1
|
Pope JE, Deer TR, Sayed D, Antony AB, Bhandal HS, Calodney AK, Chakravarthy K, Costandi S, Diep J, Durbhakula S, Fishman MA, Gilligan C, Goree JH, Guirguis M, Hagedorn JM, Hunter CW, Kallewaard JW, Kapural L, Lam CM, Li S, Mayrsohn B, Nijhuis H, Nikolic S, Petersen EA, Poree LR, Puri SK, Reece DE, Rosen SM, Russo MA, Shah JM, Staats PS, Verrills P, Vu CM, Levy RM, Mekhail N. The American Society of Pain and Neuroscience (ASPN) Guidelines and Consensus on the Definition, Current Evidence, Clinical Use and Future Applications for Physiologic Closed-Loop Controlled Neuromodulation in Chronic Pain: A NEURON Group Project. J Pain Res 2025; 18:531-551. [PMID: 39926188 PMCID: PMC11804234 DOI: 10.2147/jpr.s475527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/10/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Neuromodulation has been a staple of treatment for moderate-to-severe chronic refractory pain since the introduction of the first spinal cord stimulator by Norman Shealy in 1967. Appreciating the dynamic nature of electrical modulation of the nervous system from the epidural space, the goal has been consistent, reliable, and therapeutic neural activation of the spinal cord. This has proven to be extremely difficult. Recently, the Food and Drug Administration (FDA) released a guidance on physiologic closed loop controlled (PCLC) devices, highlighting the potential for these therapies to deliver accurate, consistent, real-time therapy, enhancing medical care and reducing variability. Because of the growing neuromodulation market focus on PCLC strategies, the American Society of Pain and Neuroscience (ASPN) sought to develop guidance on safety and efficacy, along with a taxonomy surrounding PCLC systems (PCLCSs) and to develop an evidence-based best practice review. Methods A librarian-assisted literature search was performed to identify manuscripts relevant to the topic of PCLC stimulation for management of chronic pain. Initial literature search was performed utilizing MEDLINE, EMBASE, Cochrane database, BioMed Central, and Web of Science. Included manuscripts encompassed meta-analyses, systematic reviews, randomized controlled trials (RCTs), prospective or retrospective studies with follow-up to 12 months, limited to the English language. MESH terms utilized included "closed-loop", "physiologic closed loop controlled", "spinal cord stimulation", "closed loop feedback", "feedback controlled", "neuromodulation", "pain", "persistent pain", "neuropathic pain", and "chronic pain". The modified USPSTF evidence and recommendation grading strategy previously utilized was again employed. Results Four studies were identified for review, 2 prospective, one retrospective, and one randomized controlled study with at least 12-month follow-up. Conclusion PCLC neuromodulation is an innovation that requires a responsible introduction. As commercial access grows, there is a responsibility that requires consistency with definition, evidence generation, focused on safety and efficacy.
Collapse
Affiliation(s)
| | - Timothy Ray Deer
- Pain Services, The Spine & Nerve Center of the Virginias, Charleston, WV, USA
| | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | | - Jack Diep
- Nevada Pain Management, Las Vegas, NV, USA
| | - Shravani Durbhakula
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | - Johnathan Heck Goree
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maged Guirguis
- Interventional Pain Management Department, Ochsner Health System, New Orleans, LA, USA
| | | | - Corey William Hunter
- Ainsworth Institute of Pain Management, New York City, NY, USA
- Physical Medicine & Rehabilitation, Icahn School of Medicine at Mount Sinai Hospital, New York City, NY, USA
| | - Jan Willem Kallewaard
- Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Rijnstate Hospital, Arnhem, The Netherlands
| | - Leonardo Kapural
- Carolinas Pain Institute, Winston Salem, NC, USA
- Centers for Clinical Research, Winston Salem, NC, USA
- Chronic Pain Research Institute, Winston Salem, NC, USA
| | - Christopher M Lam
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Sean Li
- National Spine and Pain Centers, Shrewsbury, NJ, USA
| | - Brian Mayrsohn
- Interventional Pain Management, Maywell Health, Plainview, NY, USA
- Interventional Pain Management, Maywell Health, New York City, NY, USA
| | - Harold Nijhuis
- Anesthesiology, St Antonius Hospital, Nieuwegein, Utrecht, The Netherlands
| | - Serge Nikolic
- Pain Medicine and Neuromodulation, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Erika A Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | - Marc A Russo
- School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Jay M Shah
- Samwell Institute of Pain Management, Colonia, Livingston, and Englewood, NJ, USA
| | | | | | - Chau M Vu
- Evolve Restorative Center, Santa Rosa, CA, USA
| | - Robert M Levy
- Neuromodulation: Technology at the Neural Interface, International Neuromodulation Society, Boca Raton, FL, USA
| | - Nagy Mekhail
- Evidence-Based Pain Management Research, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Wu N, Wu Z, Zhang C, Wu C, Huo X, Bai J, Zhang G. Retrograde evoked compound action potentials as an alternative for close-loop spinal cord stimulation. Sci Rep 2024; 14:30141. [PMID: 39627483 PMCID: PMC11615308 DOI: 10.1038/s41598-024-81775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Evoked compound action potential (ECAP) is an important parameter in close-loop spinal cord stimulation (SCS). The recording electrode is typically positioned proximal to the stimulation electrode to capture the antegrade ECAP signals generated by ascending fibers. However, relatively little research has been conducted on retrograde ECAPs. This study investigated retrograde ECAPs using custom-made epidural electrodes in 11 adult male Sprague-Dawley rats. Results show that the average motor threshold (MT) and ECAP threshold (ECAPT) for 11 anesthetized rats were 218.18 ± 69.54 μA and 107.27 ± 27.96 μA, respectively. The ECAP amplitudes increased with increasement of the stimulation current and pulse width (PW), and were larger in awake rats than in anesthetized rats. Additionally, aside from ECAPs recorded by a commercial electrophysiological recorder, ECAPs were also recorded by a custom-made amplifier for the purpose of future long-term implantation, but the custom-made amplifier showed lower signal to noise ratio than the commercial amplifier. In conclusion, this study illustrates that retrograde ECAP may also be considered as a feedback signal for close-loop SCS and more sophisticated ECAP recording circuits are needed to form a close-loop system.
Collapse
Affiliation(s)
- Nianshuang Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changzhe Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolin Huo
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzhu Bai
- Department of Spine and Spinal Cord Surgery, Beijing Bo'ai Hospital, Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Guanghao Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Parker SR, Calvert JS, Darie R, Jang J, Govindarajan LN, Angelino K, Chitnis G, Iyassu Y, Shaaya E, Fridley JS, Serre T, Borton DA, McLaughlin BL. An active electronic, high-density epidural paddle array for chronic spinal cord neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596250. [PMID: 38853820 PMCID: PMC11160681 DOI: 10.1101/2024.05.29.596250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Objective: Epidural electrical stimulation (EES) has shown promise as both a clinical therapy and research tool for studying nervous system function. However, available clinical EES paddles are limited to using a small number of contacts due to the burden of wires necessary to connect each contact to the therapeutic delivery device, limiting the treatment area or density of epidural electrode arrays. We aimed to eliminate this burden using advanced on-paddle electronics. Approach: We developed a smart EES paddle with a 60-electrode programmable array, addressable using an active electronic multiplexer embedded within the electrode paddle body. The electronics are sealed in novel, ultra-low profile hermetic packaging. We conducted extensive reliability testing on the novel array, including a battery of ISO 10993-1 biocompatibility tests and determination of the hermetic package leak rate. We then evaluated the EES device in vivo, placed on the epidural surface of the ovine lumbosacral spinal cord for 15 months. Main results: The active paddle array performed nominally when implanted in sheep for over 15 months and no device-related malfunctions were observed. The onboard multiplexer enabled bespoke electrode arrangements across, and within, experimental sessions. We identified stereotyped responses to stimulation in lower extremity musculature, and examined local field potential responses to EES using high-density recording bipoles. Finally, spatial electrode encoding enabled machine learning models to accurately perform EES parameter inference for unseen stimulation electrodes, reducing the need for extensive training data in future deep models. Significance: We report the development and chronic large animal in vivo evaluation of a high-density EES paddle array containing active electronics. Our results provide a foundation for more advanced computation and processing to be integrated directly into devices implanted at the neural interface, opening new avenues for the study of nervous system function and new therapies to treat neural injury and dysfunction.
Collapse
|
4
|
Nijhuis H, Kallewaard JW, van de Minkelis J, Hofsté WJ, Elzinga L, Armstrong P, Gültuna I, Almac E, Baranidharan G, Nikolic S, Gulve A, Vesper J, Dietz BE, Mugan D, Huygen FJPM. Durability of Evoked Compound Action Potential (ECAP)-Controlled, Closed-Loop Spinal Cord Stimulation (SCS) in a Real-World European Chronic Pain Population. Pain Ther 2024; 13:1119-1136. [PMID: 38954217 PMCID: PMC11393244 DOI: 10.1007/s40122-024-00628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
INTRODUCTION Closed-loop spinal cord stimulation (CL-SCS) is a recently introduced system that records evoked compound action potentials (ECAPs) from the spinal cord elicited by each stimulation pulse and uses this information to automatically adjust the stimulation strength in real time, known as ECAP-controlled SCS. This innovative system compensates for fluctuations in the distance between the epidural leads and the spinal cord by maintaining the neural response (ECAP) at a predetermined target level. This data collection study was designed to assess the performance of the first CL-SCS system in a real-world setting under normal conditions of use in multiple European centers. The study analyzes and presents clinical outcomes and electrophysiological and device data and compares these findings with those reported in earlier pre-market studies of the same system. METHODS This prospective, multicenter, observational study was conducted in 13 European centers and aimed to gather electrophysiological and device data. The study focused on the real-world application of this system in treating chronic pain affecting the trunk and/or limbs, adhering to standard conditions of use. In addition to collecting and analyzing basic demographic information, the study presents data from the inaugural patient cohort permanently implanted at multiple European centers. RESULTS A significant decrease in pain intensity was observed for overall back or leg pain scores (verbal numerical rating score [VNRS]) between baseline (mean ± standard error of the mean [SEM]; n = 135; 8.2 ± 0.1), 3 months (n = 93; 2.3 ± 0.2), 6 months (n = 82; 2.5 ± 0.3), and 12 months (n = 76; 2.5 ± 0.3). Comparison of overall pain relief (%) to the AVALON and EVOKE studies showed no significant differences at 3 and 12 months between the real-world data release (RWE; 71.3%; 69.6%) and the AVALON (71.2%; 73.6%) and EVOKE (78.1%; 76.7%) studies. Further investigation was undertaken to objectively characterize the physiological parameters of SCS therapy in this cohort using the metrics of percent time above ECAP threshold (%), dose ratio, and dose accuracy (µV), according to previously described methods. Results showed that a median of 90% (40.7-99.2) of stimuli were above the ECAP threshold, with a dose ratio of 1.3 (1.1-1.4) and dose accuracy of 4.4 µV (0.0-7.1), based on data from 236, 230, and 254 patients, respectively. Thus, across all three metrics, the majority of patients had objective therapy metrics corresponding to the highest levels of pain relief in previously reported studies (usage over threshold > 80%, dose ratio > 1.2, and error < 10 µV). CONCLUSIONS In conclusion, this study provides valuable insights into the real-world application of the ECAP-controlled CL-SCS system, highlighting its potential for maintaining effective pain relief and objective neurophysiological therapy metrics at levels seen in randomized control trials, and potential for quantifying patient burden associated with SCS system use via patient-device interaction metrics. CLINICAL TRIAL REGISTRATION In the Netherlands, the study is duly registered on the International Clinical Trials Registry Platform (Trial NL7889). In Germany, the study is duly registered as NCT05272137 and in the United Kingdom as ISCRTN27710516 and has been reviewed by the ethics committee in both countries.
