamenice 753/5, Brno 625 00, Czech Republic; CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic.
| |
Collapse
|
20
|
Booth S, Lewis RJ. Structural basis for the coordination of cell division with the synthesis of the bacterial cell envelope. Protein Sci 2019; 28:2042-2054. [PMID: 31495975 PMCID: PMC6863701 DOI: 10.1002/pro.3722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023]
Abstract
Bacteria are surrounded by a complex cell envelope made up of one or two membranes supplemented with a layer of peptidoglycan (PG). The envelope is responsible for the protection of bacteria against lysis in their oft-unpredictable environments and it contributes to cell integrity, morphology, signaling, nutrient/small-molecule transport, and, in the case of pathogenic bacteria, host-pathogen interactions and virulence. The cell envelope requires considerable remodeling during cell division in order to produce genetically identical progeny. Several proteinaceous machines are responsible for the homeostasis of the cell envelope and their activities must be kept coordinated in order to ensure the remodeling of the envelope is temporally and spatially regulated correctly during multiple cycles of cell division and growth. This review aims to highlight the complexity of the components of the cell envelope, but focusses specifically on the molecular apparatuses involved in the synthesis of the PG wall, and the degree of cross talk necessary between the cell division and the cell wall remodeling machineries to coordinate PG remodeling during division. The current understanding of many of the proteins discussed here has relied on structural studies, and this review concentrates particularly on this structural work.
Collapse
Affiliation(s)
- Simon Booth
- Institute for Cell and Molecular Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Richard J. Lewis
- Institute for Cell and Molecular Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
21
|
Abstract
Reproduction in the bacterial kingdom predominantly occurs through binary fission-a process in which one parental cell is divided into two similarly sized daughter cells. How cell division, in conjunction with cell elongation and chromosome segregation, is orchestrated by a multitude of proteins has been an active area of research spanning the past few decades. Together, the monumental endeavors of multiple laboratories have identified several cell division and cell shape regulators as well as their underlying regulatory mechanisms in rod-shaped Escherichia coli and Bacillus subtilis, which serve as model organisms for Gram-negative and Gram-positive bacteria, respectively. Yet our understanding of bacterial cell division and morphology regulation is far from complete, especially in noncanonical and non-rod-shaped organisms. In this review, we focus on two proteins that are highly conserved in Gram-positive organisms, DivIVA and its homolog GpsB, and attempt to summarize the recent advances in this area of research and discuss their various roles in cell division, cell growth, and chromosome segregation in addition to their interactome and posttranslational regulation.
Collapse
|
22
|
Halbedel S, Lewis RJ. Structural basis for interaction of DivIVA/GpsB proteins with their ligands. Mol Microbiol 2019; 111:1404-1415. [PMID: 30887576 DOI: 10.1111/mmi.14244] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 01/06/2023]
Abstract
DivIVA proteins and their GpsB homologues are late cell division proteins found in Gram-positive bacteria. DivIVA/GpsB proteins associate with the inner leaflet of the cytosolic membrane and act as scaffolds for other proteins required for cell growth and division. DivIVA/GpsB proteins comprise an N-terminal lipid-binding domain for membrane association fused to C-terminal domains supporting oligomerization. Despite sharing the same domain organization, DivIVA and GpsB serve different cellular functions: DivIVA plays diverse roles in division site selection, chromosome segregation and controlling peptidoglycan homeostasis, whereas GpsB contributes to the spatiotemporal control of penicillin-binding protein activity. The crystal structures of the lipid-binding domains of DivIVA from Bacillus subtilis and GpsB from several species share a fold unique to this group of proteins, whereas the C-terminal domains of DivIVA and GpsB are radically different. A number of pivotal features identified from the crystal structures explain the functional differences between the proteins. Herein we discuss these structural and functional relationships and recent advances in our understanding of how DivIVA/GpsB proteins bind and recruit their interaction partners, knowledge that might be useful for future structure-based DivIVA/GpsB inhibitor design.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
23
|
