1
|
Kwizera R, Abdolrasouli A, Garcia-Effron G, Denning DW. Antifungal susceptibility testing: applicability of methods and strategies for improving access in resource-constrained settings. THE LANCET. INFECTIOUS DISEASES 2024; 24:e782-e793. [PMID: 39305909 DOI: 10.1016/s1473-3099(24)00429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 12/01/2024]
Abstract
Patients infected with antifungal-resistant fungi often do not respond to therapy, substantially increasing mortality risk. Some fungi are inherently resistant to particular antifungals, underscoring the importance of rapid genus identification or, ideally, rapid species identification. The past decade has seen an increase in variable antifungal resistance rates among human fungal pathogens, necessitating individual isolate testing. Various antifungal susceptibility testing (AFST) methods are most suitable for resource-constrained settings, including agar diffusion, gradient diffusion, broth microdilution, and automated tests, which all differ in speed, reliability, and cost; yet AFST remains largely unavailable in resource-constrained settings. This Personal View explores the feasibility of AFST implementation in resource-constrained settings and addresses broader accessibility concerns. We outline seven steps for implementation of AFST with an initial focus on accurate species identification (to predict intrinsic resistance) of Candida albicans, Candida parapsilosis, Candida glabrata, and Aspergillus fumigatus. New funding, laboratory and clinical training, clear protocols, access to media and reagents, acquisition and maintenance of quality control strains, and regular participation in an external quality assurance programme are all essential for sustainable AFST services. AFST is fundamental for patient care guidance, surveillance data generation, and strengthening antifungal stewardship programmes. Political commitment and international collaborations are crucial for enhanced AFST service delivery.
Collapse
Affiliation(s)
- Richard Kwizera
- Department of Research, Infectious Diseases Institute and Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.
| | | | - Guillermo Garcia-Effron
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral - CONICET, Santa Fe, Argentina
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Khongthongdam M, Phetruen T, Chanarat S. Development of ptxD/Phi as a new dominant selection system for genetic manipulation in Cryptococcus neoformans. Microbiol Spectr 2024:e0161824. [PMID: 39565132 DOI: 10.1128/spectrum.01618-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/27/2024] [Indexed: 11/21/2024] Open
Abstract
Cryptococcus neoformans is a globally distributed pathogenic fungus posing a significant threat to immunocompromised individuals, particularly those with HIV/AIDS. Effective genetic manipulation tools are essential for understanding its biology and developing new therapies. However, current genetic tools, including the variation of versatile selectable markers, are limited. This study develops and validates the phosphite dehydrogenase gene (ptxD)/phosphite (Phi) selection system as a non-antibiotic selectable marker for genetic manipulation in C. neoformans. A codon-optimized ptxD gene from Pseudomonas stutzeri was cloned under the TEF promoter. Using the transient CRISPR-Cas9 coupled with electroporation system, we integrated the ptxD gene into the C. neoformans genome and assessed the impact of ptxD integration on cell growth and virulence factors. The ptxD/Phi system effectively selected transformed cells on Phi-containing media. Growth assays showed that ptxD integration did not adversely affect cell growth or key virulence factors, including pleomorphism, capsule size, and melanin production. Additionally, we successfully disrupted the ADE2 gene using this system, confirming its applicability for gene deletion. Taken together, the ptxD/Phi system provides a robust and versatile tool for genetic manipulation in C. neoformans, facilitating further research into its biology and pathogenicity.IMPORTANCECryptococcus neoformans is a type of fungus that can cause serious illnesses in people who have weakened immune systems, like those with HIV/AIDS. To better study this fungus and find new treatments, scientists need tools to change its genes in precise ways. However, the current tools available for this are somewhat limited. This research introduces a new tool called the phosphite dehydrogenase gene/phosphite system, which does not rely on antibiotics to work. It uses a gene from a different bacterium that helps select and grow only the fungus cells that have successfully incorporated new genetic information. This is particularly useful because it does not interfere with the normal growth of the fungus or the features that make it harmful (like its ability to change shape or produce protective coatings). By making it easier and more effective to manipulate the genetics of C. neoformans, this tool opens up new possibilities for understanding how this fungus operates and for developing therapies to combat its infections. This is crucial for improving the treatment of infections in vulnerable populations.
Collapse
Affiliation(s)
- Muthita Khongthongdam
- Laboratory of Molecular Cell Biology, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Medical Molecular Mycology, Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tanaporn Phetruen
- Laboratory of Molecular Cell Biology, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Medical Molecular Mycology, Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sittinan Chanarat
- Laboratory of Molecular Cell Biology, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Medical Molecular Mycology, Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Dorokhova VS, Komarova BS, Previato JO, Mendonça Previato L, Krylov VB, Nifantiev NE. Synthesis of branched and linear galactooligosaccharides related to glucuronoxylomannogalactan of Cryptococcus neoformans. Front Chem 2024; 12:1501766. [PMID: 39611096 PMCID: PMC11602299 DOI: 10.3389/fchem.2024.1501766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
This study focuses on the synthesis of a series of oligo-α-(1→6)-D-galactopyranosides bearing β-D-galactofuranosyl residues at O-2 and/or O-3, which relate structurally to fragments of glucuronoxylomannogalactan (GXMGal) from the fungal pathogen Cryptococcus neoformans that causes severe diseases in immunocompromised patients. The preparation of target compounds is based on the use of a selectively O-protected N-phenyltrifluoroacetimidoyl galactopyranoside donor with an allyl group at O-2, levulinoyl group (Lev) at O-3, pentafluorobenzoyl (PFB) group at O-4, and fluorenylmethoxycarbonyl (Fmoc) group at O-6. The choice of protecting groups for this donor ensures the stereospecific formation of α-(1→6)-glycosidic bonds due to the stereodirecting effect of acyls at O-3, O-4, and O-6. At the same time, this combination of O-substituents permits the selective recovery of free OH groups at O-2, O-3, and O-6 for chain elongation via the introduction of β-D-galactofuranosyl and α-D-galactopyranosyl residues. The reported compounds are obtained as aminopropyl glycosides, which are transformed into biotinylated conjugates for further use as coating antigens in immunological studies. The obtained oligosaccharides were subjected to detailed 13C NMR analysis to show the spatial similarity of the obtained hexasaccharide with the corresponding fragment in the GXMGal chain, making this compound suitable for further immunological studies of C. neoformans.
Collapse
Affiliation(s)
- Vera S. Dorokhova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Bozhena S. Komarova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - José O. Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lúcia Mendonça Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Zhang CW, Huang DY, Rajoka MSR, Wu Y, He ZD, Ye L, Wang Y, Song X. The Antifungal Effects of Berberine and Its Proposed Mechanism of Action Through CYP51 Inhibition, as Predicted by Molecular Docking and Binding Analysis. Molecules 2024; 29:5079. [PMID: 39519720 PMCID: PMC11547813 DOI: 10.3390/molecules29215079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Fungal infections present a significant health risk, particularly in immunocompromised individuals. Berberine, a natural isoquinoline alkaloid, has demonstrated broad-spectrum antimicrobial activity, though its antifungal potential and underlying mechanisms against both yeast-like and filamentous fungi are not fully understood. This study investigates the antifungal efficacy of berberine against Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Trichophyton mentagrophytes in vitro, as well as its therapeutic potential in a murine model of cryptococcal infection. Berberine showed strong antifungal activity, with MIC values ranging from 64 to 128 µg/mL. SEM and TEM analyses revealed that berberine induced notable disruptions to the cell wall and membrane in C. neoformans. No signs of cell necrosis or apoptosis were observed in fungal cells treated with 2 × MIC berberine, and it did not increase intracellular ROS levels or affect mitochondrial membrane potential. Molecular docking and binding affinity assays demonstrated a strong interaction between berberine and the fungal enzyme CYP51, with a dissociation constant (KD) of less than 1 × 10-12 M, suggesting potent inhibition of ergosterol biosynthesis. In vivo studies further showed that berberine promoted healing in guinea pigs infected with T. mentagrophytes, and in a murine cryptococcal infection model, it prolonged survival and reduced lung inflammation, showing comparable efficacy to fluconazole. These findings indicate that berberine exerts broad-spectrum antifungal effects through membrane disruption and CYP51 inhibition, highlighting its potential as a promising therapeutic option for fungal infections.
Collapse
Affiliation(s)
- Chao-Wei Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Dong-Yu Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Muhammad Shahid Riaz Rajoka
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Yan Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| | - Zhen-Dan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| | - Liang Ye
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xun Song
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| |
Collapse
|
5
|
Rouvray S, Drummond RA. The role of lipids in regulating macrophage antifungal immunity. mBio 2024; 15:e0305723. [PMID: 39207168 PMCID: PMC11481918 DOI: 10.1128/mbio.03057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Macrophages are critical components of the antifungal immune response. Disturbance in the number or function of these innate immune cells can significantly increase susceptibility to invasive fungal infections. Pathogenic fungi cause billions of infections every year and have an unmet clinical need, with many infections associated with unacceptably high mortality rates that primarily affect vulnerable patients with underlying immune defects. Lipid metabolism has been increasingly appreciated to significantly influence macrophage function, particularly of macrophages residing in lipid-rich organs, such as the brain, or macrophages specialized at clearing dead cells including alveolar macrophages in the lungs. In this review, we provide an overview of macrophage lipid metabolism, and discuss how lipid recycling and dysregulation affect key macrophage functions relevant for antifungal immunity including phagocytosis, functional polarization, and inflammasome activation. We focus on the fungal pathogen Cryptococcus neoformans, as this is the most common cause of death from fungal infection in humans and because several lines of evidence have already linked lipid metabolism in the regulation of C. neoformans and macrophage interactions.
Collapse
Affiliation(s)
- Sophie Rouvray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Fan X, Chen L, Chen M, Zhang N, Chang H, He M, Shen Z, Zhang L, Ding H, Xie Y, Huang Y, Ke W, Xiao M, Zang X, Xu H, Fang W, Li S, Cao C, Xu Y, Shan S, Wu W, Chen C, Xue X, Wang L. Pan-omics-based characterization and prediction of highly multidrug-adapted strains from an outbreak fungal species complex. Innovation (N Y) 2024; 5:100681. [PMID: 39228856 PMCID: PMC11369464 DOI: 10.1016/j.xinn.2024.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/28/2024] [Indexed: 09/05/2024] Open
Abstract
Strains from the Cryptococcus gattii species complex (CGSC) have caused the Pacific Northwest cryptococcosis outbreak, the largest cluster of life-threatening fungal infections in otherwise healthy human hosts known to date. In this study, we utilized a pan-phenome-based method to assess the fitness outcomes of CGSC strains under 31 stress conditions, providing a comprehensive overview of 2,821 phenotype-strain associations within this pathogenic clade. Phenotypic clustering analysis revealed a strong correlation between distinct types of stress phenotypes in a subset of CGSC strains, suggesting that shared determinants coordinate their adaptations to various stresses. Notably, a specific group of strains, including the outbreak isolates, exhibited a remarkable ability to adapt to all three of the most commonly used antifungal drugs for treating cryptococcosis (amphotericin B, 5-fluorocytosine, and fluconazole). By integrating pan-genomic and pan-transcriptomic analyses, we identified previously unrecognized genes that play crucial roles in conferring multidrug resistance in an outbreak strain with high multidrug adaptation. From these genes, we identified biomarkers that enable the accurate prediction of highly multidrug-adapted CGSC strains, achieving maximum accuracy and area under the curve (AUC) of 0.79 and 0.86, respectively, using machine learning algorithms. Overall, we developed a pan-omic approach to identify cryptococcal multidrug resistance determinants and predict highly multidrug-adapted CGSC strains that may pose significant clinical concern.