Collapse
Affiliation(s)
- Harold Nijhuis
- St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, Netherlands.
| | - Jan-Willem Kallewaard
- Rijnstate Hospital, Velp, Netherlands
- Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Willem-Jan Hofsté
- St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, Netherlands
| | | | | | | | - Emre Almac
- Alrijne Hospital, Leiderdorp, Netherlands
| | | | | | - Ashish Gulve
- James Cook University Hospital, Middlesbrough, UK
| | - Jan Vesper
- Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Dave Mugan
- Saluda Medical Europe Ltd, Harrogate, UK
| | | |
Collapse
|
5
|
Lam DV, Chin J, Brucker-Hahn MK, Settell M, Romanauski B, Verma N, Upadhye A, Deshmukh A, Skubal A, Nishiyama Y, Hao J, Lujan JL, Zhang S, Knudsen B, Blanz S, Lempka SF, Ludwig KA, Shoffstall AJ, Park HJ, Ellison ER, Zhang M, Lavrov I. The role of spinal cord neuroanatomy and the variances of epidurally evoked spinal responses. Bioelectron Med 2024; 10:17. [PMID: 39020366 PMCID: PMC11253499 DOI: 10.1186/s42234-024-00149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/28/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Spinal cord stimulation (SCS) has demonstrated multiple benefits in treating chronic pain and other clinical disorders related to sensorimotor dysfunctions. However, the underlying mechanisms are still not fully understood, including how electrode placement in relation to the spinal cord neuroanatomy influences epidural spinal recordings (ESRs). To characterize this relationship, this study utilized stimulation applied at various anatomical sections of the spinal column, including at levels of the intervertebral disc and regions correlating to the dorsal root entry zone. METHOD Two electrode arrays were surgically implanted into the dorsal epidural space of the swine. The stimulation leads were positioned such that the caudal-most electrode contact was at the level of a thoracic intervertebral segment. Intraoperative cone beam computed tomography (CBCT) images were utilized to precisely determine the location of the epidural leads relative to the spinal column. High-resolution microCT imaging and 3D-model reconstructions of the explanted spinal cord illustrated precise positioning and dimensions of the epidural leads in relation to the surrounding neuroanatomy, including the spinal rootlets of the dorsal and ventral columns of the spinal cord. In a separate swine cohort, implanted epidural leads were used for SCS and recording evoked ESRs. RESULTS Reconstructed 3D-models of the swine spinal cord with epidural lead implants demonstrated considerable distinctions in the dimensions of a single electrode contact on a standard industry epidural stimulation lead compared to dorsal rootlets at the dorsal root entry zone (DREZ). At the intervertebral segment, it was observed that a single electrode contact may cover 20-25% of the DREZ if positioned laterally. Electrode contacts were estimated to be ~0.75 mm from the margins of the DREZ when placed at the midline. Furthermore, ventral rootlets were observed to travel in proximity and parallel to dorsal rootlets at this level prior to separation into their respective sides of the spinal cord. Cathodic stimulation at the level of the intervertebral disc, compared to an 'off-disc' stimulation (7 mm rostral), demonstrated considerable variations in the features of recorded ESRs, such as amplitude and shape, and evoked unintended motor activation at lower stimulation thresholds. This substantial change may be due to the influence of nearby ventral roots. To further illustrate the influence of rootlet activation vs. dorsal column activation, the stimulation lead was displaced laterally at ~2.88 mm from the midline, resulting in variances in both evoked compound action potential (ECAP) components and electromyography (EMG) components in ESRs at lower stimulation thresholds. CONCLUSION The results of this study suggest that the ECAP and EMG components of recorded ESRs can vary depending on small differences in the location of the stimulating electrodes within the spinal anatomy, such as at the level of the intervertebral segment. Furthermore, the effects of sub-centimeter lateral displacement of the stimulation lead from the midline, leading to significant changes in electrophysiological metrics. The results of this pilot study reveal the importance of the small displacement of the electrodes that can cause significant changes to evoked responses SCS. These results may provide further valuable insights into the underlying mechanisms and assist in optimizing future SCS-related applications.
Collapse
Affiliation(s)
- Danny V Lam
- Neural Lab, Abbott Neuromodulation, Plano, TX, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Veterans Affairs Medical Center, Advanced Platform Technology Center, Louis Stokes Cleveland, Cleveland, OH, USA
| | - Justin Chin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Meagan K Brucker-Hahn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Megan Settell
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Ben Romanauski
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | | | - Aniruddha Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ashlesha Deshmukh
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Aaron Skubal
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | | | - Jian Hao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - J Luis Lujan
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Simeng Zhang
- Neural Lab, Abbott Neuromodulation, Plano, TX, USA
| | - Bruce Knudsen
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Stephan Blanz
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Veterans Affairs Medical Center, Advanced Platform Technology Center, Louis Stokes Cleveland, Cleveland, OH, USA
| | | | | | | | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Woodington BJ, Lei J, Carnicer-Lombarte A, Güemes-González A, Naegele TE, Hilton S, El-Hadwe S, Trivedi RA, Malliaras GG, Barone DG. Flexible circumferential bioelectronics to enable 360-degree recording and stimulation of the spinal cord. SCIENCE ADVANCES 2024; 10:eadl1230. [PMID: 38718109 PMCID: PMC11078185 DOI: 10.1126/sciadv.adl1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
The spinal cord is crucial for transmitting motor and sensory information between the brain and peripheral systems. Spinal cord injuries can lead to severe consequences, including paralysis and autonomic dysfunction. We introduce thin-film, flexible electronics for circumferential interfacing with the spinal cord. This method enables simultaneous recording and stimulation of dorsal, lateral, and ventral tracts with a single device. Our findings include successful motor and sensory signal capture and elicitation in anesthetized rats, a proof-of-concept closed-loop system for bridging complete spinal cord injuries, and device safety verification in freely moving rodents. Moreover, we demonstrate potential for human application through a cadaver model. This method sees a clear route to the clinic by using materials and surgical practices that mitigate risk during implantation and preserve cord integrity.
Collapse
Affiliation(s)
- Ben J. Woodington
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Jiang Lei
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Amparo Güemes-González
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Tobias E. Naegele
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Sam Hilton
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Salim El-Hadwe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rikin A. Trivedi
- Division of Neurosurgery, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Muller L, Pope J, Verrills P, Petersen E, Kallewaard JW, Gould I, Karantonis DM. First evidence of a biomarker-based dose-response relationship in chronic pain using physiological closed-loop spinal cord stimulation. Reg Anesth Pain Med 2024:rapm-2024-105346. [PMID: 38508591 DOI: 10.1136/rapm-2024-105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND AND OBJECTIVES In spinal cord stimulation (SCS) therapy, electricity is the medication delivered to the spinal cord for pain relief. In contrast to conventional medication where dose is determined by desired therapeutic plasma concentration, there is lack of equivalent means of determining dose delivery in SCS. In open-loop (OL) SCS, due to the dynamic nature of the epidural space, the activating electric field delivered is inconsistent at the level of the dorsal columns. Recent Food and Drug Administration guidance suggests accurate and consistent therapy delivered using physiologic closed-loop control (PCLC) devices can minimize underdosage or overdosage and enhance medical care. PCLC-based evoked compound action potential (ECAP)-controlled technology provides the ability to prescribe a precise stimulation dose unique to each patient, continuously measure neural activation, and objectively inform SCS therapy optimization. METHODS Neurophysiological indicator metrics of therapy dose, usage above neural activation threshold, and accuracy of SCS therapy were assessed for relationship with pain reduction in over 600 SCS patients. RESULTS Significant relationships between objective metrics and pain relief across the patient population are shown, including first evidence for a dose-response relationship in SCS. CONCLUSIONS Higher dose, more time over ECAP threshold, and higher accuracy are associated with better outcomes across patients. There is potential to optimize individual patient outcomes based on unique objective measurable electrophysiological inputs.
Collapse
Affiliation(s)
- Leah Muller
- Saluda Medical US, Bloomington, Minnesota, USA
| | - Jason Pope
- Evolve Restorative Center, Santa Rosa, California, USA
| | | | - Erika Petersen
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Ian Gould
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | | |
Collapse
|
8
|
Yue O, Wang X, Xie L, Bai Z, Zou X, Liu X. Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307369. [PMID: 38196276 PMCID: PMC10953594 DOI: 10.1002/advs.202307369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Implantable bioelectronic devices (IBDs) have gained attention for their capacity to conformably detect physiological and pathological signals and further provide internal therapy. However, traditional power sources integrated into these IBDs possess intricate limitations such as bulkiness, rigidity, and biotoxicity. Recently, artificial "tissue batteries" (ATBs) have diffusely developed as artificial power sources for IBDs manufacturing, enabling comprehensive biological-activity monitoring, diagnosis, and therapy. ATBs are on-demand and designed to accommodate the soft and confining curved placement space of organisms, minimizing interface discrepancies, and providing ample power for clinical applications. This review presents the near-term advancements in ATBs, with a focus on their miniaturization, flexibility, biodegradability, and power density. Furthermore, it delves into material-screening, structural-design, and energy density across three distinct categories of TBs, distinguished by power supply strategies. These types encompass innovative energy storage devices (chemical batteries and supercapacitors), power conversion devices that harness power from human-body (biofuel cells, thermoelectric nanogenerators, bio-potential devices, piezoelectric harvesters, and triboelectric devices), and energy transfer devices that receive and utilize external energy (radiofrequency-ultrasound energy harvesters, ultrasound-induced energy harvesters, and photovoltaic devices). Ultimately, future challenges and prospects emphasize ATBs with the indispensability of bio-safety, flexibility, and high-volume energy density as crucial components in long-term implantable bioelectronic devices.
Collapse
Affiliation(s)
- Ouyang Yue
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Long Xie
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xiaoliang Zou
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xinhua Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| |
Collapse
|
9
|
Sagalajev B, Zhang T, Abdollahi N, Yousefpour N, Medlock L, Al-Basha D, Ribeiro-da-Silva A, Esteller R, Ratté S, Prescott SA. Absence of paresthesia during high-rate spinal cord stimulation reveals importance of synchrony for sensations evoked by electrical stimulation. Neuron 2024; 112:404-420.e6. [PMID: 37972595 DOI: 10.1016/j.neuron.2023.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Electrically activating mechanoreceptive afferents inhibits pain. However, paresthesia evoked by spinal cord stimulation (SCS) at 40-60 Hz becomes uncomfortable at high pulse amplitudes, limiting SCS "dosage." Kilohertz-frequency SCS produces analgesia without paresthesia and is thought, therefore, not to activate afferent axons. We show that paresthesia is absent not because axons do not spike but because they spike asynchronously. In a pain patient, selectively increasing SCS frequency abolished paresthesia and epidurally recorded evoked compound action potentials (ECAPs). Dependence of ECAP amplitude on SCS frequency was reproduced in pigs, rats, and computer simulations and is explained by overdrive desynchronization: spikes desychronize when axons are stimulated faster than their refractory period. Unlike synchronous spikes, asynchronous spikes fail to produce paresthesia because their transmission to somatosensory cortex is blocked by feedforward inhibition. Our results demonstrate how stimulation frequency impacts synchrony based on axon properties and how synchrony impacts sensation based on circuit properties.