Vollmer W, Massidda O, Tomasz A. The Cell Wall of Streptococcus pneumoniae. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0018-2018. [PMID: 31172911 PMCID: PMC11026078 DOI: 10.1128/microbiolspec.gpp3-0018-2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae has a complex cell wall that plays key roles in cell shape maintenance, growth and cell division, and interactions with components of the human host. The peptidoglycan has a heterogeneous composition with more than 50 subunits (muropeptides)-products of several peptidoglycan-modifying enzymes. The amidation of glutamate residues in the stem peptide is needed for efficient peptide cross-linking, and peptides with a dipeptide branch prevail in some beta-lactam-resistant strains. The glycan strands are modified by deacetylation of N-acetylglucosamine residues and O-acetylation of N-acetylmuramic acid residues, and both modifications contribute to pneumococcal resistance to lysozyme. The glycan strands carry covalently attached wall teichoic acid and capsular polysaccharide. Pneumococci are unique in that the wall teichoic acid and lipoteichoic acid contain the same unusually complex repeating units decorated with phosphoryl choline residues, which anchor the choline-binding proteins. The structures of lipoteichoic acid and the attachment site of wall teichoic acid to peptidoglycan have recently been revised. During growth, pneumococci assemble their cell walls at midcell in coordinated rounds of cell elongation and division, leading to the typical ovococcal cell shape. Cell wall growth depends on the cytoskeletal FtsA and FtsZ proteins and is regulated by several morphogenesis proteins that also show patterns of dynamic localization at midcell. Some of the key regulators are phosphorylated by StkP and dephosphorylated by PhpP to facilitate robust selection of the division site and plane and to maintain cell shape.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | |
Collapse
|
24
|
Brzozowski RS, Huber M, Burroughs AM, Graham G, Walker M, Alva SS, Aravind L, Eswara PJ. Deciphering the Role of a SLOG Superfamily Protein YpsA in Gram-Positive Bacteria. Front Microbiol 2019; 10:623. [PMID: 31024470 PMCID: PMC6459960 DOI: 10.3389/fmicb.2019.00623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
Bacteria adapt to different environments by regulating cell division and several conditions that modulate cell division have been documented. Understanding how bacteria transduce environmental signals to control cell division is critical in understanding the global network of cell division regulation. In this article we describe a role for Bacillus subtilis YpsA, an uncharacterized protein of the SLOG superfamily of nucleotide and ligand-binding proteins, in cell division. We observed that YpsA provides protection against oxidative stress as cells lacking ypsA show increased susceptibility to hydrogen peroxide treatment. We found that the increased expression of ypsA leads to filamentation and disruption of the assembly of FtsZ, the tubulin-like essential protein that marks the sites of cell division in B. subtilis. We also showed that YpsA-mediated filamentation is linked to the growth rate. Using site-directed mutagenesis, we targeted several conserved residues and generated YpsA variants that are no longer able to inhibit cell division. Finally, we show that the role of YpsA is possibly conserved in Firmicutes, as overproduction of YpsA in Staphylococcus aureus also impairs cell division.
Collapse
Affiliation(s)
- Robert S Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Mirella Huber
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Gianni Graham
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Merryck Walker
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Sameeksha S Alva
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
25
|
Hauf S, Herrmann J, Miethke M, Gibhardt J, Commichau FM, Müller R, Fuchs S, Halbedel S. Aurantimycin resistance genes contribute to survival of Listeria monocytogenes during life in the environment. Mol Microbiol 2019; 111:1009-1024. [PMID: 30648305 DOI: 10.1111/mmi.14205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
Abstract
Bacteria can cope with toxic compounds such as antibiotics by inducing genes for their detoxification. A common detoxification strategy is compound excretion by ATP-binding cassette (ABC) transporters, which are synthesized upon compound contact. We previously identified the multidrug resistance ABC transporter LieAB in Listeria monocytogenes, a Gram-positive bacterium that occurs ubiquitously in the environment, but also causes severe infections in humans upon ingestion. Expression of the lieAB genes is strongly induced in cells lacking the PadR-type transcriptional repressor LftR, but compounds leading to relief of this repression in wild-type cells were not known. Using RNA-Seq and promoter-lacZ fusions, we demonstrate highly specific repression of the lieAB and lftRS promoters through LftR. Screening of a natural compound library yielded the depsipeptide aurantimycin A - synthesized by the soil-dwelling Streptomyces aurantiacus - as the first known naturally occurring inducer of lieAB expression. Genetic and phenotypic experiments concordantly show that aurantimycin A is a substrate of the LieAB transporter and thus, lftRS and lieAB represent the first known genetic module conferring and regulating aurantimycin A resistance. Collectively, these genes may support the survival of L. monocytogenes when it comes into contact with antibiotic-producing bacteria in the soil.
