1
|
Domínguez-Figueroa J, Gómez-Rojas A, Escobar C. Functional studies of plant transcription factors and their relevance in the plant root-knot nematode interaction. FRONTIERS IN PLANT SCIENCE 2024; 15:1370532. [PMID: 38784063 PMCID: PMC11113014 DOI: 10.3389/fpls.2024.1370532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Root-knot nematodes are polyphagous parasitic nematodes that cause severe losses in the agriculture worldwide. They enter the root in the elongation zone and subtly migrate to the root meristem where they reach the vascular cylinder and establish a feeding site called gall. Inside the galls they induce a group of transfer cells that serve to nurture them along their parasitic stage, the giant cells. Galls and giant cells develop through a process of post-embryogenic organogenesis that involves manipulating different genetic regulatory networks within the cells, some of them through hijacking some molecular transducers of established plant developmental processes, such as lateral root formation or root regeneration. Galls/giant cells formation involves different mechanisms orchestrated by the nematode´s effectors that generate diverse plant responses in different plant tissues, some of them include sophisticated mechanisms to overcome plant defenses. Yet, the plant-nematode interaction is normally accompanied to dramatic transcriptomic changes within the galls and giant cells. It is therefore expected a key regulatory role of plant-transcription factors, coordinating both, the new organogenesis process induced by the RKNs and the plant response against the nematode. Knowing the role of plant-transcription factors participating in this process becomes essential for a clear understanding of the plant-RKNs interaction and provides an opportunity for the future development and design of directed control strategies. In this review, we present the existing knowledge of the TFs with a functional role in the plant-RKN interaction through a comprehensive analysis of current scientific literature and available transcriptomic data.
Collapse
Affiliation(s)
- Jose Domínguez-Figueroa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Centro de Biotecnologia y Genomica de Plantas (CBGP), Universidad Politecnica de Madrid and Instituto de Investigacion y Tecnologia Agraria y Alimentaria-Consejo Superior de investigaciones Cientificas (UPM-INIA/CSIC), Madrid, Spain
| | - Almudena Gómez-Rojas
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
2
|
Chen Y, Liu Q, Sun X, Liu L, Zhao J, Yang S, Wang X, Quentin M, Abad P, Favery B, Jian H. Meloidogyne enterolobii MeMSP1 effector targets the glutathione-S-transferase phi GSTF family in Arabidopsis to manipulate host metabolism and promote nematode parasitism. THE NEW PHYTOLOGIST 2023; 240:2468-2483. [PMID: 37823217 DOI: 10.1111/nph.19298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Meloidogyne enterolobii is an emerging root-knot nematode species that overcomes most of the nematode resistance genes in crops. Nematode effector proteins secreted in planta are key elements in the molecular dialogue of parasitism. Here, we show the MeMSP1 effector is secreted into giant cells and promotes M. enterolobii parasitism. Using co-immunoprecipitation and bimolecular fluorescent complementation assays, we identified glutathione-S-transferase phi GSTFs as host targets of the MeMSP1 effector. This protein family plays important roles in plant responses to abiotic and biotic stresses. We demonstrate that MeMSP1 interacts with all Arabidopsis GSTF. Moreover, we confirmed that the N-terminal region of AtGSTF9 is critical for its interaction, and atgstf9 mutant lines are more susceptible to root-knot nematode infection. Combined transcriptome and metabolome analyses showed that MeMSP1 affects the metabolic pathways of Arabidopsis thaliana, resulting in the accumulation of amino acids, nucleic acids, and their metabolites, and organic acids and the downregulation of flavonoids. Our study has shed light on a novel effector mechanism that targets plant metabolism, reducing the production of plant defence-related compounds while favouring the accumulation of metabolites beneficial to the nematode, and thereby promoting parasitism.
Collapse
Affiliation(s)
- Yongpan Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572024, China
| | - Xuqian Sun
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Shanshan Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiangfeng Wang
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Heng Jian
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Noureddine Y, da Rocha M, An J, Médina C, Mejias J, Mulet K, Quentin M, Abad P, Zouine M, Favery B, Jaubert-Possamai S. AUXIN RESPONSIVE FACTOR8 regulates development of the feeding site induced by root-knot nematodes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5752-5766. [PMID: 37310189 DOI: 10.1093/jxb/erad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKN) from the genus Meloidogyne induce the dedifferentiation of root vascular cells into giant multinucleate feeding cells. These feeding cells result from an extensive reprogramming of gene expression, and auxin is known to be a key player in their development. However, little is known about how the auxin signal is transmitted during giant cell development. Integrative analyses combining transcriptome and small non-coding RNA datasets with the specific sequencing of cleaved transcripts identified genes targeted by miRNAs in tomato (Solanum lycopersicum) galls. The two auxin-responsive transcription factors ARF8A and ARF8B, and their miRNA167 regulators, were identified as robust gene-miRNA pair candidates to be involved in the tomato response to M. incognita. Spatiotemporal expression analysis using promoter-β-glucuronidase (GUS) fusions showed the up-regulation of ARF8A and ARF8B in RKN-induced feeding cells and surrounding cells. The generation and phenotyping of CRISPR (clustered regularly interspaced palindromic repeats) mutants demonstrated the role of ARF8A and ARF8B in giant cell development and allowed the characterization of their downstream regulated genes.