Collapse
Affiliation(s)
- Boriss Sagalajev
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Tianhe Zhang
- Boston Scientific Neuromodulation, Valencia, CA 25155, USA
| | - Nooshin Abdollahi
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Noosha Yousefpour
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Laura Medlock
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Dhekra Al-Basha
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | | | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
10
|
Versantvoort EM, Dietz BE, Mugan D, Vuong QC, Luli S, Obara I. Evoked compound action potential (ECAP)-controlled closed-loop spinal cord stimulation in an experimental model of neuropathic pain in rats. Bioelectron Med 2024; 10:2. [PMID: 38195618 PMCID: PMC10777641 DOI: 10.1186/s42234-023-00134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Preclinical models of spinal cord stimulation (SCS) are lacking objective measurements to inform translationally applicable SCS parameters. The evoked compound action potential (ECAP) represents a measure of dorsal column fiber activation. This measure approximates the onset of SCS-induced sensations in humans and provides effective analgesia when used with ECAP-controlled closed-loop (CL)-SCS systems. Therefore, ECAPs may provide an objective surrogate for SCS dose in preclinical models that may support better understanding of SCS mechanisms and further translations to the clinics. This study assessed, for the first time, the feasibility of recording ECAPs and applying ECAP-controlled CL-SCS in freely behaving rats subjected to an experimental model of neuropathic pain. METHODS Adult male Sprague-Dawley rats (200-300 g) were subjected to spared nerve injury (SNI). A custom-made six-contact lead was implanted epidurally covering T11-L3, as confirmed by computed tomography or X-ray. A specially designed multi-channel system was used to record ECAPs and to apply ECAP-controlled CL-SCS for 30 min at 50 Hz 200 µs. The responses of dorsal column fibers to SCS were characterized and sensitivity towards mechanical and cold stimuli were assessed to determine analgesic effects from ECAP-controlled CL-SCS. Comparisons between SNI rats and their controls as well as between stimulation parameters were made using omnibus analysis of variance (ANOVA) tests and t-tests. RESULTS The recorded ECAPs showed the characteristic triphasic morphology and the ECAP amplitude (mV) increased as higher currents (mA) were applied in both SNI animals and controls (SNI SCS-ON and sham SCS-ON). Importantly, the use of ECAP-based SCS dose, implemented in ECAP-controlled CL-SCS, significantly reduced mechanical and cold hypersensitivity in SNI SCS-ON animals through the constant and controlled activation of dorsal column fibers. An analysis of conduction velocities of the evoked signals confirmed the involvement of large, myelinated fibers. CONCLUSIONS The use of ECAP-based SCS dose implemented in ECAP-controlled CL-SCS produced analgesia in animals subjected to an experimental model of neuropathic pain. This approach may offer a better method for translating SCS parameters between species that will improve understanding of the mechanisms of SCS action to further advance future clinical applications.
Collapse
Affiliation(s)
- Eline M Versantvoort
- School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
| | - Birte E Dietz
- School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
- Saluda Medical Europe Ltd, Harrogate, HG2 8NB, UK
| | - Dave Mugan
- School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
- Saluda Medical Europe Ltd, Harrogate, HG2 8NB, UK
| | - Quoc C Vuong
- Bioscience Institute, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
| | - Saimir Luli
- Preclinical In Vivo Imaging, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Ilona Obara
- School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
11
|
Wahezi SE, Caparo MA, Malhotra R, Sundaram L, Batti K, Ejindu P, Veeramachaneni R, Anitescu M, Hunter CW, Naeimi T, Farah F, Kohan L. Current Waveforms in Spinal Cord Stimulation and Their Impact on the Future of Neuromodulation: A Scoping Review. Neuromodulation 2024; 27:47-58. [PMID: 38184341 DOI: 10.1016/j.neurom.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Neuromodulation is a standard and well-accepted treatment for chronic refractory neuropathic pain. There has been progressive innovation in the field over the last decade, particularly in areas of spinal cord stimulation (SCS) and dorsal root ganglion stimulation. Improved outcomes using proprietary waveforms have become customary in the field, leading to an unprecedented expansion of these products and a plethora of options for the management of pain. Although advances in waveform technology have improved our fundamental understanding of neuromodulation, a scoping review describing new energy platforms and their associated clinical effects and outcomes is needed. The authors submit that understanding electrophysiological neuromodulation may be important for clinical decision-making and programming selection for personalized patient care. OBJECTIVE This review aims to characterize ways differences in mechanism of action and clinical outcomes of current spinal neuromodulation products may affect contemporary clinical decision-making while outlining a possible path for the future SCS. STUDY DESIGN The study is a scoping review of the literature about newer generation SCS waveforms. MATERIALS AND METHODS A literature report was performed on PubMed and chapters to include articles on spine neuromodulation mechanism of action and efficacy. RESULTS A total of 8469 studies were identified, 75 of which were included for the scoping review after keywords defining recent waveform technology were added. CONCLUSIONS Clinical data suggest that neuromodulation remains a promising tool in the treatment of chronic pain. The evidence for SCS for treating chronic pain seems compelling; however, more long-term and comparative data are needed for a comparison of waveforms when it comes to the etiology of pain. In addition, an exploration into combination waveform therapy and waveform cycling may be paramount for future clinical studies and the development of new technologies.
Collapse
Affiliation(s)
- Sayed E Wahezi
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA.
| | - Moorice A Caparo
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Ria Malhotra
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Lakshman Sundaram
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Kevin Batti
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Prince Ejindu
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | | | - Magdalena Anitescu
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Corey W Hunter
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Tahereh Naeimi
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Fadi Farah
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Lynn Kohan
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
12
|
Taccola G, Kissane R, Culaclii S, Apicella R, Liu W, Gad P, Ichiyama RM, Chakrabarty S, Edgerton VR. Dynamic electrical stimulation enhances the recruitment of spinal interneurons by corticospinal input. Exp Neurol 2024; 371:114589. [PMID: 37907125 DOI: 10.1016/j.expneurol.2023.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Highly varying patterns of electrostimulation (Dynamic Stimulation, DS) delivered to the dorsal cord through an epidural array with 18 independent electrodes transiently facilitate corticospinal motor responses, even after spinal injury. To partly unravel how corticospinal input are affected by DS, we introduced a corticospinal platform that allows selective cortical stimulation during the multisite acquisition of cord dorsum potentials (CDPs) and the simultaneous supply of DS. Firstly, the epidural interface was validated by the acquisition of the classical multisite distribution of CDPs and their input-output profile elicited by pulses delivered to peripheral nerves. Apart from increased EMGs, DS selectively increased excitability of the spinal interneurons that first process corticospinal input, without changing the magnitude of commands descending from the motor cortex, suggesting a novel correlation between muscle recruitment and components of cortically-evoked CDPs. Finally, DS increases excitability of post-synaptic spinal interneurons at the stimulation site and their responsiveness to any residual supraspinal control, thus supporting the use of electrical neuromodulation whenever the motor output is jeopardized by a weak volitional input, due to a partial disconnection from supraspinal structures and/or neuronal brain dysfunctions.
Collapse
Affiliation(s)
- Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Roger Kissane
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Department of Musculoskeletal & Ageing Science, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Stanislav Culaclii
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Rosamaria Apicella
- Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; UCLA California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Parag Gad
- SpineX Inc, Los Angeles, CA 90064, USA
| | - Ronaldo M Ichiyama
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - V Reggie Edgerton
- Rancho Research Institute, Los Amigos National Rehabilitation Center, Downey, CA 90242, USA; University of Southern California Neurorestoration Center, Keck School of Medicine, Los Angeles, CA 90033; USA; Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, Badalona 08916, Spain
| |
Collapse
|
13
|
Gmel GE, Santos Escapa R, Benkohen TE, Mugan D, Parker JL, Palmisani S. Postsynaptic dorsal column pathway activation during spinal cord stimulation in patients with chronic pain. Front Neurosci 2023; 17:1297814. [PMID: 38188030 PMCID: PMC10771283 DOI: 10.3389/fnins.2023.1297814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Spinal cord stimulation (SCS) treatment for chronic pain relies on the activation of primary sensory fibres ascending to the brain in the dorsal columns. While the efficacy of SCS has been demonstrated, the precise mechanism of action and nature of the fibres activated by stimulation remain largely unexplored. Our investigation in humans with chronic neuropathic pain undergoing SCS therapy, found that post-synaptic dorsal column (PSDC) fibres can be activated synaptically by the primary afferents recruited by stimulation, and axonically by the stimulation pulses directly. Synaptic activation occurred in 9 of the 14 patients analysed and depended on the vertebral level of stimulation. A clear difference in conduction velocities between the primary afferents and the PSDC fibres were observed. Identification of PSDC fibre activation in humans emphasises the need for further investigation into the role they play in pain relief and the sensory response sensation (paraesthesia) experienced by patients undergoing SCS.
Collapse
Affiliation(s)
| | | | | | - Dave Mugan
- Saluda Medical, Macquarie Park, NSW, Australia
| | | | | |
Collapse
|
14
|
Single PS, Scott JB, Mugan D. Measures of Dosage for Spinal-Cord Electrical Stimulation: Review and Proposal. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4653-4660. [PMID: 37983153 DOI: 10.1109/tnsre.2023.3335100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This manuscript proposes an electrical definition of therapeutic dose for spinal-cord systems used for the treatment of chronic pain, analogous to the pharmacological definition. Dose-response relationships are fundamental to pharmacology, radio-therapy, and other treatments, but have never been properly established for neuromodulation. This manuscript offers a robust measure of dose, pre-requisite to establishing a reliable and repeatable dose-response relationship. The new definition, enabled by the system transresistance obtained from measurement of evoked action potentials, recognizes the mechanism of action of spinal cord stimulation (SCS), and should improve acceptance of the therapy as compared to pharmacological treatments which are currently used more frequently for the treatment of chronic pain. The new definition suggests methods for personalization and standardization of the dose in SCS, and is potentially generalizable to all neuromodulation therapies in which nervous tissue is excited including sacral nerve stimulation (SNS), vagal nerve stimulation (VNS) and deep-brain stimulation (DBS). Formulas are provided, and applied using patient data. Powerful conclusions are drawn from application of the new measure.
Collapse
|
15
|
Nijhuis HJA, Hofsté WJ, Krabbenbos IP, Dietz BE, Mugan D, Huygen F. First Report on Real-World Outcomes with Evoked Compound Action Potential (ECAP)-Controlled Closed-Loop Spinal Cord Stimulation for Treatment of Chronic Pain. Pain Ther 2023; 12:1221-1233. [PMID: 37481774 PMCID: PMC10444915 DOI: 10.1007/s40122-023-00540-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
INTRODUCTION A novel closed-loop spinal cord stimulation (SCS) system has recently been approved for use which records evoked compound action potentials (ECAPs) from the spinal cord and utilizes these recordings to automatically adjust the stimulation strength in real time. It automatically compensates for fluctuations in distance between the epidural leads and the spinal cord by maintaining the neural response (ECAP) at a determined target level. This data collection was principally designed to evaluate the performance of this first closed-loop SCS system in a 'real-world' setting under normal conditions of use in a single European center. METHODS In this prospective, single-center observational data collection, 22 patients were recruited at the outpatient pain clinic of the St. Antonius Hospital. All candidates were suffering from chronic pain in the trunk and/or limbs due to PSPS type 2 (persistent spinal pain syndrome). As standard of care, follow-up visits were completed at 3 months, 6 months, and 12 months post-device activation. Patient-reported outcome data (pain intensity, patient satisfaction) and electrophysiological and device data (ECAP amplitude, conduction velocity, current output, pulse width, frequency, usage), and patient interaction with their controller were collected at baseline and during standard of care follow-up visits. RESULTS Significant decreases in pain intensity for overall back or leg pain scores (verbal numerical rating score = VNRS) were observed between baseline [mean ± SEM (standard error of the mean); n = 22; 8.4 ± 0.2)], 3 months (n = 12; 1.9 ± 0.5), 6 months (n = 16; 2.6 ± 0.5), and 12 months (n = 20; 2.0 ± 0.5), with 85.0% of the patients being satisfied at 12 months. Additionally, no significant differences in average pain relief at 3 months and 12 months between the real-world data (77.2%; 76.8%) and the AVALON (71.2%; 73.6%) and EVOKE (78.1%; 76.7%) studies were observed. CONCLUSIONS These initial 'real-world' data on ECAP-controlled, closed-loop SCS in a real-world clinical setting appear to be promising, as they provide novel insights of the beneficial effect of ECAP-controlled, closed-loop SCS in a real-world setting. The presented results demonstrate a noteworthy maintenance of pain relief over 12 months and corroborate the outcomes observed in the AVALON prospective, multicenter, single-arm study and the EVOKE double-blind, multicenter, randomized controlled trial. TRIAL REGISTRATION The data collection is registered on the International Clinical Trials Registry Platform (Trial NL7889).