Collapse
Affiliation(s)
- Samuel Hauf
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, Wernigerode, 38855, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, Saarbrücken, 66123, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - Marcus Miethke
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, Saarbrücken, 66123, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - Johannes Gibhardt
- Department of General Microbiology, University of Göttingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Göttingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, Saarbrücken, 66123, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Burgstrasse 37, Wernigerode, 38855, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, Wernigerode, 38855, Germany
| |
Collapse
|
26
|
Cleverley RM, Rutter ZJ, Rismondo J, Corona F, Tsui HCT, Alatawi FA, Daniel RA, Halbedel S, Massidda O, Winkler ME, Lewis RJ. The cell cycle regulator GpsB functions as cytosolic adaptor for multiple cell wall enzymes. Nat Commun 2019; 10:261. [PMID: 30651563 PMCID: PMC6335420 DOI: 10.1038/s41467-018-08056-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023] Open
Abstract
Bacterial growth and cell division requires precise spatiotemporal regulation of the synthesis and remodelling of the peptidoglycan layer that surrounds the cytoplasmic membrane. GpsB is a cytosolic protein that affects cell wall synthesis by binding cytoplasmic mini-domains of peptidoglycan synthases to ensure their correct subcellular localisation. Here, we describe critical structural features for the interaction of GpsB with peptidoglycan synthases from three bacterial species (Bacillus subtilis, Listeria monocytogenes and Streptococcus pneumoniae) and suggest their importance for cell wall growth and viability in L. monocytogenes and S. pneumoniae. We use these structural motifs to identify novel partners of GpsB in B. subtilis and extend the members of the GpsB interactome in all three bacterial species. Our results support that GpsB functions as an adaptor protein that mediates the interaction between membrane proteins, scaffolding proteins, signalling proteins and enzymes to generate larger protein complexes at specific sites in a bacterial cell cycle-dependent manner.
Collapse
Affiliation(s)
- Robert M Cleverley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Zoe J Rutter
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Jeanine Rismondo
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2DD, UK
| | - Federico Corona
- Dipartimento di Scienze Chirurgiche, Università di Cagliari, Cagliari, 09100, Italy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4AX, UK
| | | | - Fuad A Alatawi
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4AX, UK
| | - Richard A Daniel
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4AX, UK
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
| | - Orietta Massidda
- Dipartimento di Scienze Chirurgiche, Università di Cagliari, Cagliari, 09100, Italy
- Department CIBIO, University of Trento, via Sommarive 9, 38123, Povo, Italy
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
27
|
Halbedel S, Prager R, Banerji S, Kleta S, Trost E, Nishanth G, Alles G, Hölzel C, Schlesiger F, Pietzka A, Schlüter D, Flieger A. A Listeria monocytogenes ST2 clone lacking chitinase ChiB from an outbreak of non-invasive gastroenteritis. Emerg Microbes Infect 2019; 8:17-28. [PMID: 30866756 PMCID: PMC6455121 DOI: 10.1080/22221751.2018.1558960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
An outbreak with a remarkable Listeria monocytogenes clone causing 163 cases of non-invasive listeriosis occurred in Germany in 2015. Core genome multi locus sequence typing grouped non-invasive outbreak isolates and isolates obtained from related food samples into a single cluster, but clearly separated genetically close isolates obtained from invasive listeriosis cases. A comparative genomic approach identified a premature stop codon in the chiB gene, encoding one of the two L. monocytogenes chitinases, which clustered with disease outcome. Correction of this premature stop codon in one representative gastroenteritis outbreak isolate restored chitinase production, but effects in infection experiments were not found. While the exact role of chitinases in virulence of L. monocytogenes is still not fully understood, our results now clearly show that ChiB-derived activity is not required to establish L. monocytogenes gastroenteritis in humans. This limits a possible role of ChiB in human listeriosis to later steps of the infection.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Rita Prager
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sangeeta Banerji
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sylvia Kleta
- German Federal Institute for Risk AssessmentBerlin, Germany
| | - Eva Trost
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Georg Alles
- Paderborn District, Health Office, Paderborn, Germany
| | - Christina Hölzel
- Faculty of Agricultural and Nutritional Sciences, CAU Kiel, Kiel, Germany
- Milk Hygiene, Faculty of Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - Friederike Schlesiger
- Chemical and Veterinary Analytical Institute Ostwestfalen-Lippe (CVUA-OWL), Detmold, Germany
| | - Ariane Pietzka
- German-Austrian Binational Consiliary Laboratory for Listeria, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Organ-specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Antje Flieger
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
28
|