Collapse
Affiliation(s)
- Yara Noureddine
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Martine da Rocha
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Jing An
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Clémence Médina
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Joffrey Mejias
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Karine Mulet
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | |
Collapse
|
4
|
Song Y, Guo X, Wu J, Liang J, Lin R, Yan Z, Wang X. An Optimized Protocol for Detecting Guard Cell-specific Gene Expression by in situ RT-PCR in Brassica rapa. Bio Protoc 2023; 13:e4810. [PMID: 37719070 PMCID: PMC10501917 DOI: 10.21769/bioprotoc.4810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023] Open
Abstract
Since the genetic transformation of Chinese cabbage (Brassica rapa) has not been well developed, in situ RT-PCR is a valuable option for detecting guard cell-specific genes. We reported an optimized protocol of in situ RT-PCR by using a FAMA homologous gene Bra001929 in Brassica rapa. FAMA in Arabidopsis has been verified to be especially expressed in guard cells. We designed specific RT-PCR primers and optimized the protocol in terms of the (a) reverse transcription time, (b) blocking time, (c) antigen-antibody incubation time, and (d) washing temperature. Our approach provides a sensitive and effective in situ RT-PCR method that can detect low-abundance transcripts in cells by elevating their levels by RT-PCR in the guard cells in Brassica rapa.
Collapse
Affiliation(s)
- Yingying Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinlei Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zifu Yan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Malviya D, Singh P, Singh UB, Paul S, Kumar Bisen P, Rai JP, Verma RL, Fiyaz RA, Kumar A, Kumari P, Dei S, Ahmed MR, Bagyaraj DJ, Singh HV. Arbuscular mycorrhizal fungi-mediated activation of plant defense responses in direct seeded rice ( Oryza sativa L.) against root-knot nematode Meloidogyne graminicola. Front Microbiol 2023; 14:1104490. [PMID: 37200920 PMCID: PMC10185796 DOI: 10.3389/fmicb.2023.1104490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 05/20/2023] Open
Abstract
Rhizosphere is the battlefield of beneficial and harmful (so called phytopathogens) microorganisms. Moreover, these microbial communities are struggling for their existence in the soil and playing key roles in plant growth, mineralization, nutrient cycling and ecosystem functioning. In the last few decades, some consistent pattern have been detected so far that link soil community composition and functions with plant growth and development; however, it has not been studied in detail. AM fungi are model organisms, besides potential role in nutrient cycling; they modulate biochemical pathways directly or indirectly which lead to better plant growth under biotic and abiotic stress conditions. In the present investigations, we have elucidated the AM fungi-mediated activation of plant defense responses against Meloidogyne graminicola causing root-knot disease in direct seeded rice (Oryza sativa L.). The study describes the multifarious effects of Funneliformis mosseae, Rhizophagus fasciculatus, and Rhizophagus intraradices inoculated individually or in combination under glasshouse conditions in rice plants. It was found that F. mosseae, R. fasciculatus and R. intraradices when applied individually or in combination modulated the biochemical and molecular mechanisms in the susceptible and resistant inbred lines of rice. AM inoculation significantly increased various plant growth attributes in plants with simultaneous decrease in the root-knot intensity. Among these, the combined application of F. mosseae, R. fasciculatus, and R. intraradices was found to enhance the accumulation and activities of biomolecules and enzymes related to defense priming as well as antioxidation in the susceptible and resistant inbred lines of rice pre-challenged with M. graminicola. The application of F. mosseae, R. fasciculatus and R. intraradices, induced the key genes involved in plant defense and signaling and it has been demonstrated for the first time. Results of the present investigation advocated that the application of F. mosseae, R. fasciculatus and R. intraradices, particularly a combination of all three, not only helped in the control of root-knot nematodes but also increased plant growth as well as enhances the gene expression in rice. Thus, it proved to be an excellent biocontrol as well as plant growth-promoting agent in rice even when the crop is under biotic stress of the root-knot nematode, M. graminicola.