Collapse
Affiliation(s)
- Harold J. A. Nijhuis
- St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Willem-Jan Hofsté
- St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | - Imre P. Krabbenbos
- St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
| | | | - Dave Mugan
- Saluda Medical Europe Ltd, Harrogate, United Kingdom
| | - Frank Huygen
- Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Taccola G, Kissane R, Culaclii S, Apicella R, Liu W, Gad P, Ichiyama RM, Chakrabarty S, Edgerton VR. Spinal facilitation of descending motor input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547229. [PMID: 37461548 PMCID: PMC10349979 DOI: 10.1101/2023.06.30.547229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Highly varying patterns of electrostimulation (Dynamic Stimulation, DS) delivered to the dorsal cord through an epidural array with 18 independent electrodes transiently facilitate corticospinal motor responses, even after spinal injury. To partly unravel how corticospinal input are affected by DS, we introduced a corticospinal platform that allows selective cortical stimulation during the multisite acquisition of cord dorsum potentials (CDPs) and the simultaneous supply of DS. Firstly, the epidural interface was validated by the acquisition of the classical multisite distribution of CDPs on the dorsal cord and their input-output profile elicited by pulses delivered to peripheral nerves. Apart from increased EMGs, DS selectively increased excitability of the spinal interneurons that first process corticospinal input, without changing the magnitude of commands descending from the motor cortex, suggesting a novel correlation between muscle recruitment and components of cortically-evoked CDPs. Finally, DS increases excitability of post-synaptic spinal interneurons at the stimulation site and their responsiveness to any residual supraspinal control, thus supporting the use of electrical neuromodulation whenever the motor output is jeopardized by a weak volitional input, due to a partial disconnection from supraspinal structures and/or neuronal brain dysfunctions.
Collapse
Affiliation(s)
- Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Roger Kissane
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Department of Musculoskeletal & Ageing Science, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Stanislav Culaclii
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Rosamaria Apicella
- Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- UCLA California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Parag Gad
- Rancho Research Institute, Downy, CA 90242, USA; Los Amigos National Rehabilitation Center
- University of Southern California Neurorestoration Center, Keck School of Medicine, Los Angeles, CA 90033; USA
| | - Ronaldo M. Ichiyama
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - V. Reggie Edgerton
- Rancho Research Institute, Downy, CA 90242, USA; Los Amigos National Rehabilitation Center
- University of Southern California Neurorestoration Center, Keck School of Medicine, Los Angeles, CA 90033; USA
- Institut Guttmann. Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, 08916 Badalona, Spain
| |
Collapse
|
17
|
Calvert JS, Darie R, Parker SR, Shaaya E, Syed S, McLaughlin BL, Fridley JS, Borton DA. Spatiotemporal Distribution of Electrically Evoked Spinal Compound Action Potentials During Spinal Cord Stimulation. Neuromodulation 2023; 26:961-974. [PMID: 35551869 PMCID: PMC9643656 DOI: 10.1016/j.neurom.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Recent studies using epidural spinal cord stimulation (SCS) have demonstrated restoration of motor function in individuals previously diagnosed with chronic spinal cord injury (SCI). In parallel, the spinal evoked compound action potentials (ECAPs) induced by SCS have been used to gain insight into the mechanisms of SCS-based chronic pain therapy and to titrate closed-loop delivery of stimulation. However, the previous characterization of ECAPs recorded during SCS was performed with one-dimensional, cylindrical electrode leads. Herein, we describe the unique spatiotemporal distribution of ECAPs induced by SCS across the medial-lateral and rostral-caudal axes of the spinal cord, and their relationship to polysynaptic lower-extremity motor activation. MATERIALS AND METHODS In each of four sheep, two 24-contact epidural SCS arrays were placed on the lumbosacral spinal cord, spanning the L3 to L6 vertebrae. Spinal ECAPs were recorded during SCS from nonstimulating contacts of the epidural arrays, which were synchronized to bilateral electromyography (EMG) recordings from six back and lower-extremity muscles. RESULTS We observed a triphasic P1, N1, P2 peak morphology and propagation in the ECAPs during midline and lateral stimulation. Distinct regions of lateral stimulation resulted in simultaneously increased ECAP and EMG responses compared with stimulation at adjacent lateral contacts. Although EMG responses decreased during repetitive stimulation bursts, spinal ECAP amplitude did not significantly change. Both spinal ECAP responses and EMG responses demonstrated preferential ipsilateral recruitment during lateral stimulation compared with midline stimulation. Furthermore, EMG responses were correlated with stimulation that resulted in increased ECAP amplitude on the ipsilateral side of the electrode array. CONCLUSIONS These results suggest that ECAPs can be used to investigate the effects of SCS on spinal sensorimotor networks and to inform stimulation strategies that optimize the clinical benefit of SCS in the context of managing chronic pain and the restoration of sensorimotor function after SCI.
Collapse
Affiliation(s)
- Jonathan S Calvert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Radu Darie
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Samuel R Parker
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Elias Shaaya
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Sohail Syed
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | | | - Jared S Fridley
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - David A Borton
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA; Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
18
|
Sharma M, Bhaskar V, Yang L, FallahRad M, Gebodh N, Zhang T, Esteller R, Martin J, Bikson M. Novel Evoked Synaptic Activity Potentials (ESAPs) Elicited by Spinal Cord Stimulation. eNeuro 2023; 10:ENEURO.0429-22.2023. [PMID: 37130780 PMCID: PMC10198607 DOI: 10.1523/eneuro.0429-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Spinal cord stimulation (SCS) evokes fast epidural evoked compound action potential (ECAP) that represent activity of dorsal column axons, but not necessarily a spinal circuit response. Using a multimodal approach, we identified and characterized a delayed and slower potential evoked by SCS that reflects synaptic activity within the spinal cord. Anesthetized female Sprague Dawley rats were implanted with an epidural SCS lead, epidural motor cortex stimulation electrodes, an epidural spinal cord recording lead, an intraspinal penetrating recording electrode array, and intramuscular electromyography (EMG) electrodes in the hindlimb and trunk. We stimulated the motor cortex or the epidural spinal cord and recorded epidural, intraspinal, and EMG responses. SCS pulses produced characteristic propagating ECAPs (composed of P1, N1, and P2 waves with latencies <2 ms) and an additional wave ("S1") starting after the N2. We verified the S1-wave was not a stimulation artifact and was not a reflection of hindlimb/trunk EMG. The S1-wave has a distinct stimulation-intensity dose response and spatial profile compared with ECAPs. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX; a selective competitive antagonist of AMPA receptors (AMPARs)] significantly diminished the S1-wave, but not ECAPs. Furthermore, cortical stimulation, which did not evoke ECAPs, produced epidurally detectable and CNQX-sensitive responses at the same spinal sites, confirming epidural recording of an evoked synaptic response. Finally, applying 50-Hz SCS resulted in dampening of S1-wave but not ECAPs. Therefore, we hypothesize that the S1-wave is synaptic in origin, and we term the S1-wave type responses: evoked synaptic activity potentials (ESAPs). The identification and characterization of epidurally recorded ESAPs from the dorsal horn may elucidate SCS mechanisms.
Collapse
Affiliation(s)
- Mahima Sharma
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Vividha Bhaskar
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Lillian Yang
- Department of Molecular, Cellular and Biomedical Sciences, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Mohamad FallahRad
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Nigel Gebodh
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Tianhe Zhang
- Boston Scientific Neuromodulation Research and Advanced Concepts, Valencia, CA 91355
| | - Rosana Esteller
- Boston Scientific Neuromodulation Research and Advanced Concepts, Valencia, CA 91355
| | - John Martin
- Department of Molecular, Cellular and Biomedical Sciences, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| | - Marom Bikson
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of the City University of New York, City College Center for Discovery and Innovation, New York, NY 10031
| |
Collapse
|
19
|
Classification of electrically-evoked potentials in the parkinsonian subthalamic nucleus region. Sci Rep 2023; 13:2685. [PMID: 36792646 PMCID: PMC9932154 DOI: 10.1038/s41598-023-29439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Electrically evoked compound action potentials (ECAPs) generated in the subthalamic nucleus (STN) contain features that may be useful for titrating deep brain stimulation (DBS) therapy for Parkinson's disease. Delivering a strong therapeutic effect with DBS therapies, however, relies on selectively targeting neural pathways to avoid inducing side effects. In this study, we investigated the spatiotemporal features of ECAPs in and around the STN across parameter sweeps of stimulation current amplitude, pulse width, and electrode configuration, and used a linear classifier of ECAP responses to predict electrode location. Four non-human primates were implanted unilaterally with either a directional (n = 3) or non-directional (n = 1) DBS lead targeting the sensorimotor STN. ECAP responses were characterized by primary features (within 1.6 ms after a stimulus pulse) and secondary features (between 1.6 and 7.4 ms after a stimulus pulse). Using these features, a linear classifier was able to accurately differentiate electrodes within the STN versus dorsal to the STN in all four subjects. ECAP responses varied systematically with recording and stimulating electrode locations, which provides a subject-specific neuroanatomical basis for selecting electrode configurations in the treatment of Parkinson's disease with DBS therapy.
Collapse
|
20
|
Cedeño DL, Vallejo R, Kelley CA, Platt DC, Litvak LM, Straka M, Dinsmoor DA. Spinal Evoked Compound Action Potentials in Rats With Clinically Relevant Stimulation Modalities. Neuromodulation 2023; 26:68-77. [PMID: 35961888 DOI: 10.1016/j.neurom.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Rats are commonly used for translational pain and spinal cord stimulation (SCS) research. Although many SCS parameters are configured identically between rats and humans, stimulation amplitudes in rats are often programmed relative to visual motor threshold (vMT). Alternatively, amplitudes may be programmed relative to evoked compound action potential (ECAP) thresholds (ECAPTs), a sensed measure of neural activation. The objective of this study was to characterize ECAPTs, evoked compound muscle action potential thresholds (ECMAPTs), and vMTs with clinically relevant SCS modalities. MATERIALS AND METHODS We implanted ten anesthetized rats with two quadripolar epidural SCS leads: one for stimulating in the lumbar spine, and another for sensing ECAPs in the thoracic spine. We then delivered two SCS paradigms to the rats. The first used 50-Hz SCS with 50-, 100-, 150-, and 200-μs pulse widths (PWs), whereas the second used a 50-Hz, 150-μs PW low-rate program (LRP) multiplexed to a 1200-Hz, 50-μs PW high-rate program (HRP). We increased SCS amplitudes up to the vMT in the first paradigm, and in the second, we increased HRP amplitudes up to the HRP ECAPT with a fixed amplitude (70% of the vMT) LRP. For each test case, we captured ECAPTs, ECMAPTs, and vMTs from each rat. RESULTS vMTs were 3.0 ± 0.7 times greater than ECAPTs, with vMTs marginally (3.0 ± 3.6%) greater than ECMAPTs (mean ± SD) across all PWs with the first paradigm. With the second paradigm, we noted a negligible increase (3.6 ± 6.2%) on the LRP ECAP as HRP amplitudes were increased. CONCLUSIONS Our results demonstrate reasonable levels of neural activation in anesthetized rats with SCS amplitudes appropriately programmed relative to vMT or ECMAPT when using clinically relevant SCS modalities. Furthermore, we demonstrate the feasibility of ECAP recording in rats with multiplexed HRP SCS.
