1
|
Edelstein R, Gutterman S, Newman B, Van Horn JD. Assessment of Sports Concussion in Female Athletes: A Role for Neuroinformatics? Neuroinformatics 2024; 22:607-618. [PMID: 39078562 PMCID: PMC11579174 DOI: 10.1007/s12021-024-09680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Over the past decade, the intricacies of sports-related concussions among female athletes have become readily apparent. Traditional clinical methods for diagnosing concussions suffer limitations when applied to female athletes, often failing to capture subtle changes in brain structure and function. Advanced neuroinformatics techniques and machine learning models have become invaluable assets in this endeavor. While these technologies have been extensively employed in understanding concussion in male athletes, there remains a significant gap in our comprehension of their effectiveness for female athletes. With its remarkable data analysis capacity, machine learning offers a promising avenue to bridge this deficit. By harnessing the power of machine learning, researchers can link observed phenotypic neuroimaging data to sex-specific biological mechanisms, unraveling the mysteries of concussions in female athletes. Furthermore, embedding methods within machine learning enable examining brain architecture and its alterations beyond the conventional anatomical reference frame. In turn, allows researchers to gain deeper insights into the dynamics of concussions, treatment responses, and recovery processes. This paper endeavors to address the crucial issue of sex differences in multimodal neuroimaging experimental design and machine learning approaches within female athlete populations, ultimately ensuring that they receive the tailored care they require when facing the challenges of concussions. Through better data integration, feature identification, knowledge representation, validation, etc., neuroinformaticists, are ideally suited to bring clarity, context, and explainabilty to the study of sports-related head injuries in males and in females, and helping to define recovery.
Collapse
Affiliation(s)
- Rachel Edelstein
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA.
| | - Sterling Gutterman
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| | - Benjamin Newman
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| |
Collapse
|
2
|
Pierre K, Dyson K, Dagra A, Williams E, Porche K, Lucke-Wold B. Chronic Traumatic Encephalopathy: Update on Current Clinical Diagnosis and Management. Biomedicines 2021; 9:biomedicines9040415. [PMID: 33921385 PMCID: PMC8069746 DOI: 10.3390/biomedicines9040415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic traumatic encephalopathy is a disease afflicting individuals exposed to repetitive neurotrauma. Unfortunately, diagnosis is made by postmortem pathologic analysis, and treatment options are primarily symptomatic. In this clinical update, we review clinical and pathologic diagnostic criteria and recommended symptomatic treatments. We also review animal models and recent discoveries from pre-clinical studies. Furthermore, we highlight the recent advances in diagnosis using diffusor tensor imaging, functional magnetic resonance imaging, positron emission tomography, and the fluid biomarkers t-tau, sTREM2, CCL11, NFL, and GFAP. We also provide an update on emerging pharmaceutical treatments, including immunotherapies and those that target tau acetylation, tau phosphorylation, and inflammation. Lastly, we highlight the current literature gaps and guide future directions to further improve clinical diagnosis and management of patients suffering from this condition.
Collapse
Affiliation(s)
- Kevin Pierre
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Kyle Dyson
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Abeer Dagra
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Eric Williams
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Ken Porche
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
- Correspondence:
| |
Collapse
|
3
|
St Ivany A, Schminkey DL, Munro-Kramer ML. Acquired Brain Injuries and Intimate Partner Violence: A Situational Analysis of Help Seeking Barriers in Rural Northern New England. Glob Qual Nurs Res 2021; 8:23333936211008163. [PMID: 33912624 PMCID: PMC8047928 DOI: 10.1177/23333936211008163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/10/2022] Open
Abstract
Nurses care for women experiencing non-fatal strangulation and acquired brain injuries whether or not it is disclosed. Situational analysis was used to analyze 23 interviews from Northern New England with survivors, healthcare workers, and violence/legal advocates to explore overlapping relationships between violence, acquired brain injuries, non-fatal strangulation, and seeking care. Findings included the concepts of paying social consequences and the normalization of violence. Non-fatal strangulation was described as increasingly related to violence and other areas. Repetitive acquired brain injuries can impair functioning needed to address violence and healthcare providers and advocates are generally unaware of the impact of acquired brain injuries. A lack of resources, training, and tools for acquired brain injury screening were barriers in recognizing and responding to it, causing hidden symptoms. This study adds to the literature examining intimate partner violence in rural areas; specifically intimate partner violence-related acquired brain injuries in rural areas.
