1
|
Behrendt M. Implications of TRPM3 and TRPM8 for sensory neuron sensitisation. Biol Chem 2024; 405:583-599. [PMID: 39417661 DOI: 10.1515/hsz-2024-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sensory neurons serve to receive and transmit a wide range of information about the conditions of the world around us as well as the external and internal state of our body. Sensitisation of these nerve cells, i.e. becoming more sensitive to stimuli or the emergence or intensification of spontaneous activity, for example in the context of inflammation or nerve injury, can lead to chronic diseases such as neuropathic pain. For many of these disorders there are only very limited treatment options and in order to find and establish new therapeutic approaches, research into the exact causes of sensitisation with the elucidation of the underlying mechanisms and the identification of the molecular components is therefore essential. These components include plasma membrane receptors and ion channels that are involved in signal reception and transmission. Members of the transient receptor potential (TRP) channel family are also expressed in sensory neurons and some of them play a crucial role in temperature perception. This review article focuses on the heat-sensitive TRPM3 and the cold-sensitive TRPM8 (and TRPA1) channels and their importance in sensitisation of dorsal root ganglion sensory neurons is discussed based on studies related to inflammation and injury- as well as chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Marc Behrendt
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, MCTN, Tridomus, Building C, Ludolf-Krehl-Straße 13-17, D-68167 Mannheim, Germany
| |
Collapse
|
2
|
Wu Z, Peng S, Huang W, Zhang Y, Liu Y, Yu X, Shen L. The Role and Function of TRPM8 in the Digestive System. Biomolecules 2024; 14:877. [PMID: 39062591 PMCID: PMC11275170 DOI: 10.3390/biom14070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Transient receptor potential (TRP) melastatin member 8 (TRPM8) is a non-selective cation channel that can be activated by low temperatures (8-26 °C), cooling agents (including menthol analogs such as menthol, icilin, and WS-12), voltage, and extracellular osmotic pressure changes. TRPM8 expression has been identified in the digestive system by several research teams, demonstrating its significant involvement in tissue function and pathologies of the digestive system. Specifically, studies have implicated TRPM8 in various physiological and pathological processes of the esophagus, stomach, colorectal region, liver, and pancreas. This paper aims to comprehensively outline the distinct role of TRPM8 in different organs of the digestive system, offering insights for future mechanistic investigations of TRPM8. Additionally, it presents potential therapeutic targets for treating conditions such as digestive tract inflammation, tumors, sensory and functional disorders, and other related diseases. Furthermore, this paper addresses the limitations of existing studies and highlights the research prospects associated with TRPM8.
Collapse
Affiliation(s)
- Zunan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Wensha Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Yuling Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Yashi Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| |
Collapse
|
3
|
Dvornikova KA, Platonova ON, Bystrova EY. The Role of TRP Channels in Sepsis and Colitis. Int J Mol Sci 2024; 25:4784. [PMID: 38731999 PMCID: PMC11084600 DOI: 10.3390/ijms25094784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
To date, several members of the transient receptor potential (TRP) channels which provide a wide array of roles have been found in the gastrointestinal tract (GI). The goal of earlier research was to comprehend the intricate signaling cascades that contribute to TRP channel activation as well as how these receptors' activity affects other systems. Moreover, there is a large volume of published studies describing the role of TRP channels in a number of pathological disorders, including inflammatory bowel disease (IBD) and sepsis. Nevertheless, the generalizability of these results is subject to certain limitations. For instance, the study of IBD relies on various animal models and experimental methods, which are unable to precisely imitate the multifactorial chronic disease. The diverse pathophysiological mechanisms and unique susceptibility of animals may account for the inconsistency of the experimental data collected. The main purpose of this study was to conduct a comprehensive review and analysis of existing studies on transient receptor potential (TRP) channels implicating specific models of colitis and sepsis, with particular emphasis on their involvement in pathological disorders such as IBD and sepsis. Furthermore, the text endeavors to evaluate the generalizability of experimental findings, taking into consideration the limitations posed by animal models and experimental methodologies. Finally, we also provide an updated schematic of the most important and possible molecular signaling pathways associated with TRP channels in IBD and sepsis.
Collapse
Affiliation(s)
| | | | - Elena Y. Bystrova
- I.P. Pavlov Institute of Physiology RAS, 199034 St. Petersburg, Russia; (K.A.D.); (O.N.P.)
| |
Collapse
|
4
|
Jiang Y, Shen L, Wang B. Non-electrophysiological techniques targeting transient receptor potential (TRP) gene of gastrointestinal tract. Int J Biol Macromol 2024; 262:129551. [PMID: 38367416 DOI: 10.1016/j.ijbiomac.2024.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Transient receptor potential (TRP) channels are cation channels related to a wide range of physical and chemical stimuli, they are expressed all along the gastrointestinal system, and a myriad of diseases are often associated with aberrant expression or mutation of the TRP gene, suggesting that TRPs are promising targets for drug therapy. Therefore, a better understanding of the information of TRPs in health and disease could facilitate the development of effective drugs for the treatment of gastrointestinal diseases like IBD. But there are very few generalizations about the experimental techniques studied in this field. In view of the promise of TRP as a therapeutic target, we discuss experimental methods that can be used for TRPs including their distribution, function and interaction with other proteins, as well as some promising emerging technologies to provide experimental methods for future studies.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
5
|
Luo QQ, Cheng L, Wang B, Chen X, Li WT, Chen SL. ZBTB20 mediates stress-induced visceral hypersensitivity via activating the NF-κB/transient receptor potential channel pathway. Neurogastroenterol Motil 2024; 36:e14718. [PMID: 38009899 DOI: 10.1111/nmo.14718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Psychological stress is a major trigger for visceral hypersensitivity (VH) in irritable bowel syndrome. The zinc finger protein ZBTB20 (ZBTB20) is implicated in somatic nociception via modulating transient receptor potential (TRP) channels, but its role in the development of VH is unclear. This study aimed to investigate the role of ZBTB20/TRP channel axis in stress-induced VH. METHODS Rats were subjected to water avoidance stress (WAS) for 10 consecutive days. Small interfering RNA (siRNA) targeting ZBTB20 was intrathecally administered. Inhibitors of TRP channels, stress hormone receptors, and nuclear factor kappa-B (NF-κB) were administered. Visceromotor response to colorectal distension was recorded. Dorsal root ganglia (DRGs) were dissected for Western blot, coimmunoprecipitation, and chromatin immunoprecipitation. The DRG-derived neuron cell line was applied for specific research. KEY RESULTS WAS-induced VH was suppressed by the inhibitor of TRPV1, TRPA1, or TRPM8, with enhanced expression of these channels in L6-S2 DRGs. The inhibitor of glucocorticoid receptor or β2-adrenergic receptor counteracted WAS-induced VH and TRP channel expression. Concurrently, WAS-induced stress hormone-dependent ZBTB20 expression and NF-κB activation in DRGs. Intrathecally injected ZBTB20 siRNA or an NF-κB inhibitor repressed WAS-caused effect. In cultured DRG-derived neurons, stress hormones promoted nuclear translocation of ZBTB20, which preceded p65 nuclear translocation. And, ZBTB20 siRNA suppressed stress hormone-caused NF-κB activation. Finally, WAS enhanced p65 binding to the promoter of TRPV1, TRPA1, or TRPM8 in rat DRGs. CONCLUSIONS AND INFERENCES ZBTB20 mediates stress-induced VH via activating NF-κB/TRP channel pathway in nociceptive sensory neurons.