Collapse
Affiliation(s)
- Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Shanghai 200003, China
| | - Na Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Chang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingjie He
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenghao Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanyue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Xuelei Zang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Heping Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Wenxia Fang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cunwei Cao
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Mycosis Prevention and Treatment, Nanning 530021, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Shiguang Shan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Changbin Chen
- The Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang 261035, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Kwizera R, Kiiza TK, Akampurira A, Kimuda S, Mugabi T, Meya DB. Evolution of Laboratory Diagnostics for Cryptococcosis and Missing Links to Optimize Diagnosis and Outcomes in Resource-Constrained Settings. Open Forum Infect Dis 2024; 11:ofae487. [PMID: 39282635 PMCID: PMC11398909 DOI: 10.1093/ofid/ofae487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Cryptococcal meningitis is one of the leading causes of death in sub-Saharan Africa among patients with advanced HIV disease. Early diagnosis is crucial in improving treatment outcomes. Despite advances and the availability of modern and point-of-care diagnostics for cryptococcosis, gaps still exist in resource-constrained settings, leading to unfavorable treatment outcomes. Here, we review the current outstanding issues or missing links that need to be filled to optimize the diagnosis of cryptococcosis in resource-constrained settings to improve treatment outcomes. We highlight the evolution of cryptococcosis diagnostics; the roles of early fungicidal activity, cryptococcal antigen titers, antifungal susceptibility testing, and therapeutic drug monitoring; and the missing links to optimize diagnosis and outcomes, including practical recommendations.
Collapse
Affiliation(s)
- Richard Kwizera
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Tadeo K Kiiza
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Andrew Akampurira
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sarah Kimuda
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Timothy Mugabi
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David B Meya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
8
|
Yan ZZ, Hu HW, Xiong C, Peleg AY, Chen QL, Sáez-Sandino T, Maestre F, Delgado-Baquerizo M, Singh BK. Environmental microbiome, human fungal pathogens, and antimicrobial resistance. Trends Microbiol 2024:S0966-842X(24)00215-4. [PMID: 39304419 DOI: 10.1016/j.tim.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Traditionally, antifungal resistance (AFR) has received much less attention compared with bacterial resistance to antibiotics. However, global changes, pandemics, and emerging new fungal infections have highlighted global health consequences of AFR. The recent report of the World Health Organisation (WHO) has identified fungal priority pathogens, and recognised AFR among the greatest global health threats. This is particularly important given the significant increase in fungal infections linked to climate change and pandemics. Environmental factors play critical roles in AFR and fungal infections, as many clinically relevant fungal pathogens and AFR originate from the environment (mainly soil). In addition, the environment serves as a potential rich source for the discovery of new antifungal agents, including mycoviruses and bacterial probiotics, which hold promise for effective therapies. In this article, we summarise the environmental pathways of AFR development and spread among high priority fungal pathogens, and propose potential mechanisms of AFR development and spread. We identify a research priority list to address key knowledge gaps in our understanding of environmental AFR. Further, we propose an integrated roadmap for predictive risk management of AFR that is critical for effective surveillance and forecasting of public health outcomes under current and future climatic conditions.
Collapse
Affiliation(s)
- Zhen-Zhen Yan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food, and Ecosystem Science, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Anton Y Peleg
- Department of Infectious Disease, The Alfred Hospital and Central Clinical School, Monash University, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Australia; Centre to Impact Antimicrobial Resistance, Monash University, Melbourne, Australia
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tadeo Sáez-Sandino
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Fernando Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
9
|
Ngece K, Ntondini TL, Khwaza V, Paca AM, Aderibigbe BA. Polyene-Based Derivatives with Antifungal Activities. Pharmaceutics 2024; 16:1065. [PMID: 39204411 PMCID: PMC11360744 DOI: 10.3390/pharmaceutics16081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Polyenes are a class of organic compounds well known for their potent antifungal properties. They are effective due to their ability to target and disrupt fungal cell membranes by binding to ergosterol and forming pores. Despite their effectiveness as antifungal drugs, polyenes have several limitations, such as high toxicity to the host cell and poor solubility in water. This has prompted ongoing research to develop safer and more efficient derivatives to overcome such limitations while enhancing their antifungal activity. In this review article, we present a thorough analysis of polyene derivatives, their structural modifications, and their influence on their therapeutic effects against various fungal strains. Key studies are discussed, illustrating how structural modifications have led to improved antifungal properties. By evaluating the latest advancements in the synthesis of polyene derivatives, we highlight that incorporating amide linkers at the carboxylic moiety of polyene molecules notably improves their antifungal properties, as evidenced by derivatives 4, 5, 6G, and 18. This review can help in the design and development of novel polyene-based compounds with potent antifungal activities.
Collapse
Affiliation(s)
| | | | - Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (K.N.); (T.L.N.); (A.M.P.)
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (K.N.); (T.L.N.); (A.M.P.)
| |
Collapse
|
10
|
Silva-Rodrigues G, de Castro IM, Borges PHG, Suzukawa HT, de Souza JM, Bartolomeu-Gonçalves G, Pelisson M, Medeiros CIS, Bispo MDLF, de Almeida RSC, Ishida K, Tavares ER, Yamauchi LM, Yamada-Ogatta SF. Geraniol Potentiates the Effect of Fluconazole against Planktonic and Sessile Cells of Azole-Resistant Candida tropicalis: In Vitro and In Vivo Analyses. Pharmaceutics 2024; 16:1053. [PMID: 39204397 PMCID: PMC11360560 DOI: 10.3390/pharmaceutics16081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Candida tropicalis is regarded as an opportunistic pathogen, causing diseases ranging from superficial infections to life-threatening disseminated infections. The ability of this yeast to form biofilms and develop resistance to antifungals represents a significant therapeutic challenge. Herein, the effect of geraniol (GER), alone and combined with fluconazole (FLZ), was evaluated in the planktonic and sessile cells of azole-resistant C. tropicalis. GER showed a time-dependent fungicidal effect on the planktonic cells, impairing the cell membrane integrity. Additionally, GER inhibited the rhodamine 6G efflux, and the molecular docking analyzes supported the binding affinity of GER to the C. tropicalis Cdr1 protein. GER exhibited a synergism with FLZ against the planktonic and sessile cells, inhibiting the adhesion of the yeast cells and the viability of the 48-h biofilms formed on abiotic surfaces. C. tropicalis biofilms treated with GER, alone or combined with FLZ, displayed morphological and ultrastructural alterations, including a decrease in the stacking layers and the presence of wilted cells. Moreover, neither GER alone nor combined with FLZ caused toxicity, and both treatments prolonged the survival of the Galleria mellonella larvae infected with azole-resistant C. tropicalis. These findings indicate that the combination of GER and FLZ may be a promising strategy to control azole-resistant C. tropicalis infections.
Collapse
Affiliation(s)
- Gislaine Silva-Rodrigues
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Isabela Madeira de Castro
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Paulo Henrique Guilherme Borges
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Helena Tiemi Suzukawa
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Joyce Marinho de Souza
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Guilherme Bartolomeu-Gonçalves
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
| | - Marsileni Pelisson
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
| | | | - Marcelle de Lima Ferreira Bispo
- Synthesis of Medicinal Molecules Laboratory, Department of Chemistry, State University of Londrina, Londrina 86057-970, Brazil;
| | - Ricardo Sérgio Couto de Almeida
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil;
| | - Eliandro Reis Tavares
- Department of Medicine, Pontifical Catholic University of Paraná, Campus Londrina, Londrina 86067-000, Brazil;
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| | - Lucy Megumi Yamauchi
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
11
|
Zhou Z, Zhu F, Ma S, Tan C, Yang H, Zhang P, Xu Y, Qin R, Luo Y, Chen J, Pan P. Design of Cryptococcus neoformans multi-epitope vaccine based on immunoinformatics method. Med Mycol 2024; 62:myae080. [PMID: 39122658 DOI: 10.1093/mmy/myae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024] Open
Abstract
Cryptococcus neoformans is a widely distributed opportunistic pathogenic fungus. While C. neoformans commonly infects immunocompromised individuals, it can also affect those who are immunocompetent. Transmission of C. neoformans primarily occurs through the respiratory tract, leading to the development of meningitis. The mortality rate of Cryptococcal meningitis is high, and treatment options are limited. Cryptococcus neoformans infections pose a significant public health threat and currently lack targeted and effective response strategies. This study aimed to screen T lymphocyte (cytotoxic T lymphocyte and helper T lymphocyte) and B lymphocyte epitopes derived from four C. neoformans antigens and develop two multi-epitope vaccines by combining them with various adjuvants. Molecular docking results demonstrated that the vaccines bind stably to Toll-like receptor 4 ( and induce innate immunity. The credibility of the molecular docking results was validated through subsequent molecular dynamics simulations. Furthermore, the results of immune simulation analyses underscored the multi-epitope vaccine's capability to effectively induce robust humoral and cellular immune responses within the host organism. These two vaccines have demonstrated theoretical efficacy against C. neoformans infection as indicated by computer analysis. Nevertheless, additional experimental validation is essential to substantiate the protective efficacy of the vaccines.
Collapse
Affiliation(s)
- Ziyou Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Caixia Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Rongliu Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yuying Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
12
|
Santana de Carvalho D, Bastos RW, Rossato L, Teixeira de Aguiar Peres N, Assis Santos D. ResFungi: A Novel Protein Database of Antifungal Drug Resistance Genes Using a Hidden Markov Model Profile. ACS OMEGA 2024; 9:30559-30570. [PMID: 39035910 PMCID: PMC11256324 DOI: 10.1021/acsomega.4c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Fungal infections vary from superficial to invasive and can be life-threatening in immunocompromised and healthy individuals. Antifungal resistance is one of the main reasons for an increasing concern about fungal infections as they become more complex and harder to treat. The fungal "omics" databases help us find drug resistance genes, which is of great importance and extremely necessary. With that in mind, we built a new platform for drug resistance genes. We added seven drug classes of resistance genes to our database: azoles (without specifying which drug), fluconazole, voriconazole, itraconazole, flucytosine, micafungin, and caspofungin. Species with known resistance genes were used to validate the results from our database. This study describes a list of 261 candidate genes related to antifungal resistance, with several genes displaying transport functions involved in azole resistance. Over 65% of the candidate genes found were related to at least one type of azole. Overall, the candidate genes found have functional annotations consistent with genes or enzymes that have been linked to antifungal resistance in previous studies. Also, candidate antifungal resistance genes found exhibit functional annotations consistent with previously described resistance mechanisms. The existence of an HMM profile focusing on antifungal resistance genes allows in silico searches for candidate genes, helping future wet lab experiments, and hence, reducing costs when studying candidate antifungal genes without prior knowledge of the species or genes. Finally, ResFungi has proven to be a powerful tool to narrow down candidate antifungal-related genes and unravel mechanisms related to resistance to help in the design of experiments focusing on the genetic basis of antifungal resistance.
