1
|
Haghshenas I, Taghavi SM, Zarei S, Osdaghi E. Molecular-Phylogenetic Characterization of Xanthomonas hortorum pv. pelargonii Strains Causing Leaf Spot of Geraniums in Iran. PLANT DISEASE 2024; 108:2701-2709. [PMID: 38595058 DOI: 10.1094/pdis-01-24-0262-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Bacterial blight and leaf spot of geraniums is a destructive disease of cultivated Pelargonium species around the world. During 2020 to 2021, surveys were conducted in seven geranium-growing provinces of Iran to monitor the status of bacterial blight and leaf spot disease. The disease was observed in six surveyed provinces varying in the extent of occurrence and severity. Twenty-two gram-negative pale-yellow bacterial strains resembling members of Xanthomonas were isolated from symptomatic leaves and stems. Pathogenicity and host range assays showed that the bacterial strains were pathogenic on Pelargonium grandiflorum, P. graveolens, P. peltatum, and P. zonale. All strains were positive for a PCR test using the primer pair XcpM1/XcpM2, which is specific for X. hortorum pv. pelargonii. Phylogenetic analysis using the sequences of gyrB and lepA genes showed that the 22 strains clustered in a clade among the sequences of X. hortorum pv. pelargonii strains retrieved from GenBank but were distinct from the other pathovars of X. hortorum. BOX-PCR-based fingerprinting using BOX-A1R primer revealed that the strains isolated in this study were grouped into two clusters, while no distinct correlation was observed between the host/area of isolation and BOX-PCR fingerprinting. None of the strains obtained in this study nor the reference strain of the pathogen produced bacteriocin against each other. Results obtained in this study shed light on the geographic distribution, taxonomic status, and host range of the bacterial blight and leaf spot pathogen of geraniums in Iran, paving the path for further research on disease management.
Collapse
Affiliation(s)
- Iman Haghshenas
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Sadegh Zarei
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
2
|
Kim H, Kim MH, Choi UL, Chung MS, Yun CH, Shim Y, Oh J, Lee S, Lee GW. Molecular and Phenotypic Investigation on Antibacterial Activities of Limonene Isomers and Its Oxidation Derivative against Xanthomonas oryzae pv. oryzae. J Microbiol Biotechnol 2024; 34:562-569. [PMID: 38247219 PMCID: PMC11016764 DOI: 10.4014/jmb.2311.11016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a devastating bacterial leaf blight in rice. Here, the antimicrobial effects of D-limonene, L-limonene, and its oxidative derivative carveol against Xoo were investigated. We revealed that carveol treatment at ≥ 0.1 mM in liquid culture resulted in significant decrease in Xoo growth rate (> 40%) in a concentration-dependent manner, and over 1 mM, no growth was observed. The treatment with D-limonene and L-limonene also inhibited the Xoo growth but to a lesser extent compared to carveol. These results were further elaborated with the assays of motility, biofilm formation and xanthomonadin production. The carveol treatment over 1 mM caused no motilities, basal level of biofilm formation (< 10%), and significantly reduced xanthomonadin production. The biofilm formation after the treatment with two limonene isomers was decreased in a concentration-dependent manner, but the degree of the effect was not comparable to carveol. In addition, there was negligible effect on the xanthomonadin production mediated by the treatment of two limonene isomers. Field emission-scanning electron microscope (FE-SEM) unveiled that all three compounds used in this study cause severe ultrastructural morphological changes in Xoo cells, showing shrinking, shriveling, and holes on their surface. Moreover, quantitative real-time PCR revealed that carveol and D-limonene treatment significantly down-regulated the expression levels of genes involved in virulence and biofilm formation of Xoo, but not with L-limonene. Together, we suggest that limonenes and carveol will be the candidates of interest in the development of biological pesticides.