Collapse
Affiliation(s)
- Qing-Qing Luo
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Cheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bo Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xin Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wen-Ting Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Sheng-Liang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
6
|
Zhang Z, Yan X, Kang L, Leng Z, Ji Y, Yang S, Du X, Fang K, Wang Z, Li Z, Sun M, Zhao Z, Feng A, Chen Z, Zhang S, Wan D, Chen T, Xu M. TRPM8 inhibits substance P release from primary sensory neurons via PKA/GSK-3beta to protect colonic epithelium in colitis. Cell Death Dis 2024; 15:91. [PMID: 38280896 PMCID: PMC10821925 DOI: 10.1038/s41419-024-06480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a cold sensory receptor in primary sensory neurons that regulates various neuronal functions. Substance P (SP) is a pro-inflammatory neuropeptide secreted by the neurons, and it aggravates colitis. However, the regulatory role of TRPM8 in SP release is still unclear. Our study aimed to investigate TRPM8's role in SP release from primary sensory neurons during colitis and clarify the effect of SP on colonic epithelium. We analyzed inflammatory bowel disease patients' data from the Gene Expression Omnibus dataset. Dextran sulfate sodium (DSS, 2.5%)-induced colitis in mice, mouse dorsal root ganglion (DRG) neurons, ND7/23 cell line, and mouse or human colonic organoids were used for this experiment. Our study found that TRPM8, TAC1 and WNT3A expression were significantly correlated with the severity of ulcerative colitis in patients and DSS-induced colitis in mice. The TRPM8 agonist (menthol) and the SP receptor antagonist (Aprepitant) can attenuate colitis in mice, but the effects were not additive. Menthol promoted calcium ion influx in mouse DRG neurons and inhibited the combination and phosphorylation of PKAca from the cAMP signaling pathway and GSK-3β from the Wnt/β-catenin signaling pathway, thereby inhibiting the effect of Wnt3a-driven β-catenin on promoting SP release in ND7/23 cells. Long-term stimulation with SP inhibited proliferation and enhanced apoptosis in both mouse and human colonic organoids. Conclusively, TRPM8 inhibits SP release from primary sensory neurons by inhibiting the interaction between PKAca and GSK-3β, thereby inhibiting the role of SP in promoting colonic epithelial apoptosis and relieving colitis.
Collapse
Affiliation(s)
- Zehua Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohan Yan
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhuyun Leng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingjie Ji
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuangzhu Yang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojing Du
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kang Fang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zeyu Wang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoxing Li
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mingchuang Sun
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziying Zhao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Anqi Feng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhukai Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shihan Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong Wan
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Meidong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Pagano E, Romano B, Cicia D, Iannotti FA, Venneri T, Lucariello G, Nanì MF, Cattaneo F, De Cicco P, D'Armiento M, De Luca M, Lionetti R, Lama S, Stiuso P, Zoppoli P, Falco G, Marchianò S, Fiorucci S, Capasso R, Di Marzo V, Borrelli F, Izzo AA. TRPM8 indicates poor prognosis in colorectal cancer patients and its pharmacological targeting reduces tumour growth in mice by inhibiting Wnt/β-catenin signalling. Br J Pharmacol 2023; 180:235-251. [PMID: 36168728 PMCID: PMC10092658 DOI: 10.1111/bph.15960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/22/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential melastatin type-8 (TRPM8) is a cold-sensitive cation channel protein belonging to the TRP superfamily of ion channels. Here, we reveal the molecular mechanism of TRPM8 and its clinical relevance in colorectal cancer (CRC). EXPERIMENTAL APPROACH TRPM8 expression and its correlation with the survival rate of CRC patients was analysed. To identify the key pathways and genes related to TRPM8 high expression, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted in CRC patients. TRPM8 functional role was assessed by using Trpm8-/- mice in models of sporadic and colitis-associated colon cancer. TRPM8 pharmacological targeting by WS12 was evaluated in murine models of CRC. KEY RESULTS TRPM8 is overexpressed in colon primary tumours and in CD326+ tumour cell fraction. TRPM8 high expression was related to lower survival rate of CRC patients, Wnt-Frizzled signalling hyperactivation and adenomatous polyposis coli down-regulation. In sporadic and colitis-associated models of colon cancer, either absence or pharmacological desensitization of TRPM8 reduced tumour development via inhibition of the oncogenic Wnt/β-catenin signalling. TRPM8 pharmacological blockade reduced tumour growth in CRC xenograft mice by reducing the transcription of Wnt signalling regulators and the activation of β-catenin and its target oncogenes such as C-Myc and Cyclin D1. CONCLUSION AND IMPLICATIONS Human data provide valuable insights to propose TRPM8 as a prognostic marker with a negative predictive value for CRC patient survival. Animal experiments demonstrate TRPM8 involvement in colon cancer pathophysiology and its potential as a drug target for CRC.
Collapse
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Donatella Cicia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fabio A Iannotti
- Institute of Biomolecular Chemistry ICB, CNR, Pozzuoli, Naples, Italy
| | - Tommaso Venneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Francesca Nanì
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria D'Armiento
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Marcello De Luca
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ruggiero Lionetti
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Stefania Lama
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Geppino Falco
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry ICB, CNR, Pozzuoli, Naples, Italy.,Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, Canada.,Centre de Recherche de l'Institut de Pneumologie et Cardiologie de l'Université Laval, Faculté de Médecine, Université Laval, Québec, Canada.,Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Hernández-Ortego P, Torres-Montero R, de la Peña E, Viana F, Fernández-Trillo J. Validation of Six Commercial Antibodies for the Detection of Heterologous and Endogenous TRPM8 Ion Channel Expression. Int J Mol Sci 2022; 23:ijms232416164. [PMID: 36555804 PMCID: PMC9784522 DOI: 10.3390/ijms232416164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
TRPM8 is a non-selective cation channel expressed in primary sensory neurons and other tissues, including the prostate and urothelium. Its participation in different physiological and pathological processes such as thermoregulation, pain, itch, inflammation and cancer has been widely described, making it a promising target for therapeutic approaches. The detection and quantification of TRPM8 seems crucial for advancing the knowledge of the mechanisms underlying its role in these pathophysiological conditions. Antibody-based techniques are commonly used for protein detection and quantification, although their performance with many ion channels, including TRPM8, is suboptimal. Thus, the search for reliable antibodies is of utmost importance. In this study, we characterized the performance of six TRPM8 commercial antibodies in three immunodetection techniques: Western blot, immunocytochemistry and immunohistochemistry. Different outcomes were obtained for the tested antibodies; two of them proved to be successful in detecting TRPM8 in the three approaches while, in the conditions tested, the other four were acceptable only for specific techniques. Considering our results, we offer some insight into the usefulness of these antibodies for the detection of TRPM8 depending on the methodology of choice.
Collapse
|
9
|
López‐Estévez S, López‐Torrellardona JM, Parera M, Martínez V. Long-lasting visceral hypersensitivity in a model of DSS-induced colitis in rats. Neurogastroenterol Motil 2022; 34:e14441. [PMID: 36239298 PMCID: PMC9787759 DOI: 10.1111/nmo.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Persistent visceral hypersensitivity is a key component of functional and inflammatory gastrointestinal diseases. Current animal models fail to fully reproduce the characteristics of visceral pain in humans, particularly as it relates to persistent hypersensitivity. This work explores the validity of DSS-induced colitis in rats as a model to mimic chronic intestinal hypersensitivity. METHODS Exposure to DSS (5% for 7 days) was used to induce colitis in rats. Thereafter, changes in viscerosensitivity (visceromotor responses to colorectal distension-CRD), the presence of somatic referred pain (mechanosensitivity of the hind paws, von Frey test) and the expression (qRT-PCR) of sensory-related markers (colon, lumbosacral DRGs, and lumbosacral spinal cord) were assessed at different times during the 35 days period after colitis induction. RESULTS Following colitis, a sustained increase in visceromotor responses to CRD were observed, indicative of the presence of visceral hypersensitivity. Responses in animals without colitis remained stable over time. In colitic animals, somatic referred hypersensitivity was also detected. DSS-induced colitis was associated to a differential expression of sensory-related markers (with both pro- and anti-nociceptive action) in the colon, lumbosacral DRGs and lumbosacral spinal cord; indicating the presence of peripheral and central sensitization. CONCLUSIONS AND INFERENCES DSS-induced colitis in rats is associated to the generation of a long-lasting state of visceral (colonic) hypersensitivity, despite clinical colitis resolution. This model reproduces the changes in intestinal sensitivity characteristics of inflammatory and functional gastrointestinal disorders in humans and can be used in the characterization of new pharmacological treatments against visceral pain.