Collapse
Affiliation(s)
- Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | | | - Jai P Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Ram Lakhan Verma
- Division of Crop Improvement, ICAR-National Rice Research Institute, Cuttack, India
| | - R Abdul Fiyaz
- Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - A Kumar
- Bihar Agricultural University, Bhagalpur, India
| | - Poonam Kumari
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | | | - Mohd Reyaz Ahmed
- Department of Plant Pathology, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon, India
| | - D J Bagyaraj
- Centre for Natural Biological Resources and Community Development, Bengaluru, India
| | - Harsh V Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
6
|
Díaz-Manzano FE, Amora DX, Martínez-Gómez Á, Moelbak L, Escobar C. Biocontrol of Meloidogyne spp. in Solanum lycopersicum using a dual combination of Bacillus strains. FRONTIERS IN PLANT SCIENCE 2023; 13:1077062. [PMID: 36684755 PMCID: PMC9846617 DOI: 10.3389/fpls.2022.1077062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Root-knot nematodes (RKNs, Meloidogyne spp.) are obligate plant parasites that constitute a significant pest for agriculture worldwide. They penetrate the plant roots, reducing the uptake of water and nutrients, causing a significant impact on crop yield. One alternative on focus now for nematode management is biological control. Rhizobacteria within the Bacillus genus show multiple modes of action against plant-parasitic nematodes (PPNs) that can act alone or in combination. In this context, we evaluated a dual-strain bacteria combination (B. paralicheniformi FMCH001 and B. subtilis FMCH002) to reduce nematode infection in tomato plants. We evaluated mortality of larvae from Meloidogyne javanica in vitro, as well as eggs hatching after the treatment. Atraction, penetration, establishment, and reproduction assays in vitro or in pots in tomato plants infected with M. javanica and treated/ untreated with the dual-strain bacteria combination were also performed. Additionally, morphometric parameters comparing giant cells size from galls of treated and untreated plants by using confocal microscopy were also measured. The results showed that this combination of strains has nematicidal properties in the pre-infection phase by decreasing the egg-hatching, juvenile survival, and attractiveness to the roots. Furthermore, nematode establishment, gall formation, and, remarkably, giant cell development was severely impaired after the bacterial treatment, suggesting interference with morphogenetic mechanisms induced by the nematode during GCs development within the plant. Nematode reproduction in tomato plants was reduced independently of the application mode in soil, before or after bacterial treatment. The dual-strain combination was also effective against other PPNs (i.e. Pratylenchus spp.) and in different crops (soybean). Therefore, combining B. paralicheniformis FMCH001 and B. subtilis FMCH002 is an efficient agent for the biological control of Meloidogyne spp. by interfering with different stages of the nematode cycle as a result of multiple modes of action.
Collapse
Affiliation(s)
- Fernando Evaristo Díaz-Manzano
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Deisy X. Amora
- Chr Hansen A/S, AP Innovation Department, Hørsholm, Denmark
| | - Ángela Martínez-Gómez
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Lars Moelbak
- Chr Hansen A/S, AP Innovation Department, Hørsholm, Denmark
| | - Carolina Escobar
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
7
|
Silva AC, Ruiz‐Ferrer V, Müller SY, Pellegrin C, Abril‐Urías P, Martínez‐Gómez Á, Gómez‐Rojas A, Berenguer E, Testillano PS, Andrés MF, Fenoll C, Eves‐van den Akker S, Escobar C. The DNA methylation landscape of the root-knot nematode-induced pseudo-organ, the gall, in Arabidopsis, is dynamic, contrasting over time, and critically important for successful parasitism. THE NEW PHYTOLOGIST 2022; 236:1888-1907. [PMID: 35872574 PMCID: PMC9825882 DOI: 10.1111/nph.18395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Root-knot nematodes (RKNs) induce giant cells (GCs) within galls which are characterized by large-scale gene repression at early stages. However, the epigenetic mechanism(s) underlying gene silencing is (are) still poorly characterized. DNA methylation in Arabidopsis galls induced by Meloidogyne javanica was studied at crucial infection stages (3 d post-infection (dpi) and 14 dpi) using enzymatic, cytological, and sequencing approaches. DNA methyltransferase mutants (met1, cmt2, cmt3, cmt2/3, drm1/2, ddc) and a DNA demethylase mutant (ros1), were analyzed for RKN resistance/tolerance, and galls were characterized by confocal microscopy and RNA-seq. Early galls were hypermethylated, and the GCs were found to be the major contributors to this hypermethylation, consistent with the very high degree of gene repression they exhibit. By contrast, medium/late galls showed no global increase in DNA methylation compared to uninfected roots, but exhibited large-scale redistribution of differentially methylated regions (DMRs). In line with these findings, it was also shown that DNA methylation and demethylation mutants showed impaired nematode reproduction and gall/GC-development. Moreover, siRNAs that were exclusively present in early galls accumulated at hypermethylated DMRs, overlapping mostly with retrotransposons in the CHG/CG contexts that might be involved in their repression, contributing to their stability/genome integrity. Promoter/gene methylation correlated with differentially expressed genes encoding proteins with basic cell functions. Both mechanisms are consistent with reprogramming host tissues for gall/GC formation. In conclusion, RNA-directed DNA methylation (RdDM; DRM2/1) pathways, maintenance methyltransferases (MET1/CMT3) and demethylation (ROS1) appear to be prominent mechanisms driving a dynamic regulation of the epigenetic landscape during RKN infection.