Collapse
Affiliation(s)
- Hyeonbin Kim
- Green-Bio Division, Jeonju AgroBio-Materials Institute, Jeonju 54810, Republic of Korea
| | - Mi Hee Kim
- Green-Bio Division, Jeonju AgroBio-Materials Institute, Jeonju 54810, Republic of Korea
| | - Ui-Lim Choi
- Green-Bio Division, Jeonju AgroBio-Materials Institute, Jeonju 54810, Republic of Korea
| | - Moon-Soo Chung
- Division of Radiation Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youngkun Shim
- Microzyme Co., Ltd. Research and Development Department, Damyang-gun, Jeollanam-do 57385, Republic of Korea
| | - Jaejun Oh
- Microzyme Co., Ltd. Research and Development Department, Damyang-gun, Jeollanam-do 57385, Republic of Korea
| | - Sungbeom Lee
- Division of Radiation Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Gun Woong Lee
- Green-Bio Division, Jeonju AgroBio-Materials Institute, Jeonju 54810, Republic of Korea
| |
Collapse
|
3
|
Iruegas-Bocardo F, Weisberg AJ, Riutta ER, Kilday K, Bonkowski JC, Creswell T, Daughtrey ML, Rane K, Grünwald NJ, Chang JH, Putnam ML. Whole Genome Sequencing-Based Tracing of a 2022 Introduction and Outbreak of Xanthomonas hortorum pv. pelargonii. PHYTOPATHOLOGY 2023; 113:975-984. [PMID: 36515656 DOI: 10.1094/phyto-09-22-0321-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Globalization has made agricultural commodities more accessible, available, and affordable. However, their global movement increases the potential for invasion by pathogens and necessitates development and implementation of sensitive, rapid, and scalable surveillance methods. Here, we used 35 strains, isolated by multiple diagnostic laboratories, as a case study for using whole genome sequence data in a plant disease diagnostic setting. Twenty-seven of the strains were isolated in 2022 and identified as Xanthomonas hortorum pv. pelargonii. Eighteen of these strains originated from material sold by a plant breeding company that had notified clients following a release of infected geranium cuttings. Analyses of whole genome sequences revealed epidemiological links among the 27 strains from different growers that confirmed a common source of the outbreak and uncovered likely secondary spread events within facilities that housed plants originating from different plant breeding companies. Whole genome sequencing data were also analyzed to reveal how preparatory and analytical methods can impact conclusions on outbreaks of clonal pathogenic strains. The results demonstrate the potential power of using whole genome sequencing among a network of diagnostic labs and highlight how sharing such data can help shorten response times to mitigate outbreaks more expediently and precisely than standard methods.
Collapse
Affiliation(s)
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Elizabeth R Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Kameron Kilday
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - John C Bonkowski
- Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Tom Creswell
- Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Margery L Daughtrey
- Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901
| | - Karen Rane
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97331
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Melodie L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
4
|
He YW, Deng Y, Miao Y, Chatterjee S, Tran TM, Tian J, Lindow S. DSF-family quorum sensing signal-mediated intraspecies, interspecies, and inter-kingdom communication. Trends Microbiol 2023; 31:36-50. [PMID: 35941062 DOI: 10.1016/j.tim.2022.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
While most bacteria are unicellular microbes they communicate with each other and with their environments to adapt their behaviors. Quorum sensing (QS) is one of the best-studied cell-cell communication modes. QS signaling is not restricted to bacterial cell-to-cell communication - it also allows communication between bacteria and their eukaryotic hosts. The diffusible signal factor (DSF) family represents an intriguing type of QS signal with multiple roles found in diverse Gram-negative bacteria. Over the last decade, extensive progress has been made in understanding DSF-mediated communication among bacteria, fungi, insects, plants, and zebrafish. This review provides an update on these new developments with the aim of building a more comprehensive picture of DSF-mediated intraspecies, interspecies, and inter-kingdom communication.