Collapse
|
4
|
Abstract
Over the past decade, concern for negative outcomes associated with concussive brain trauma has grown immensely. These neuropathologic changes, termed chronic traumatic encephalopathy (CTE), have been linked to patients who exhibit neuropsychiatric symptoms and have experienced repetitive brain trauma. Recent publicity has brought about renewed interest in this progressive neurodegenerative disorder. This article will share the advances that have been made with CTE.
Collapse
|
5
|
LoBue C, Munro C, Schaffert J, Didehbani N, Hart J, Batjer H, Cullum CM. Traumatic Brain Injury and Risk of Long-Term Brain Changes, Accumulation of Pathological Markers, and Developing Dementia: A Review. J Alzheimers Dis 2020; 70:629-654. [PMID: 31282414 DOI: 10.3233/jad-190028] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injuries (TBI) have received widespread media attention in recent years as being a risk factor for the development of dementia and chronic traumatic encephalopathy (CTE). This has sparked fears about the potential long-term effects of TBI of any severity on cognitive aging, leading to a public health concern. This article reviews the evidence surrounding TBI as a risk factor for the later development of changes in brain structure and function, and an increased risk of neurodegenerative disorders. A number of studies have shown evidence of long-term brain changes and accumulation of pathological biomarkers (e.g., amyloid and tau proteins) related to a history of moderate-to-severe TBI, and research has also demonstrated that individuals with moderate-to-severe injuries have an increased risk of dementia. While milder injuries have been found to be associated with an increased risk for dementia in some recent studies, reports on long-term brain changes have been mixed and often are complicated by factors related to injury exposure (i.e., number of injuries) and severity/complications, psychiatric conditions, and opioid use disorder. CTE, although often described as a neurodegenerative disorder, remains a neuropathological condition that is poorly understood. Future research is needed to clarify the significance of CTE pathology and determine whether that can explain any clinical symptoms. Overall, it is clear that most individuals who sustain a TBI (particularly milder injuries) do not experience worse outcomes with aging, as the incidence for dementia is found to be less than 7% across the literature.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Munro
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Schaffert
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nyaz Didehbani
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hunt Batjer
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Munro Cullum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Iverson GL, Luoto TM, Karhunen PJ, Castellani RJ. Mild Chronic Traumatic Encephalopathy Neuropathology in People With No Known Participation in Contact Sports or History of Repetitive Neurotrauma. J Neuropathol Exp Neurol 2020; 78:615-625. [PMID: 31169877 DOI: 10.1093/jnen/nlz045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has been asserted that chronic traumatic encephalopathy (CTE) pathology is only present in former athletes and others who have been exposed to repetitive concussions, subconcussive blows, or both. We hypothesized that CTE pathology would be present in men who had no known history of repetitive neurotrauma. Comprehensive medical record reviews and health surveys completed by a family member were available for the 8 men in this case series, none of whom had known exposure to repetitive neurotrauma but 2 of whom had a history of traumatic brain injury (TBI). Postmortem tissue was immunostained for hyperphosphorylated tau (p-tau) to assess for CTE pathology, Braak stage, and aging-related p-tau. The neuropathologist was blind to age, personal history, and clinical history. Six of the 8 cases (75%) showed p-tau in neurons, astrocytes, and cell processes around small blood vessels in an irregular pattern at the depths of the cortical sulci. The changes were focal and limited in terms of overall extent, and some of the cases had a clearer pattern of pathology and some could be considered equivocal. Two of the 8 cases had a history of TBI and one of them showed CTE pathology. Five of the 6 cases with no known history of neurotrauma appeared to meet consensus criteria for CTE. This study adds to the emerging literature indicating that CTE pathology is present in people not known to have experienced multiple concussions or subconcussive blows to the head.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School.,Spaulding Rehabilitation Hospital, Spaulding Research Institute.,MassGeneral Hospital for Children™ Sports Concussion Program.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts
| | - Teemu M Luoto
- Department of Neurosurgery, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Pekka J Karhunen
- Department of Forensic Medicine, Faculty of Medicine and Life Sciences, University of Tampere.,Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Tampere, Finland
| | - Rudolph J Castellani
- Department of Pathology, Anatomy and Laboratory Medicine.,Department of Neuroscience, Rockefeller Neuroscience Institute.,West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
7
|
Muraoka S, Jedrychowski MP, Tatebe H, DeLeo AM, Ikezu S, Tokuda T, Gygi SP, Stern RA, Ikezu T. Proteomic Profiling of Extracellular Vesicles Isolated From Cerebrospinal Fluid of Former National Football League Players at Risk for Chronic Traumatic Encephalopathy. Front Neurosci 2019; 13:1059. [PMID: 31649498 PMCID: PMC6794346 DOI: 10.3389/fnins.2019.01059] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of repetitive mild traumatic brain injury, such as American football players. Initial neuropathologic changes in CTE include perivascular deposition of phosphorylated microtubule-associated protein tau (p-tau) neurofibrillary tangles and other aggregates in neurons, astrocytes and cell processes in an irregular pattern often at the depths of the cortical sulci. In later stages, the p-tau depositions become widespread and is associated with neurodegeneration. Extracellular vesicles (EVs) are known to carry neuropathogenic molecules, most notably p-tau. We therefore examined the protein composition of EVs isolated from the cerebrospinal fluid (CSF) of former National Football League (NFL) players with cognitive and neuropsychiatric dysfunction, and an age-matched control group (CTRL) with no history of contact sports or traumatic brain injury. EVs were isolated from the CSF samples using an affinity purification kit. Total tau (t-tau) and tau phosphorylated on threonine181 (p-tau181) in CSF-derived EVs from former NFL players and CTRL participants were measured by ultrasensitive immunoassay. The t-tau and p-tau181 levels of CSF-derived EV were positively correlated with the t-tau and p-tau181 levels of total CSF in former NFL players, respectively, but not in the CTRL group. 429 unique proteins were identified from CSF-derived EVs and quantified by TMT-10 plex method. The identified protein molecules were significantly enriched for the extracellular exosome molecules, Alzheimer's disease pathway and Age/Telomere Length ontology as determined by DAVID Gene Ontology analysis. Ingenuity pathway analysis of the differentially expressed EV proteins revealed enrichment of canonical liver/retinoid X receptor activation pathway. Upstream effect analysis predicted MAPT (tau) as an upstream regulator in former NFL players. These data will be useful for understanding the EV-mediated disease spread and development of novel EV biomarkers for CTE and related disorders.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | | | - Harutsugu Tatebe
- Department of Medical Innovation and Translational Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Annina M. DeLeo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Takahiko Tokuda
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Robert A. Stern
- Department of Neurology, Alzheimer’s Disease Center, CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Alzheimer’s Disease Center, CTE Center, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Abstract
This chapter describes the main neuropathological features of the most common age associated neurodegenerative diseases including Alzheimer's disease, Lewy body diseases, vascular dementia and the various types of frontotemporal lobar degeneration. In addition, the more recent concepts of primary age-related tauopathy and ageing-related tau astrogliopathy as well as chronic traumatic encephalopathy are briefly described. One section is dedicated to cerebral multi-morbidity as it is becoming increasingly clear that the old brain is characterised by the presence of multiple pathologies (to varying extent) rather than by one single, disease specific pathology alone. The main aim of this chapter is to inform the reader about the neuropathological basics of age associated neurodegenerative diseases as we feel this is crucial to meaningfully interpret the vast literature that is published in the broad field of dementia research.