Eswara PJ, Brzozowski RS, Viola MG, Graham G, Spanoudis C, Trebino C, Jha J, Aubee JI, Thompson KM, Camberg JL, Ramamurthi KS. An essential Staphylococcus aureus cell division protein directly regulates FtsZ dynamics. eLife 2018; 7:38856. [PMID: 30277210 PMCID: PMC6168285 DOI: 10.7554/elife.38856] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022] Open
Abstract
Binary fission has been well studied in rod-shaped bacteria, but the mechanisms underlying cell division in spherical bacteria are poorly understood. Rod-shaped bacteria harbor regulatory proteins that place and remodel the division machinery during cytokinesis. In the spherical human pathogen Staphylococcus aureus, we found that the essential protein GpsB localizes to mid-cell during cell division and co-constricts with the division machinery. Depletion of GpsB arrested cell division and led to cell lysis, whereas overproduction of GpsB inhibited cell division and led to the formation of enlarged cells. We report that S. aureus GpsB, unlike other Firmicutes GpsB orthologs, directly interacts with the core divisome component FtsZ. GpsB bundles and organizes FtsZ filaments and also stimulates the GTPase activity of FtsZ. We propose that GpsB orchestrates the initial stabilization of the Z-ring at the onset of cell division and participates in the subsequent remodeling of the divisome during cytokinesis. A bacterium called Staphylococcus aureus causes many infections in humans, especially in hospital patients with weakened immune systems. These infections are generally treated with drugs known as antibiotics that interact with specific proteins in the bacteria to kill the cells, or stop them from growing. However, some S. aureus infections are resistant to the antibiotics currently available so there is a need to develop new drugs that target different bacterial proteins. Bacteria multiply by dividing to make identical copies of themselves. When a bacterium is preparing to divide, filaments made of a protein called FtsZ form a ring at the site where the cell will split. Many other proteins are involved in controlling how and when a cell divides. For example, several species of bacteria harbor a dispensable cell division protein called GpsB. In at least one organism, it helps to maintain the proper shape of the cell during cell division. In S. aureus, though, GpsB is essential for cells to survive and could therefore be a potential target for new antibiotics. However, its role in S. aureus has not been studied. Eswara et al. have now used genetic and biochemical approaches to study the S. aureus form of the GpsB protein. The experiments show that GpsB moves to the middle of S. aureus cells just before they begin to divide and binds directly to FtsZ. This helps to secure the position of FtsZ across the middle of the cell and activates the protein so that the cell can begin to divide into two. In cells that produce too much GpsB, the FtsZ proteins become active too early, leading to the cells growing larger and larger until they burst. The findings of Eswara et al. reveal that GpsB plays a different role in S. aureus cells than in some other species of bacteria. Further studies into such differences could help researchers to develop new antibiotics, as well as improving our understanding of why bacteria are so diverse.
Collapse
Affiliation(s)
- Prahathees J Eswara
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States.,Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Robert S Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Marissa G Viola
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, United States
| | - Gianni Graham
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States.,Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Catherine Spanoudis
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, United States
| | - Catherine Trebino
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, United States
| | - Jyoti Jha
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Joseph I Aubee
- Department of Microbiology, College of Medicine, Howard University, Washington, United States
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University, Washington, United States
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, United States.,Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
29
|
Yadav AK, Espaillat A, Cava F. Bacterial Strategies to Preserve Cell Wall Integrity Against Environmental Threats. Front Microbiol 2018; 9:2064. [PMID: 30233540 PMCID: PMC6127315 DOI: 10.3389/fmicb.2018.02064] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Bacterial cells are surrounded by an exoskeleton-like structure, the cell wall, composed primarily of the peptidoglycan (PG) sacculus. This structure is made up of glycan strands cross-linked by short peptides generating a covalent mesh that shapes bacteria and prevents their lysis due to their high internal osmotic pressure. Even though the PG is virtually universal in bacteria, there is a notable degree of diversity in its chemical structure. Modifications in both the sugars and peptides are known to be instrumental for bacteria to cope with diverse environmental challenges. In this review, we summarize and discuss the cell wall strategies to withstand biotic and abiotic environmental insults such as the effect of antibiotics targeting cell wall enzymes, predatory PG hydrolytic proteins, and PG signaling systems. Finally we will discuss the opportunities that species-specific PG variability might open to develop antimicrobial therapies.