Collapse
Affiliation(s)
- Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinyue Deng
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Yansong Miao
- School of Biological Science, Nanyang Technological University, Singapore
| | | | - Tuan Minh Tran
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Jing Tian
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Steven Lindow
- Department of Plant and Microbial Biology, University of California Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Dia NC, Morinière L, Cottyn B, Bernal E, Jacobs J, Koebnik R, Osdaghi E, Potnis N, Pothier J. Xanthomonas hortorum - beyond gardens: Current taxonomy, genomics, and virulence repertoires. MOLECULAR PLANT PATHOLOGY 2022; 23:597-621. [PMID: 35068051 PMCID: PMC8995068 DOI: 10.1111/mpp.13185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 05/02/2023]
Abstract
TAXONOMY Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Lysobacterales (earlier synonym of Xanthomonadales); Family Lysobacteraceae (earlier synonym of Xanthomonadaceae); Genus Xanthomonas; Species X. hortorum; Pathovars: pv. carotae, pv. vitians, pv. hederae, pv. pelargonii, pv. taraxaci, pv. cynarae, and pv. gardneri. HOST RANGE Xanthomonas hortorum affects agricultural crops, and horticultural and wild plants. Tomato, carrot, artichoke, lettuce, pelargonium, ivy, and dandelion were originally described as the main natural hosts of the seven separate pathovars. Artificial inoculation experiments also revealed other hosts. The natural and experimental host ranges are expected to be broader than initially assumed. Additionally, several strains, yet to be assigned to a pathovar within X. hortorum, cause diseases on several other plant species such as peony, sweet wormwood, lavender, and oak-leaf hydrangea. EPIDEMIOLOGY AND CONTROL X. hortorum pathovars are mainly disseminated by infected seeds (e.g., X. hortorum pvs carotae and vitians) or cuttings (e.g., X. hortorum pv. pelargonii) and can be further dispersed by wind and rain, or mechanically transferred during planting and cultivation. Global trade of plants, seeds, and other propagating material constitutes a major pathway for their introduction and spread into new geographical areas. The propagules of some pathovars (e.g., X. horturum pv. pelargonii) are spread by insect vectors, while those of others can survive in crop residues and soils, and overwinter until the following growing season (e.g., X. hortorum pvs vitians and carotae). Control measures against X. hortorum pathovars are varied and include exclusion strategies (i.e., by using certification programmes and quarantine regulations) to multiple agricultural practices such as the application of phytosanitary products. Copper-based compounds against X. hortorum are used, but the emergence of copper-tolerant strains represents a major threat for their effective management. With the current lack of efficient chemical or biological disease management strategies, host resistance appears promising, but is not without challenges. The intrastrain genetic variability within the same pathovar poses a challenge for breeding cultivars with durable resistance. USEFUL WEBSITES https://gd.eppo.int/taxon/XANTGA, https://gd.eppo.int/taxon/XANTCR, https://gd.eppo.int/taxon/XANTPE, https://www.euroxanth.eu, http://www.xanthomonas.org, http://www.xanthomonas.org/dokuwiki.
Collapse
Affiliation(s)
- Nay C. Dia
- Environmental Genomics and Systems Biology Research GroupInstitute for Natural Resource SciencesZurich University of Applied SciencesWädenswilSwitzerland
- Molecular Plant BreedingInstitute of Agricultural SciencesETH ZurichZurichSwitzerland
| | - Lucas Morinière
- University of LyonUniversité Claude Bernard Lyon 1CNRSINRAEUMR Ecologie MicrobienneVilleurbanneFrance
| | - Bart Cottyn
- Plant Sciences UnitFlanders Research Institute for Agriculture, Fisheries and FoodMerelbekeBelgium
| | - Eduardo Bernal
- Department of Plant PathologyThe Ohio State UniversityColumbusOhioUSA
| | - Jonathan M. Jacobs
- Department of Plant PathologyThe Ohio State UniversityColumbusOhioUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Ralf Koebnik
- Plant Health Institute of MontpellierUniversity of Montpellier, CIRAD, INRAe, Institut Agro, IRDMontpellierFrance
| | - Ebrahim Osdaghi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Neha Potnis
- Department of Entomology and Plant PathologyAuburn UniversityAlabamaUSA
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research GroupInstitute for Natural Resource SciencesZurich University of Applied SciencesWädenswilSwitzerland
| |
Collapse
|
6
|
Bacterial Biopolymer: Its Role in Pathogenesis to Effective Biomaterials. Polymers (Basel) 2021; 13:polym13081242. [PMID: 33921239 PMCID: PMC8069653 DOI: 10.3390/polym13081242] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteria are considered as the major cell factories, which can effectively convert nitrogen and carbon sources to a wide variety of extracellular and intracellular biopolymers like polyamides, polysaccharides, polyphosphates, polyesters, proteinaceous compounds, and extracellular DNA. Bacterial biopolymers find applications in pathogenicity, and their diverse materialistic and chemical properties make them suitable to be used in medicinal industries. When these biopolymer compounds are obtained from pathogenic bacteria, they serve as important virulence factors, but when they are produced by non-pathogenic bacteria, they act as food components or biomaterials. There have been interdisciplinary studies going on to focus on the molecular mechanism of synthesis of bacterial biopolymers and identification of new targets for antimicrobial drugs, utilizing synthetic biology for designing and production of innovative biomaterials. This review sheds light on the mechanism of synthesis of bacterial biopolymers and its necessary modifications to be used as cell based micro-factories for the production of tailor-made biomaterials for high-end applications and their role in pathogenesis.