Collapse
Affiliation(s)
- Ana Cláudia Silva
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Virginia Ruiz‐Ferrer
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | | | - Clement Pellegrin
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Patricia Abril‐Urías
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Ángela Martínez‐Gómez
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Almudena Gómez‐Rojas
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Eduardo Berenguer
- Centro de Investigaciones Biológicas Margarita SalasCIB‐CSIC, Pollen Biotechnology of Crop PlantsRamiro de Maeztu 928040MadridSpain
| | - Pilar S. Testillano
- Centro de Investigaciones Biológicas Margarita SalasCIB‐CSIC, Pollen Biotechnology of Crop PlantsRamiro de Maeztu 928040MadridSpain
| | - Maria Fe Andrés
- Instituto de Ciencias Agrarias (ICA, CSIC)Protección Vegetal, Calle de Serrano 11528006MadridSpain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | | | - Carolina Escobar
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
- International Research Organization for Advanced Science and Technology (IROAST)Kumamoto UniversityKumamoto860‐8555Japan
| |
Collapse
|
8
|
Arraes FBM, Vasquez DDN, Tahir M, Pinheiro DH, Faheem M, Freitas-Alves NS, Moreira-Pinto CE, Moreira VJV, Paes-de-Melo B, Lisei-de-Sa ME, Morgante CV, Mota APZ, Lourenço-Tessutti IT, Togawa RC, Grynberg P, Fragoso RR, de Almeida-Engler J, Larsen MR, Grossi-de-Sa MF. Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202744. [PMID: 36297768 PMCID: PMC9612212 DOI: 10.3390/plants11202744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/08/2023]
Abstract
The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.
Collapse
Affiliation(s)
- Fabricio B M Arraes
- Postgraduate Program in Cellular and Molecular Biology (PPGBCM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Daniel D N Vasquez
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Muhammed Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Daniele H Pinheiro
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Muhammed Faheem
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Department of Biological Sciences, National University of Medical Sciences, The Mall, Rawalpindi 46000, Punjab, Pakistan
| | - Nayara S Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Bioprocess Engineering and Biotechnology (PPGEBB), Federal University of Paraná (UFPR), Curitiba 80060-000, PR, Brazil
| | - Clídia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Valdeir J V Moreira
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Molecular Biology (PPGBiomol), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Maria E Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Uberaba 31170-495, MG, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Semiarid, Petrolina 56302-970, PE, Brazil
| | - Ana P Z Mota
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Rodrigo R Fragoso
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil
| | - Janice de Almeida-Engler
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| |
Collapse
|
9
|
Veronico P, Rosso LC, Melillo MT, Fanelli E, De Luca F, Ciancio A, Colagiero M, Pentimone I. Water Stress Differentially Modulates the Expression of Tomato Cell Wall Metabolism-Related Genes in Meloidogyne incognita Feeding Sites. FRONTIERS IN PLANT SCIENCE 2022; 13:817185. [PMID: 35498686 PMCID: PMC9051518 DOI: 10.3389/fpls.2022.817185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Microscopic observations and transcriptomic RNA-Seq analyses were applied to investigate the effect of water stress during the formation of tomato galls formation 1 and 2 weeks after inoculation with the root-knot nematode Meloidogyne incognita. Water stress affected root growth and the nematode ability to mount an efficient parasitism. The effects of water stress on the feeding site development were already observed at 1 week after nematode inoculation, with smaller giant cells, delayed development, and thinner cell walls. These features suggested changes in the expression levels of genes involved in the feeding site formation and maintenance. Gene Ontology (GO) enrichment and expression patterns were used to characterize differentially expressed genes. Water stress modified the expression profile of genes involved in the synthesis, degradation, and remodeling of the cell wall during the development of nematode feeding site. A comparison of gene expression with unstressed galls revealed that water stress intensified the up or downregulation of most genes. However, it particularly influenced the expression pattern of expansin A11 (Solyc04g081870.4.1), expansin-like B1(Solyc08g077910.3.1), a pectin acetylesterase (Solyc08g005800.4.1), and the pectin methylesterase pmeu1 (Solyc03g123630.4.1) which were upregulated in unstressed galls and repressed by water stress, at both sampling times. The expression of most members of the genes involved in cell wall metabolism, i.e., those coding for Csl, fasciclin, and COBRA proteins, were negatively influenced. Interestingly, alteration in the expression profiles of most dirigent protein genes (DIRs) and upregulation of five gene coding for Casparian strip domain protein (CASP)-like proteins were found. Gene expression analysis of galls from water stressed plants allowed us to better understand the molecular basis of M. incognita parasitism in tomato. Specific genes, including those involved in regulation of cellulose synthesis and lignification process, require further study to develop defense strategies against root-knot nematodes.