Collapse
|
21
|
Ramadan A, König SD, Zhang M, Ross EK, Herman A, Netoff TI, Darrow DP. Methods and system for recording human physiological signals from implantable leads during spinal cord stimulation. FRONTIERS IN PAIN RESEARCH 2023; 4:1072786. [PMID: 36937564 PMCID: PMC10020336 DOI: 10.3389/fpain.2023.1072786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/23/2023] [Indexed: 03/06/2023] Open
Abstract
Objectives This article presents a method-including hardware configuration, sampling rate, filtering settings, and other data analysis techniques-to measure evoked compound action potentials (ECAPs) during spinal cord stimulation (SCS) in humans with externalized percutaneous electrodes. The goal is to provide a robust and standardized protocol for measuring ECAPs on the non-stimulation contacts and to demonstrate how measured signals depend on hardware and processing decisions. Methods Two participants were implanted with percutaneous leads for the treatment of chronic pain with externalized leads during a trial period for stimulation and recording. The leads were connected to a Neuralynx ATLAS system allowing us to simultaneously stimulate and record through selected electrodes. We examined different hardware settings, such as online filters and sampling rate, as well as processing techniques, such as stimulation artifact removal and offline filters, and measured the effects on the ECAPs metrics: the first negative peak (N1) time and peak-valley amplitude. Results For accurate measurements of ECAPs, the hardware sampling rate should be least at 8 kHz and should use a high pass filter with a low cutoff frequency, such as 0.1 Hz, to eliminate baseline drift and saturation (railing). Stimulation artifact removal can use a double exponential or a second-order polynomial. The polynomial fit is 6.4 times faster on average in computation time than the double exponential, while the resulting ECAPs' N1 time and peak-valley amplitude are similar between the two. If the baseline raw measurement drifts with stimulation, a median filter with a 100-ms window or a high pass filter with an 80-Hz cutoff frequency preserves the ECAPs. Conclusions This work is the first comprehensive analysis of hardware and processing variations on the observed ECAPs from SCS leads. It sets recommendations to properly record and process ECAPs from the non-stimulation contacts on the implantable leads.
Collapse
Affiliation(s)
- Ahmed Ramadan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Seth D. König
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Mingming Zhang
- Clinical and Applied Research, Abbott Neuromodulation, Plano, TX, United States
- Correspondence: David P. Darrow Mingming Zhang
| | - Erika K. Ross
- Clinical and Applied Research, Abbott Neuromodulation, Plano, TX, United States
| | - Alexander Herman
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Theoden I. Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - David P. Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
- Correspondence: David P. Darrow Mingming Zhang
| |
Collapse
|
22
|
Using evoked compound action potentials to quantify differential neural activation with burst and conventional, 40 Hz spinal cord stimulation in ovines. Pain Rep 2022; 7:e1047. [DOI: 10.1097/pr9.0000000000001047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
|
23
|
Falowski SM, Kim CH, Obradovic M, Parker JL. A Prospective Multicenter Case Series Utilizing Intraoperative Neuromonitoring With Evoked Compound Action Potentials to Confirm Spinal Cord Stimulation Lead Placement. Neuromodulation 2022; 25:724-730. [DOI: 10.1016/j.neurom.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022]
|
24
|
Closed-Loop Systems in Neuromodulation. Neurosurg Clin N Am 2022; 33:297-303. [DOI: 10.1016/j.nec.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Desai MJ, Aschenbrener R, Carrera EJ, Thalla N. Spinal Cord Stimulation. Phys Med Rehabil Clin N Am 2022; 33:335-357. [DOI: 10.1016/j.pmr.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Gmel GE, Vollebregt PF, Thijssen MEG, Santos Escapa R, McAlees E, Mugan D, Parker JL, Knowles CH. Electrophysiological Responses in the Human S3 Nerve During Sacral Neuromodulation for Fecal Incontinence. Front Neurosci 2021; 15:712168. [PMID: 34707473 PMCID: PMC8545143 DOI: 10.3389/fnins.2021.712168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
Intra-operative electrode placement for sacral neuromodulation (SNM) relies on visual observation of motor contractions alone, lacking complete information on neural activation from stimulation. This study aimed to determine whether electrophysiological responses can be recorded directly from the S3 sacral nerve during therapeutic SNM in patients with fecal incontinence, and to characterize such responses in order to better understand the mechanism of action (MOA) and whether stimulation is subject to changes in posture. Eleven patients undergoing SNM were prospectively recruited. A bespoke stimulating and recording system was connected (both intraoperatively and postoperatively) to externalized SNM leads, and electrophysiological responses to monopolar current sweeps on each electrode were recorded and analyzed. The nature and thresholds of muscle contractions (intraoperatively) and patient-reported stimulation perception were recorded. We identified both neural responses (evoked compound action potentials) as well as myoelectric responses (far-field potentials from muscle activation). We identified large myelinated fibers (conduction velocity: 36–60 m/s) in 5/11 patients, correlating with patient-reported stimulation perception, and smaller myelinated fibers (conduction velocity <15 m/s) in 4/11 patients (not associated with any sensation). Myoelectric responses (observed in 7/11 patients) were attributed to pelvic floor and/or anal sphincter contraction. Responses varied with changes in posture. We present the first direct electrophysiological responses recorded from the S3 nerve during ongoing SNM in humans, showing both neural and myoelectric responses. These recordings highlight heterogeneity of neural and myoelectric responses (relevant to understanding MOA of SNM) and confirm that electrode lead position can change with posture.
Collapse
Affiliation(s)
| | - Paul F Vollebregt
- National Bowel Research Centre, Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | - Eleanor McAlees
- National Bowel Research Centre, Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Dave Mugan
- Saluda Medical Pty Ltd, Artarmon, NSW, Australia
| | | | - Charles H Knowles
- National Bowel Research Centre, Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
27
|
Chakravarthy K, Reddy R, Al-Kaisy A, Yearwood T, Grider J. A Call to Action Toward Optimizing the Electrical Dose Received by Neural Targets in Spinal Cord Stimulation Therapy for Neuropathic Pain. J Pain Res 2021; 14:2767-2776. [PMID: 34522135 PMCID: PMC8434932 DOI: 10.2147/jpr.s323372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Spinal cord stimulation has seen unprecedented growth in new technology in the 50 years since the first subdural implant. As we continue to grow our understanding of spinal cord stimulation and relevant mechanisms of action, novel questions arise as to electrical dosing optimization. Programming adjustment — dose titration — is often a process of trial and error that can be time-consuming and frustrating for both patient and clinician. In this report, we review the current preclinical and clinical knowledge base in order to provide insights that may be helpful in developing more rational approaches to spinal cord stimulation dosing. We also provide key conclusions that may help in directing future research into electrical dosing, given the advent of newer waveforms outside traditional programming parameters.
Collapse
Affiliation(s)
- Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA.,VA San Diego Healthcare System, San Diego, Ca, USA
| | - Rajiv Reddy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Adnan Al-Kaisy
- Pain Management and Neuromodulation Centre at Guy's and St. Thomas' NHS Trust, London, UK
| | - Thomas Yearwood
- Pain Management and Neuromodulation Centre at Guy's and St. Thomas' NHS Trust, London, UK
| | - Jay Grider
- Division of Pain Medicine, Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| |
Collapse
|
28
|
Dietz BE, Mugan D, Vuong QC, Obara I. Electrically Evoked Compound Action Potentials in Spinal Cord Stimulation: Implications for Preclinical Research Models. Neuromodulation 2021; 25:64-74. [PMID: 34224656 DOI: 10.1111/ner.13480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The study aimed to assess the feasibility of recording electrically evoked compound action potentials (ECAPs) from the rat spinal cord. To achieve this, we characterized electrophysiological responses of dorsal column (DC) axons from electrical stimulation and quantified the relationship between ECAP and motor thresholds (ECAPTs and MTs). MATERIAL AND METHODS Naïve, anesthetized and freely behaving rats were implanted with a custom-made epidural spinal cord stimulation (SCS) lead. Epidural stimulation and recordings were performed on the same lead using specifically designed equipment. RESULTS The ECAPs recorded from the rat spinal cord demonstrated the expected triphasic morphology. Using 20 μsec pulse duration and 2 Hz frequency rate, the current required in anesthetized rats to generate ECAPs was 0.13 ± 0.02 mA, while the average current required to observe MT was 1.49 ± 0.14 mA. In unanesthetized rats, the average current required to generate ECAPs was 0.09 ± 0.02 mA, while the average current required to observe MT was 0.27 ± 0.04 mA. Thus, there was a significant difference between the ECAPT and MT in both anesthetized and unanesthetized rats (MT was 13.39 ± 2.40 and 2.84 ± 0.33 times higher than ECAPT, respectively). Signal analysis revealed average conduction velocities (CVs) suggesting that predominantly large, myelinated fibers were activated. In addition, a morphometric evaluation of spinal cord slices indicated that the custom-made lead may preferentially activate DC axons. CONCLUSIONS This is the first evidence demonstrating the feasibility of recording ECAPs from the rat spinal cord, which may be more useful in determining parameters of SCS in preclinical SCS models than MTs. Thus, this approach may allow for the development of a novel model of SCS in rats with chronic pain that will translate better between animals and humans.
Collapse
Affiliation(s)
| | - Dave Mugan
- Saluda Medical Europe Ltd, Harrogate, UK
| | - Quoc Chi Vuong
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ilona Obara
- School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
29
|
Russo M, Brooker C, Cousins MJ, Taylor N, Boesel T, Sullivan R, Holford L, Hanson E, Gmel GE, Shariati NH, Poree L, Parker J. Sustained Long-Term Outcomes With Closed-Loop Spinal Cord Stimulation: 12-Month Results of the Prospective, Multicenter, Open-Label Avalon Study. Neurosurgery 2021; 87:E485-E495. [PMID: 32023344 PMCID: PMC8184296 DOI: 10.1093/neuros/nyaa003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/22/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Spinal cord stimulation (SCS) activates the dorsal column fibers using electrical stimuli. Current SCS systems function in fixed-output mode, delivering the same stimulus regardless of spinal cord (SC) activation. OBJECTIVE To present long-term outcomes of a novel closed-loop SCS system that aims to maintain the SC activation near a set target level and within a therapeutic window for each patient. SC activation is measured through the evoked compound action potential (ECAP) generated by each stimulus pulse. METHODS Fifty patients with lower back and/or leg pain who were successfully trialed received a permanent system (Evoke; Saluda Medical, Sydney, Australia). Ratings of pain (visual analog scale), quality of life, function, sleep, and medication use were collected at baseline and at each visit. SC activation levels were reported in summary statistics. The therapeutic window for each individual patient was defined as the range of ECAP amplitudes between sensation threshold and uncomfortably strong stimulation. RESULTS At 12 mo, the proportion of patients with ≥50% relief was 76.9% (back), 79.3% (leg), and 81.4% (overall), and the proportion with ≥80% pain relief was 56.4% (back), 58.6% (leg), and 53.5% (overall). Patients spent a median of 84.9% of their time with stimulation in their therapeutic window, and 68.8% (22/32) eliminated or reduced their opioid intake. Statistically significant improvements in secondary outcomes were observed. CONCLUSION The majority of patients experienced more than 80% pain relief with stable SC activation, as measured by ECAP amplitude at 12 mo, providing evidence for the long-term effectiveness of the Evoke closed-loop SCS system.