Collapse
Affiliation(s)
- Sergio López‐Estévez
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Marc Parera
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
- Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
10
|
Plaza‐Cayón A, González‐Muñiz R, Martín‐Martínez M. Mutations of TRPM8 channels: Unraveling the molecular basis of activation by cold and ligands. Med Res Rev 2022; 42:2168-2203. [PMID: 35976012 PMCID: PMC9805079 DOI: 10.1002/med.21920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 01/09/2023]
Abstract
The cation nonselective channel TRPM8 is activated by multiple stimuli, including moderate cold and various chemical compounds (i.e., menthol and icilin [Fig. 1], among others). While research continues growing on the understanding of the physiological involvement of TRPM8 channels and their role in various pathological states, the information available on its activation mechanisms has also increased, supported by mutagenesis and structural studies. This review compiles known information on specific mutations of channel residues and their consequences on channel viability and function. Besides, the comparison of sequence of animals living in different environments, together with chimera and mutagenesis studies are helping to unravel the mechanism of adaptation to different temperatures. The results of mutagenesis studies, grouped by different channel regions, are compared with the current knowledge of TRPM8 structures obtained by cryo-electron microscopy. Trying to make this review self-explicative and highly informative, important residues for TRPM8 function are summarized in a figure, and mutants, deletions and chimeras are compiled in a table, including also the observed effects by different methods of activation and the corresponding references. The information provided by this review may also help in the design of new ligands for TRPM8, an interesting biological target for therapeutic intervention.
Collapse
|
11
|
Du Y, Chen J, Shen L, Wang B. TRP channels in inflammatory bowel disease: potential therapeutic targets. Biochem Pharmacol 2022; 203:115195. [DOI: 10.1016/j.bcp.2022.115195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022]
|
12
|
Expression of TRP Channels in Colonic Mucosa of IBS-D Patients and Its Correlation with the Severity of the Disease. Gastroenterol Res Pract 2022; 2022:7294775. [PMID: 35677724 PMCID: PMC9168202 DOI: 10.1155/2022/7294775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Aim Lots of researches have endeavored to elucidate the pathogenetic mechanism of visceral hypersensitivity in order to guide the therapy of diarrhea predominant-irritable bowel syndrome (IBS-D). Transient receptor potential (TRP) channels and their role in visceral nociception have been vastly investigated. We investigated the expression of TRP channels in IBS-D colonic biopsies and its correlation with the severity of the disease. Methods Sigmoid biopsies were obtained from 34 IBS-D patients and 28 healthy controls (HCs). IBS-D was diagnosed according to Rome IV criteria. Their clinical parameters were assessed through questionnaires. Expression of TRPV1, TRPV4, TRPA1, TRPM2, and TRPM8 was evaluated with immunohistology staining. Results Expression levels of TRPV1, TRPV4, and TRPA1 in the colonic mucosa of IBS-D patients were significantly higher than those in HCs (p < 0.05), while there was no obvious difference of TRPM2 and TRPM8 expression between IBS-D patients and HCs. In addition, the expression levels of TRPV1 and TRPA1, but TRPV4, in the colonic mucosa correlated positively with the severity of diseases (r = 0.6303 and 0.4506, respectively, p < 0.05). Conclusions Expression of TRPV1, TRPA1, and TRPV4 in the colonic mucosa was enhanced in IBS-D patients compared with HCs with the former two correlated with the severity of the disease. TRP channels might be promising biomarkers in the diagnosis and estimate of the severity in IBS-D.
Collapse
|
13
|
AMTB, a TRPM8 antagonist, suppresses growth and metastasis of osteosarcoma through repressing the TGFβ signaling pathway. Cell Death Dis 2022; 13:288. [PMID: 35361751 PMCID: PMC8971393 DOI: 10.1038/s41419-022-04744-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Since its first identification in prostate cancers and prostate tissues, transient receptor potential melastatin-subfamily member 8 (TRPM8) is subsequently found to be overexpressed in a wide range of cancers and is shown to be implicated in tumorigenesis and tumor progression. Here, we used N-(3-aminopropyl)-2-[(3-methylphenyl) methoxy] -N-(2-thienylmethyl) benzamide hydrochloride (AMTB), a specific TRPM8 antagonist, to explore its antitumoral effect on osteosarcoma. We find that AMTB suppresses osteosarcoma cell proliferation, metastasis and induces cellular apoptosis. Xenograft model in nude mice experiments also define that AMTB can increase the sensitivity of tumor cells to cisplatin, the cytotoxic chemotherapeutic regimens in treating osteosarcoma. Molecularly, AMTB specifically antagonizes TRPM8 which is upregulated in osteosarcoma and its expression level in osteosarcoma tissues is negatively related to patients’ prognosis. Finally, RNA sequencing analysis was performed to explore the mechanism underlying the antitumoral effect of AMTB on osteosarcoma cells and the results prove that AMTB suppresses the Transforming Growth Factor β (TGFβ) signaling pathway. Our study provides evidence that TRPM8 could be a potential therapeutic target and AMTB can suppress growth and metastasis of osteosarcoma cells through repressing the TGFβ signaling pathway and increase the sensitivity of tumor cells to cisplatin.
Collapse
|
14
|
Izquierdo C, Martín-Martínez M, Gómez-Monterrey I, González-Muñiz R. TRPM8 Channels: Advances in Structural Studies and Pharmacological Modulation. Int J Mol Sci 2021; 22:ijms22168502. [PMID: 34445208 PMCID: PMC8395166 DOI: 10.3390/ijms22168502] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The transient receptor potential melastatin subtype 8 (TRPM8) is a cold sensor in humans, activated by low temperatures (>10, <28 °C), but also a polymodal ion channel, stimulated by voltage, pressure, cooling compounds (menthol, icilin), and hyperosmolarity. An increased number of experimental results indicate the implication of TRPM8 channels in cold thermal transduction and pain detection, transmission, and maintenance in different tissues and organs. These channels also have a repercussion on different kinds of life-threatening tumors and other pathologies, which include urinary and respiratory tract dysfunctions, dry eye disease, and obesity. This compendium firstly covers newly described papers on the expression of TRPM8 channels and their correlation with pathological states. An overview on the structural knowledge, after cryo-electron microscopy success in solving different TRPM8 structures, as well as some insights obtained from mutagenesis studies, will follow. Most recently described families of TRPM8 modulators are also covered, along with a section of molecules that have reached clinical trials. To finalize, authors provide an outline of the potential prospects in the TRPM8 field.
Collapse
Affiliation(s)
- Carolina Izquierdo
- Departamento de Biomiméticos, Instituto de Química Médica, Juan de la Cierva 3, 28006 Madrid, Spain; (C.I.); (M.M.-M.)