Collapse
Affiliation(s)
- Lauren Walker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsty E McAleese
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Erskine
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
9
|
Pavlovic D, Pekic S, Stojanovic M, Popovic V. Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary 2019; 22:270-282. [PMID: 30929221 DOI: 10.1007/s11102-019-00957-9] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Traumatic brain injury (TBI) causes substantial neurological disabilities and mental distress. Annual TBI incidence is in magnitude of millions, making it a global health challenge. Categorization of TBI into severe, moderate and mild by scores on the Glasgow coma scale (GCS) is based on clinical grounds and standard brain imaging (CT). Recent research focused on repeated mild TBI (sport and non-sport concussions) suggests that a considerable number of patients have long-term disabling neurocognitive and neurobehavioral sequelae. These relate to subtle neuronal injury (diffuse axonal injury) visible only by using advanced neuroimaging distinguishing microstructural tissue damage. With advanced MRI protocols better characterization of TBI is achievable. Diffusion tensor imaging (DTI) visualizes white matter pathology, susceptibility weight imaging (SWI) detects microscopic bleeding while functional magnetic resonance imaging (fMRI) provides closer understanding of cognitive disorders etc. However, advanced imaging is still not integrated in the clinical care of patients with TBI. Patients with chronic TBI may experience many somatic disorders, cognitive disturbances and mental complaints. The underlying pathophysiological mechanisms occurring in TBI are complex, brain injuries are highly heterogeneous and include neuroendocrine dysfunctions. Post-traumatic neuroendocrine dysfunctions received attention since the year 2000. Occurrence of TBI-related hypopituitarism does not correlate to severity of the GCS scores. Complete or partial hypopituitarism (isolated growth hormone (GH) deficiency as most frequent) may occur after mild TBI equally as after moderate-to-severe TBI. Many symptoms of hypopituitarism overlap with symptoms occurring in patients with chronic TBI, i.e. they have lower scores on neuropsychological examinations (cognitive disability) and have more symptoms of mental distress (depression and fatigue). The great challenges for the endocrinologist are: (1) detection of hypopituitarism in patients with TBI prospectively (in the acute phase and months to years after TBI), (2) assessment of the extent of cognitive impairment at baseline, and (3) monitoring of treatment effects (alteration of cognitive functioning and mental distress with hormone replacement therapy). Only few studies recently suggest that with growth hormone (rhGH) replacement in patients with chronic TBI and with abnormal GH secretion, cognitive performance may not change while symptoms related to depression and fatigue improve. Stagnation in post-TBI rehabilitation progress is recommended as a signal for clinical suspicion of neuroendocrine dysfunction. This remains a challenging area for more research.
Collapse
Affiliation(s)
- Dragan Pavlovic
- Faculty for Special Education and Rehabilitation, University of Belgrade, Visokog Stevana 2, Belgrade, 11 000, Serbia
| | - Sandra Pekic
- Neuroendocrinology Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Dr Subotica 13, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia
| | - Marko Stojanovic
- Neuroendocrinology Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Dr Subotica 13, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia
| | - Vera Popovic
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia.
| |
Collapse
|
10
|
Ferrer I, García MA, González IL, Lucena DD, Villalonga AR, Tech MC, Llorens F, Garcia‐Esparcia P, Martinez‐Maldonado A, Mendez MF, Escribano BT, Bech‐Serra JJ, Sabido E, de la Torre Gómez C, del Rio JA. Aging-related tau astrogliopathy (ARTAG): not only tau phosphorylation in astrocytes. Brain Pathol 2018; 28:965-985. [PMID: 29396893 PMCID: PMC8028270 DOI: 10.1111/bpa.12593] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
Aging-related tau astrogliopathy (ARTAG) is defined by the presence of two types of tau-bearing astrocytes: thorn-shaped astrocytes (TSAs) and granular/fuzzy astrocytes in the brain of old-aged individuals. The present study is focused on TSAs in rare forms of ARTAG with no neuronal tau pathology or restricted to entorhinal and transentorhinal cortices, to avoid bias from associated tauopathies. TSAs show 4Rtau phosphorylation at several specific sites and abnormal tau conformation, but they lack ubiquitin and they are not immunostained with tau-C3 antibodies which recognize truncated tau at Asp421. Astrocytes in ARTAG have atrophic processes, reduced glial fibrillary acidic protein (GFAP) and increased superoxide dismutase 2 (SOD2) immunoreactivity. Gel electrophoresis and western blotting of sarkosyl-insoluble fractions reveal a pattern of phospho-tau in ARTAG characterized by two bands of 68 and 64 kDa, and several middle bands between 35 and 50 kDa which differ from what is seen in AD. Phosphoproteomics of dissected vulnerable regions identifies an increase of phosphorylation marks in a large number of proteins in ARTAG compared with controls. GFAP, aquaporin 4, several serine-threonine kinases, microtubule associated proteins and other neuronal proteins are among the differentially phosphorylated proteins in ARTAG thus suggesting a hyper-phosphorylation background that affects several molecules, including many kinases and proteins from several cell compartments and various cell types. Finally, present results show for the first time that tau seeding is produced in neurons of the hippocampal complex, astrocytes, oligodendroglia and along fibers of the corpus callosum, fimbria and fornix following inoculation into the hippocampus of wild type mice of sarkosyl-insoluble fractions enriched in hyper-phosphorylated tau from selected ARTAG cases. These findings show astrocytes as crucial players of tau seeding in tauopathies.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre)BarcelonaSpain