Collapse
Affiliation(s)
- Marc Russo
- Hunter Pain Clinic, Broadmeadow, Australia
| | - Charles Brooker
- MJC Pain Management and Research Centre, St. Leonards, Australia.,Northern Pain Centre, St. Leonards, Australia
| | - Michael J Cousins
- MJC Pain Management and Research Centre, St. Leonards, Australia.,Northern Pain Centre, St. Leonards, Australia
| | - Nathan Taylor
- MJC Pain Management and Research Centre, St. Leonards, Australia.,Northern Pain Centre, St. Leonards, Australia
| | | | | | - Lewis Holford
- MJC Pain Management and Research Centre, St. Leonards, Australia.,Northern Pain Centre, St. Leonards, Australia
| | | | | | | | | | - John Parker
- Saluda Medical Pty Ltd, Artarmon, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Australia
| |
Collapse
|
30
|
Gmel GE, Santos Escapa R, Parker JL, Mugan D, Al-Kaisy A, Palmisani S. The Effect of Spinal Cord Stimulation Frequency on the Neural Response and Perceived Sensation in Patients With Chronic Pain. Front Neurosci 2021; 15:625835. [PMID: 33551738 PMCID: PMC7859107 DOI: 10.3389/fnins.2021.625835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background The effect of spinal cord stimulation (SCS) amplitude on the activation of dorsal column fibres has been widely studied through the recording of Evoked Compound Action Potentials (ECAPs), the sum of all action potentials elicited by an electrical stimulus applied to the fibres. ECAP amplitude grows linearly with stimulus current after a threshold, and a larger ECAP results in a stronger stimulus sensation for patients. This study investigates the effect of stimulus frequency on both the ECAP amplitude as well as the perceived stimulus sensation in patients undergoing SCS therapy for chronic back and/or leg pain. Methods Patients suffering with chronic neuropathic lower-back and/or lower-limb pain undergoing an epidural SCS trial were recruited. Patients were implanted according to standard practice, having two 8-contact leads (8 mm inter-electrode spacing) which overlapped 2–4 contacts around the T9/T10 interspace. Both lead together thus spanning about three vertebral levels. Neurophysiological recordings were taken during the patient’s trial phase at two routine follow-ups using a custom external stimulator capable of recording ECAPs in real-time from all non-stimulating contacts. Stimulation was performed at various vertebral levels, varying the frequency (ranging from 2 to 455 Hz) while all other stimulating variables were kept constant. During the experiments subjects were asked to rate the stimulation-induced sensation (paraesthesia) on a scale from 0 to 10. Results Frequency response curves showed an inverse relationship between stimulation sensation strength and ECAP amplitude, with higher frequencies generating smaller ECAPs but stronger stimulation-induced paraesthesia (at constant stimulation amplitude). Both relationships followed logarithmic trends against stimulus frequency meaning that the effects on ECAP amplitude and sensation are larger for smaller frequencies. Conclusion This work supports the hypothesis that SCS-induced paraesthesia is conveyed through both frequency coding and population coding, fitting known psychophysics of tactile sensory information processing. The inverse relationship between ECAP amplitude and sensation for increasing frequencies at fixed stimulus amplitude questions common assumptions of monotonic relationships between ECAP amplitude and sensation strength.
Collapse
Affiliation(s)
| | | | | | - Dave Mugan
- Saluda Medical Pty Ltd., Artarmon, NSW, Australia
| | - Adnan Al-Kaisy
- Guy's & St. Thomas' NHS Foundation Trust, London, United Kingdom
| | | |
Collapse
|
31
|
Chakravarthy K, Bink H, Dinsmoor D. Sensing Evoked Compound Action Potentials from the Spinal Cord: Novel Preclinical and Clinical Considerations for the Pain Management Researcher and Clinician. J Pain Res 2020; 13:3269-3279. [PMID: 33328760 PMCID: PMC7733896 DOI: 10.2147/jpr.s289098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 01/16/2023] Open
Abstract
Purpose Spinal cord stimulation (SCS) is a drug-free treatment for chronic neuropathic pain. Recent SCS technology can record evoked compound action potentials (ECAPs) in the spinal cord during therapy and utilize features of the sensed ECAP to optimize the SCS. The purpose of this work is to characterize the relevant parameters that govern the integrity and morphology of acquired ECAPs, and the implications for pain management clinicians and researchers working with ECAPs. Materials and Methods Eight-contact percutaneous SCS leads were implanted into sheep, and a prototype ECAP-sensing system was used to record spinal cord activity across a range of electrode configurations, pulse widths, and stimulus amplitudes. Similar iterative testing was then completed in human subjects who were undergoing trials of commercial SCS systems. Results Longer pulse width stimulation results in a progressive increase in ECAP latency, a neurophysiologic effect that enables ECAP sensing with longer pulses despite more encroachment by stimulation artifact. ECAPs may manifest a polyphasic morphology—an effect not seen in all subjects studied—with longer pulse width stimulation; these later phases may be used to assess ECAP amplitude when earlier features are effaced by artifact. Triphasic stimulation limits artifact from spinal cord ECAPs at the expense of potentially higher activation thresholds. If applied, alternating polarity stimulation must account for the ECAP latency differences resulting from alternating sites of neural activation. Conclusion Together, this information can allow the ECAP to be readily distinguished from the stimulation artifact, although movement may continue to be a confounder; caution is inculcated for ECAP signal processing techniques that rely on the stability of the artifact to avoid clinically misleading results. The promise of closed-loop, ECAP-servoed neuromodulation relies on accurate and proper sensing of the ECAP, while clearly elucidating the clinically relevant trade-offs and design choices made to enable these novel features.
Collapse
Affiliation(s)
- Krishnan Chakravarthy
- Anesthesiology and Pain Management, University of California San Diego, San Diego, CA, USA
| | - Hank Bink
- Neuromodulation, Medtronic Plc, Minneapolis, MN, USA
| | | |
Collapse
|
32
|
Schmidt SL, Brocker DT, Swan BD, Turner DA, Grill WM. Evoked potentials reveal neural circuits engaged by human deep brain stimulation. Brain Stimul 2020; 13:1706-1718. [PMID: 33035726 PMCID: PMC7722102 DOI: 10.1016/j.brs.2020.09.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective therapy for reducing the motor symptoms of Parkinson's disease, but the mechanisms of action of DBS and neural correlates of symptoms remain unknown. OBJECTIVE To use the neural response to DBS to reveal connectivity of neural circuits and interactions between groups of neurons as potential mechanisms for DBS. METHODS We recorded activity evoked by DBS of the subthalamic nucleus (STN) in humans with Parkinson's disease. In follow up experiments we also simultaneously recorded activity in the contralateral STN or the ipsilateral globus pallidus from both internal (GPi) and external (GPe) segments. RESULTS DBS local evoked potentials (DLEPs) were stereotyped across subjects, and a biophysical model of reciprocal connections between the STN and the GPe recreated DLEPs. Simultaneous STN and GP recordings during STN DBS demonstrate that DBS evoked potentials were present throughout the basal ganglia and confirmed that DLEPs arose from the reciprocal connections between the STN and GPe. The shape and amplitude of the DLEPs were dependent on the frequency and duration of DBS and were correlated with resting beta band oscillations. In the frequency domain, DLEPs appeared as a 350 Hz high frequency oscillation (HFO) independent of the frequency of DBS. CONCLUSIONS DBS evoked potentials suggest that the intrinsic dynamics of the STN and GP are highly interlinked and may provide a promising new biomarker for adaptive DBS.
Collapse
Affiliation(s)
- Stephen L Schmidt
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Dennis A Turner
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
33
|
Duarte RV, Soliday N, Leitner A, Taylor RS. Health-Related Quality of Life Associated With Pain Health States in Spinal Cord Stimulation for Chronic Neuropathic Pain. Neuromodulation 2020; 24:142-149. [PMID: 32940398 DOI: 10.1111/ner.13267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES A substantial proportion of patients have recently reported pain reduction levels of ≥80% following treatment with Evoked Compound Action Potential (ECAP) spinal cord stimulation (SCS). The additional health-related quality of life (HRQoL) utility gain that can be achieved in this patient group is unclear. The aim of this study is to quantify the HRQoL utility values seen in a remission health state (defined as ≥80% pain reduction) and contrast with more traditional health states of <50% and ≥50% pain relief. MATERIALS AND METHODS Pain intensity assessed using a 100 mm visual analogue scale (VAS) and EQ-5D-5L questionnaires were collected from 204 patients treated with ECAP SCS for chronic back and leg pain and followed up to 12 months. Utility values were derived using EQ-5D-5L responses crosswalked to EQ-5D-3L. Linear regression models adjusted for baseline utility values and patient demographics were used to compare differences in utility values across health states. RESULTS Patients in the remission health state (i.e., ≥80% pain reduction) consistently reported statistically significant greater utility values (+0.09 to +0.15, all p < 0.003) compared to patients reporting ≥50% pain relief at 3- and 12-month follow-up for overall, back, and leg VAS pain. The gain in utility values per percent unit of pain reduction was statistically significant at 3- and 12-month follow-up with a mean increase in HRQoL utility score between 0.003 and 0.005 observed for each percent of pain reduction. CONCLUSION Our analyses show that patients in a remission health state report statistically and clinically significant better HRQoL than patients experiencing lesser pain relief.
Collapse
Affiliation(s)
- Rui V Duarte
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | | | | | - Rod S Taylor
- Institute of Health and Well Being, University of Glasgow, Glasgow, UK.,College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
34
|
Zander HJ, Graham RD, Anaya CJ, Lempka SF. Anatomical and technical factors affecting the neural response to epidural spinal cord stimulation. J Neural Eng 2020; 17:036019. [PMID: 32365340 PMCID: PMC8351789 DOI: 10.1088/1741-2552/ab8fc4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) is a common neurostimulation therapy to treat chronic pain. Computational models represent a valuable tool to study the potential mechanisms of action of SCS and to optimize the design and implementation of SCS technologies. However, it is imperative that these computational models include the appropriate level of detail to accurately predict the neural response to SCS and to correlate model predictions with clinical outcomes. Therefore, the goal of this study was to investigate several anatomic and technical factors that may affect model-based predictions of neural activation during thoracic SCS. APPROACH We developed computational models that consisted of detailed finite element models of the lower thoracic spinal cord, surrounding tissues, and implanted SCS electrode arrays. We positioned multicompartment models of sensory axons within the spinal cord to calculate the activation threshold for each sensory axon. We then investigated how activation thresholds changed as a function of several anatomical variables (e.g. spine geometry, dorsal rootlet anatomy), stimulation type (i.e. voltage-controlled vs. current-controlled), electrode impedance, lead position, lead type, and electrical properties of surrounding tissues (e.g. dura conductivity, frequency-dependent conductivity). MAIN RESULTS Several anatomic and modeling factors produced significant percent differences or errors in activation thresholds. Rostrocaudal positioning of the cathode with respect to the vertebrae had a large effect (up to 32%) on activation thresholds. Variability in electrode impedance produced significant changes in activation thresholds for voltage-controlled stimulation (38% to 51%), but had little effect on activation thresholds for current-controlled stimulation (less than 13%). Changing the dura conductivity also produced significant differences in activation thresholds. SIGNIFICANCE This study demonstrates several anatomic and technical factors that can affect the neural response to SCS. These factors should be considered in clinical implementation and in future computational modeling studies of thoracic SCS.
Collapse
Affiliation(s)
- Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America. Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | |
Collapse
|
35
|
Fishman MA, Antony A, Esposito M, Deer T, Levy R. The Evolution of Neuromodulation in the Treatment of Chronic Pain: Forward-Looking Perspectives. PAIN MEDICINE 2020; 20:S58-S68. [PMID: 31152176 PMCID: PMC6600066 DOI: 10.1093/pm/pnz074] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background The field of neuromodulation is continually evolving, with the past decade showing significant advancement in the therapeutic efficacy of neuromodulation procedures. The continued evolution of neuromodulation technology brings with it the promise of addressing the needs of both patients and physicians, as current technology improves and clinical applications expand. Design This review highlights the current state of the art of neuromodulation for treating chronic pain, describes key areas of development including stimulation patterns and neural targets, expanding indications and applications, feedback-controlled systems, noninvasive approaches, and biomarkers for neuromodulation and technology miniaturization. Results and Conclusions The field of neuromodulation is undergoing a renaissance of technology development with potential for profoundly improving the care of chronic pain patients. New and emerging targets like the dorsal root ganglion, as well as high-frequency and patterned stimulation methodologies such as burst stimulation, are paving the way for better clinical outcomes. As we look forward to the future, neural sensing, novel target-specific stimulation patterns, and approaches combining neuromodulation therapies are likely to significantly impact how neuromodulation is used. Moreover, select biomarkers may influence and guide the use of neuromodulation and help objectively demonstrate efficacy and outcomes.