Collapse
Affiliation(s)
- Akhilesh K Yadav
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Phosphorylation-dependent activation of the cell wall synthase PBP2a in Streptococcus pneumoniae by MacP. Proc Natl Acad Sci U S A 2018; 115:2812-2817. [PMID: 29487215 DOI: 10.1073/pnas.1715218115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Most bacterial cells are surrounded by an essential cell wall composed of the net-like heteropolymer peptidoglycan (PG). Growth and division of bacteria are intimately linked to the expansion of the PG meshwork and the construction of a cell wall septum that separates the nascent daughter cells. Class A penicillin-binding proteins (aPBPs) are a major family of PG synthases that build the wall matrix. Given their central role in cell wall assembly and importance as drug targets, surprisingly little is known about how the activity of aPBPs is controlled to properly coordinate cell growth and division. Here, we report the identification of MacP (SPD_0876) as a membrane-anchored cofactor of PBP2a, an aPBP synthase of the Gram-positive pathogen Streptococcus pneumoniae We show that MacP localizes to the division site of S. pneumoniae, forms a complex with PBP2a, and is required for the in vivo activity of the synthase. Importantly, MacP was also found to be a substrate for the kinase StkP, a global cell cycle regulator. Although StkP has been implicated in controlling the balance between the elongation and septation modes of cell wall synthesis, none of its substrates are known to modulate PG synthetic activity. Here we show that a phosphoablative substitution in MacP that blocks StkP-mediated phosphorylation prevents PBP2a activity without affecting the MacP-PBP2a interaction. Our results thus reveal a direct connection between PG synthase function and the control of cell morphogenesis by the StkP regulatory network.
Collapse
|
31
|
Rismondo J, Wamp S, Aldridge C, Vollmer W, Halbedel S. Stimulation of PgdA-dependent peptidoglycanN-deacetylation by GpsB-PBP A1 inListeria monocytogenes. Mol Microbiol 2017; 107:472-487. [DOI: 10.1111/mmi.13893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Jeanine Rismondo
- FG11 Division of Enteropathogenic bacteria and Legionella; Robert Koch Institute, Burgstrasse 37; Wernigerode 38855 Germany
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic bacteria and Legionella; Robert Koch Institute, Burgstrasse 37; Wernigerode 38855 Germany
| | - Christine Aldridge
- Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology; Newcastle University; Newcastle upon Tyne NE2 4AX UK
| | - Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology; Newcastle University; Newcastle upon Tyne NE2 4AX UK
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella; Robert Koch Institute, Burgstrasse 37; Wernigerode 38855 Germany
| |
Collapse
|
32
|
Genetic Dissection of DivIVA Functions in Listeria monocytogenes. J Bacteriol 2017; 199:JB.00421-17. [PMID: 28972021 DOI: 10.1128/jb.00421-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022] Open
Abstract
DivIVA is a membrane binding protein that clusters at curved membrane regions, such as the cell poles and the membrane invaginations occurring during cell division. DivIVA proteins recruit many other proteins to these subcellular sites through direct protein-protein interactions. DivIVA-dependent functions are typically associated with cell growth and division, even though species-specific differences in the spectrum of DivIVA functions and their causative interaction partners exist. DivIVA from the Gram-positive human pathogen Listeria monocytogenes has at least three different functions. In this bacterium, DivIVA is required for precise positioning of the septum at midcell, it contributes to the secretion of autolysins required for the breakdown of peptidoglycan at the septum after the completion of cell division, and it is essential for flagellar motility. While the DivIVA interaction partners for control of division site selection are well established, the proteins connecting DivIVA with autolysin secretion or swarming motility are completely unknown. We set out to identify divIVA alleles in which these three DivIVA functions could be separated, since the question of the degree to which the three functions of L. monocytogenes DivIVA are interlinked could not be answered before. Here, we identify such alleles, and our results show that division site selection, autolysin secretion, and swarming represent three discrete pathways that are independently influenced by DivIVA. These findings provide the required basis for the identification of DivIVA interaction partners controlling autolysin secretion and swarming in the future.IMPORTANCE DivIVA of the pathogenic bacterium Listeria monocytogenes is a central scaffold protein that influences at least three different cellular processes, namely, cell division, protein secretion, and bacterial motility. How DivIVA coordinates these rather unrelated processes is not known. We here identify variants of L. monocytogenes DivIVA, in which these functions are separated from each other. These results have important implications for the models explaining how DivIVA interacts with other proteins.