Collapse
Affiliation(s)
- Daniel Santana de Carvalho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Wesley Bastos
- Bioscience Center, Federal University of Rio Grande do Norte, 59064-741 Natal, Brazil
| | - Luana Rossato
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, 79825-070 Dourados, Brazil
| | - Nalu Teixeira de Aguiar Peres
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
13
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
14
|
Tang S, Hao R, Liu X, He H, Tian Y, Jing T, Liu Z, Xu Y, Li X. Global trends in Cryptococcus and its interactions with the host immune system: a bibliometric analysis. Front Immunol 2024; 15:1397338. [PMID: 38774865 PMCID: PMC11106374 DOI: 10.3389/fimmu.2024.1397338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Objectives This manuscript undertakes a systematic examination of the research landscape concerning global Cryptococcus species and their dynamism with the host immune system spanning the past decade. It furnishes a detailed survey of leading knowledge institutions and critical focal points in this area, utilizing bibliometric analysis. Methods VOSviewer and CiteSpace software platforms were employed to systematically analyze and graphically depict the relevant literature indexed in the WoSCC database over the preceding ten years. Results In the interval between October 1, 2013, and October 1, 2023, a corpus of 795 publications was amassed. The primary research institutions involved in this study include Duke University, the University of Minnesota, and the University of Sydney. The leading trio of nations, in terms of publication volume, comprises the United States, China, and Brazil. Among the most prolific authors are Casadevall, Arturo; Wormley, Floyd L., Jr.; and Olszewski, Michal A., with the most highly cited author being Perfect, Jr. The most esteemed journal is Mbio, while Infection and Immunity commands the highest citation frequency, and the Journal of Clinical Microbiology boasts the most significant impact factor. Present research foci encompass the intricate interactions between Cryptococcus pathogenesis and host immunity, alongside immune mechanisms, complications, and immunotherapies. Conclusion This represents the first exhaustive scholarly review and bibliometric scrutiny of the evolving landscapes in Cryptococcus research and its interactions with the host immune system. The analyses delineated herein provide insights into prevailing research foci and trajectories, thus furnishing critical directions for subsequent inquiries in this domain.
Collapse
Affiliation(s)
- Shiqin Tang
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Ruiying Hao
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Xin Liu
- Handan Stomatological Hospital, Endodontics, Handan, Hebei, China
| | - Huina He
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Yanan Tian
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Tingting Jing
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Zhao Liu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Yanyan Xu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Xiaojing Li
- School of Clinical Medicine, The Hebei University of Engineering, Hebei Key Laboratory of Immunological Dermatology, Handan, Hebei, China
| |
Collapse
|
15
|
Ma L, Zhang X, Li C, Ma X, Zhao X, Zhao X, Zhang P, Zhu X. A U2 snRNP-specific protein, U2A', is involved in stress response and drug resistance in Cryptococcus deneoformans. Biochimie 2024; 220:179-187. [PMID: 37806618 DOI: 10.1016/j.biochi.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/14/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
The spliceosome, a large complex containing five conserved small ribonucleoprotein particles (snRNPs) U1, U2, U4, U5 and U6, plays important roles in precursor messenger RNA splicing. However, the function and mechanism of the spliceosomal snRNPs have not been thoroughly studied in the pathogenic yeast Cryptococcus deneoformans. In this study, we identified a U2A' homologous protein as a component of the cryptococcal U2 snRNP, which was encoded by the LEA1 gene. Using the "suicide" CRISPR-Cas9 tool, we deleted the LEA1 gene in C. deneoformans JEC21 strain and obtained the disruption mutant lea1Δ. The mutant showed a hypersensitivity to 0.03 % sodium dodecyl sulfate, as well as disordered chitin distribution in cell wall observed with Calcofluor White staining, which collectively illustrated the function of U2A' in maintenance of cell wall integrity. Further examination showed that lea1Δ displayed a decreased tolerance to lower or elevated temperatures, osmotic pressure and oxidative stress. The lea1Δ still exhibited susceptibility to geneticin and 5-flucytosine, and increased resistance to ketoconazole. Even, the mutant had a reduced capsule, and the virulence of lea1Δ in the Galleria mellonella model was decreased. Our results indicate that the U2A'-mediated RNA-processing has a particular role in the processing of gene products involved in response to stresses and virulence.
Collapse
Affiliation(s)
- Lan Ma
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xueqing Zhang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chenxi Li
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaoyu Ma
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xuan Zhao
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xueru Zhao
- Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ping Zhang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
16
|
Elenany AM, Atia MMM, Abbas EEA, Moustafa M, Alshaharni MO, Negm S, Elnahal ASMA. Nanoparticles and Chemical Inducers: A Sustainable Shield against Onion White Rot. BIOLOGY 2024; 13:219. [PMID: 38666831 PMCID: PMC11048201 DOI: 10.3390/biology13040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
This study investigated the effectiveness of nanoparticles and chemical inducers in managing onion white rot caused by Sclerotium cepivorum. The pathogen severely threatens onion cultivation, resulting in significant yield losses and economic setbacks. Traditional fungicides, though effective, raise environmental concerns, prompting a shift toward eco-friendly alternatives. In this study, four S. cepivorum isolates were utilized, each exhibiting varying degrees of pathogenicity, with the third isolate from Abu-Hamad demonstrating the highest potency. During the in vitro studies, three nanoparticles (NPs) were investigated, including Fe3O4 NPs, Cu NPs, and ZnO NPs, which demonstrated the potential to inhibit mycelial growth, with salicylic acid and Fe3O4 NPs exhibiting synergistic effects. In vivo, these nanoparticles reduced the disease incidence and severity, with Fe3O4 NPs at 1000-1400 ppm resulting in 65.0-80.0% incidence and 80.0-90.0% severity. ZnO NPs had the most positive impact on the chlorophyll content, while Cu NPs had minimal effects. At 1000 ppm, Fe3O4 NPs had variable effects on the phenolic compounds (total: 6.28, free: 4.81, related: 2.59), while ZnO NPs caused minor fluctuations (total: 3.60, free: 1.82, related: 1.73). For the chemical inducers, salicylic acid reduced the disease (10.0% incidence, 25.0% to 10.0% severity) and promoted growth, and it elevated the chlorophyll values and enhanced the phenolic compounds in infected onions. Potassium phosphate dibasic (PDP) had mixed effects, and ascorbic acid showed limited efficacy toward disease reduction. However, PDP at 1400 ppm and ascorbic acid at 1000 ppm elevated the chlorophyll values and enhanced the phenolic compounds. Furthermore, this study extended to traditional fungicides, highlighting their inhibitory effects on S. cepivorum. This research provides a comprehensive comparative analysis of these approaches, emphasizing their potential in eco-friendly onion white rot management.
Collapse
Affiliation(s)
- Ahmed Mohammed Elenany
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.M.E.)
| | | | - Entsar E. A. Abbas
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.M.E.)
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed O. Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | | |
Collapse
|
17
|
Aguiar TKB, Costa ACM, Neto NAS, Brito DMS, Freitas CDT, Neto JMM, Mesquita FP, Souza PFN. Rise and fall of Caspofungin: the current status of Caspofungin as a treatment for Cryptococcus neoformans infection. Future Microbiol 2024; 19:621-630. [PMID: 38497911 PMCID: PMC11229582 DOI: 10.2217/fmb-2023-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/12/2023] [Indexed: 03/19/2024] Open
Abstract
Antifungal infections are becoming a major concern to human health due to antimicrobial resistance. Echinocandins have been promising agents against resistant fungal infections, primarily caspofungin, which has a more effective mechanism of action than azoles and polyenes. However, fungi such as Cryptococcus neoformans appear to be inheritably resistant to these drugs, which is concerning due to the high clinical importance of C. neoformans. In this review, we review the history of C. neoformans and the treatments used to treat antifungals over the years, focusing on caspofungin, while highlighting the C. neoformans problem and possible explanations for its inherent resistance.
Collapse
Affiliation(s)
- Tawanny KB Aguiar
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil
| | - Ana CM Costa
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil
| | - Nilton AS Neto
- University of Brasília, Post-Graduation in Molecular Pathology, Darcy Ribeiro Campus, Brasília, DF, 70910-900, Brazil
| | - Daiane MS Brito
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil
- Drug Research & Development Center, Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Cleverson DT Freitas
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil
| | - João MM Neto
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil
| | - Felipe P Mesquita
- Drug Research & Development Center, Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Pedro FN Souza
- Drug Research & Development Center, Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| |
Collapse
|
18
|
Puumala E, Fallah S, Robbins N, Cowen LE. Advancements and challenges in antifungal therapeutic development. Clin Microbiol Rev 2024; 37:e0014223. [PMID: 38294218 PMCID: PMC10938895 DOI: 10.1128/cmr.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Gutierrez-Gongora D, Woods M, Prosser RS, Geddes-McAlister J. Natural compounds from freshwater mussels disrupt fungal virulence determinants and influence fluconazole susceptibility in the presence of macrophages in Cryptococcus neoformans. Microbiol Spectr 2024; 12:e0284123. [PMID: 38329361 PMCID: PMC10913472 DOI: 10.1128/spectrum.02841-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen responsible for fatal infections, especially in patients with a depressed immune system. Overexposure to antifungal drugs due to prolonged treatment regimens and structure-similar applications in agriculture have weakened the efficacy of current antifungals in the clinic. The rapid evolution of antifungal resistance urges the discovery of new compounds that inhibit fungal virulence determinants, rather than directly killing the pathogen, as alternative strategies to overcome disease and reduce selective pressure toward resistance. Here, we evaluated the efficacy of freshwater mussel extracts (crude and clarified) against the production of well-defined virulence determinants (i.e., thermotolerance, melanin, capsule, and biofilm) and fluconazole resistance in C. neoformans. We demonstrated the extracts' influence on fungal thermotolerance, capsule production, and biofilm formation, as well as susceptibility to fluconazole in the presence of macrophages. Additionally, we measured the inhibitory activity of extracts against commercial peptidases (family representatives of cryptococcal orthologs) related to fungal virulence determinants and fluconazole resistance, and integrated these phenotypic findings with quantitative proteomics profiling. Our approach defined distinct signatures of each treatment and validated a new mechanism of anti-virulence action toward the polysaccharide capsule from a selected extract following fractionation. By understanding the mechanisms driving the antifungal activity of mussels, we may develop innovative treatment options to overcome fungal infections and promote susceptibility to fluconazole in resistant strains. IMPORTANCE As the prevalence and severity of global fungal infections rise, along with an increasing incidence of antifungal resistance, new strategies to combat fungal pathogens and overcome resistance are urgently needed. Critically, our current methods to overcome fungal infections are limited and drive the evolution of resistance forward; however, an anti-virulence approach to disarm virulence factors of the pathogen and promote host cell clearance is promising. Here, we explore the efficacy of natural compounds derived from freshwater mussels against classical fungal virulence determinants, including thermotolerance, capsule production, stress response, and biofilm formation. We integrate our phenotypic discoveries with state-of-the-art mass spectrometry-based proteomics to identify mechanistic drivers of these antifungal properties and propose innovative avenues to reduce infection and support the treatment of resistant strains.
Collapse
Affiliation(s)
| | - Michael Woods
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S. Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
20
|
Duarte I, Rodrigues ML. Funding for research on cryptococcal disease: an analysis based on the G-finder report. IMA Fungus 2024; 15:4. [PMID: 38429837 PMCID: PMC10908028 DOI: 10.1186/s43008-023-00133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/13/2023] [Indexed: 03/03/2024] Open
Abstract
Members of the genus Cryptococcus are the causative agents of cryptococcal meningitis, a disease mainly associated with HIV-induced immunosuppression. Patients with cryptococcal meningitis are at a serious risk of death. Most patients suffering from cryptococcosis belong to neglected populations. With reduced support for research, new therapies are unlikely to emerge. In this essay, we used the Policy Cures/G-finder platform as a reference database for funding research on cryptococcal disease. Funding for cryptococcal research started being tracked by G-finder in 2013 and has continued to appear in the annual reports ever since. In total, 15 institutions were reported as major funders for research on cryptococcal disease over the years. The US National Institutes of Health (NIH) was the main funder, followed by the UK's Wellcome Trust. The annual analysis suggested slow yearly growth in funding from 2013 to 2021. The development of new tools to prevent and fight cryptococcal disease is urgent but requires improved funding.
Collapse
Affiliation(s)
- Iraine Duarte
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Professor Algacyr Munhoz Mader 3775- CIC, Curitiba, PR, 81350-010, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Professor Algacyr Munhoz Mader 3775- CIC, Curitiba, PR, 81350-010, Brazil.