Collapse
|
7
|
Yang P, Li FJ, Huang SW, Luo M, Lin W, Yuan GQ, Li QQ. Physiological and Transcriptional Response of Xanthomonas oryzae pv. oryzae to Berberine, an Emerging Chemical Control. PHYTOPATHOLOGY 2020; 110:1027-1038. [PMID: 31961254 DOI: 10.1094/phyto-09-19-0327-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Berberine, a botanical drug, has great ability to inhibit the growth of Xanthomonas oryzae pv. oryzae. However, the antibacterial mechanism of berberine against X. oryzae pv. oryzae remains poorly understood. In this study, we investigated the physiological and transcriptional response of X. oryzae pv. oryzae to berberine. When strain X. oryzae pv. oryzae GX13 was treated with berberine (10 µg/ml), the hypersensitive response in tobacco, virulence to rice, pathogen population in the rice xylem, production of extracellular polysaccharide (EPS), and activity of extracellular hydrolases decreased, but the levels of pyruvate and ATP increased. Moreover, biofilm formation was inhibited, and the cell membrane was damaged. Transcriptome sequencing analysis showed downregulated expression of gspD, gspE, and gspF, involved in the type II secretion system (T2SS); hrcC, hrcJ, hrcN, and others, involved in the type III secretion system (T3SS); gumB and gumC, associated with EPS; zapE, ftsQ, and zapA, associated with cell division; lpxH, lpxK, kdtA, and others, associated with the membrane; and pyk, pgk, and mdh, encoding pyruvate kinase, phosphoglycerate kinase, and malate dehydrogenase, respectively. Upregulated expression was observed for nuoA, nuoB, and nuoH, encoding the NADH dehydrogenase complex, and atpF, atpC, and atpB, encoding ATP synthase. An adenylate cyclase (CyaA) fusion assay showed that berberine affects type three effector protein secretion via the T3SS and reduces effector translocation in X. oryzae pv. oryzae. It is speculated that the negative growth and virulence phenotypes of berberine-treated X. oryzae pv. oryzae GX13 may involve differentially expressed genes associated with cytoarchitecture and energy metabolism, and these effects on primary cell function may further dampen virulence and result in differential expression of T3SS- and T2SS-related genes.
Collapse
Affiliation(s)
- Ping Yang
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Fang-Jing Li
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Shi-Wen Huang
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
- Rice Technology R&D Center, China National Rice Research Institute, Hangzhou 310006, People's Republic of China
| | - Man Luo
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Wei Lin
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Gao-Qing Yuan
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| | - Qi-Qin Li
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
8
|
Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci 2020; 77:1319-1343. [PMID: 31612240 PMCID: PMC11104945 DOI: 10.1007/s00018-019-03326-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Quorum sensing (QS), a microbial cell-to-cell communication process, dynamically regulates a variety of metabolism and physiological activities. In this review, we provide an update on QS applications based on autoinducer molecules including acyl-homoserine lactones (AHLs), auto-inducing peptides (AIPs), autoinducer 2 (AI-2) and indole in population-level control of bacteria, and highlight the potential in developing novel clinical therapies. We summarize the development in the combination of various genetic circuits such as genetic oscillators, toggle switches and logic gates with AHL-based QS devices in Gram-negative bacteria. An overview is then offered to the state-of-the-art of much less researched applications of AIP-based QS devices with Gram-positive bacteria, followed by a review of the applications of AI-2 and indole based QS for interspecies communication among microbial communities. Building on these general-purpose QS applications, we highlight the disruptions and manipulations of QS devices as potential clinical therapies for diseases caused by biofilm formation, antibiotic resistance and the phage invasion. The last part of reviewed literature is dedicated to mathematical modelling for QS applications. Finally, the key challenges and future perspectives of QS applications in monoclonal synthetic biology and synthetic ecology are discussed.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiaheng Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
9
|