- Programa de Doctorado en Química Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mercedes Martín-Martínez
- Departamento de Biomiméticos, Instituto de Química Médica, Juan de la Cierva 3, 28006 Madrid, Spain; (C.I.); (M.M.-M.)
| | - Isabel Gómez-Monterrey
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
- Correspondence: (I.G.-M.); (R.G.-M.)
| | - Rosario González-Muñiz
- Departamento de Biomiméticos, Instituto de Química Médica, Juan de la Cierva 3, 28006 Madrid, Spain; (C.I.); (M.M.-M.)
- Correspondence: (I.G.-M.); (R.G.-M.)
| |
Collapse
|
15
|
Ustaoglu A, Sawada A, Lee C, Lei WY, Chen CL, Hackett R, Sifrim D, Peiris M, Woodland P. Heartburn sensation in nonerosive reflux disease: pattern of superficial sensory nerves expressing TRPV1 and epithelial cells expressing ASIC3 receptors. Am J Physiol Gastrointest Liver Physiol 2021; 320:G804-G815. [PMID: 33655767 DOI: 10.1152/ajpgi.00013.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The underlying causes of heartburn, characteristic symptom of gastroesophageal reflux disease (GERD), remain incompletely understood. Superficial afferent innervation of the esophageal mucosa in nonerosive reflux disease (NERD) may drive nociceptive reflux perception, but its acid-sensing role has not yet been established. Transient receptor potential vanilloid subfamily member-1 (TRPV1), transient receptor potential melastatin 8 (TRPM8), and acid-sensing ion channel 3 (ASIC3) are regulators of sensory nerve activity and could be important reflux-sensing receptors within the esophageal mucosa. We characterized TRPV1, TRPM8, and ASIC3 expression in esophageal mucosa of patients with GERD. We studied 10 patients with NERD, 10 with erosive reflux disease (ERD), 7 with functional heartburn (FH), and 8 with Barrett's esophagus (BE). Biopsies obtained from the distal esophageal mucosa were costained with TRPV1, TRPM8, or ASIC3, and CGRP, CD45, or E-cadherin. RNA expression of TRPV1, TRPM8, and ASIC3 was assessed using qPCR. Patients with NERD had significantly increased expression of TRPV1 on superficial sensory nerves compared with ERD (P = 0.028) or BE (P = 0.017). Deep intrapapillary nerve endings did not express TRPV1 in all phenotypes studied. ASIC3 was exclusively expressed on epithelial cells most significantly in patients with NERD and ERD (P ≤0.0001). TRPM8 was expressed on submucosal CD45+ leukocytes. Superficial localization of TRPV1-immunoreactive nerves in NERD, and increased ASIC3 coexpression on epithelial cells in NERD and ERD, suggests a mechanism for heartburn sensation. Esophageal epithelial cells may play a sensory role in acid reflux perception and act interdependently with TRPV1-expressing mucosal nerves to augment hypersensitivity in patients with NERD, raising the enticing possibility of topical antagonists for these ion channels as a therapeutic option.NEW & NOTEWORTHY We demonstrate for the first time that increased pain perception in patients with nonerosive reflux disease likely results from expression of acid-sensitive channels on superficial mucosal afferents and esophageal epithelial cells, raising the potential for topical therapy.
Collapse
Affiliation(s)
- Ahsen Ustaoglu
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Akinari Sawada
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Chung Lee
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Wei-Yi Lei
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Chien-Lin Chen
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Richard Hackett
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Daniel Sifrim
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Madusha Peiris
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Philip Woodland
- Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
16
|
Fouad A, Matsumoto K, Amagase K, Yasuda H, Tominaga M, Kato S. Protective Effect of TRPM8 against Indomethacin-Induced Small Intestinal Injury via the Release of Calcitonin Gene-Related Peptide in Mice. Biol Pharm Bull 2021; 44:947-957. [PMID: 34193690 DOI: 10.1248/bpb.b21-00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a non-selective cation channel activated by mild cooling and chemical agents including menthol. Nonsteroidal anti-inflammatory drugs have antipyretic, analgesic effects, and they can cause stomach and small intestinal injury. The current study investigated the role of TRPM8 in the pathogenesis of indomethacin-induced small intestinal injury. In male TRPM8-deficient (TRPM8KO) and wild-type (WT) mice, intestinal injury was induced via the subcutaneous administration of indomethacin. In addition, the effect of WS-12, a specific TRPM8 agonist, was examined in TRPM8KO and WT mice with indomethacin-induced intestinal injury. TRPM8KO mice had a significantly higher intestinal ulcerogenic response to indomethacin than WT mice. The repeated administration of WS-12 significantly attenuated the severity of intestinal injury in WT mice. However, this response was abrogated in TRPM8KO mice. Furthermore, in TRPM8-enhanced green fluorescent protein (EGFP) transgenic mice, which express EGFP under the direction of TRPM8 promoter, the EGFP signals in the indomethacin-treated intestinal mucosa were upregulated. Further, the EGFP signals were commonly found in calcitonin gene-related peptide (CGRP)-positive sensory afferent neurons and partly colocalized with substance P (SP)-positive neurons in the small intestine. The intestinal CGRP-positive neurons were significantly upregulated after the administration of indomethacin in WT mice. Nevertheless, this response was abrogated in TRPM8KO mice. In contrast, indomethacin increased the expression of intestinal SP-positive neurons in not only WT mice but also TRPM8KO mice. Thus, TRPM8 has a protective effect against indomethacin-induced small intestinal injury. This response may be mediated by the upregulation of CGRP, rather than SP.
Collapse
Affiliation(s)
- Aliaa Fouad
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
- Laboratory of Pharmacology and Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Hiroyuki Yasuda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences)
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| |
Collapse
|
17
|
Geiger S, Patra AK, Schrapers KT, Braun HS, Aschenbach JR. Menthol stimulates calcium absorption in the rumen but not in the jejunum of sheep. J Dairy Sci 2020; 104:3067-3081. [PMID: 33358813 DOI: 10.3168/jds.2020-19372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
Stimulation of Ca2+ absorption can counteract hypocalcemia at the onset of lactation. The plant bioactive lipid compound (PBLC) menthol is an agonist for nonselective cation channels of the transient receptor potential (TRP) family. It acutely stimulated Ca2+ absorption in ruminal epithelia of nonadapted animals ex vivo and caused higher plasma Ca2+ concentrations in cows and sheep in vivo. To elucidate the pathway by which menthol feeding increases plasma Ca2+ level, the present study aimed to investigate the long-term dose-dependent effects of dietary menthol-rich PBLC on Ca2+ absorption and mRNA abundances of TRP channels in both rumen and jejunum. Twenty-four growing Suffolk sheep were equally distributed to a Con, PBLC-L, and PBLC-H group, which received 0, 80, and 160 mg/d of a menthol-rich PBLC. After 4 wk, ruminal and jejunal epithelia were analyzed for mRNA abundances of TRPA1, TRPV3, TRPV5-6, and TRPM6-8 genes. The Ca2+ flux rates and electrophysiological properties of epithelia from rumen and mid-jejunum were measured in Ussing chambers in the presence and absence of mucosal Na+. Acute changes in Ca2+ flux rates were measured after mucosal application of 50 µM menthol. Ruminal epithelia had quantifiable transcripts of TRPV3 = TRPM6 >TRPM7 >TRPA1 with no difference among feeding groups. Jejunum had quantifiable transcripts of TRPM7 >TRPA1 ≥ TRPM6 ≥ TRPV6 >TRPV5, where TRPA1, TRPV5, and TRPV6 tended to decrease linearly with increasing PBLC dose. Absorptive net flux of Ca2+ was detected only in the rumen, whereas jejunum showed a high passive permeability to Ca2+. Net flux rates of Ca2+ in the rumen increased in a quadratic manner (highest in PBLC-L animals) and were systematically decreased with the omission of mucosal Na+. Short-circuit current increased in both PBLC feeding groups compared with Con only in the rumen. Acute application of menthol-stimulated mucosal-to-serosal and net Ca2+ flux rates only in ruminal epithelia with higher stimulation in PBLC-fed animals. We conclude that Ca2+ transport is mainly active and transcellular in the rumen. It most likely involves TRPV3 that can be stimulated by menthol. Pre-feeding of menthol-rich PBLC enhances ruminal Ca2+ absorption and sensitizes it to acute stimulation by menthol. By contrast, intestinal Ca2+ absorption is not sensitive to menthol stimulation. Menthol could be used as a tool to enhance ruminal Ca2+ absorption and to prevent hypocalcemia in dairy cows.