Collapse
|
10
|
Mbaluto CM, Vergara F, van Dam NM, Martínez-Medina A. Root infection by the nematode Meloidogyne incognita modulates leaf antiherbivore defenses and plant resistance to Spodoptera exigua. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7909-7926. [PMID: 34545935 PMCID: PMC8664589 DOI: 10.1093/jxb/erab370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Studies on plant-mediated interactions between root parasitic nematodes and aboveground herbivores are rapidly increasing. However, outcomes for the interacting organisms vary, and the mechanisms involved remain ambiguous. We hypothesized that the impact of root infection by the root-knot nematode Meloidogyne incognita on the performance of the aboveground caterpillar Spodoptera exigua is modulated by the nematode's infection cycle. We challenged root-knot nematode-infected tomato plants with caterpillars when the nematode's infection cycle was at the invasion, galling, and reproduction stages. We found that M. incognita root infection enhanced S. exigua performance during the galling stage, while it did not affect the caterpillar's performance at the invasion and reproduction stages. Molecular and chemical analyses performed at the different stages of the nematode infection cycle revealed that M. incognita root infection systemically affected the jasmonic acid-, salicylic acid-, and abscisic acid-related responses, as well as the changes in the leaf metabolome triggered during S. exigua feeding. The M. incognita-induced leaf responses varied over the nematode's root infection cycle. These findings suggest that specific leaf responses triggered systemically by the nematode at its different life-cycle stages underlie the differential impact of M. incognita on plant resistance against the caterpillar S. exigua.
Collapse
Affiliation(s)
- Crispus M Mbaluto
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
| | - Fredd Vergara
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas, 40, 37008, Salamanca, Spain
| |
Collapse
|
11
|
Desmedt W, Mangelinckx S, Kyndt T, Vanholme B. A Phytochemical Perspective on Plant Defense Against Nematodes. FRONTIERS IN PLANT SCIENCE 2020; 11:602079. [PMID: 33281858 PMCID: PMC7691236 DOI: 10.3389/fpls.2020.602079] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 05/23/2023]
Abstract
Given the large yield losses attributed to plant-parasitic nematodes and the limited availability of sustainable control strategies, new plant-parasitic nematode control strategies are urgently needed. To defend themselves against nematode attack, plants possess sophisticated multi-layered immune systems. One element of plant immunity against nematodes is the production of small molecules with anti-nematode activity, either constitutively or after nematode infection. This review provides an overview of such metabolites that have been identified to date and groups them by chemical class (e.g., terpenoids, flavonoids, glucosinolates, etc.). Furthermore, this review discusses strategies that have been used to identify such metabolites and highlights the ways in which studying anti-nematode metabolites might be of use to agriculture and crop protection. Particular attention is given to emerging, high-throughput approaches for the identification of anti-nematode metabolites, in particular the use of untargeted metabolomics techniques based on nuclear magnetic resonance (NMR) and mass spectrometry (MS).