Mishra S, Yang X, Ray S, Fraceto LF, Singh HB. Antibacterial and biofilm inhibition activity of biofabricated silver nanoparticles against Xanthomonas oryzae pv. oryzae causing blight disease of rice instigates disease suppression. World J Microbiol Biotechnol 2020; 36:55. [PMID: 32180020 DOI: 10.1007/s11274-020-02826-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Antimicrobial activity of silver nanoparticles (AgNPs) has been well documented in earlier studies. As their efficient role in combating phytopathogens has begun recently, there is a huge scope to explore their effectiveness in agriculture. Considering the strong antifungal activity of biosynthesized AgNPs (as reported in our previous study), our main aim is to elucidate their antibacterial activity against bacterial plant pathogens to authenticate their wide range of agricultural applications. The present manuscript highlights the potential role of biosynthesized AgNPs against Xanthomonas oryzae pv. oryzae (Xoo) causing disastrous sheath blight disease of rice worldwide. We observed strong antibacterial activity of biosynthesized AgNPs (size ~ 12 nm) against Xoo at 20, 30 and 50 µg/mL concentrations. The significant inhibitory impact of AgNPs on biofilm formation by Xoo was noted even at the lower dose of 5 µg/mL (p = 0.001). Maximum biofilm inhibition (p = 0.000) was caused at 50 µg/mL concentration of AgNPs in comparison to control. Furthermore, disease suppression by biosynthesized AgNPs was authenticated under greenhouse conditions. Foliar spray of AgNPs significantly reduced the blight symptoms in rice sheaths as shown by 9.25% DLA (% Diseased leaf area) as compared to 33.91% DLA in Xoo inoculated rice plants. Altogether, our data suggest that biosynthesized AgNPs based nanoformulation can be applied for successful management of blight disease of rice. In addition, the antibiofilm strategies instigated by AgNPs can be exploited against a wide range of bacterial phytopathogens. In light of rapidly emerging antibiotic-resistant microbial strains, the current work provides an alternate effective platform for the application of nanoformulation for augmenting sustainability in the agriculture.
Collapse
Affiliation(s)
- Sandhya Mishra
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Shatrupa Ray
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Leonardo Fernandes Fraceto
- Laboratory of Environmental Nanotechnology, Institute of Science and Technology of Sorocaba, São Paulo State University, São Paulo, Brazil
| | - H B Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India. .,Somvanshi Research Foundation, 13/21 Vikas Nagar, Lucknow, 226022, India.
| |
Collapse
|
10
|
Yang F, Xue D, Tian F, Hutchins W, Yang CH, He C. Identification of c-di-GMP Signaling Components in Xanthomonas oryzae and Their Orthologs in Xanthomonads Involved in Regulation of Bacterial Virulence Expression. Front Microbiol 2019; 10:1402. [PMID: 31354637 PMCID: PMC6637768 DOI: 10.3389/fmicb.2019.01402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight of rice, one of the most devastating bacterial diseases of this staple crop worldwide. Xoo produces a range of virulence-related factors to facilitate its pathogenesis in rice, however, the regulatory mechanisms of Xoo virulence expression have been not fully elucidated. Recent studies have revealed that virulence factor production is regulated via cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway that is well-conserved in Xoo and other Xanthomonas species. A set of GGDEF, EAL, HD-GYP, and PilZ domain proteins with diverse signal sensory domains for c-di-GMP synthesis, hydrolysis, and binding is encoded in the Xoo genome. Bioinformatic, genetic, and biochemical analysis has identified an array of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), as well as degenerate GGDEF/EAL, PilZ domain proteins along with a transcription regulator. These signaling components have been characterized to regulate various bacterial cellular processes, such as virulence, exopolysaccharide (EPS) production, biofilm formation, motility, and adaptation at the transcriptional, post-translational, and protein-protein interaction levels. This review summarized the recent progress in understanding the importance and complexity of c-di-GMP signaling in regulating bacterial virulence expression, highlighting the identified key signal elements and orthologs found in Xanthomonads, discussing the diverse functions of GGDEF/EAL/HD-GYP domains, existence of a complicated multifactorial network between DGCs, PDEs, and effectors, and further exploration of the new c-di-GMP receptor domains. These findings and knowledge lay the groundwork for future experimentation to further elucidate c-di-GMP regulatory circuits involved in regulation of bacterial pathogenesis.