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
- Institute of Neurosciences, University of BarcelonaBarcelonaSpain
| | - Meritxell Aguiló García
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Laboratory of Molecular Biology and BiochemistryInstitute for Molecular Biosciences, Karl‐Franzens University of GrazAustria
| | - Irene López González
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
| | - Daniela Diaz Lucena
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
| | - Aina Roig Villalonga
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
| | - Margarita Carmona Tech
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
| | - Franc Llorens
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
| | - Paula Garcia‐Esparcia
- Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre)BarcelonaSpain
| | | | - Margalida Frau Mendez
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
| | - Benjamín Torrejón Escribano
- Biology Unit, Scientific and Technical ServicesUniversity of Barcelona, Hospitalet de LlobregatBarcelonaSpain
| | | | - Eduard Sabido
- Proteomics Unit, Centre de Regulació GenòmicaBarcelona Institute of Science and TechnologyBarcelonaSpain
| | | | - José Antonio del Rio
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
- Institute of Neurosciences, University of BarcelonaBarcelonaSpain
- Molecular and Cellular NeurobiotechnologyInstitute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Parc Científic de BarcelonaBarcelonaSpain
| |
Collapse
|
11
|
Navarro SM, Pettit RW, Haeberle HS, Frangiamore SJ, Rahman NM, Farrow LD, Schickendantz MS, Ramkumar PN. Short-Term Impact of Concussion in the NHL: An Analysis of Player Longevity, Performance, and Financial Loss. J Neurotrauma 2018; 35:2391-2399. [DOI: 10.1089/neu.2017.5611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Sergio M. Navarro
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
| | - Rowland W. Pettit
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
| | - Heather S. Haeberle
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | |
Collapse
|
12
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
13
|
Abstract
Astrocytes are involved in many diseases of the central nervous system, not only as reactive cells to neuronal damage but also as primary actors in the pathological process. Astrogliopathy is a term used to designate the involvement of astrocytes as key elements in the pathogenesis and pathology of diseases and injuries of the central nervous system. Astrocytopathy is utilized to name non-reactive astrogliosis covering hypertrophy, atrophy and astroglial degeneration with loss of function in astrocytes and pathological remodeling, as well as senescent changes. Astrogliopathy and astrocytopathy are hallmarks of tauopathies—neurodegenerative diseases with abnormal hyper-phosphorylated tau aggregates in neurons and glial cells. The involvement of astrocytes covers different disease-specific types such as tufted astrocytes, astrocytic plaques, thorn-shaped astrocytes, granular/fuzzy astrocytes, ramified astrocytes and astrocytes with globular inclusions, as well as others which are unnamed but not uncommon in familial frontotemporal degeneration linked to mutations in the tau gene. Knowledge of molecular differences among tau-containing astrocytes is only beginning, and their distinct functional implications remain rather poorly understood. However, tau-containing astrocytes in certain conditions have deleterious effects on neuronal function and nervous system integrity. Moreover, recent studies have shown that tau-containing astrocytes obtained from human brain tauopathies have a capacity for abnormal tau seeding and spreading in wild type mice. Inclusive conceptions include a complex scenario involving neurons, glial cells and local environmental factors that potentiate each other and promote disease progression in tauopathies.
Collapse
|
14
|
Ling H. Untangling the tauopathies: Current concepts of tau pathology and neurodegeneration. Parkinsonism Relat Disord 2017; 46 Suppl 1:S34-S38. [PMID: 28789904 DOI: 10.1016/j.parkreldis.2017.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022]
Abstract
Tau is the most common misfolded protein responsible for human neurodegenerative diseases. The identification of mutations in MAPT, the gene that encodes tau, causing dementia and parkinsonism established the notion that tau aggregation is responsible for the development of disease. An increased understanding of the pathway leading from conformational changes in tau protein and tau propagation to neuronal dysfunction, cell death and clinical manifestation will be the key for the development mechanism-based therapeutic strategies for tauopathies.
Collapse
Affiliation(s)
- Helen Ling
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute for Neurological Studies, UCL Institute of Neurology, London, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK.
| |
Collapse
|