Collapse
Affiliation(s)
- S Geiger
- Institute of Veterinary Physiology, Freie Universität Berlin, D-14163 Berlin, Germany
| | - A K Patra
- Institute of Veterinary Physiology, Freie Universität Berlin, D-14163 Berlin, Germany; Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 700037 Kolkata, India
| | | | - H S Braun
- PerformaNat GmbH, D-14163 Berlin, Germany
| | - J R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, D-14163 Berlin, Germany.
| |
Collapse
|
18
|
Increased Transient Receptor Potential Melastatin 8 Expression in the Development of Bladder Pain in Patients With Interstitial Cystitis/Bladder Pain Syndrome. Urology 2020; 146:301.e1-301.e6. [PMID: 33045289 DOI: 10.1016/j.urology.2020.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To explore the role of transient receptor potential melastatin 8 (TRPM8) in the occurrence and development of bladder pain in interstitial cystitis/bladder pain syndrome (IC/BPS) patients. The differences in the content and location distribution of TRPM8 in bladder were compared between IC/BPS and control group. METHODS All enrolled patients answered questionnaire such as O'leary-Sant symptom index, visual analog scale (VAS), quality of life (QOL), and pelvic pain and urinary urgency frequency (PUF) score, then bladder specimens were collected. Analyses such as qRT-PCR, western blot, and immunofluorescence were performed to determine the changes in TRPM8 content and expression in neurons and sensory nerves between the IC/BPS and control group, and the relationships between TRPM8 and various clinical scores were also analyzed. RESULTS There were significant differences in the O'leary-Sant score, PUF score, VAS, and QOL score between IC/BPS and the control group (P < .05). Compared with the control group, the expression levels of TRPM8 mRNA and protein were significantly increased in the IC/BPS bladder tissues (P < .01). Immunofluorescence examination also revealed that (1) the number of neurons and sensory nerves displayed a significant upward trend in the bladder tissue of IC/BPS patients (2) the expression levels of TRPM8 on neurons and sensory nerves also increased significantly in IC/BPS group. CONCLUSION In IC/BPS patients, TRPM8 content increased significantly and mainly expressed on increased neurons and sensory nerves in bladder tissue. These results may indicate a mechanism by which bladder pain is more easily to spread in IC/BPS patients, and may also indicate an important mechanism for pain sensitization in such patients.
Collapse
|
19
|
TRPM8 Channel Activation Reduces the Spontaneous Contractions in Human Distal Colon. Int J Mol Sci 2020; 21:ijms21155403. [PMID: 32751347 PMCID: PMC7432081 DOI: 10.3390/ijms21155403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
The transient receptor potential-melastatin 8 (TRPM8) is a non-selective Ca2+-permeable channel, activated by cold, membrane depolarization, and different cooling compounds. TRPM8 expression has been found in gut mucosal, submucosal, and muscular nerve endings. Although TRPM8 plays a role in pathological conditions, being involved in visceral pain and inflammation, the physiological functions in the digestive system remain unclear as yet. The aims of the present study were: (i) to verify the TRPM8 expression in human distal colon; (ii) to examine the effects of TRPM8 activation on colonic contractility; (iii) to characterize the mechanism of action. Reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting were used to analyze TRPM8 expression. The responses of human colon circular strips to different TRPM8 agonists [1-[Dialkyl-phosphinoyl]-alkane (DAPA) 2–5, 1-[Diisopropyl-phosphinoyl]-alkane (DIPA) 1–7, DIPA 1–8, DIPA 1–9, DIPA 1–10, and DIPA 1–12) were recorded using a vertical organ bath. The biomolecular analysis revealed gene and protein expression of TRPM8 in both mucosal and smooth muscle layers. All the agonists tested, except-DIPA 1–12, produced a concentration-dependent decrease in spontaneous contraction amplitude. The effect was significantly antagonized by 5-benzyloxytryptamine, a TRPM8 antagonist. The DIPA 1–8 agonist resulted in the most efficacious and potent activation among the tested molecules. The DIPA 1–8 effects were not affected by tetrodotoxin, a neural blocker, but they were significantly reduced by tetraethylammonium chloride, a non-selective blocker of K+ channels. Moreover, iberiotoxin, a blocker of the large-conductance Ca2+-dependent K+-channels, but not apamin, a blocker of small-conductance Ca2+-dependent K+ channels, significantly reduced the inhibitory DIPA 1–8 actions. The results of the present study demonstrated that TRPM8 receptors are also expressed in human distal colon in healthy conditions and that ligand-dependent TRPM8 activation is able to reduce the colonic spontaneous motility, probably by the opening of the large-conductance Ca2+-dependent K+-channels.
Collapse
|
20
|
Liu Y, Mikrani R, He Y, Faran Ashraf Baig MM, Abbas M, Naveed M, Tang M, Zhang Q, Li C, Zhou X. TRPM8 channels: A review of distribution and clinical role. Eur J Pharmacol 2020; 882:173312. [PMID: 32610057 DOI: 10.1016/j.ejphar.2020.173312] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Ion channels are important therapeutic targets due to their plethoric involvement in physiological and pathological consequences. The transient receptor potential cation channel subfamily M member 8 (TRPM8) is a nonselective cation channel that controls Ca2+ homeostasis. It has been proposed to be the predominant thermoreceptor for cellular and behavioral responses to cold stimuli in the transient receptor potential (TRP) channel subfamilies and exploited so far to reach the clinical-stage of drug development. TRPM8 channels can be found in multiple organs and tissues, regulating several important processes such as cell proliferation, migration and apoptosis, inflammatory reactions, immunomodulatory effects, pain, and vascular muscle tension. The related disorders have been expanded to new fields ranging from cancer and migraine to dry eye disease, pruritus, irritable bowel syndrome (IBS), and chronic cough. This review is aimed to summarize the distribution of TRPM8 and disorders related to it from a clinical perspective, so as to broaden the scope of knowledge of researchers to conduct more studies on this subject.