Collapse
|
33
|
Zheng JJ, Perez AJ, Tsui HCT, Massidda O, Winkler ME. Absence of the KhpA and KhpB (JAG/EloR) RNA-binding proteins suppresses the requirement for PBP2b by overproduction of FtsA in Streptococcus pneumoniae D39. Mol Microbiol 2017; 106:793-814. [PMID: 28941257 DOI: 10.1111/mmi.13847] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
Abstract
Suppressor mutations were isolated that obviate the requirement for essential PBP2b in peripheral elongation of peptidoglycan from the midcells of dividing Streptococcus pneumoniae D39 background cells. One suppressor was in a gene encoding a single KH-domain protein (KhpA). ΔkhpA suppresses deletions in most, but not all (mltG), genes involved in peripheral PG synthesis and in the gpsB regulatory gene. ΔkhpA mutations reduce growth rate, decrease cell size, minimally affect shape and induce expression of the WalRK cell-wall stress regulon. Reciprocal co-immunoprecipitations show that KhpA forms a complex in cells with another KH-domain protein (KhpB/JAG/EloR). ΔkhpA and ΔkhpB mutants phenocopy each other exactly, consistent with a direct interaction. RNA-immunoprecipitation showed that KhpA/KhpB bind an overlapping set of RNAs in cells. Phosphorylation of KhpB reported previously does not affect KhpB function in the D39 progenitor background. A chromosome duplication implicated FtsA overproduction in Δpbp2b suppression. We show that cellular FtsA concentration is negatively regulated by KhpA/B at the post-transcriptional level and that FtsA overproduction is necessary and sufficient for suppression of Δpbp2b. However, increased FtsA only partially accounts for the phenotypes of ΔkhpA mutants. Together, these results suggest that multimeric KhpA/B may function as a pleiotropic RNA chaperone controlling pneumococcal cell division.
Collapse
Affiliation(s)
- Jiaqi J Zheng
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| | - Amilcar J Perez
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| | - Ho-Ching Tiffany Tsui
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| | - Orietta Massidda
- Dipartimento di Scienze Chirurgiche, Università di Cagliari, 09100 Cagliari, Italy
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| |
Collapse
|
34
|
Abstract
More than 5 decades of work support the idea that cell envelope synthesis, including the inward growth of cell division, is tightly coordinated with DNA replication and protein synthesis through central metabolism. Remarkably, no unifying model exists to account for how these fundamentally disparate processes are functionally coupled. Recent studies demonstrate that proteins involved in carbohydrate and nitrogen metabolism can moonlight as direct regulators of cell division, coordinate cell division and DNA replication, and even suppress defects in DNA replication. In this minireview, we focus on studies illustrating the intimate link between metabolism and regulation of peptidoglycan (PG) synthesis during growth and division, and we identify the following three recurring themes. (i) Nutrient availability, not growth rate, is the primary determinant of cell size. (ii) The degree of gluconeogenic flux is likely to have a profound impact on the metabolites available for cell envelope synthesis, so growth medium selection is a critical consideration when designing and interpreting experiments related to morphogenesis. (iii) Perturbations in pathways relying on commonly shared and limiting metabolites, like undecaprenyl phosphate (Und-P), can lead to pleotropic phenotypes in unrelated pathways.
Collapse
|
35
|
Egan AJF, Cleverley RM, Peters K, Lewis RJ, Vollmer W. Regulation of bacterial cell wall growth. FEBS J 2017; 284:851-867. [PMID: 27862967 DOI: 10.1111/febs.13959] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/28/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
During growth and propagation, a bacterial cell enlarges and subsequently divides its peptidoglycan (PG) sacculus, a continuous mesh-like layer that encases the cell membrane to confer mechanical strength and morphological robustness. The mechanism of sacculus growth, how it is regulated and how it is coordinated with other cellular processes is poorly understood. In this article, we will discuss briefly the current knowledge of how cell wall synthesis is regulated, on multiple levels, from both sides of the cytoplasmic membrane. According to the current knowledge, cytosolic scaffolding proteins connect PG synthases with cytoskeletal elements, and protein phosphorylation regulates cell wall growth in Gram-positive species. PG-active enzymes engage in multiple protein-protein interactions within PG synthesis multienzyme complexes, and some of the interactions modulate activities. PG synthesis is also regulated by central metabolism, and by PG maturation through the action of PG hydrolytic enzymes. Only now are we beginning to appreciate how these multiple levels of regulating PG synthesis enable the cell to propagate robustly with a defined cell shape under different and variable growth conditions.