Collapse
Affiliation(s)
- Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dingrong Xue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - William Hutchins
- Department of Biology, Carthage College, Kenosha, WI, United States
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Lidor O, Dror O, Hamershlak D, Shoshana N, Belausov E, Zahavi T, Mozes-Daube N, Naor V, Zchori-Fein E, Iasur-Kruh L, Bahar O. Introduction of a putative biocontrol agent into a range of phytoplasma- and liberibacter-susceptible crop plants. PEST MANAGEMENT SCIENCE 2018; 74:811-819. [PMID: 29072824 DOI: 10.1002/ps.4775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/03/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Phytoplasma, the causative agent of Bois Noir disease of grapevines, are vectored by the planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae). A Dyella-like bacterium (DLB) isolated from H. obsoletus inhibits the growth of Spiroplasma melliferum, a cultivable relative of phytoplasma. Additional evidence suggests that DLB can reduce the symptoms of yellows disease in grapevine plantlets. The aim of this study was to test whether DLB could colonize a range of phytoplasma- and liberibacter-sensitive crop plants, and thus assess its potential agricultural use. RESULTS Vitex agnus-castus, the preferred host plant of H. obsoletus was found to be a natural host of DLB, which was successfully introduced into a range of crop plants belonging to seven families. The most effective DLB application method was foliar spraying. Microscopy observation revealed that DLB aggregated on the leaf surface and around the stomata, suggesting that this is its route of entry. DLB was also present in the vascular tissues of plants, indicating that it moved systemically through the plant. CONCLUSIONS DLB is a potential biocontrol agent and its broad spectrum of host plants indicates the possibility of its future use against a range of diseases caused by phloem-limited bacteria. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ofir Lidor
- Department of Entomology, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Orit Dror
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dor Hamershlak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Nofar Shoshana
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Eduard Belausov
- Microscopy Unit, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | | | - Netta Mozes-Daube
- Department of Entomology, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Vered Naor
- Shamir Research Institute, Katzrin, Israel
- Ohallo College, Katzrin, Israel
| | - Einat Zchori-Fein
- Department of Entomology, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Lilach Iasur-Kruh
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel, Israel
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
12
|
Sahu SK, Zheng P, Yao N. Niclosamide Blocks Rice Leaf Blight by Inhibiting Biofilm Formation of Xanthomonas oryzae. FRONTIERS IN PLANT SCIENCE 2018; 9:408. [PMID: 29651297 PMCID: PMC5884940 DOI: 10.3389/fpls.2018.00408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/14/2018] [Indexed: 05/05/2023]
Abstract
Rice (Oryza sativa) is the leading source of nutrition for more than half of the world's population, and by far it is the most important commercial food crop. But, its growth and production are significantly hampered by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) which causes leaf blight disease. Earlier studies have reported the antibacterial ability of FDA-approved niclosamide drug against Xoo. However, the underlying mechanism by which niclosamide blocks the growth of Xoo remained elusive. In the present study, by employing the microbiological, microscopical, molecular, bioinformatics and analytical tools we found that niclosamide can directly inhibit the growth of the Xoo by hampering the biofilm formation and the production of xanthomonadin and exopolysaccharide substances (EPS) required for relentless growth and virulence of Xoo. Interestingly, niclosamide was found to specifically suppress the growth of Xoo without affecting other bacteria like Escherichia coli. Our electron microscopic observations disclosed that niclosamide disrupts the membrane permeability of Xoo and causes the release of intracellular components. Similarly, the molecular docking analysis disclosed the molecular interaction of niclosamide with the biofilm, virulence and quorum sensing related proteins, which was further substantiated by relative gene expression analysis where niclosamide was found to significantly downregulate the expression of these key regulatory genes. In addition, considerable changes in chemical structures were detected by Fourier Transform Infrared Spectroscopy (FTIR) in response to niclosamide treatment. Overall, our findings advocate the utilization of niclosamide as a safe and potent alternative antibacterial compound to control bacterial blight disease in rice.
Collapse
Affiliation(s)
| | | | - Nan Yao
- *Correspondence: Sunil Kumar Sahu, Nan Yao,
| |
Collapse
|
13
|
Methods to Study Quorum Sensing-Dependent Virulence and Movement of Phytopathogens In Planta. Methods Mol Biol 2017. [PMID: 29130178 DOI: 10.1007/978-1-4939-7309-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cell-to-cell communication mediated by the diffusible signal factor (DSF) is a common form of gene regulation and plays an important role in virulence of many plant pathogenic bacteria including Xanthomonas spp. Here we describe several approaches to study the involvement of DSF-dependent QS system of the plant pathogenic bacteria Xanthomonas campestris pv. pelargonii (Xhp) as an example of the Xanthomonas spp. The methods described include detection and measurement of DSF, movement in planta, colonization, and aggregate formation.