Collapse
Affiliation(s)
- Yuqian Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Yanjun He
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Muhammad Naveed
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Meng Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, PR China; Department of Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, PR China; Department of Surgery, Nanjing Shuiximen Hospital, Jiangsu Province, 210017, PR China.
| |
Collapse
|
21
|
Chen Y, Mu J, Zhu M, Mukherjee A, Zhang H. Transient Receptor Potential Channels and Inflammatory Bowel Disease. Front Immunol 2020; 11:180. [PMID: 32153564 PMCID: PMC7044176 DOI: 10.3389/fimmu.2020.00180] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
The transient receptor potential (TRP) cation channels are present in abundance across the gastrointestinal (GI) tract, serving as detectors for a variety of stimuli and secondary transducers for G-protein coupled receptors. The activation of TRP channels triggers neurogenic inflammation with related neuropeptides and initiates immune reactions by extra-neuronally regulating immune cells, contributing to the GI homeostasis. However, under pathological conditions, such as inflammatory bowel disease (IBD), TRP channels are involved in intestinal inflammation. An increasing number of human and animal studies have indicated that TRP channels are correlated to the visceral hypersensitivity (VHS) and immune pathogenesis in IBD, leading to an exacerbation or amelioration of the VHS or intestinal inflammation. Thus, TRP channels are a promising target for novel therapeutic methods for IBD. In this review, we comprehensively summarize the functions of TRP channels, especially their potential roles in immunity and IBD. Additionally, we discuss the contradictory findings of prior studies and offer new insights with regard to future research.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jingxi Mu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Alaimo A, Rubert J. The Pivotal Role of TRP Channels in Homeostasis and Diseases throughout the Gastrointestinal Tract. Int J Mol Sci 2019; 20:ijms20215277. [PMID: 31652951 PMCID: PMC6862298 DOI: 10.3390/ijms20215277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
The transient receptor potential (TRP) channels superfamily are a large group of proteins that play crucial roles in cellular processes. For example, these cation channels act as sensors in the detection and transduction of stimuli of temperature, small molecules, voltage, pH, and mechanical constrains. Over the past decades, different members of the TRP channels have been identified in the human gastrointestinal (GI) tract playing multiple modulatory roles. Noteworthy, TRPs support critical functions related to the taste perception, mechanosensation, and pain. They also participate in the modulation of motility and secretions of the human gut. Last but not least, altered expression or activity and mutations in the TRP genes are often related to a wide range of disorders of the gut epithelium, including inflammatory bowel disease, fibrosis, visceral hyperalgesia, irritable bowel syndrome, and colorectal cancer. TRP channels could therefore be promising drug targets for the treatment of GI malignancies. This review aims at providing a comprehensive picture of the most recent advances highlighting the expression and function of TRP channels in the GI tract, and secondly, the description of the potential roles of TRPs in relevant disorders is discussed reporting our standpoint on GI tract–TRP channels interactions.
Collapse
Affiliation(s)
- Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| | - Josep Rubert
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| |
Collapse
|
23
|
De Caro C, Russo R, Avagliano C, Cristiano C, Calignano A, Aramini A, Bianchini G, Allegretti M, Brandolini L. Antinociceptive effect of two novel transient receptor potential melastatin 8 antagonists in acute and chronic pain models in rat. Br J Pharmacol 2018; 175:1691-1706. [PMID: 29485712 DOI: 10.1111/bph.14177] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential (TRP) channels are a superfamily of non-selective cation permeable channels involved in peripheral sensory signalling. Animal studies have shown that several TRPs are important players in pain modulation. Among them, the TRP melastatin 8 (TRPM8) has elicited more interest for its controversial role in nociception. This channel, expressed by a subpopulation of sensory neurons in dorsal root ganglia (DRG) and trigeminal ganglia (TG), is activated by cold temperatures and cooling agents. In experimental neuropathic pain models, an up-regulation of this receptor in DRG and TG has been observed, suggesting a key role for TRPM8 in the development and maintenance of pain. Consistent with this hypothesis, TRPM8 knockout mice are less responsive to pain stimuli. EXPERIMENTAL APPROACH In this study, the therapeutic potential and efficacy of two novel TRPM8 antagonists, DFL23693 and DFL23448, were tested. KEY RESULTS Two potent and selective TRPM8 antagonists with distinct pharmacokinetic profiles, DFL23693 and DFL23448, have been fully characterized in vitro. In vivo studies in well-established models, namely, the wet-dog shaking test and changes in body temperature, confirmed their ability to block the TRPM8 channel. Finally, TRPM8 blockage resulted in a significant antinociceptive effect in formalin-induced orofacial pain and in chronic constriction injury-induced neuropathic pain, confirming an important role for this channel in pain perception. CONCLUSION AND IMPLICATIONS Our findings, in agreement with previous literature, encourage further studies for a better comprehension of the therapeutic potential of TRPM8 blockers as novel agents for pain management.
Collapse
Affiliation(s)
- Carmen De Caro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, Catanzaro, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | | | | |
Collapse
|
24
|
Assessment of the TRPM8 inhibitor AMTB in breast cancer cells and its identification as an inhibitor of voltage gated sodium channels. Life Sci 2018; 198:128-135. [DOI: 10.1016/j.lfs.2018.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/11/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
|
25
|
Utsumi D, Matsumoto K, Tsukahara T, Amagase K, Tominaga M, Kato S. Transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 contribute to the progression of colonic inflammation in dextran sulfate sodium-induced colitis in mice: Links to calcitonin gene-related peptide and substance P. J Pharmacol Sci 2018; 136:121-132. [DOI: 10.1016/j.jphs.2017.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/12/2017] [Accepted: 12/25/2017] [Indexed: 12/13/2022] Open
|
26
|
Beckers AB, Weerts ZZRM, Helyes Z, Masclee AAM, Keszthelyi D. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome. Aliment Pharmacol Ther 2017; 46:938-952. [PMID: 28884838 DOI: 10.1111/apt.14294] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/06/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Abdominal pain in irritable bowel syndrome (IBS) remains challenging to treat effectively. Researchers have attempted to elucidate visceral nociceptive processes in order to guide treatment development. Transient receptor potential (TRP) channels have been implied in the generation (TRPV1, TRPV4, TRPA1) and inhibition (TRPM8) of visceral pain signals. Pathological changes in their functioning have been demonstrated in inflammatory conditions, and appear to be present in IBS as well. AIM To provide a comprehensive review of the current literature on TRP channels involved in visceral nociception. In particular, we emphasise the clinical implications of these nociceptors in the treatment of IBS. METHODS Evidence to support this review was obtained from an electronic database search via PubMed using the search terms "visceral nociception," "visceral hypersensitivity," "irritable bowel syndrome" and "transient receptor potential channels." After screening the abstracts the articles deemed relevant were cross-referenced for additional manuscripts. RESULTS Recent studies have resulted in significant advances in our understanding of TRP channel mediated visceral nociception. The diversity of TRP channel sensitization pathways is increasingly recognised. Endogenous TRP agonists, including poly-unsaturated fatty acid metabolites and hydrogen sulphide, have been implied in augmented visceral pain generation in IBS. New potential targets for treatment development have been identified (TRPA1 and TRPV4,) and alternative means of affecting TRP channel signalling (partial antagonists, downstream targeting and RNA-based therapy) are currently being explored. CONCLUSIONS The improved understanding of mechanisms involved in visceral nociception provides a solid basis for the development of new treatment strategies for abdominal pain in IBS.
Collapse
Affiliation(s)
- A B Beckers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - Z Z R M Weerts
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - Z Helyes
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Team, University of Pécs Medical School, János Szentágothai Research Centre, University of Pécs, Pécs, Baranya, Hungary
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - D Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| |
Collapse
|
27
|
The anthelminthic drug praziquantel is a selective agonist of the sensory transient receptor potential melastatin type 8 channel. Toxicol Appl Pharmacol 2017; 336:55-65. [PMID: 29054683 DOI: 10.1016/j.taap.2017.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022]
Abstract
Praziquantel is the most effective anthelminthic drug for the treatment of schistosomiasis, an infectious disease caused by the platyhelminth Schistosoma mansoni. While praziquantel is known to trigger calcium influx into schisostomes, followed by spastic paralysis of the worms and tegumental disruption, the mechanism of action of the drug is not completely understood. Although relatively well tolerated, praziquantel has been reported to cause mild adverse effects, including nausea, abdominal pain and headaches. As a number of putative Transient Receptor Potential (TRP) channel genes have recently been predicted in S. mansoni, we sought to investigate the effect of praziquantel on three mammalian TRP channels, TRP melastatin type 8 (TRPM8), TRP vanilloid type 1 (TRPV1) and TRP ankyrin type 1 (TRPA1). Using calcium microfluorimetry and the patch clamp technique, we recorded the effect of praziquantel on HEK293T cells expressing recombinant TRPM8, TRPV1 or TRPA1, as well as on cultured dorsal root ganglion (DRG) neurons from wild type and TRPM8 null mutant mice. We discovered that praziquantel is a relatively potent and selective partial agonist of the mammalian and avian cold and menthol receptor TRPM8. The activation of cultured DRG neurons by clinically relevant concentrations of praziquantel is predominantly mediated by TRPM8. Our results may provide clues to a better understanding of praziquantel's mechanism of action and its adverse effects.