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro. Cidade Universitária, Centro de Ciências da Saúde., Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
21
|
Su Z, Wei H, Liu J, Li C, Xu Z, Yuan D, Dai K, Peng F, Jiang Y. Analysis of the relationship between drug susceptibility of Cryptococcus neoformans isolates and mortality in HIV-negative cryptococcal meningitis. J Glob Antimicrob Resist 2024; 36:167-174. [PMID: 38141953 DOI: 10.1016/j.jgar.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVES The relationship between antifungal susceptibility and mortality of cryptococcal meningitis (CM) in HIV-negative patients is poorly understood. METHODS We conducted a retrospective analysis of 1-year follow-up of 200 HIV-negative CM patients with an initial cerebrospinal fluid (CSF) culture for Cryptococcus neoformans. According to the cut-off values of minimum inhibitory concentration (MIC), two groups of five antifungal agents were classified: amphotericin B (AmB), ≤0.5 µg/mL, >0.5 µg/mL; 5-flucytosine (5-FC), ≤4 µg/mL, >4 µg/mL; fluconazole (FLU), ≤4 µg/mL, >4 µg/mL; itraconazole (ITR), ≤0.125 µg/mL, >0.125 µg/mL; and voriconazole (VOR), <0.25 µg/mL, ≥0.25 µg/mL. Comparisons were performed to analyse clinical features, laboratory, modified Rankin Scale (mRS) scores, and CSF findings under different prognosis outcomes in 1-year. RESULTS All of Cryptococcus neoformans isolates were sensitive to AmB and VOR, most of them were sensitive to 5-FC and FLU (95.5% and 90.5%, respectively) while only 55.0% of them were susceptible to ITR. Minimum inhibitory concentrations of ITR and VOR were significantly related to baseline mRS scores. All-cause mortality was not significantly related to MICs in Cryptococcus neoformans strains. The combination of actual antifungal agents and two groups of the MICs values for antifungal agents had no significant effects on all-cause mortality. CONCLUSION Most Cryptococcus neoformans isolates were sensitive to AmB, VOR, 5-FC, and FLU. Because of the small number of deaths, we are not able to comment on whether MIC is associated with mortality of CM in HIV-negative patients.
Collapse
Affiliation(s)
- Zhihui Su
- Dsepartment of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hang Wei
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Intelligent Chinese Medicine Research Institute, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jia Liu
- Dsepartment of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Chongwen Li
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zirong Xu
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Dasen Yuan
- Dsepartment of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Kai Dai
- Dsepartment of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Fuhua Peng
- Dsepartment of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Ying Jiang
- Dsepartment of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
22
|
Hansanant N, Cao K, Tenorio A, Joseph T, Ju M, McNally N, Kummari E, Williams M, Cothrell A, Buhrow AR, Shin R, Orugunty R, Smith L. Previously Uncharacterized Variants, OCF-E-OCF-J, of the Antifungal Occidiofungin Produced by Burkholderia contaminans MS14. JOURNAL OF NATURAL PRODUCTS 2024; 87:186-194. [PMID: 38277493 PMCID: PMC10897925 DOI: 10.1021/acs.jnatprod.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/28/2024]
Abstract
The rise of multidrug resistant fungal infections highlights the need to identify and develop novel antifungal agents. Occidiofungin is a nonribosomally synthesized glycolipopeptide that has a unique mechanism of action, disrupting actin-mediated functions and inducing cellular apoptosis. Antifungal activity has been observed in vitro against various fungal species, including multidrug resistant Candida auris, and in vivo efficacy has been demonstrated in a murine vulvovaginal candidiasis model. Occidiofungin, a cyclic glycolipopeptide, is composed of eight amino acids and in previous studies, an asparagine residue was assigned at position 7 (ASN7). In this study, new structural variants of occidiofungin have been characterized which have aspartic acid (ASP7), glutamine (GLN7), or glutamic acid (GLU7) at position 7. The side chain of the ASP7 variant contains the only terminal carboxylic acid in the peptide and provides a useful site for selective chemical modifications. Analogues were synthesized at the ASP7 position and tested for antifungal activity. These analogues were shown to be more active as compared to the ASP7 variant against a panel of Candida species. The naturally occurring variants of occidiofungin with a side chain containing a carboxylic acid at the seventh amino acid position can be used to develop semisynthetic analogues with enhanced therapeutic properties.
Collapse
Affiliation(s)
- Nopakorn Hansanant
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Kevin Cao
- Sano
Chemicals Incorporated, Bryan, Texas 77803, United States
| | - Abraham Tenorio
- Sano
Chemicals Incorporated, Bryan, Texas 77803, United States
| | - Thushinari Joseph
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Min Ju
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Noah McNally
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Evangel Kummari
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - McKinley Williams
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew Cothrell
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew R. Buhrow
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Ronald Shin
- Central
Alabama High-Field NMR Facility, Structural Biology Shared Facility,
Cancer Center, University of Alabama at
Birmingham, Birmingham, Alabama 35294-1240, United States
| | - Ravi Orugunty
- Sano
Chemicals Incorporated, Bryan, Texas 77803, United States
| | - Leif Smith
- Department
of Biology, Texas A&M University, College Station, Texas 77843, United States
- Sano
Chemicals Incorporated, Bryan, Texas 77803, United States
| |
Collapse
|
23
|
Roosen L, Maes D, Musetta L, Himmelreich U. Preclinical Models for Cryptococcosis of the CNS and Their Characterization Using In Vivo Imaging Techniques. J Fungi (Basel) 2024; 10:146. [PMID: 38392818 PMCID: PMC10890286 DOI: 10.3390/jof10020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Infections caused by Cryptococcus neoformans and Cryptococcus gattii remain a challenge to our healthcare systems as they are still difficult to treat. In order to improve treatment success, in particular for infections that have disseminated to the central nervous system, a better understanding of the disease is needed, addressing questions like how it evolves from a pulmonary to a brain disease and how novel treatment approaches can be developed and validated. This requires not only clinical research and research on the microorganisms in a laboratory environment but also preclinical models in order to study cryptococci in the host. We provide an overview of available preclinical models, with particular emphasis on models of cryptococcosis in rodents. In order to further improve the characterization of rodent models, in particular the dynamic aspects of disease manifestation, development, and ultimate treatment, preclinical in vivo imaging methods are increasingly used, mainly in research for oncological, neurological, and cardiac diseases. In vivo imaging applications for fungal infections are rather sparse. A second aspect of this review is how research on models of cryptococcosis can benefit from in vivo imaging methods that not only provide information on morphology and tissue structure but also on function, metabolism, and cellular properties in a non-invasive way.
Collapse
Affiliation(s)
- Lara Roosen
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Dries Maes
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Luigi Musetta
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Melhem MSC, Leite Júnior DP, Takahashi JPF, Macioni MB, Oliveira LD, de Araújo LS, Fava WS, Bonfietti LX, Paniago AMM, Venturini J, Espinel-Ingroff A. Antifungal Resistance in Cryptococcal Infections. Pathogens 2024; 13:128. [PMID: 38392866 PMCID: PMC10891860 DOI: 10.3390/pathogens13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Antifungal therapy, especially with the azoles, could promote the incidence of less susceptible isolates of Cryptococcus neoformans and C. gattii species complexes (SC), mostly in developing countries. Given that these species affect mostly the immunocompromised host, the infections are severe and difficult to treat. This review encompasses the following topics: 1. infecting species and their virulence, 2. treatment, 3. antifungal susceptibility methods and available categorical endpoints, 4. genetic mechanisms of resistance, 5. clinical resistance, 6. fluconazole minimal inhibitory concentrations (MICs), clinical outcome, 7. environmental influences, and 8. the relevance of host factors, including pharmacokinetic/pharmacodynamic (PK/PD) parameters, in predicting the clinical outcome to therapy. As of now, epidemiologic cutoff endpoints (ECVs/ECOFFs) are the most reliable antifungal resistance detectors for these species, as only one clinical breakpoint (amphotericin B and C. neoformans VNI) is available.
Collapse
Affiliation(s)
- Marcia S C Melhem
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Graduate Program in Tropical Diseases, State University of São Paulo, Botucatu 18618-687, SP, Brazil
| | | | - Juliana P F Takahashi
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Pathology Division, Adolfo Lutz Institute, São Paulo 01246-002, SP, Brazil
| | | | | | - Lisandra Siufi de Araújo
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil
| | - Wellington S Fava
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Lucas X Bonfietti
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil
| | - Anamaria M M Paniago
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - James Venturini
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Ana Espinel-Ingroff
- Central Public Health Laboratory-LACEN, Campo Grande 79074-460, MS, Brazil
- VCU Medical Center, Richmond, VA 23284, USA
| |
Collapse
|
25
|
Adejor J, Tumukunde E, Li G, Lin H, Xie R, Wang S. Impact of Lysine Succinylation on the Biology of Fungi. Curr Issues Mol Biol 2024; 46:1020-1046. [PMID: 38392183 PMCID: PMC10888112 DOI: 10.3390/cimb46020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
Post-translational modifications (PTMs) play a crucial role in protein functionality and the control of various cellular processes and secondary metabolites (SMs) in fungi. Lysine succinylation (Ksuc) is an emerging protein PTM characterized by the addition of a succinyl group to a lysine residue, which induces substantial alteration in the chemical and structural properties of the affected protein. This chemical alteration is reversible, dynamic in nature, and evolutionarily conserved. Recent investigations of numerous proteins that undergo significant succinylation have underscored the potential significance of Ksuc in various biological processes, encompassing normal physiological functions and the development of certain pathological processes and metabolites. This review aims to elucidate the molecular mechanisms underlying Ksuc and its diverse functions in fungi. Both conventional investigation techniques and predictive tools for identifying Ksuc sites were also considered. A more profound comprehension of Ksuc and its impact on the biology of fungi have the potential to unveil new insights into post-translational modification and may pave the way for innovative approaches that can be applied across various clinical contexts in the management of mycotoxins.
Collapse
Affiliation(s)
- John Adejor
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Elisabeth Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoqi Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Conn BN, Lieberman JA, Chatman P, Cotton K, Essandoh MA, Ebqa’ai M, Nelson TL, Wozniak KL. Antifungal activity of eumelanin-inspired indoylenepheyleneethynylene against Cryptococcus neoformans. Front Microbiol 2024; 14:1339303. [PMID: 38293553 PMCID: PMC10826398 DOI: 10.3389/fmicb.2023.1339303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningitis in >152,000 immunocompromised individuals annually, leading to 112,000 yearly deaths. The four classes of existing antifungal agents target plasma membrane sterols (ergosterol), nucleic acid synthesis, and cell wall synthesis. Existing drugs are not highly effective against Cryptococcus, and antifungal drug resistance is an increasing problem. A novel antimicrobial compound, a eumelanin-inspired indoylenepheyleneethynylene, EIPE-1, was synthesized and has antimicrobial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MSRA), but not towards Gram-negative organisms. Based on EIPE-1's antibacterial activity, we hypothesized that EIPE-1 could have antifungal activity. For these studies, we tested EIPE-1 against C. neoformans strain H99 and 6 additional cryptococcal clinical isolates. We examined antifungal activity, cytotoxicity, effects on fungal gene expression, and mechanism of action of EIPE-1. Results showed that EIPE-1 has fungicidal effects on seven cryptococcal strains with MICs ranging from 1.56 to 3.125 μg/mL depending on the strain, and it is non-toxic to mammalian cells. We conducted scanning and transmission electron microscopy on the exposed cells to examine structural changes to the organism following EIPE-1 treatment. Cells exposed displayed structural changes to their cell wall and membranes, with internal contents leaking out of the cells. To understand the effect of EIPE-1 on fungal gene expression, RNA sequencing was conducted. Results showed that EIPE-1 affects several processes involved stress response, ergosterol biosynthesis, capsule biosynthesis, and cell wall attachment and remodeling. Therefore, our studies demonstrate that EIPE-1 has antifungal activity against C. neoformans, which affects both cellular structure and gene expression of multiple fungal pathways involved in cell membrane stability and viability.