Collapse
Affiliation(s)
| | | | | | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, West Virginia
| | - Robert Levy
- Institute for Neuromodulation, Boca Raton, Florida, USA
| |
Collapse
|
36
|
Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, Hunter CW, Rosen SM, Costandi SJ, Falowski SM, Burgher AH, Pope JE, Gilmore CA, Qureshi FA, Staats PS, Scowcroft J, Carlson J, Kim CK, Yang MI, Stauss T, Poree L. Long-term safety and efficacy of closed-loop spinal cord stimulation to treat chronic back and leg pain (Evoke): a double-blind, randomised, controlled trial. Lancet Neurol 2019; 19:123-134. [PMID: 31870766 DOI: 10.1016/s1474-4422(19)30414-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 10/18/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Spinal cord stimulation has been an established treatment for chronic back and leg pain for more than 50 years; however, outcomes are variable and unpredictable, and objective evidence of the mechanism of action is needed. A novel spinal cord stimulation system provides the first in vivo, real-time, continuous objective measure of spinal cord activation in response to therapy via recorded evoked compound action potentials (ECAPs) in patients during daily use. These ECAPs are also used to optimise programming and deliver closed-loop spinal cord stimulation by adjusting the stimulation current to maintain activation within patients' therapeutic window. We aimed to examine pain relief and the extent of spinal cord activation with ECAP-controlled closed-loop versus fixed-output, open-loop spinal cord stimulation for the treatment of chronic back and leg pain. METHODS This multicentre, double-blind, parallel-arm, randomised controlled trial was done at 13 specialist clinics, academic centres, and hospitals in the USA. Patients with chronic, intractable pain of the back and legs (Visual Analog Scale [VAS] pain score ≥60 mm; Oswestry Disability Index [ODI] score 41-80) who were refractory to conservative therapy, on stable pain medications, had no previous experience with spinal cord stimulation, and were appropriate candidates for a spinal cord stimulation trial were screened. Eligible patients were randomly assigned (1:1) to receive ECAP-controlled closed-loop spinal cord stimulation (investigational group) or fixed-output, open-loop spinal cord stimulation (control group). The randomisation sequence was computer generated with permuted blocks of size 4 and 6 and stratified by site. Patients, investigators, and site staff were masked to the treatment assignment. The primary outcome was the proportion of patients with a reduction of 50% or more in overall back and leg pain with no increase in pain medications. Non-inferiority (δ=10%) followed by superiority were tested in the intention-to-treat population at 3 months (primary analysis) and 12 months (additional prespecified analysis) after the permanent implant. This study is registered with ClinicalTrials.gov, NCT02924129, and is ongoing. FINDINGS Between Feb 21, 2017, and Feb 20, 2018, 134 patients were enrolled and randomly assigned (67 to each treatment group). The intention-to-treat analysis comprised 125 patients at 3 months (62 in the closed-loop group and 63 in the open-loop group) and 118 patients at 12 months (59 in the closed-loop group and 59 in the open-loop group). The primary outcome was achieved in a greater proportion of patients in the closed-loop group than in the open-loop group at 3 months (51 [82·3%] of 62 patients vs 38 [60·3%] of 63 patients; difference 21·9%, 95% CI 6·6-37·3; p=0·0052) and at 12 months (49 [83·1%] of 59 patients vs 36 [61·0%] of 59 patients; difference 22·0%, 6·3-37·7; p=0·0060). We observed no differences in safety profiles between the two groups. The most frequently reported study-related adverse events in both groups were lead migration (nine [7%] patients), implantable pulse generator pocket pain (five [4%]), and muscle spasm or cramp (three [2%]). INTERPRETATION ECAP-controlled closed-loop stimulation provided significantly greater and more clinically meaningful pain relief up to 12 months than open-loop spinal cord stimulation. Greater spinal cord activation seen in the closed-loop group suggests a mechanistic explanation for the superior results, which aligns with the putative mechanism of action for spinal cord stimulation and warrants further investigation. FUNDING Saluda Medical.
Collapse
Affiliation(s)
| | - Robert M Levy
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Timothy R Deer
- The Spine and Nerve Center of The Virginias, Charleston, WV, USA
| | - Leonardo Kapural
- Carolinas Pain Institute and Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sean Li
- Premier Pain Centers, Shrewsbury, NJ, USA
| | | | - Corey W Hunter
- Ainsworth Institute of Pain Management, New York, NY, USA
| | - Steven M Rosen
- Delaware Valley Pain and Spine Institute, Trevose, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lawrence Poree
- University of California at San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
37
|
Arle JE, Mei L, Carlson KW. Fiber Threshold Accommodation as a Mechanism of Burst and High-Frequency Spinal Cord Stimulation. Neuromodulation 2019; 23:582-593. [PMID: 31774232 DOI: 10.1111/ner.13076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/06/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Burst and high-frequency spinal cord stimulation (SCS), in contrast to low-frequency stimulation (LFS, < 200 Hz), reduce neuropathic pain without the side effect of paresthesia, yet it is unknown whether these methods' mechanisms of action (MoA) overlap. We used empirically based computational models of fiber threshold accommodation to examine the three MoA. MATERIALS AND METHODS Waveforms used in SCS are composed of cathodic, anodic, and rest phases. Empirical studies of human peripheral sensory nerve fibers show different accommodation effects occurring in each phase. Notably, larger diameter fibers accommodate more than smaller fibers. We augmented our computational axon model to replicate fiber threshold accommodation behavior for diameters from 5 to 15 μm in each phase. We used the model to predict threshold change in variations of burst, high frequency, and LFS. RESULTS The accommodation model showed that 1) inversion of larger and smaller diameter fiber thresholds produce a therapeutic window in which smaller fibers fire while larger ones do not and 2) the anodic pulses increase accommodation and perpetuate threshold inversion from burst to burst and between cathodic pulses in burst, high frequency, and variations, resulting in an amplitude "window" in which larger fibers are inactivated while smaller fibers fire. No threshold inversion was found for traditional LFS. CONCLUSIONS The model, based on empirical data, predicts that, at clinical amplitudes, burst and high-frequency SCS do not activate large-diameter fibers that produce paresthesia while driving medium-diameter fibers, likely different from LFS, which produce analgesia via different populations of dorsal horn neural circuits.
Collapse
Affiliation(s)
- Jeffrey E Arle
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Mount Auburn Hospital, Cambridge, MA, USA
| | - Longzhi Mei
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kristen W Carlson
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
38
|
Caylor J, Reddy R, Yin S, Cui C, Huang M, Huang C, Rao R, Baker DG, Simmons A, Souza D, Narouze S, Vallejo R, Lerman I. Spinal cord stimulation in chronic pain: evidence and theory for mechanisms of action. Bioelectron Med 2019; 5:12. [PMID: 31435499 PMCID: PMC6703564 DOI: 10.1186/s42234-019-0023-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022] Open
Abstract
Well-established in the field of bioelectronic medicine, Spinal Cord Stimulation (SCS) offers an implantable, non-pharmacologic treatment for patients with intractable chronic pain conditions. Chronic pain is a widely heterogenous syndrome with regard to both pathophysiology and the resultant phenotype. Despite advances in our understanding of SCS-mediated antinociception, there still exists limited evidence clarifying the pathways recruited when patterned electric pulses are applied to the epidural space. The rapid clinical implementation of novel SCS methods including burst, high frequency and dorsal root ganglion SCS has provided the clinician with multiple options to treat refractory chronic pain. While compelling evidence for safety and efficacy exists in support of these novel paradigms, our understanding of their mechanisms of action (MOA) dramatically lags behind clinical data. In this review, we reconstruct the available basic science and clinical literature that offers support for mechanisms of both paresthesia spinal cord stimulation (P-SCS) and paresthesia-free spinal cord stimulation (PF-SCS). While P-SCS has been heavily examined since its inception, PF-SCS paradigms have recently been clinically approved with the support of limited preclinical research. Thus, wide knowledge gaps exist between their clinical efficacy and MOA. To close this gap, many rich investigative avenues for both P-SCS and PF-SCS are underway, which will further open the door for paradigm optimization, adjunctive therapies and new indications for SCS. As our understanding of these mechanisms evolves, clinicians will be empowered with the possibility of improving patient care using SCS to selectively target specific pathophysiological processes in chronic pain.
Collapse
Affiliation(s)
- Jacob Caylor
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Rajiv Reddy
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Sopyda Yin
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Christina Cui
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Mingxiong Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA USA
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
| | - Charles Huang
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Bioengineering, Stanford University, Palo Alto, CA USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA USA
| | - Dewleen G. Baker
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Alan Simmons
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Dmitri Souza
- Center for Pain Medicine, Western Reserve Hospital. Department of Surgery, Northeast Ohio Medical School (NEOMED), Athens, OH USA
| | - Samer Narouze
- Center for Pain Medicine, Western Reserve Hospital. Department of Surgery, Northeast Ohio Medical School (NEOMED), Athens, OH USA
| | - Ricardo Vallejo
- Basic Science Research, Millennium Pain Center, Bloomington, IL USA
- School of Biological Sciences, Illinois State University, Normal, IL USA
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL USA
| | - Imanuel Lerman
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA USA
- Present Address: VA San Diego, 3350 La Jolla Village Dr, (MC116A), San Diego, CA 92161 USA
| |
Collapse
|
39
|
Anaya CJ, Zander HJ, Graham RD, Sankarasubramanian V, Lempka SF. Evoked Potentials Recorded From the Spinal Cord During Neurostimulation for Pain: A Computational Modeling Study. Neuromodulation 2019; 23:64-73. [PMID: 31215720 DOI: 10.1111/ner.12965] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) for pain is typically implemented in an open-loop manner using parameters that remain largely unchanged. To improve the overall efficacy and consistency of SCS, one closed-loop approach proposes to use evoked compound action potentials (ECAPs) recorded from the SCS lead(s) as a feedback control signal to guide parameter selection. The goal of this study was to use a computational modeling approach to investigate the source of these ECAP recordings and technical and physiological factors that affect their composition. METHODS We developed a computational model that coupled a finite element model of lower thoracic SCS with multicompartment models of sensory axons within the spinal cord. We used a reciprocity-based approach to calculate SCS-induced ECAPs recorded from the SCS lead. RESULTS Our model ECAPs contained a triphasic, P1, N1, P2 morphology. The model P2-N1 amplitudes and conduction velocities agreed with previous experimental data from human subjects. Model results suggested that the ECAPs are dominated by the activation of axons with diameters 8.7-10.0 μm located in the dorsal aspect of the spinal cord. We also observed changes in the ECAP amplitude and shape due to the electrode location relative to the vertebrae and spinal cord. CONCLUSION Our modeling results suggest that clinically effective SCS relies on the activation of numerous axons within a narrow fiber diameter range and that several factors affect the composition of the ECAP recordings. These results can improve how we interpret and implement these recordings in a potential closed-loop approach to SCS.