Collapse
Affiliation(s)
- Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Robert M Cleverley
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Richard J Lewis
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Rued BE, Zheng JJ, Mura A, Tsui HCT, Boersma MJ, Mazny JL, Corona F, Perez AJ, Fadda D, Doubravová L, Buriánková K, Branny P, Massidda O, Winkler ME. Suppression and synthetic-lethal genetic relationships of ΔgpsB mutations indicate that GpsB mediates protein phosphorylation and penicillin-binding protein interactions in Streptococcus pneumoniae D39. Mol Microbiol 2017; 103:931-957. [PMID: 28010038 DOI: 10.1111/mmi.13613] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 01/06/2023]
Abstract
GpsB regulatory protein and StkP protein kinase have been proposed as molecular switches that balance septal and peripheral (side-wall like) peptidoglycan (PG) synthesis in Streptococcus pneumoniae (pneumococcus); yet, mechanisms of this switching remain unknown. We report that ΔdivIVA mutations are not epistatic to ΔgpsB division-protein mutations in progenitor D39 and related genetic backgrounds; nor is GpsB required for StkP localization or FDAA labeling at septal division rings. However, we confirm that reduction of GpsB amount leads to decreased protein phosphorylation by StkP and report that the essentiality of ΔgpsB mutations is suppressed by inactivation of PhpP protein phosphatase, which concomitantly restores protein phosphorylation levels. ΔgpsB mutations are also suppressed by other classes of mutations, including one that eliminates protein phosphorylation and may alter division. Moreover, ΔgpsB mutations are synthetically lethal with Δpbp1a, but not Δpbp2a or Δpbp1b mutations, suggesting GpsB activation of PBP2a activity. Consistent with this result, co-IP experiments showed that GpsB complexes with EzrA, StkP, PBP2a, PBP2b and MreC in pneumococcal cells. Furthermore, depletion of GpsB prevents PBP2x migration to septal centers. These results support a model in which GpsB negatively regulates peripheral PG synthesis by PBP2b and positively regulates septal ring closure through its interactions with StkP-PBP2x.
Collapse
Affiliation(s)
- Britta E Rued
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Jiaqi J Zheng
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Andrea Mura
- Dipartimento di Scienze Chirurgiche, Università di Cagliari, Cagliari, 09100, Italy.,Cell and Molecular Microbiology Division, Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic, Prague 4, 142 20, Czech Republic
| | - Ho-Ching T Tsui
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Michael J Boersma
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Jeffrey L Mazny
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Federico Corona
- Dipartimento di Scienze Chirurgiche, Università di Cagliari, Cagliari, 09100, Italy
| | - Amilcar J Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Daniela Fadda
- Dipartimento di Scienze Chirurgiche, Università di Cagliari, Cagliari, 09100, Italy
| | - Linda Doubravová
- Cell and Molecular Microbiology Division, Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic, Prague 4, 142 20, Czech Republic
| | - Karolína Buriánková
- Cell and Molecular Microbiology Division, Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic, Prague 4, 142 20, Czech Republic
| | - Pavel Branny
- Cell and Molecular Microbiology Division, Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic, Prague 4, 142 20, Czech Republic
| | - Orietta Massidda
- Dipartimento di Scienze Chirurgiche, Università di Cagliari, Cagliari, 09100, Italy
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
37
|
Abstract
Peptidoglycan (PG), an essential stress-bearing component of the bacterial cell wall, is synthesised by penicillin binding proteins (PBPs). PG synthesis at the cell division septum is necessary for constructing new poles of progeny cells, and cells cannot elongate without inserting new PG in the side-wall. The cell division regulator GpsB appears to co-ordinate PG synthesis at the septum during division and at the side-wall during elongation in rod-shaped and ovococcoid Gram-positive bacteria. How the control over PG synthesis is exerted is unknown. In this issue of Molecular Microbiology, Rued et al. show that in pneumococci GpsB forms complexes with PBP2a and PBP2b, and that deletion or depletion of GpsB prevents closure of the septal ring that in itself is PBP2x-dependent. Loss of GpsB can be suppressed by spontaneous mutations, including within the gene encoding the only PP2C Ser/Thr phosphatase in Streptococcus pneumoniae, indicating that GpsB plays a key - but unknown - role in protein phosphorylation in pneumococci. Rued et al. combine phenotypic and genotypic analyses of mutant strains that suggest discrepancies in the literature concerning GpsB might have arisen from accumulation of unidentified suppressors, highlighting the importance and power of strain validation and whole genome sequencing in this context.