Collapse
Affiliation(s)
- Brittney N. Conn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Jacob A. Lieberman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Priscilla Chatman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Martha A. Essandoh
- Department of Chemistry, Oklahoma State University, Stillwater, OK, United States
| | - Mohammad Ebqa’ai
- Department of Chemistry, Oklahoma State University, Stillwater, OK, United States
| | - Toby L. Nelson
- Department of Chemistry, Oklahoma State University, Stillwater, OK, United States
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
27
|
Peng M, Zhang C, Duan YY, Liu HB, Peng XY, Wei Q, Chen QY, Sang H, Kong QT. Antifungal activity of the repurposed drug disulfiram against Cryptococcus neoformans. Front Pharmacol 2024; 14:1268649. [PMID: 38273827 PMCID: PMC10808519 DOI: 10.3389/fphar.2023.1268649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Fungal infections have become clinically challenging owing to the emergence of drug resistance in invasive fungi and the rapid increase in the number of novel pathogens. The development of drug resistance further restricts the use of antifungal agents. Therefore, there is an urgent need to identify alternative treatments for Cryptococcus neoformans (C. neoformans). Disulfiram (DSF) has a good human safety profile and promising applications as an antiviral, antifungal, antiparasitic, and anticancer agent. However, the effect of DSF on Cryptococcus is yet to be thoroughly investigated. This study investigated the antifungal effects and the mechanism of action of DSF against C. neoformans to provide a new theoretical foundation for the treatment of Cryptococcal infections. In vitro studies demonstrated that DSF inhibited Cryptococcus growth at minimum inhibitory concentrations (MICs) ranging from 1.0 to 8.0 μg/mL. Combined antifungal effects have been observed for DSF with 5-fluorocytosine, amphotericin B, terbinafine, or ketoconazole. DSF exerts significant protective effects and synergistic effects combined with 5-FU for Galleria mellonella infected with C. neoformans. Mechanistic investigations showed that DSF dose-dependently inhibited melanin, urease, acetaldehyde dehydrogenase, capsule and biofilm viability of C. neoformans. Further studies indicated that DSF affected C. neoformans by interfering with multiple biological pathways, including replication, metabolism, membrane transport, and biological enzyme activity. Potentially essential targets of these pathways include acetaldehyde dehydrogenase, catalase, ATP-binding cassette transporter (ABC transporter), and iron-sulfur cluster transporter. These findings provide novel insights into the application of DSF and contribute to the understanding of its mechanisms of action in C. neoformans.
Collapse
Affiliation(s)
- Min Peng
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chen Zhang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuan-Yuan Duan
- Affiliated Hospital for Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hai-Bo Liu
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin-Yuan Peng
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Qi-Ying Chen
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hong Sang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing-Tao Kong
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Corrêa-Junior D, Parente CET, Frases S. Hazards Associated with the Combined Application of Fungicides and Poultry Litter in Agricultural Areas. J Xenobiot 2024; 14:110-134. [PMID: 38249104 PMCID: PMC10801622 DOI: 10.3390/jox14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
In recent decades, the poultry farming industry has assumed a pivotal role in meeting the global demand for affordable animal proteins. While poultry farming makes a substantial contribution to food security and nutrition, it also presents environmental and public health challenges. The use of poultry litter as fertilizer for agricultural soils raises concerns about the transfer of pathogens and drug-resistant microorganisms from poultry farms to crop production areas. On the other hand, according to the Food and Agriculture Organization of the United Nations (FAO), fungicides represent the second most used chemical group in agricultural practices. In this context, agricultural soils receive the application of both poultry litter as a fertilizer and fungicides used in agricultural production. This practice can result in fungal contamination of the soil and the development of antifungal resistance. This article explores the necessity of monitoring antifungal resistance, particularly in food production areas with co-application of poultry litter and fungicides. It also highlights the role of fungi in ecosystems, decomposition, and mutualistic plant associations. We call for interdisciplinary research to comprehensively understand fungal resistance to fungicides in the environment. This approach seeks to promote sustainability in the realms of human health, agriculture, and the environment, aligning seamlessly with the One Health concept.
Collapse
Affiliation(s)
- Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro CEP 21941-902, Brazil;
| | - Cláudio Ernesto Taveira Parente
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro CEP 21941-902, Brazil;
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro CEP 21941-902, Brazil;
- Rede Micologia RJ, FAPERJ, Rio de Janeiro CEP 21941-902, Brazil
| |
Collapse
|
29
|
Muselius B, Geddes-McAlister J. In Vivo Modeling of Cryptococcus neoformans Infection and Collection of Murine Samples. Methods Mol Biol 2024; 2775:47-55. [PMID: 38758310 DOI: 10.1007/978-1-0716-3722-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In vivo models provide advantages to study the progression of disease and to identify potential biomarkers to detect and monitor infections. For the human fungal pathogen Cryptococcus neoformans, murine intranasal models aim to recapitulate natural infection from inhalation of desiccated fungal cells from the environment and permit monitoring of disease over time. In this chapter, we describe the establishment of a murine model for cryptococcosis and the subsequent collection of organs, tissues, and fluids for sampling. These samples may support novel diagnostic strategies and opportunities to monitor dissemination of the fungal cells throughout the host and propose new treatment options to combat disease.
Collapse
Affiliation(s)
- Ben Muselius
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
30
|
Ordaya EE, Abu Saleh OM, Vergidis P, Deml SM, Wengenack NL, Fida M. Temporal trends in antifungal susceptibility of Cryptococcus neoformans isolates from a reference laboratory in the United States, 2011-2021. Mycoses 2024; 67:e13691. [PMID: 38214377 DOI: 10.1111/myc.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND There are no established clinical breakpoints for antifungal agents against Cryptococcus species; however, epidemiological cut-off values can help distinguish wild-type (WT) isolates without any acquired resistance from non-WT strains, which may harbour resistance mechanisms. PATIENTS/METHODS We describe the trends of antifungal MICs and percentages of WT C. neoformans species complex (CNSC) isolates processed in our reference laboratory from November 2011 to June 2021. There were only nine isolates in 2011, thus, we included them in the year 2012 for data analysis. Clinical data is also described when available. RESULTS We identified 632 CNSC, the majority collected from blood (n = 301), cerebrospinal fluid (n = 230), and respiratory (n = 71) sources. The overall percentage of WT isolates for amphotericin B (AMB), 5-flucytosine, and fluconazole was 77%, 98%, and 91%, respectively. We noticed a statistically significant change in the percentage of AMB WT isolates over the years, with 98% of isolates being WT in 2012 compared to 79% in 2021 (p < .01). A similar change was not observed for other antifungal agents. Clinical data was available for 36 patients, primarily non-HIV immunocompromised patients with disseminated cryptococcosis. There were no statistically significant differences in the clinical characteristics and outcomes between patients with WT (58.3%) versus non-WT (41.7%) isolates, but we noticed higher mortality in patients infected with an AMB non-WT CNSC isolate. CONCLUSIONS We observed an increase in the percentage of AMB non-WT CNSC isolates in the past decade. The clinical implications of this finding warrant further evaluation in larger studies.
Collapse
Affiliation(s)
- Eloy E Ordaya
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Omar M Abu Saleh
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paschalis Vergidis
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sharon M Deml
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nancy L Wengenack
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madiha Fida
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
31
|
de Andrade IB, Alves V, Pereira L, Miranda B, Corrêa-Junior D, Galdino Figueiredo-Carvalho MH, Santos MV, Almeida-Paes R, Frases S. Effect of rapamycin on Cryptococcus neoformans: cellular organization, biophysics and virulence factors. Future Microbiol 2023; 18:1061-1075. [PMID: 37721517 DOI: 10.2217/fmb-2023-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Background: Cryptococcus neoformans is an opportunistic fungal pathogen that causes infections mainly in immunosuppressed individuals, such as transplant recipients. Aims: This study investigated the effects of rapamycin, an immunosuppressant drug, on the cellular organization, biophysical characteristics, and main virulence factors of C. neoformans. Methods: Morphological, structural, physicochemical and biophysical analyses of cells and secreted polysaccharides of the reference H99 C. neoformans strain were investigated under the effect of subinhibitory concentrations of rapamycin. Results: Rapamycin at a minimum inhibitory concentration of 2.5 μM reduced C. neoformans cell viability by 53%, decreased capsule, increased cell size, chitin and lipid body formation, and changed peptidase and urease activity. Conclusion: Further studies are needed to assess how rapamycin affects the virulence factors and pathogenicity of C. neoformans.
Collapse
Affiliation(s)
- Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Pereira
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Miranda
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcos Vinicius Santos
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Rede Micologia - FAPERJ, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia - FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Munzen ME, Goncalves Garcia AD, Martinez LR. An update on the global treatment of invasive fungal infections. Future Microbiol 2023; 18:1095-1117. [PMID: 37750748 PMCID: PMC10718168 DOI: 10.2217/fmb-2022-0269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/13/2023] [Indexed: 09/27/2023] Open
Abstract
Fungal infections are a serious problem affecting many people worldwide, creating critical economic and medical consequences. Fungi are ubiquitous and can cause invasive diseases in individuals mostly living in developing countries or with weakened immune systems, and antifungal drugs currently available have important limitations in tolerability and efficacy. In an effort to counteract the high morbidity and mortality rates associated with invasive fungal infections, various approaches are being utilized to discover and develop new antifungal agents. This review discusses the challenges posed by fungal infections, outlines different methods for developing antifungal drugs and reports on the status of drugs currently in clinical trials, which offer hope for combating this serious global problem.