Collapse
|
14
|
Moleleki LN, Pretorius RG, Tanui CK, Mosina G, Theron J. A quorum sensing-defective mutant of Pectobacterium carotovorum ssp. brasiliense 1692 is attenuated in virulence and unable to occlude xylem tissue of susceptible potato plant stems. MOLECULAR PLANT PATHOLOGY 2017; 18:32-44. [PMID: 26788858 PMCID: PMC6638202 DOI: 10.1111/mpp.12372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 05/13/2023]
Abstract
Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post-harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall-degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild-type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild-type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild-type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI-inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild-type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down-regulated in the mutant compared with the wild-type strain.
Collapse
Affiliation(s)
- Lucy Novungayo Moleleki
- Forestry, Agriculture and Biotechnology Institute, University of PretoriaLunnon RoadPretoriaSouth Africa0028
- Department of Microbiology and Plant PathologyUniversity of PretoriaLunnon RoadPretoriaSouth Africa0028
| | - Rudolph Gustav Pretorius
- Forestry, Agriculture and Biotechnology Institute, University of PretoriaLunnon RoadPretoriaSouth Africa0028
| | - Collins Kipngetich Tanui
- Forestry, Agriculture and Biotechnology Institute, University of PretoriaLunnon RoadPretoriaSouth Africa0028
| | - Gabolwelwe Mosina
- Forestry, Agriculture and Biotechnology Institute, University of PretoriaLunnon RoadPretoriaSouth Africa0028
| | - Jacques Theron
- Department of Microbiology and Plant PathologyUniversity of PretoriaLunnon RoadPretoriaSouth Africa0028
| |
Collapse
|
15
|
Dunger G, Llontop E, Guzzo CR, Farah CS. The Xanthomonas type IV pilus. Curr Opin Microbiol 2016; 30:88-97. [PMID: 26874963 DOI: 10.1016/j.mib.2016.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023]
Abstract
Type IV pili, a special class of bacterial surface filaments, are key behavioral mediators for many important human pathogens. However, we know very little about the role of these structures in the lifestyles of plant-associated bacteria. Over the past few years, several groups studying the extensive genus of Xanthomonas spp. have gained insights into the roles of played by type IV pili in bacteria-host interactions and pathogenesis, motility, biofilm formation, and interactions with bacteriophages. Protein-protein interaction studies have identified T4P regulators and these, along with structural studies, have begun to reveal some of the possible molecular mechanisms that may control the extension/retraction cycles of these dynamic filaments.
Collapse
Affiliation(s)
- German Dunger
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Edgar Llontop
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Cristiane R Guzzo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, SP CEP 05508-900, Brazil
| | - Chuck S Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
16
|
Ryan RP, An SQ, Allan JH, McCarthy Y, Dow JM. The DSF Family of Cell-Cell Signals: An Expanding Class of Bacterial Virulence Regulators. PLoS Pathog 2015; 11:e1004986. [PMID: 26181439 PMCID: PMC4504480 DOI: 10.1371/journal.ppat.1004986] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many pathogenic bacteria use cell–cell signaling systems involving the synthesis and perception of diffusible signal molecules to control virulence as a response to cell density or confinement to niches. Bacteria produce signals of diverse structural classes. Signal molecules of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids. The paradigm is cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris pv. campestris (Xcc), which controls virulence in this plant pathogen. Although DSF synthesis was thought to be restricted to the xanthomonads, it is now known that structurally related molecules are produced by the unrelated bacteria Burkholderia cenocepacia and Pseudomonas aeruginosa. Furthermore, signaling involving these DSF family members contributes to bacterial virulence, formation of biofilms and antibiotic tolerance in these important human pathogens. Here we review the recent advances in understanding DSF signaling and its regulatory role in different bacteria. These advances include the description of the pathway/mechanism of DSF biosynthesis, identification of novel DSF synthases and new members of the DSF family, the demonstration of a diversity of DSF sensors to include proteins with a Per-Arnt-Sim (PAS) domain and the description of some of the signal transduction mechanisms that impinge on virulence factor expression. In addition, we address the role of DSF family signals in interspecies signaling that modulates the behavior of other microorganisms. Finally, we consider a number of recently reported approaches for the control of bacterial virulence through the modulation of DSF signaling.
Collapse
Affiliation(s)
- Robert P. Ryan
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (RPR); (JMD)
| | - Shi-qi An
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John H. Allan
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Yvonne McCarthy
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - J. Maxwell Dow
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
- * E-mail: (RPR); (JMD)
| |
Collapse
|