Collapse
Affiliation(s)
- Willem Desmedt
- Research Group Epigenetics and Defense, Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Sven Mangelinckx
- Research Group Synthesis, Bioresources and Bioorganic Chemistry (SynBioC), Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Tina Kyndt
- Research Group Epigenetics and Defense, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
12
|
Xiao K, Chen W, Chen X, Zhu X, Guan P, Hu J. CCS52 and DEL1 function in root-knot nematode giant cell development in Xinjiang wild myrobalan plum (Prunus sogdiana Vassilcz). PROTOPLASMA 2020; 257:1333-1344. [PMID: 32367262 DOI: 10.1007/s00709-020-01505-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Root-knot nematodes (RKNs) are highly invasive plant parasites that establish permanent feeding sites within the roots of the host plant. Successful establishment of the feeding site is essential for the survival of RKN. The formation and development of the feeding cell, also called giant cell, involve both cell division and endoreduplication. Here, we examined giant cell development and endoreduplication in Prunus sogdiana infected with the RKN. We found that feeding sites were established 3-5 days post inoculation (dpi) and matured at 21-28 dpi. The giant cells began to form 5 dpi and continued to increase in size from 7 to 21 dpi. The large numbers of dividing nuclei were observed in giant cells from 7 to 14 dpi. However, nuclear division was rarely observed after 28 days. RT-PCR and in situ hybridization analyses revealed that PsoCCS52A was abundantly expressed at 7-21 dpi and the PsoCCS52A signal observed in giant cell nucleus at 7-14 dpi. The PsoCCS52B is highly expressed at 14 dpi, and the hybridization signal was mainly in the cytoplasm of giant cells. The PsoDEL1 expression was lowest 7-21 dip, with negligible transcript detected in the giant cells. This indicates that the PsoCCS52A plays a role in the process of cell division, while the CCS52B plays a role in the development of giant cells. The PsoDEL1 plays a negative regulatory role in megakaryocyte nuclear replication. These data suggest that an increased expression of PsoCCS52A promotes nuclear division and produces a large number of polyploid nuclei, the area of giant cells and feeding sites increase, ultimately leading to the formation of galls in Prunus sogdiana.
Collapse
Affiliation(s)
- Kun Xiao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Weiyang Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Zhu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese, Guiyang, 550025, China
| | - Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Rodríguez-Alvarez CI, López-Vidriero I, Franco-Zorrilla JM, Nombela G. Basal differences in the transcriptional profiles of tomato leaves associated with the presence/absence of the resistance gene Mi-1 and changes in these differences after infestation by the whitefly Bemisia tabaci. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:463-479. [PMID: 31813394 DOI: 10.1017/s0007485319000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tomato Mi-1 gene mediates plant resistance to whitefly Bemisia tabaci, nematodes, and aphids. Other genes are also required for this resistance, and a model of interaction between the proteins encoded by these genes was proposed. Microarray analyses were used previously to identify genes involved in plant resistance to pests or pathogens, but scarcely in resistance to insects. In the present work, the GeneChip™ Tomato Genome Array (Affymetrix®) was used to compare the transcriptional profiles of Motelle (bearing Mi-1) and Moneymaker (lacking Mi-1) cultivars, both before and after B. tabaci infestation. Ten transcripts were expressed at least twofold in uninfested Motelle than in Moneymaker, while other eight were expressed half or less. After whitefly infestation, differences between cultivars increased to 14 transcripts expressed more in Motelle than in Moneymaker and 14 transcripts less expressed. Half of these transcripts showed no differential expression before infestation. These results show the baseline differences in the tomato transcriptomic profile associated with the presence or absence of the Mi-1 gene and provide us with valuable information on candidate genes to intervene in either compatible or incompatible tomato-whitefly interactions.
Collapse
Affiliation(s)
- Clara I Rodríguez-Alvarez
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| | - Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - Gloria Nombela
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| |
Collapse
|
14
|
Atighi MR, Verstraeten B, De Meyer T, Kyndt T. Genome-wide DNA hypomethylation shapes nematode pattern-triggered immunity in plants. THE NEW PHYTOLOGIST 2020; 227:545-558. [PMID: 32162327 PMCID: PMC7317725 DOI: 10.1111/nph.16532] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/26/2020] [Indexed: 05/22/2023]
Abstract
A role for DNA hypomethylation has recently been suggested in the interaction between bacteria and plants; it is unclear whether this phenomenon reflects a conserved response. Treatment of plants of monocot rice and dicot tomato with nematode-associated molecular patterns from different nematode species or bacterial pathogen-associated molecular pattern flg22 revealed global DNA hypomethylation. A similar hypomethylation response was observed during early gall induction by Meloidogyne graminicola in rice. Evidence for the causal impact of hypomethylation on immunity was revealed by a significantly reduced plant susceptibility upon treatment with DNA methylation inhibitor 5-azacytidine. Whole-genome bisulphite sequencing of young galls revealed massive hypomethylation in the CHH context, while not for CG or CHG nucleotide contexts. Further, CHH hypomethylated regions were predominantly associated with gene promoter regions, which was not correlated with activated gene expression at the same time point but, rather, was correlated with a delayed transcriptional gene activation. Finally, the relevance of CHH hypomethylation in plant defence was confirmed in rice mutants of the RNA-directed DNA methylation pathway and DECREASED DNA METHYLATION 1. We demonstrated that DNA hypomethylation is associated with reduced susceptibility in rice towards root-parasitic nematodes and is likely to be part of the basal pattern-triggered immunity response in plants.