Collapse
Affiliation(s)
- Carlos J Anaya
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Robert D Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Vishwanath Sankarasubramanian
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
40
|
Parker JL, Obradovic M, Hesam Shariati N, Gorman RB, Karantonis DM, Single PS, Laird‐Wah J, Bickerstaff M, Cousins MJ. Evoked Compound Action Potentials Reveal Spinal Cord Dorsal Column Neuroanatomy. Neuromodulation 2019; 23:82-95. [DOI: 10.1111/ner.12968] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023]
Affiliation(s)
- John L. Parker
- Saluda Medical Pty Ltd. Artarmon NSW Australia
- Graduate School of Biomedical Engineering, University of New South Wales Kensington NSW Australia
| | | | | | - Robert B. Gorman
- Saluda Medical Pty Ltd. Artarmon NSW Australia
- Northern Clinical School, University of Sydney Sydney Australia
| | | | | | | | | | - Michael J. Cousins
- Pain Management Research Institute and Kolling Institute, University of Sydney at the Royal North Shore Hospital St Leonards NSW Australia
| |
Collapse
|
41
|
Levy R, Deer TR, Poree L, Rosen SM, Kapural L, Amirdelfan K, Soliday N, Leitner A, Mekhail N. Multicenter, Randomized, Double-Blind Study Protocol Using Human Spinal Cord Recording Comparing Safety, Efficacy, and Neurophysiological Responses Between Patients Being Treated With Evoked Compound Action Potential-Controlled Closed-Loop Spinal Cord Stimulation or Open-Loop Spinal Cord Stimulation (the Evoke Study). Neuromodulation 2019; 22:317-326. [PMID: 30828946 DOI: 10.1111/ner.12932] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/05/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND The spinal cord (SC) response to stimulation has yet to be studied in a pivotal clinical study. We report the study design of an ongoing multicenter, randomized, double-blind, controlled, parallel-arm study of an evoked compound action potential (ECAP) controlled closed-loop spinal cord stimulation (SCS) system, which aims to gain U.S. Food and Drug Administration approval. METHODS This study will enroll 134 SCS candidates with chronic trunk and limb pain from up to 20 United States sites. Subjects are randomized 1:1 to receive ECAP-controlled closed-loop or open-loop, conventional SCS. The primary objective is noninferiority of closed-loop stimulation determined by the proportion of subjects with ≥50% reduction in overall trunk and limb pain and no increase in pain medications at the three-month visit. If noninferiority is met, superiority is tested. In addition, measures recommended by IMMPACT (e.g., pain intensity, functional disability, emotional functioning, quality of life, impression of change, and sleep), neurophysiological properties (e.g., SC activation, conduction velocity, chronaxie, and rheobase), and safety are analyzed. DISCUSSION All approved SCS therapies, regardless of the presence or absence of stimulation induced paresthesias, produce fixed-output stimuli; that is, the energy delivered from the electrode array has a defined output irrespective of the neural response of SC fibers. An SCS system has been developed that directly measures the neurophysiologic activation of the SC to stimulation (i.e., ECAP amplitude) and uses this information in a feedback mechanism to produce closed-loop SCS to maintain optimal and stable activation of the SC. This study represents the first randomized, double-blind, pivotal study in the field of neuromodulation to measure SC activation in ECAP-controlled closed-loop versus open-loop stimulation and is expected to yield important information regarding differences in safety, efficacy, and neurophysiological properties. The potential clinical utility of these objective measurements of SC activation and other neurophysiological properties promises to improve outcomes of SCS for chronic pain patients.
Collapse
Affiliation(s)
- Robert Levy
- Institute for Neuromodulation, Boca Raton, FL, USA
| | | | - Lawrence Poree
- Department of Anesthesia & Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | - Nagy Mekhail
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
42
|
Shepherd RK, Villalobos J, Burns O, Nayagam DAX. The development of neural stimulators: a review of preclinical safety and efficacy studies. J Neural Eng 2018; 15:041004. [PMID: 29756600 PMCID: PMC6049833 DOI: 10.1088/1741-2552/aac43c] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Given the rapid expansion of the field of neural stimulation and the rigorous regulatory approval requirements required before these devices can be applied clinically, it is important that there is clarity around conducting preclinical safety and efficacy studies required for the development of this technology. APPROACH The present review examines basic design principles associated with the development of a safe neural stimulator and describes the suite of preclinical safety studies that need to be considered when taking a device to clinical trial. MAIN RESULTS Neural stimulators are active implantable devices that provide therapeutic intervention, sensory feedback or improved motor control via electrical stimulation of neural or neuro-muscular tissue in response to trauma or disease. Because of their complexity, regulatory bodies classify these devices in the highest risk category (Class III), and they are therefore required to go through a rigorous regulatory approval process before progressing to market. The successful development of these devices is achieved through close collaboration across disciplines including engineers, scientists and a surgical/clinical team, and the adherence to clear design principles. Preclinical studies form one of several key components in the development pathway from concept to product release of neural stimulators. Importantly, these studies provide iterative feedback in order to optimise the final design of the device. Key components of any preclinical evaluation include: in vitro studies that are focussed on device reliability and include accelerated testing under highly controlled environments; in vivo studies using animal models of the disease or injury in order to assess efficacy and, given an appropriate animal model, the safety of the technology under both passive and electrically active conditions; and human cadaver and ex vivo studies designed to ensure the device's form factor conforms to human anatomy, to optimise the surgical approach and to develop any specialist surgical tooling required. SIGNIFICANCE The pipeline from concept to commercialisation of these devices is long and expensive; careful attention to both device design and its preclinical evaluation will have significant impact on the duration and cost associated with taking a device through to commercialisation. Carefully controlled in vitro and in vivo studies together with ex vivo and human cadaver trials are key components of a thorough preclinical evaluation of any new neural stimulator.
Collapse
Affiliation(s)
- Robert K Shepherd
- Bionics Institute, East Melbourne, Australia. Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | | | | | | |
Collapse
|
43
|
Parker JL, Laird-Wah J, Cousins MJ. Comparison of a simple model of dorsal column axons with the electrically evoked compound action potential. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/bem-2017-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational modeling has provided insights into the electrophysiological mechanisms of spinal cord stimulation. The models are complex and conclusions drawn from them are only as valid as their assumptions and choice of parameters. Model validation has proved difficult due to lack of direct electrophysiological evidence for comparison. Here, we compare an axon model with measurement of the compound action potential response of dorsal columns axons of the sheep spinal cord. The extracellular potential is calculated from a simple single axon and rather than repeating this calculation for multiple fibers of different sizes and positions, we instead estimate the single fiber response from the ECAP measurements. The single fiber potential is derived from ECAP by reversing the effect of propagation from the stimulation site. We used literature values for the ion channel properties for sensory neurons and the axon model predicts the shape of the ECAP-derived single fiber action potential remarkably well.
Collapse
Affiliation(s)
- John L Parker
- Saluda Medical Pty Ltd., Artarmon, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| | | | - Michael J Cousins
- Pain Management Research Institute & Kolling Institute, University of Sydney at the Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
44
|
|
45
|
Parker JL, Shariati NH, Karantonis DM. Electrically evoked compound action potential recording in peripheral nerves. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/bem-2017-0005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Applications for bioelectric medicine can be found in all parts of the nervous system. The CNS – brain and spinal cord – contain targets for commercial neuromodulation therapies. Peripheral nerves are also modulated with commercially available systems during treatment for chronic pain and epilepsy, and developments are in progress for treating many other diseases. The electrically evoked compound action potential is a measure of the electrical response from the tissue to stimulation. It provides a direct insight into the electrophysiology of the stimulation, and despite its incorporation into cochlear implants it is a technology that is yet to find its way into commercial peripheral nerve stimulation applications. This review outlines the status of evoked compound action potential measurements on peripheral nerves and highlights the challenges which need to be overcome.
Collapse
Affiliation(s)
- John L Parker
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| | | | | |
Collapse
|
46
|
|
47
|
Russo M, Cousins MJ, Brooker C, Taylor N, Boesel T, Sullivan R, Poree L, Shariati NH, Hanson E, Parker J. Effective Relief of Pain and Associated Symptoms With Closed-Loop Spinal Cord Stimulation System: Preliminary Results of the Avalon Study. Neuromodulation 2017; 21:38-47. [PMID: 28922517 DOI: 10.1111/ner.12684] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Conventional spinal cord stimulation (SCS) delivers a fixed-input of energy into the dorsal column. Physiologic effects such as heartbeat, respiration, spinal cord movement, and history of stimulation can cause both the perceived intensity and recruitment of stimulation to increase or decrease, with clinical consequences. A new SCS system controls stimulation dose by measuring the recruitment of fibers in the dorsal column and by using the amplitude of the evoked compound action potentials (ECAPs) to maintain stimulation within an individualized therapeutic range. Safety and efficacy of this closed-loop system was evaluated through six-month postimplantation. MATERIALS AND METHODS Chronic pain subjects with back and/or leg pain who were successfully trialed received a permanent system (Evoke; Saluda Medical, Sydney, Australia). Ratings of pain (100-mm visual analogue scale [VAS] and Brief Pain Instrument [BPI]), quality of life (EuroQol instrument [EQ-5D-5L]), function (Oswestry Disability Index [ODI]), and sleep (Pittsburgh Sleep Quality Index [PSQI]) were collected at baseline and repeated three and six months after implantation. RESULTS Fifty-one subjects underwent a trial procedure; permanent implants were placed in 36 subjects. The proportion of subjects with ≥50% relief was 92.6% (back) and 91.3% (leg) at three months, and 85.7% (back) and 82.6% (leg) at six months. The proportion with ≥80% pain relief was 70.4% (back) and 56.5% (leg) at three months, and 64.3% (back) and 60.9% (leg) at six months. Statistically significant improvements in mean BPI, EQ-5D-5L, ODI, and PSQI were also observed at both time points. CONCLUSIONS The majority of subjects experienced profound pain relief at three and six months, providing preliminary evidence for the effectiveness of the closed-loop SCS system. The exact mechanism of action for these outcomes is still being explored, although one likely hypothesis holds that ECAP feedback control may minimize recruitment of Aβ nociceptors and Aδ fibers during daily use of SCS.
Collapse
Affiliation(s)
- Marc Russo
- Hunter Pain Clinic, Broadmeadow, New South Wales, Australia
| | - Michael J Cousins
- Pain Management Research Institute and Kolling Institute, University of Sydney at the Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Charles Brooker
- Department of Pain Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Nathan Taylor
- Northern Private Pain Centre, St. Leonards, NSW, Australia
| | | | | | | | | | - Erin Hanson
- Saluda Medical Pty Ltd., Artarmon, NSW, Australia
| | - John Parker
- Saluda Medical Pty Ltd., Artarmon, NSW, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
48
|
Jones MH, Scott J. Scaling of Electrode-Electrolyte Interface Model Parameters In Phosphate Buffered Saline. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:441-448. [PMID: 25148670 DOI: 10.1109/tbcas.2014.2333759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report how the impedance presented by a platinum electrode scales with the concentration of phosphate buffered saline (PBS). We measure the response in various dilutions of PBS with an electrode array as is commonly used in spinal cord stimulator (SCS) implants. We match the parameters of a non-linear electrode-electrolyte interface model to these measurements. We find that the constant phase element of the model scales with approximately the log of concentration, whereas the resistivity is inversely proportional. Using a novel DC measurement technique we show that the onset of Faradaic conduction for a platinum electrode, and thus the safe exposure limit, does not scale with concentration. We compare objective measurements made in saline to those made in the spinal cavity of live sheep. We comment upon the appropriateness of using PBS as a substitute for in-vivo measurements.
Collapse
|
49
|
Abstract
With continuous progress and rapid technological advancement of neuromodulation it is conceivable that within next decade or so, our approach to the electrical stimulation of the spinal cord used in treatment of chronic pain will change radically. The currently used spinal cord stimulation (SCS), with its procedural invasiveness, bulky devices, simplistic stimulation paradigms, and frustrating decline in effectiveness over time will be replaced by much more refined and individually tailored modality. Better understanding of underlying mechanism of action will allow us to use SCS in a more rational way, selecting patient-specific targets and techniques that properly fit each patient with chronic pain based on pain characteristics, distribution, and cause. Based on the information available today, this article will summarize emerging applications of SCS in the treatment of pain and theorize on further developments that may be introduced in the foreseeable future. An overview of clinical and technological innovations will serve as a basis for better understanding of SCS landscape for the next several years.
Collapse
Affiliation(s)
- Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, 912 South Wood Street (MC 799), Chicago, IL, 60612, USA,
| |
Collapse
|
50
|
Levy RM. Progress in the Technology of Neuromodulation: The Emperor's New Clothes? Neuromodulation 2013; 16:285-91. [DOI: 10.1111/ner.12103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|