Collapse
|
28
|
Abstract
Preclinical research remains an important tool for discovery and validation of novel therapeutics for gastrointestinal disorders. While in vitro assays can be used to verify receptor-ligand interactions and test for structural activity of new compounds, only whole-animal studies can demonstrate drug efficacy within the gastrointestinal system. Most major gastrointestinal disorders have been modeled in animals; however the translational relevance of each model is not equal. The purpose of this chapter is to provide a critical evaluation of common animal models that are being used to develop pharmaceuticals for gastrointestinal disorders. For brevity, the models are presented for upper gastrointestinal disorders involving the esophagus, stomach, and small intestine and lower gastrointestinal disorders that focus on the colon. Particular emphasis is used to explain the face and construct validity of each model, and the limitations of each model, including data interpretation, are highlighted. This chapter does not evaluate models that rely on surgical or other non-pharmacological interventions for treatment.
Collapse
|
29
|
Balemans D, Boeckxstaens GE, Talavera K, Wouters MM. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2017; 312:G635-G648. [PMID: 28385695 DOI: 10.1152/ajpgi.00401.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 01/31/2023]
Abstract
Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders including functional dyspepsia, irritable bowel syndrome, and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5, and TRPM8), and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal, and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G protein-coupled receptor superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the present knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.
Collapse
Affiliation(s)
- Dafne Balemans
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven Belgium
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| |
Collapse
|
30
|
|
31
|
Gong K, Jasmin L. Sustained Morphine Administration Induces TRPM8-Dependent Cold Hyperalgesia. THE JOURNAL OF PAIN 2016; 18:212-221. [PMID: 27845197 DOI: 10.1016/j.jpain.2016.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/29/2016] [Accepted: 10/09/2016] [Indexed: 12/15/2022]
Abstract
It is not uncommon for patients chronically treated with opioids to exhibit opioid-induced hyperalgesia, and this has been widely reported clinically and experimentally. The molecular substrate for this hyperalgesia is multifaceted, and associated with a complex neural reorganization even in the periphery. For instance, we have recently shown that chronic morphine-induced heat hyperalgesia is associated with an increased expression of GluN2B containing N-methyl-D-aspartate receptors, as well as of the neuronal excitatory amino acid transporter 3/excitatory amino acid carrier 1, in small-diameter primary sensory neurons only. Cold allodynia is also a common complaint of patients chronically treated with opioids, yet its molecular mechanisms remain to be understood. Here we present evidence that the cold sensor TRPM8 channel is involved in opioid-induced hyperalgesia. After 7 days of morphine administration, we observed an upregulation of TRPM8 channels using patch clamp recording on sensory neurons and Western blot analysis on dorsal root ganglia. The selective TRPM8 antagonist RQ-00203078 blocked cold hyperalgesia in morphine-treated rats. Also, TRPM8 knockout mice failed to develop cold hyperalgesia after chronic administration of morphine. Our results show that chronic morphine upregulates TRPM8 channels, which is in contrast with the previous finding that acute morphine triggers TRPM8 internalization. PERSPECTIVE Patients receiving chronic opioid are sensitive to cold. We show in mice and rats that sustained morphine administration induces cold hyperalgesia and an upregulation of TRPM8. Knockout or selectively blocking TRPM8 reduces morphine-induced cold hyperalgesia suggesting TRPM8 is regulated by opioids.
Collapse
Affiliation(s)
- Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, California.
| | - Luc Jasmin
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
32
|
Matsumoto K, Takagi K, Kato A, Ishibashi T, Mori Y, Tashima K, Mitsumoto A, Kato S, Horie S. Role of transient receptor potential melastatin 2 (TRPM2) channels in visceral nociception and hypersensitivity. Exp Neurol 2016; 285:41-50. [DOI: 10.1016/j.expneurol.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
|
33
|
Pérez de Vega MJ, Gómez-Monterrey I, Ferrer-Montiel A, González-Muñiz R. Transient Receptor Potential Melastatin 8 Channel (TRPM8) Modulation: Cool Entryway for Treating Pain and Cancer. J Med Chem 2016; 59:10006-10029. [PMID: 27437828 DOI: 10.1021/acs.jmedchem.6b00305] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TRPM8 ion channels, the primary cold sensors in humans, are activated by innocuous cooling (<28 °C) and cooling compounds (menthol, icilin) and are implicated in sensing unpleasant cold stimuli as well as in mammalian thermoregulation. Overexpression of these thermoregulators in prostate cancer and in other life-threatening tumors, along with their contribution to an increasing number of pathological conditions, opens a plethora of medicinal chemistry opportunities to develop receptor modulators. This Perspective seeks to describe current known modulators for this ion channel because both agonists and antagonists may be useful for the treatment of most TRPM8-mediated pathologies. We primarily focus on SAR data for the different families of compounds and the pharmacological properties of the most promising ligands. Furthermore, we also address the knowledge about the channel structure, although still in its infancy, and the role of the TRPM8 protein signalplex to channel function and dysfunction. We finally outline the potential future prospects of the challenging TRPM8 drug discovery field.
Collapse
Affiliation(s)
| | - Isabel Gómez-Monterrey
- Dipartimento di Farmacia, Università "Federico II" de Napoli , Via D. Montesano 49, 80131, Naples, Italy
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular. Universitas Miguel Hernández . 03202 Alicante, Spain
| | | |
Collapse
|
34
|
De Winter BY, Deiteren A, De Man JG. Novel nervous system mechanisms in visceral pain. Neurogastroenterol Motil 2016; 28:309-15. [PMID: 26891060 DOI: 10.1111/nmo.12785] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Visceral hypersensitivity is an important factor underlying abdominal pain in functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and can result from aberrant signaling from the gut to the brain or vice versa. Over the last two decades, research has identified several selective, intertwining pathways that underlie IBS-related visceral nociception, including specific receptors on afferent and efferent nerve fibers such as transient receptor potential channels (TRP) channels, opioid, and cannabinoid receptors. In this issue of Neurogastroenterology and Motility Gil et al. demonstrate that in an animal model with reduced descending inhibitory control, the sympathetic nervous system outflow is enhanced, contributing to visceral and somatic hypersensitivity. They also provide evidence that interfering with the activation of adrenergic receptors on sensory nerves can be an interesting new strategy to treat visceral pain in IBS. This mini-review places these findings in a broader perspective by providing an overview of promising novel mechanisms to alter the nervous control of visceral pain interfering with afferent or efferent neuronal signaling.