Collapse
Affiliation(s)
| | | | - Tim De Meyer
- Department of Data Analysis & Mathematical ModellingGhent UniversityB‐9000GhentBelgium
| | - Tina Kyndt
- Department of BiotechnologyGhent UniversityB‐9000GhentBelgium
| |
Collapse
|
15
|
Molecular Changes Concomitant with Vascular System Development in Mature Galls Induced by Root-Knot Nematodes in the Model Tree Host Populus tremula × P. alba. Int J Mol Sci 2020; 21:ijms21020406. [PMID: 31936440 PMCID: PMC7013992 DOI: 10.3390/ijms21020406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
One of the most striking features occurring in the root-knot nematode Meloidogyne incognita induced galls is the reorganization of the vascular tissues. During the interaction of the model tree species Populus and M. incognita, a pronounced xylem proliferation was previously described in mature galls. To better characterise changes in expression of genes possibly involved in the induction and the formation of the de novo developed vascular tissues occurring in poplar galls, a comparative transcript profiling of 21-day-old galls versus uninfected root of poplar was performed. Genes coding for transcription factors associated with procambium maintenance and vascular differentiation were shown to be differentially regulated, together with genes partaking in phytohormones biosynthesis and signalling. Specific signatures of transcripts associated to primary cell wall biosynthesis and remodelling, as well as secondary cell wall formation (cellulose, xylan and lignin) were revealed in the galls. Ultimately, we show that molecules derived from the monolignol and salicylic acid pathways and related to secondary cell wall deposition accumulate in mature galls.
Collapse
|
16
|
Balestrini R, Rosso LC, Veronico P, Melillo MT, De Luca F, Fanelli E, Colagiero M, di Fossalunga AS, Ciancio A, Pentimone I. Transcriptomic Responses to Water Deficit and Nematode Infection in Mycorrhizal Tomato Roots. Front Microbiol 2019; 10:1807. [PMID: 31456765 PMCID: PMC6700261 DOI: 10.3389/fmicb.2019.01807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Climate changes include the intensification of drought in many parts of the world, increasing its frequency, severity and duration. However, under natural conditions, environmental stresses do not occur alone, and, in addition, more stressed plants may become more susceptible to attacks by pests and pathogens. Studies on the impact of the arbuscular mycorrhizal (AM) symbiosis on tomato response to water deficit showed that several drought-responsive genes are differentially regulated in AM-colonized tomato plants (roots and leaves) during water deficit. To date, global changes in mycorrhizal tomato root transcripts under water stress conditions have not been yet investigated. Here, changes in root transcriptome in the presence of an AM fungus, with or without water stress (WS) application, have been evaluated in a commercial tomato cultivar already investigated for the water stress response during AM symbiosis. Since root-knot nematodes (RKNs, Meloidogyne incognita) are obligate endoparasites and cause severe yield losses in tomato, the impact of the AM fungal colonization on RKN infection at 7 days post-inoculation was also evaluated. Results offer new information about the response to AM symbiosis, highlighting a functional redundancy for several tomato gene families, as well as on the tomato and fungal genes involved in WS response during symbiosis, underlying the role of the AM fungus. Changes in the expression of tomato genes related to nematode infection during AM symbiosis highlight a role of AM colonization in triggering defense responses against RKN in tomato. Overall, new datasets on the tomato response to an abiotic and biotic stress during AM symbiosis have been obtained, providing useful data for further researches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Laura C Rosso
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Pasqua Veronico
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Maria Teresa Melillo
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Francesca De Luca
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Elena Fanelli
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Mariantonietta Colagiero
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | | | - Aurelio Ciancio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Isabella Pentimone
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| |
Collapse
|
17
|
Sung YW, Lee IH, Shim D, Lee KL, Nam KJ, Yang JW, Lee JJ, Kwak SS, Kim YH. Transcriptomic changes in sweetpotato peroxidases in response to infection with the root-knot nematode Meloidogyne incognita. Mol Biol Rep 2019; 46:4555-4564. [PMID: 31222458 DOI: 10.1007/s11033-019-04911-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
A previous transcriptomic analysis of the roots of susceptible and resistant cultivars of sweetpotato (Ipomoea batatas) identified genes that were likely to contribute to protection against infection with the root-knot nematode Meloidogyne incognita. The current study examined the roles of peroxidase genes in sweetpotato defense responses during root-knot nematode infection, using the susceptible (cv. Yulmi) and resistant (cv. Juhwangmi) cultivars. Differentially expressed genes were assigned to gene ontology categories to predict their functional roles and associated biological processes. Comparison with Arabidopsis peroxidases identified a group of genes orthologous to Arabidopsis PEROXIDASE 52 (AtPrx52). An analysis of sweetpotato peroxidase genes determined their roles in protecting plants against root-knot nematode infection and enabled identification of important peroxidases. The interactions involved in sweetpotato resistance to nematode infection are discussed.