Collapse
Affiliation(s)
- Richard J Lewis
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
38
|
Suppressor Mutations Linking gpsB with the First Committed Step of Peptidoglycan Biosynthesis in Listeria monocytogenes. J Bacteriol 2016; 199:JB.00393-16. [PMID: 27795316 DOI: 10.1128/jb.00393-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023] Open
Abstract
The cell division protein GpsB is a regulator of the penicillin binding protein A1 (PBP A1) in the Gram-positive human pathogen Listeria monocytogenes Penicillin binding proteins mediate the last two steps of peptidoglycan biosynthesis as they polymerize and cross-link peptidoglycan strands, the main components of the bacterial cell wall. It is not known what other processes are controlled by GpsB. L. monocytogenes gpsB mutants are unable to grow at 42°C, but we observed that spontaneous suppressors correcting this defect arise on agar plates with high frequency. We here describe a first set of gpsB suppressors that mapped to the clpC and murZ genes. While ClpC is the ATPase component of the Clp protease, MurZ is a paralogue of the listerial UDP-N-acetylglucosamine (UDP-GlcNAc) 1-carboxyvinyltransferase MurA. Both enzymes catalyze the enolpyruvyl transfer from phosphoenolpyruvate to UDP-GlcNAc, representing the first committed step of peptidoglycan biosynthesis. We confirmed that clean deletion of the clpC or murZ gene suppressed the ΔgpsB phenotype. It turned out that the absence of either gene leads to accumulation of MurA, and we show that artificial overexpression of MurA alone was sufficient for suppression. Inactivation of other UDP-GlcNAc-consuming pathways also suppressed the heat-sensitive growth of the ΔgpsB mutant, suggesting that an increased influx of precursor molecules into peptidoglycan biosynthesis can compensate for the lack of GpsB. Our results support a model according to which PBP A1 becomes misregulated and thus toxic in the absence of GpsB due to unproductive consumption of cell wall precursor molecules. IMPORTANCE The late cell division protein GpsB is important for cell wall biosynthesis in Gram-positive bacteria. GpsB of the human pathogen L. monocytogenes interacts with one of the key enzymes of this pathway, penicillin binding protein A1 (PBP A1), and influences its activity. PBP A1 catalyzes the last two steps of cell wall biosynthesis, but it is unknown how GpsB controls PBP A1. We observed that a L. monocytogenes gpsB mutant forms spontaneous suppressors and have mapped their mutations to genes mediating and influencing the first step of cell wall biosynthesis, likely stimulating the influx of metabolites into this pathway. We assume that GpsB is important to ensure productive incorporation of cell wall precursors into the peptidoglycan sacculus by PBP A1.
Collapse
|
39
|
Cleverley RM, Rismondo J, Lockhart-Cairns MP, Van Bentum PT, Egan AJ, Vollmer W, Halbedel S, Baldock C, Breukink E, Lewis RJ. Subunit Arrangement in GpsB, a Regulator of Cell Wall Biosynthesis. Microb Drug Resist 2016; 22:446-60. [PMID: 27257764 PMCID: PMC5111876 DOI: 10.1089/mdr.2016.0050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
GpsB, a key regulator of cell division in Gram-positive bacteria, interacts with a key peptidoglycan synthase at the cell division septum, the penicillin binding protein PBP1 (a.k.a. PonA). Bacillus subtilis GpsB has been reported to interact with other components of the cell division machinery, including EzrA, MreC, and PrkC. In this study, we report an analysis of the arrangement of subunits in Listeria monocytogenes GpsB by small-angle X-ray scattering. The resulting model has an elongated shape with residues critical for interaction with PBP1 and the cell membrane clustered at one end of the molecule. Mutations that destabilize the hexameric assembly of the wild-type protein have a gpsB null phenotype, indicating that oligomerization is critical for the correct function of GpsB. We suggest a model in which a single GpsB hexamer can interact with multiple PBP1 molecules and can therefore influence the arrangement of PBP1 molecules within the cell division machinery, a dynamic multiprotein complex called the divisome, consistent with a role for GpsB in modulating the synthesis of the cell wall.
Collapse
Affiliation(s)
- Robert M. Cleverley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Jeanine Rismondo
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Michael P. Lockhart-Cairns
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Paulien T. Van Bentum
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, the Netherlands
| | - Alexander J.F. Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Clair Baldock
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, the Netherlands
| | - Richard J. Lewis
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| |
Collapse
|