Collapse
Affiliation(s)
- B Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - A Deiteren
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - J G De Man
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
35
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
36
|
Matsumoto K, Kato S, Horie S. [Transient receptor potential cation channels in visceral pain]. Nihon Yakurigaku Zasshi 2015; 146:233-5. [PMID: 26656968 DOI: 10.1254/fpj.146.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Yu X, Yu M, Liu Y, Yu S. TRP channel functions in the gastrointestinal tract. Semin Immunopathol 2015; 38:385-96. [PMID: 26459157 DOI: 10.1007/s00281-015-0528-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Transient receptor potential (TRP) channels are predominantly distributed in both somatic and visceral sensory nervous systems and play a crucial role in sensory transduction. As the largest visceral organ system, the gastrointestinal (GI) tract frequently accommodates external inputs, which stimulate sensory nerves to initiate and coordinate sensory and motor functions in order to digest and absorb nutrients. Meanwhile, the sensory nerves in the GI tract are also able to detect potential tissue damage by responding to noxious irritants. This nocifensive function is mediated through specific ion channels and receptors expressed in a subpopulation of spinal and vagal afferent nerve called nociceptor. In the last 18 years, our understanding of TRP channel expression and function in GI sensory nervous system has been continuously improved. In this review, we focus on the expressions and functions of TRPV1, TRPA1, and TRPM8 in primary extrinsic afferent nerves innervated in the esophagus, stomach, intestine, and colon and briefly discuss their potential roles in relevant GI disorders.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Mingran Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Yingzhe Liu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Shaoyong Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA.
| |
Collapse
|
38
|
Mueller-Tribbensee SM, Karna M, Khalil M, Neurath MF, Reeh PW, Engel MA. Differential Contribution of TRPA1, TRPV4 and TRPM8 to Colonic Nociception in Mice. PLoS One 2015. [PMID: 26207981 PMCID: PMC4514604 DOI: 10.1371/journal.pone.0128242] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Various transient receptor potential (TRP) channels in sensory neurons contribute to the transduction of mechanical stimuli in the colon. Recently, even the cold-sensing menthol receptor TRPM(melastatin)8 was suggested to be involved in murine colonic mechano-nociception. Methods To analyze the roles of TRPM8, TRPA1 and TRPV4 in distension-induced colonic nociception and pain, TRP-deficient mice and selective pharmacological blockers in wild-type mice (WT) were used. Visceromotor responses (VMR) to colorectal distension (CRD) in vivo were recorded and distension/pressure-induced CGRP release from the isolated murine colon ex vivo was measured by EIA. Results Distension-induced colonic CGRP release was markedly reduced in TRPA1-/- and TRPV4-/- mice at 90/150 mmHg compared to WT. In TRPM8-deficient mice the reduction was only distinct at 150 mmHg. Exposure to selective pharmacological antagonists (HC030031, 100 μM; RN1734, 10 μM; AMTB, 10 μM) showed corresponding effects. The unselective TRP blocker ruthenium red (RR, 10 μM) was as efficient in inhibiting distension-induced CGRP release as the unselective antagonists of mechanogated DEG/ENaC (amiloride, 100 μM) and stretch-activated channels (gadolinium, 50 μM). VMR to CRD revealed prominent deficits over the whole pressure range (up to 90 mmHg) in TRPA1-/- and TRPV4-/- but not TRPM8-/- mice; the drug effects of the TRP antagonists were again highly consistent with the results from mice lacking the respective TRP receptor gene. Conclusions TRPA1 and TRPV4 mediate colonic distension pain and CGRP release and appear to govern a wide and congruent dynamic range of distensions. The role of TRPM8 seems to be confined to signaling extreme noxious distension, at least in the healthy colon.
Collapse
Affiliation(s)
- Sonja M. Mueller-Tribbensee
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manoj Karna
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mohammad Khalil
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Peter W. Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias A. Engel
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- * E-mail:
| |
Collapse
|
39
|
Greenwood-Van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2015; 308:G885-903. [PMID: 25767262 DOI: 10.1152/ajpgi.00463.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 02/08/2023]
Abstract
Visceral pain describes pain emanating from the thoracic, pelvic, or abdominal organs. In contrast to somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. Animal models have played a pivotal role in our understanding of the mechanisms underlying the pathophysiology of visceral pain. This review focuses on animal models of visceral pain and their translational relevance. In addition, the challenges of using animal models to develop novel therapeutic approaches to treat visceral pain will be discussed.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dawn K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
40
|
TRPM8 on mucosal sensory nerves regulates colitogenic responses by innate immune cells via CGRP. Mucosal Immunol 2015; 8:491-504. [PMID: 25269705 PMCID: PMC4382463 DOI: 10.1038/mi.2014.82] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 08/07/2014] [Indexed: 02/04/2023]
Abstract
TRPM8 is the molecular sensor for cold; however, the physiological role of TRPM8+ neurons at mucosal surfaces is unclear. Here we evaluated the distribution and peptidergic properties of TRPM8+ fibers in naive and inflamed colons, as well as their role in mucosal inflammation. We found that Trpm8(-/-) mice were hypersusceptible to dextran sodium sulfate (DSS)-induced colitis, and that Trpm8(-/-) CD11c+ DCs (dendritic cells) showed hyperinflammatory responses to toll-like receptor (TLR) stimulation. This was phenocopied in calcitonin gene-related peptide (CGRP) receptor-deficient mice, but not in substance P receptor-deficient mice, suggesting a functional link between TRPM8 and CGRP. The DSS phenotype of CGRP receptor-deficient mice could be adoptively transferred to wild-type (WT) mice, suggesting that CGRP suppresses the colitogenic activity of bone marrow-derived cells. TRPM8+ mucosal fibers expressed CGRP in human and mouse colon. Furthermore, neuronal CGRP contents were increased in colons from naive and DSS-treated Trpm8(-/-) mice, suggesting deficient CGRP release in the absence of TRPM8 triggering. Finally, treatment of Trpm8(-/-) mice with CGRP reversed their hyperinflammatory phenotype. These results suggest that TRPM8 signaling in mucosal sensory neurons is indispensable for the regulation of innate inflammatory responses via the neuropeptide CGRP.
Collapse
|
41
|
Yajima T, Sato T, Hosokawa H, Kondo T, Saito M, Shimauchi H, Ichikawa H. Distribution of transient receptor potential melastatin-8-containing nerve fibers in rat oral and craniofacial structures. Ann Anat 2015; 201:1-5. [PMID: 25978347 DOI: 10.1016/j.aanat.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Abstract
The transient receptor potential melastatin-8 (TRPM8) is a cold and menthol receptor located in the sensory ganglia. Immunohistochemistry for TRPM8 was performed on oral and craniofacial structures of the rat. TRPM8-immunoreactive (-IR) nerve fibers were detected in the oral mucous membrane. In the gingiva, TRPM8-IR nerve fibers were abundant beneath and within crestal and outer epithelia. Such nerve fibers were also common beneath and within taste buds in the incisive papilla. In addition, TRPM8-immunoreactivity was expressed by some taste bud cells in the papilla. Lips, periodontal ligaments and salivary glands as well as masticatory muscles and temporomandibular joints were mostly devoid of TRPM8-IR nerve fibers. A double immunofluorescence study indicated different distribution patterns of nerve fibers containing TRPM8 and calcitonin gene-related peptide in oral and craniofacial tissues. Retrograde tracing method also indicated that TRPM8-IR nerve fibers in the gingiva and incisive papilla originate from small sensory neurons in the trigeminal ganglion. TRPM8 may be associated with cool, cold nociceptive (<around 25°C) and chemoreceptive transmission in the oral mucosa.
Collapse
Affiliation(s)
- Takehiro Yajima
- Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Hiroshi Hosokawa
- Division of Biological Information, Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Teruyoshi Kondo
- Department of Clinical Engineering, Kyushu University of Health and Welfare School of Health Science, 1714-1 Yoshino-machi, Nobeoka 882-8508, Japan
| | - Masahiro Saito
- Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hidetoshi Shimauchi
- Division of Periodontology and Endodontology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|