Collapse
Affiliation(s)
- Melissa E Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
33
|
Elalouf A, Yaniv-Rosenfeld A. Immunoinformatic-guided designing and evaluating protein and mRNA-based vaccines against Cryptococcus neoformans for immunocompromised patients. J Genet Eng Biotechnol 2023; 21:108. [PMID: 37882985 PMCID: PMC10603020 DOI: 10.1186/s43141-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Cryptococcus neoformans is a fungal pathogen that can cause serious meningoencephalitis in individuals with compromised immune systems due to HIV/AIDS (human immunodeficiency virus/acquired immunodeficiency syndrome), liver cirrhosis, and transplantation. Mannoproteins (MPs), glycoproteins in the C. neoformans capsule, crucially impact virulence by mediating adhesion to lung cells and modulating immune response via cytokine induction and phagocytosis influence. Therefore, creating a vaccine that can generate targeted antibodies to fight infection and prevent fungal illnesses is essential. RESULTS This research aims to create a unique, stable, and safe vaccine through bioinformatics methodologies, aiming at epitopes of T and B cells found in the MP of C. neoformans. Based on toxicity, immunogenicity, and antigenicity, this research predicted novel T cells (GNPVGGNVT, NPVGGNVTT, QTSYARLLS, TSVGNGIAS, WVMPGDYTN, AAATGSSSSGSTGSG, GSTGSGSGSAAAGST, SGSTGSGSGSAAAGS, SSGSTGSGSGSAAAG, and SSSGSTGSGSGSAAA) and B cell (ANGSTSTFQQRYTGTYTNGDGSLGTWTQGETVTPQTAYSTPATSNCKTYTSVGNGIASLALSNAGSNSTAAATNSSSGGASAAATGSSSSGSTGSGSGSAAAGSTAAASSSGDSSSSTSAAMSNGI, HGATGLGNPVGGNVTT, TMGPTNPSEPTLGTAI, GNPVGGNVTTNATGSD, and NSTAAATNSSSGGASA) epitopes for a multiple-epitope vaccine and constructed a vaccine subunit with potential immunogenic properties. The present study used four linkers (AAY, GPGPG, KK, and EAAAK linkers) to connect the epitopes and adjuvant. After constructing the vaccine, it was confronted with receptor docking and simulation analysis. Subsequently, the vaccine was cloned into the vector of Escherichia coli pET-28a ( +) by ligation process for the expression using the SnapGene tool, which confirmed a significant immune response. To assess the constructed vaccine's properties, multiple computational tools were employed. Based on the MP sequence, the tools evaluated the antigenicity, immunogenicity, cytokine-inducing capacity, allergenicity, toxicity, population coverage, and solubility. CONCLUSION Eventually, the results revealed a promising multi-epitope vaccine as a potential candidate for addressing global C. neoformans infection, particularly in immunocompromised patients. Yet, additional in vitro and in vivo investigations are necessary to validate its safety and effectiveness.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | | |
Collapse
|
34
|
Yang L, Tian Z, Zhao W, Zhang J, Tian C, Zhou L, Jiao Z, Peng J, Guo G. Novel antimicrobial peptide DvAMP serves as a promising antifungal agent against Cryptococcus neoformans. Bioorg Chem 2023; 138:106679. [PMID: 37329812 DOI: 10.1016/j.bioorg.2023.106679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Cryptococcus neoformans is an important opportunistic human fungal pathogen that causes cryptococcosis in immunocompromised patients. However, the number of drugs for the treatment of cryptococcosis is restricted, and the development of novel antifungal drugs and innovative strategies for the treatment of cryptococcosis is urgently needed. In this study, we validated that DvAMP is a novel antimicrobial peptide with antimicrobial activity and that it was obtained by pre-screening from the UniProt database of more than three million unknown functional sequences based on the quantitative structure-activity relationships (QSARs) protocol (http://www.chemoinfolab.com/antifungal). The peptide exhibited satisfactory biosafety and physicochemical properties, and relatively rapid fungicidal activity against C. neoformans. Meanwhile, DvAMP was able to inhibit the static biofilm of C. neoformans and cause a reduction in the thickness of the capsule. In addition, DvAMP exerts antifungal effects through membrane-mediated mechanisms (membrane permeability and depolarization) and mitochondrial dysfunction, involving a hybrid multi-hit mechanism. Furthermore, by using the C. neoformans-Galleria mellonella infection model, we demonstrated that DvAMP has significant therapeutic effects in vivo and that it significantly reduces the mortality and fungal burden of infected larvae. These results suggest that DvAMP may be a potential antifungal drug candidate for the treatment of cryptococcosis.
Collapse
Affiliation(s)
- Longbing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Zhuqing Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Wenjing Zhao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jin Zhang
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Chunren Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Luoxiong Zhou
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Zhenlong Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Jian Peng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
35
|
Ma Y, Yang L, Jiang M, Zhao X, Xue P. Connecting Cryptococcal Meningitis and Gut Microbiome. Int J Mol Sci 2023; 24:13515. [PMID: 37686320 PMCID: PMC10487799 DOI: 10.3390/ijms241713515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Fungal pathogens of the Cryptococcus neoformans species complex (C. neoformans SC) are a major cause of fungal meningitis in immunocompromised individuals. As with other melanotic microorganisms associated with human diseases, the cell-wall-associated melanin of C. neoformans SC is a major virulence factor that contributes to its ability to evade host immune responses. The levels of melanin substrate and the regulation of melanin formation could be influenced by the microbiota-gut-brain axis. Moreover, recent studies show that C. neoformans infections cause dysbiosis in the human gut microbiome. In this review, we discuss the potential association between cryptococcal meningitis and the gut microbiome. Additionally, the significant potential of targeting the gut microbiome in the diagnosis and treatment of this debilitating disease is emphasized.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.M.); (M.J.)
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Mengna Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.M.); (M.J.)
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.M.); (M.J.)
| | - Peng Xue
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.M.); (M.J.)
| |
Collapse
|
36
|
Carvajal SK, Melendres J, Escandón P, Firacative C. Reduced Susceptibility to Azoles in Cryptococcus gattii Correlates with the Substitution R258L in a Substrate Recognition Site of the Lanosterol 14-α-Demethylase. Microbiol Spectr 2023; 11:e0140323. [PMID: 37341584 PMCID: PMC10434158 DOI: 10.1128/spectrum.01403-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii cause cryptococcosis, a life-threatening fungal infection affecting mostly immunocompromised patients. In fact, cryptococcal meningitis accounts for about 19% of AIDS-related deaths in the world. Because of long-term azole therapies to treat this mycosis, resistance to fluconazole leading to treatment failure and poor prognosis has long been reported for both fungal species. Among the mechanisms implicated in resistance to azoles, mutations in the ERG11 gene, encoding the azole target enzyme lanosterol 14-α-demethylase, have been described. This study aimed to establish the amino acid composition of ERG11 of Colombian clinical isolates of C. neoformans and C. gattii and to correlate any possible substitution with the in vitro susceptibility profile of the isolates to fluconazole, voriconazole, and itraconazole. Antifungal susceptibility testing results showed that C. gattii isolates are less susceptible to azoles than C. neoformans isolates, which could correlate with differences in the amino acid composition and structure of ERG11 of each species. In addition, in a C. gattii isolate with high MICs for fluconazole (64 μg/mL) and voriconazole (1 μg/mL), a G973T mutation resulting in the substitution R258L, located in substrate recognition site 3 of ERG11, was identified. This finding suggests the association of the newly reported substitution with the azole resistance phenotype in C. gattii. Further investigations are needed to determine the exact role that R258L plays in the decreased susceptibility to fluconazole and voriconazole, as well as to determine the participation of additional mechanisms of resistance to azole drugs. IMPORTANCE The fungal species Cryptococcus neoformans and C. gattii are human pathogens for which drug resistance or other treatment and management challenges exist. Here, we report differential susceptibility to azoles among both species, with some isolates displaying resistant phenotypes. Azoles are among the most commonly used drugs to treat cryptococcal infections. Our findings underscore the necessity of testing antifungal susceptibility in the clinical setting in order to assist patient management and beneficial outcomes. In addition, we report an amino acid change in the sequence of the target protein of azoles, which suggests that this change might be implicated in resistance to these drugs. Identifying and understanding possible mechanisms that affect drug affinity will eventually aid the design of new drugs that overcome the global growing concern of antifungal resistance.
Collapse
Affiliation(s)
| | - Javier Melendres
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Patricia Escandón
- Group of Microbiology, Instituto Nacional de Salud, Bogotá, Colombia
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
37
|
Sousa NSOD, Almeida JDRD, Frickmann H, Lacerda MVG, Souza JVBD. Searching for new antifungals for the treatment of cryptococcosis. Rev Soc Bras Med Trop 2023; 56:e01212023. [PMID: 37493736 PMCID: PMC10367226 DOI: 10.1590/0037-8682-0121-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/19/2023] [Indexed: 07/27/2023] Open
Abstract
There is a consensus that the antifungal repertoire for the treatment of cryptococcal infections is limited. Standard treatment involves the administration of an antifungal drug derived from natural sources (i.e., amphotericin B) and two other drugs developed synthetically (i.e., flucytosine and fluconazole). Despite treatment, the mortality rates associated with fungal cryptococcosis are high. Amphotericin B and flucytosine are toxic, require intravenous administration, and are usually unavailable in low-income countries because of their high cost. However, fluconazole is cost-effective, widely available, and harmless with regard to its side effects. However, fluconazole is a fungistatic agent that has contributed considerably to the increase in fungal resistance and frequent relapses in patients with cryptococcal meningitis. Therefore, there is an unquestionable need to identify new alternatives or adjuvants to conventional drugs for the treatment of cryptococcosis. A potential antifungal agent should be able to kill cryptococci and "bypass" the virulence mechanism of the yeast. Furthermore, it should have fungicidal action, low toxicity, high selectivity, easily penetrate the central nervous system, and widely available. In this review, we describe cryptococcosis, its conventional therapy, and failures arising from the use of drugs traditionally considered to be the reference standard. Additionally, we present the approaches used for the discovery of new drugs to counteract cryptococcosis, ranging from the conventional screening of natural products to the inclusion of structural modifications to optimize anticryptococcal activity, as well as drug repositioning and combined therapies.
Collapse
Affiliation(s)
| | | | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Germany
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
- Instituto de Pesquisas Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brasil
- University of Texas Medical Branch, Galveston, USA
| | - João Vicente Braga de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Manaus, AM, Brasil
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| |
Collapse
|
38
|
Bilal H, Zhang D, Shafiq M, Khan MN, Chen C, Khan S, Wang Q, Cai L, Awais M, Hu H, Zeng Y. Cryptococcosis in Southern China: Insights from a Six-Year Retrospective Study in Eastern Guangdong. Infect Drug Resist 2023; 16:4409-4419. [PMID: 37435235 PMCID: PMC10332366 DOI: 10.2147/idr.s417968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Objective Cryptococcosis is a fatal infection that can affect both immunocompetent and immunocompromised patients, and it is little understood in China's various regions. This research aimed to look at the epidemiology, risk factors, and antifungal susceptibility pattern of Cryptococcus neoformans in eastern Guangdong, China. Methods A six-year (2016-2022) retrospective study was conducted at Meizhou People's Hospital, China. Demographical, clinical, and laboratory data of cryptococcal patients were collected from hospital records and statistically analyzed using the chi-square and ANOVA tests. Results Overall, 170 cryptococcal infections were recorded, of which meningitis accounted for 78 (45.88%), cryptococcemia for 50 (29.41%), and pneumonia for 42 (24.7%). The number of cases increased 8-fold during the study duration. The median age of patients was 58 years (Inter quartile range: 47-66), and the high proportion of cases was from the male population (n = 121, 71.17%). The underlying diseases were identified only in 60 (35.29%) patients, of which 26 (15.29%) were severely immunocompromised, and 26 (15.29%) others were mildly immunocompromised. A statistically significant difference was reported for chronic renal failure, and anemia (p < 0.05) persisted in cases of three infection types. A high number of non-wild type (NWT) isolates were found against amphotericin B (n=13/145, 8.96%), followed by itraconazole (n=7/136, 5.15%) and voriconazole (n=4/158, 2.53%). Only six isolates (3.79%) were multidrug-resistant, four of which were from cryptococcemia patients. Compared to meningitis and pneumonia, cryptococcemia revealed a higher percentage of NWT isolates (p < 0.05). Conclusion In high-risk populations, cryptococcal infections require ongoing monitoring and management.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Dongxing Zhang
- Department of Dermatology, Meizhou Dongshan Hospital, Meizhou, Guangdong Province, 514023, People’s Republic of China
- Department of Dermatology, Meizhou People’s Hospital, Meizhou, Guangdong Province, 514023, People’s Republic of China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People’s Republic of China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Canhua Chen
- Clinical Laboratory, Meizhou People’s Hospital, Meizhou, Guangdong Province, 514023, People’s Republic of China
| | - Sabir Khan
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Qian Wang
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Department of Medical-Surgical and Experimental Sciences University of Sassari Neurology Unit, Azienda Ospedaliera Universitaria (AOU), Sassari, Italy
| | - Lin Cai
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Muhammad Awais
- Department of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Haibin Hu
- The First Clinical Medical college, Guangdong Medical University, Zhanjiang, 523808, People’s Republic of China
| | - Yuebin Zeng
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610021, People’s Republic of China
| |
Collapse
|
39
|
Jati S, Mahata S, Das S, Chatterjee S, Mahata SK. Catestatin: Antimicrobial Functions and Potential Therapeutics. Pharmaceutics 2023; 15:1550. [PMID: 37242791 PMCID: PMC10220906 DOI: 10.3390/pharmaceutics15051550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The rapid increase in drug-resistant and multidrug-resistant infections poses a serious challenge to antimicrobial therapies, and has created a global health crisis. Since antimicrobial peptides (AMPs) have escaped bacterial resistance throughout evolution, AMPs are a category of potential alternatives for antibiotic-resistant "superbugs". The Chromogranin A (CgA)-derived peptide Catestatin (CST: hCgA352-372; bCgA344-364) was initially identified in 1997 as an acute nicotinic-cholinergic antagonist. Subsequently, CST was established as a pleiotropic hormone. In 2005, it was reported that N-terminal 15 amino acids of bovine CST (bCST1-15 aka cateslytin) exert antibacterial, antifungal, and antiyeast effects without showing any hemolytic effects. In 2017, D-bCST1-15 (where L-amino acids were changed to D-amino acids) was shown to exert very effective antimicrobial effects against various bacterial strains. Beyond antimicrobial effects, D-bCST1-15 potentiated (additive/synergistic) antibacterial effects of cefotaxime, amoxicillin, and methicillin. Furthermore, D-bCST1-15 neither triggered bacterial resistance nor elicited cytokine release. The present review will highlight the antimicrobial effects of CST, bCST1-15 (aka cateslytin), D-bCST1-15, and human variants of CST (Gly364Ser-CST and Pro370Leu-CST); evolutionary conservation of CST in mammals; and their potential as a therapy for antibiotic-resistant "superbugs".
Collapse
Affiliation(s)
- Suborno Jati
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sumana Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Soumita Das
- Department of Biomedical and Nutritional Science, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Saurabh Chatterjee
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
40
|
de Andrade IB, Corrêa-Junior D, Alves V, Figueiredo-Carvalho MHG, Santos MV, Almeida MA, Valdez AF, Nimrichter L, Almeida-Paes R, Frases S. Cyclosporine Affects the Main Virulence Factors of Cryptococcus neoformans In Vitro. J Fungi (Basel) 2023; 9:487. [PMID: 37108941 PMCID: PMC10140927 DOI: 10.3390/jof9040487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to investigate the effects of cyclosporine on the morphology, cell wall structure, and secretion characteristics of Cryptococcus neoformans. The minimum inhibitory concentration (MIC) of cyclosporine was found to be 2 µM (2.4 µg/mL) for the H99 strain. Yeast cells treated with cyclosporine at half the MIC showed altered morphology, including irregular shapes and elongated projections, without an effect on cell metabolism. Cyclosporine treatment resulted in an 18-fold increase in chitin and an 8-fold increase in lipid bodies, demonstrating changes in the fungal cell wall structure. Cyclosporine also reduced cell body and polysaccharide capsule diameters, with a significant reduction in urease secretion in C. neoformans cultures. Additionally, the study showed that cyclosporine increased the viscosity of secreted polysaccharides and reduced the electronegativity and conductance of cells. The findings suggest that cyclosporine has significant effects on C. neoformans morphology, cell wall structure, and secretion, which could have implications for the development of new antifungal agents.
Collapse
Affiliation(s)
- Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Marcos Vinicius Santos
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21941-902, Brazil (M.A.A.)
| | - Marcos Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21941-902, Brazil (M.A.A.)
| | - Alessandro Fernandes Valdez
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil (L.N.)
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil (L.N.)
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21941-902, Brazil (M.A.A.)
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
41
|
Charria-Girón E, Stchigel AM, Čmoková A, Kolařík M, Surup F, Marin-Felix Y. Amesia hispanica sp. nov., Producer of the Antifungal Class of Antibiotics Dactylfungins. J Fungi (Basel) 2023; 9:463. [PMID: 37108917 PMCID: PMC10141101 DOI: 10.3390/jof9040463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During a study of the diversity of soilborne fungi from Spain, a strain belonging to the family Chaetomiaceae (Sordariales) was isolated. The multigene phylogenetic inference using five DNA loci showed that this strain represents an undescribed species of the genus Amesia, herein introduced as A. hispanica sp. nov. Investigation of its secondary metabolome led to the isolation of two new derivatives (2 and 3) of the known antifungal antibiotic dactylfungin A (1), together with the known compound cochliodinol (4). The planar structures of 1-4 were determined by ultrahigh performance liquid chromatography coupled with diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS) and extensive 1D and 2D nuclear magnetic resonance (NMR) spectroscopy after isolation by HPLC. All isolated secondary metabolites were tested for their antimicrobial and cytotoxic activities. Dactylfungin A (1) showed selective and strong antifungal activity against some of the tested human pathogens (Aspergillus fumigatus and Cryptococcus neoformans). The additional hydroxyl group in 2 resulted in the loss of activity against C. neoformans but still retained the inhibition of As. fumigatus in a lower concentration than that of the respective control, without showing any cytotoxic effects. In contrast, 25″-dehydroxy-dactylfungin A (3) exhibited improved activity against yeasts (Schizosaccharomyces pombe and Rhodotorula glutinis) than 1 and 2, but resulted in the appearance of slight cytotoxicity. The present study exemplifies how even in a well-studied taxonomic group such as the Chaetomiaceae, the investigation of novel taxa still brings chemistry novelty, as demonstrated in this first report of this antibiotic class for chaetomiaceous and sordarialean taxa.
Collapse
Affiliation(s)
- Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Alberto Miguel Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Tarragona, Spain
| | - Adéla Čmoková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
42
|
Gutierrez-Gongora D, Raouf-Alkadhimi F, Prosser RS, Geddes-McAlister J. Differentiated extracts from freshwater and terrestrial mollusks inhibit virulence factor production in Cryptococcus neoformans. Sci Rep 2023; 13:4928. [PMID: 36967422 PMCID: PMC10040410 DOI: 10.1038/s41598-023-32140-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The human fungal pathogen, Cryptococcus neoformans, is responsible for deadly infections among immunocompromised individuals with the evolution of antifungal resistance driving the solution to discover new compounds that inhibit fungal virulence factors rather than kill the pathogen. Recently, exploration into natural sources (e.g., plants, invertebrates, microbes) of antifungal agents has garnered attention by integrating a One Health approach for new compound discovery. Here, we explore extracts from three mollusk species (freshwater and terrestrial) and evaluate effects against the growth and virulence factor production (i.e., thermotolerance, melanin, capsule, and biofilm) in C. neoformans. We demonstrate that clarified extracts of Planorbella pilsbryi have a fungicidal effect on cryptococcal cells comparable to fluconazole. Similarly, all extracts of Cipangopaludina chinensis affect cryptococcal thermotolerance and impair biofilm and capsule production, with clarified extracts of Cepaea nemoralis also conveying the latter effect. Next, inhibitory activity of extracts against peptidases related to specific virulence factors, combined with stress assays and quantitative proteomics, defined distinct proteome signatures and proposed proteins driving the observed anti-virulence properties. Overall, this work highlights the potential of compounds derived from natural sources to inhibit virulence factor production in a clinically important fungal pathogen.
Collapse
Affiliation(s)
| | | | - Ryan S Prosser
- Department of Environmental Toxicology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
43
|
Zhong Y, Huang Y, Zhang D, Chen Z, Liu Z, Ye Y. Isolated cryptococcal osteomyelitis of the sacrum in an immunocompetent patient: a case report and literature review. BMC Infect Dis 2023; 23:116. [PMID: 36829132 PMCID: PMC9960465 DOI: 10.1186/s12879-023-08066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Cryptococcus neoformans, an opportunistic fungal pathogen, seldom causes infection in immunocompetent people. Cryptococcal osteomyelitis is an uncommon condition in which Cryptococcus invades the bone. It usually occurs as part of a disseminated infection and rarely in isolation. The spine has been reported as the most common site of cryptococcal osteomyelitis; however, isolated case of sacrum involvement in immunocompetent patients has never been reported. CASE PRESENTATION We report the case of a 37-year-old man without underlying disease who presented with progressive low back and sacrococcygeal pain. The patient was initially diagnosed with sacral tumour by a local doctor, and subsequently, after admission, was diagnosed with sacral tuberculosis. He was empirically treated with antitubercular drugs. The patient failed to respond to antitubercular drugs and complained of worsening low back pain. Additionally, he developed persistent radiating pain and numbness in his legs. For further diagnosis, we performed a computed tomography-guided puncture biopsy of the sacrum, which revealed granulomatous inflammation with massive macrophage infiltration and special staining revealed a fungal infection. We performed sacral debridement and drainage and obtained purulent specimens for pathological examination and microbial culture. Microbial identification and drug susceptibility tests revealed a Cryptococcus neoformans infection sensitive to fluconazole. Postoperatively, the persistent radiating pain and numbness in the legs resolved. After 12 consecutive weeks of antifungal therapy, all his symptoms resolved. The patient remained without any signs of recurrence at the 8-month follow-up. CONCLUSION We reported a rare case of isolated sacrum cryptococcal osteomyelitis in an immunocompetent patient. Furthermore, we identified and reviewed 18 published cases of spine cryptococcal osteomyelitis. Immunocompetent individuals are also at risk for cryptococcal osteomyelitis. Clinical manifestation and imaging are insufficient to diagnose cryptococcal osteomyelitis of the spine, and invasive examinations, such as puncture biopsy and fungal examinations, are needed. Antifungal therapy yields satisfactory results for the treatment of cryptococcal osteomyelitis of the spine, however, if the infective lesion is large, especially when it compresses the spinal cord and nerves, a regimen combining aggressive surgery with antifungal therapy is indispensable.
Collapse
Affiliation(s)
- Yanchun Zhong
- grid.452437.3Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 People’s Republic of China
| | - Yuxi Huang
- Department of Basic Medicine, Gannan Healthcare Vocational College, Ganzhou, 341000 People’s Republic of China
| | - Di Zhang
- grid.452437.3Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 People’s Republic of China
| | - Zhaoyuan Chen
- grid.452437.3Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 People’s Republic of China
| | - Zhenxing Liu
- grid.452437.3Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 People’s Republic of China
| | - Yongjun Ye
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
44
|
Ali S, Khan SA, Hamayun M, Lee IJ. The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms 2023; 11:microorganisms11020510. [PMID: 36838475 PMCID: PMC9959473 DOI: 10.3390/microorganisms11020510] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Lipases are versatile biocatalysts and are used in different bioconversion reactions. Microbial lipases are currently attracting a great amount of attention due to the rapid advancement of enzyme technology and its practical application in a variety of industrial processes. The current review provides updated information on the different sources of microbial lipases, such as fungi, bacteria, and yeast, their classical and modern purification techniques, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, aqueous two-phase system (ATPS), aqueous two-phase flotation (ATPF), and the use of microbial lipases in different industries, e.g., the food, textile, leather, cosmetics, paper, and detergent industries. Furthermore, the article provides a critical analysis of lipase-producing microbes, distinguished from the previously published reviews, and illustrates the use of lipases in biosensors, biodiesel production, and tea processing, and their role in bioremediation and racemization.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Correspondence: (M.H.); (I.-J.L.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (M.H.); (I.-J.L.)
| |
Collapse
|
45
|
Giving a Hand: Synthetic Peptides Boost the Antifungal Activity of Itraconazole against Cryptococcus neoformans. Antibiotics (Basel) 2023; 12:antibiotics12020256. [PMID: 36830167 PMCID: PMC9952215 DOI: 10.3390/antibiotics12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cryptococcus neoformans is a multidrug-resistant pathogen responsible for infections in immunocompromised patients. Here, itraconazole (ITR), a commercial antifungal drug with low effectiveness against C. neoformans, was combined with different synthetic antimicrobial peptides (SAMPs), Mo-CBP3-PepII, RcAlb-PepII, RcAlb-PepIII, PepGAT, and PepKAA. The Mo-CBP3-PepII was designed based on the sequence of MoCBP3, purified from Moringa oleifera seeds. RcAlb-PepII and RcAlb-PepIII were designed using Rc-2S-Alb, purified from Ricinus communis seed cakes. The putative sequence of a chitinase from Arabidopsis thaliana was used to design PepGAT and PepKAA. All SAMPs have a positive liquid charge and a hydrophobic potential ranging from 41-65%. The mechanisms of action responsible for the combined effect were evaluated for the best combinations using fluorescence microscopy (FM). The synthetic peptides enhanced the activity of ITR by 10-fold against C. neoformans. Our results demonstrated that the combinations could induce pore formation in the membrane and the overaccumulation of ROS on C. neoformans cells. Our findings indicate that our peptides successfully potentialize the activity of ITR against C. neoformans. Therefore, synthetic peptides are potential molecules to assist antifungal agents in treating Cryptococcal infections.
Collapse
|
46
|
Behind the Curtain: In Silico and In Vitro Experiments Brought to Light New Insights into the Anticryptococcal Action of Synthetic Peptides. Antibiotics (Basel) 2023; 12:antibiotics12010153. [PMID: 36671354 PMCID: PMC9854638 DOI: 10.3390/antibiotics12010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cryptococcus neoformans is the pathogen responsible for cryptococcal pneumonia and meningitis, mainly affecting patients with suppressed immune systems. We have previously revealed the mechanism of anticryptococcal action of synthetic antimicrobial peptides (SAMPs). In this study, computational and experimental analyses provide new insights into the mechanisms of action of SAMPs. Computational analysis revealed that peptides interacted with the PHO36 membrane receptor of C. neoformans. Additionally, ROS (reactive oxygen species) overproduction, the enzymes of ROS metabolism, interference in the ergosterol biosynthesis pathway, and decoupling of cytochrome c mitochondrial membrane were evaluated. Three of four peptides were able to interact with the PHO36 receptor, altering its function and leading to ROS overproduction. SAMPs-treated C. neoformans cells showed a decrease in scavenger enzyme activity, supporting ROS accumulation. In the presence of ascorbic acid, an antioxidant agent, SAMPs did not induce ROS accumulation in C. neoformans cells. Interestingly, two SAMPs maintained inhibitory activity and membrane pore formation in C. neoformans cells by a ROS-independent mechanism. Yet, the ergosterol biosynthesis and lactate dehydrogenase activity were affected by SAMPs. In addition, we noticed decoupling of Cyt c from the mitochondria, which led to apoptosis events in the cryptococcal cells. The results presented herein suggest multiple mechanisms imposed by SAMPs against C. neoformans interfering in the development of resistance, thus revealing the potential of SAMPs in treating infections caused by C. neoformans.
Collapse
|
47
|
Seyer Cagatan A, Taiwo Mustapha M, Bagkur C, Sanlidag T, Ozsahin DU. An Alternative Diagnostic Method for C. neoformans: Preliminary Results of Deep-Learning Based Detection Model. Diagnostics (Basel) 2022; 13:diagnostics13010081. [PMID: 36611373 PMCID: PMC9818640 DOI: 10.3390/diagnostics13010081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen with significant medical importance, especially in immunosuppressed patients. It is the causative agent of cryptococcosis. An estimated 220,000 annual cases of cryptococcal meningitis (CM) occur among people with HIV/AIDS globally, resulting in nearly 181,000 deaths. The gold standards for the diagnosis are either direct microscopic identification or fungal cultures. However, these diagnostic methods need special types of equipment and clinical expertise, and relatively low sensitivities have also been reported. This study aims to produce and implement a deep-learning approach to detect C. neoformans in patient samples. Therefore, we adopted the state-of-the-art VGG16 model, which determines the output information from a single image. Images that contain C. neoformans are designated positive, while others are designated negative throughout this section. Model training, validation, testing, and evaluation were conducted using frameworks and libraries. The state-of-the-art VGG16 model produced an accuracy and loss of 86.88% and 0.36203, respectively. Results prove that the deep learning framework VGG16 can be helpful as an alternative diagnostic method for the rapid and accurate identification of the C. neoformans, leading to early diagnosis and subsequent treatment. Further studies should include more and higher quality images to eliminate the limitations of the adopted deep learning model.
Collapse
Affiliation(s)
- Ayse Seyer Cagatan
- Department of Medical and Clinical Microbiology, Faculty of Medicine, Cyprus International University, TRNC Mersin 10, Nicosia 99010, Turkey
| | - Mubarak Taiwo Mustapha
- Operational Research Center in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Cemile Bagkur
- DESAM Research Institute, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Tamer Sanlidag
- DESAM Research Institute, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Dilber Uzun Ozsahin
- Operational Research Center in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
- Medical Diagnostic Imaging Department, College of Health Science, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| |
Collapse
|
48
|
Firacative C, Zuluaga-Puerto N, Guevara J. Cryptococcus neoformans Causing Meningoencephalitis in Adults and a Child from Lima, Peru: Genotypic Diversity and Antifungal Susceptibility. J Fungi (Basel) 2022; 8:jof8121306. [PMID: 36547639 PMCID: PMC9781953 DOI: 10.3390/jof8121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cryptococcosis, caused predominantly by Cryptococcus neoformans, is a potentially fatal, opportunistic infection that commonly affects the central nervous system of immunocompromised patients. Globally, this mycosis is responsible for almost 20% of AIDS-related deaths, and in countries like Peru, its incidence remains high, mostly due to the annual increase in new cases of HIV infection. This study aimed to establish the genotypic diversity and antifungal susceptibility of C. neoformans isolates causing meningoencephalitis in 25 adults and a 9-year-old girl with HIV and other risk factors from Lima, Peru. To identify the genotype of the isolates, multilocus sequence typing was applied, and to establish the susceptibility of the isolates to six antifungals, a YeastOne® broth microdilution was used. From the isolates, 19 were identified as molecular type VNI, and seven as VNII, grouped in eight and three sequence types, respectively, which shows that the studied population was highly diverse. Most isolates were susceptible to all antifungals tested. However, VNI isolates were less susceptible to fluconazole, itraconazole and voriconazole than VNII isolates (p < 0.05). This study contributes data on the molecular epidemiology and the antifungal susceptibility profile of the most common etiological agent of cryptococcosis, highlighting a pediatric case, something which is rare among cryptococcal infection.
Collapse
Affiliation(s)
- Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia
- Correspondence:
| | | | - José Guevara
- Facultad de Medicina “San Fernando”, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| |
Collapse
|
49
|
Li Y, Li S, Chen M, Xiao J, Fang H. Synergistic effect of pyrvinium pamoate and posaconazole against Cryptococcus neoformans in vitro and in vivo. Front Cell Infect Microbiol 2022; 12:1074903. [PMID: 36569209 PMCID: PMC9780465 DOI: 10.3389/fcimb.2022.1074903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background Cryptococcosis is a global invasive mycosis with high rates of morbidity and mortality, especially in AIDS patients. Its treatment remains challenging because of the limited antifungals and their unavoidable toxicity, and as such more efforts need to focus on the development of novel effective drugs. Previous studies have indicated that pyrvinium pamoate (PP) has individual and synergistic fungistatic effect. In this study, the effects of PP alone and in combination with azoles [fluconazole (FLU), itraconazole (ITR), voriconazole (VOR), posaconazole (POS)] or amphotericin B (AmB) were evaluated against Cryptococcus neoformans both in vitro and in vivo. Methods A total of 20 C. neoformans strains collected from cryptococcal pneumonia and cryptococcal meningitis were studied. The effects of PP alone, PP-azoles and PP-AmB interactions against C. neoformans were evaluated via the microdilution chequerboard technique, adapted from broth microdilution method according to the CLSI M27-A4. The in vivo antifungal activity of PP alone and in combination with azoles and AmB against C. neoformans infections was evaluated by Galleria mellonella survival assay. Results The in vitro results revealed that PP individually was ineffective against C. neoformans (MIC>16 μg/ml). Nevertheless, the synergistic effects of PP with ITR, VOR, POS, FLU or AmB was observed in 13 (65.0%, FICI 0.188-0.365), 3 (15.0%, FICI 0.245-0.301), 19 (95.0%, FICI 0.188-0.375), 7 (35.0%, FICI 0.188-0.375), and 12(60.0%, FICI 0.281-0.375) strains of C. neoformans, respectively. There was no antagonism. The survival rates of larvae treated with PP (3.33%) showed almost no antifungal effective, but the larvae survival rates improved when PP combined with AmB (35% vs. 23.33%), FLU (40% vs. 25%), ITR (48.33% vs. 33.33%), VOR (48.33% vs. 53.33%) and POS (56.67% vs. 36.67%) comparison with AmB or azoles alone, and statistical significance was observed when PP combined with POS versus POS alone (P = 0.04). Conclusions In summary, the preliminary results indicated the potential of PP in reduction the MICs of azoles and AmB, also itself against C. neoformans; the combination of PP with AMB, FLU, ITR, VOR and POS improve the survival rates of C. neoformans infection larvae, compared with they are alone. The in vitro and in vivo data show that PP could enhance the activity of POS against C. neoformans. This study contributes with data of PP in combination with classical drugs of choice for cryptococcosis treatment.
Collapse
Affiliation(s)
- Yali Li
- Department of Dermatology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Li
- Department of Dermatology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Chen
- Department of Dermatology, Shanghai Changzheng Hospital, Shanghai, China
| | - Jialing Xiao
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China,*Correspondence: Jialing Xiao, ; Hong Fang,
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Jialing Xiao, ; Hong Fang,
| |
Collapse
|
50
|
Tharappel AM, Li Z, Zhu YC, Wu X, Chaturvedi S, Zhang QY, Li H. Calcimycin Inhibits Cryptococcus neoformans In Vitro and In Vivo by Targeting the Prp8 Intein Splicing. ACS Infect Dis 2022; 8:1851-1868. [PMID: 35948057 PMCID: PMC9464717 DOI: 10.1021/acsinfecdis.2c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Drug resistance is a significant concern in the treatment of diseases, including cryptococcosis caused by Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga). Alternative drug targets are necessary to overcome drug resistance before it attains a critical stage. Splicing of inteins from pro-protein precursors is crucial for activities of essential proteins hosting intein elements in many organisms, including human pathogens such as Cne and Cga. Through a high-throughput screening, we identified calcimycin (CMN) as a potent Prp8 intein splicing inhibitor with a minimum inhibitory concentration (MIC) of 1.5 μg/mL against the wild-type Cne-H99 (Cne-WT or Cne). In contrast, CMN inhibited the intein-less mutant strain (Cne-Mut) with a 16-fold higher MIC. Interestingly, Aspergillus fumigatus and a few Candida species were resistant to CMN. Further studies indicated that CMN reduced virulence factors such as urease activity, melanin production, and biofilm formation in Cne. CMN also inhibited Cne intracellular infection in macrophages. In a target-specific split nanoluciferase assay, the IC50 of CMN was 4.6 μg/mL. Binding of CMN to recombinant Prp8 intein was demonstrated by thermal shift assay and microscale thermophoresis. Treating Cne cells with CMN reduced intein splicing. CMN was fungistatic and showed a synergistic effect with the known antifungal drug amphotericin B. Finally, CMN treatment at 20 mg/kg body weight led to 60% reduction in lung fungal load in a cryptococcal pulmonary infection mouse model. Overall, CMN represents a potent antifungal with a novel mechanism of action to treat Cne and possibly Cga infections.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Yan Chun Zhu
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Sudha Chaturvedi
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
- The BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|