Collapse
Affiliation(s)
- Yeon Woo Sung
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, 660-701, Republic of Korea.,Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Il Hwan Lee
- Department of Forest Bio-resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Donghwan Shim
- Department of Forest Bio-resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Kang-Lok Lee
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Ki Jung Nam
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jung-Wook Yang
- National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Jeung Joo Lee
- Department of Plant Medicine, IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
18
|
Silva AC, Ruiz-Ferrer V, Martínez-Gómez Á, Barcala M, Fenoll C, Escobar C. All in One High Quality Genomic DNA and Total RNA Extraction From Nematode Induced Galls for High Throughput Sequencing Purposes. FRONTIERS IN PLANT SCIENCE 2019; 10:657. [PMID: 31214210 PMCID: PMC6554733 DOI: 10.3389/fpls.2019.00657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/01/2019] [Indexed: 05/06/2023]
Abstract
Meloidogyne spp. are plant-parasitic nematodes that form a very complex pseudo-organ, called gall, which contains the giant cells (GCs) to nourish them. During the last decade, several groups have been studying the molecular processes accompanying the formation of these structures, combining both transcriptomics and cellular biology. Among others, it was confirmed that a generalized gene repression is a hallmark of early developing GCs formed by Meloidogyne javanica in Arabidopsis and tomato. One of the main mechanisms behind this gene repression involve small RNAs (sRNAs) directed gene silencing. This is supported not only by the described action of several microRNAs differentially expressed in galls, but by the differential abundance of 24-nucleotide sRNAs in early developing Arabidopsis galls, particularly those rasiRNAs which are mostly involved in RNA-directed DNA methylation. Their accumulation strongly correlates to the repression of several retrotransposons at pericentromeric regions of Arabidopsis chromosomes in early galls. However, the contribution of this global gene repression to GCs/galls formation and maintenance is still not fully understood. Further detailed studies, as the correlation between gene expression profiles and the methylation state of the chromatin in galls are essential to raise testable working hypotheses. A high quality of isolated DNA and RNA is a requirement to obtain non-biased and comprehensive results. Frequently, the isolation of DNA and RNA is performed from different samples of the same type of biological material. However, subtle differences on epigenetic processes are frequent even among independent biological replicates of the same tissue and may not correlate to those changes on the mRNA population obtained from different biological replicates. Herein, we describe a method that allows the simultaneous extraction and purification of genomic DNA and total RNA from the same biological sample adapted to our biological system. The quality of both nucleic acids from Arabidopsis galls formed by M. javanica was high and adequate to construct RNA and DNA libraries for high throughput sequencing used for transcriptomic and epigenetic studies, such as the analysis of the methylation state of the genomic DNA in galls (MethylC-seq) and RNA sequencing (RNAseq). The protocol presents guidance on the described procedure, key notes and troubleshooting.
Collapse
Affiliation(s)
- Ana Cláudia Silva
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Ángela Martínez-Gómez
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Marta Barcala
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- *Correspondence: Carolina Escobar,
| |
Collapse
|
19
|
Jaubert-Possamai S, Noureddine Y, Favery B. MicroRNAs, New Players in the Plant-Nematode Interaction. FRONTIERS IN PLANT SCIENCE 2019; 10:1180. [PMID: 31681347 PMCID: PMC6811602 DOI: 10.3389/fpls.2019.01180] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/29/2019] [Indexed: 05/04/2023]
Abstract
Plant-parasitic root-knot and cyst nematodes are microscopic worms that cause severe damage to crops and induce major agricultural losses worldwide. These parasites penetrate into host roots and induce the formation of specialized feeding structures, which supply the resources required for nematode development. Root-knot nematodes induce the redifferentiation of five to seven root cells into giant multinucleate feeding cells, whereas cyst nematodes induce the formation of a multinucleate syncytium by targeting a single root cell. Transcriptomic analyses have shown that the induction of these feeding cells by nematodes involves an extensive reprogramming of gene expression within the targeted root cells. MicroRNAs are small noncoding RNAs that act as key regulators of gene expression in eukaryotes by inducing the posttranscriptional silencing of protein coding genes, including many genes encoding transcription factors. A number of microRNAs (miRNAs) displaying changes in expression in root cells in response to nematode infection have recently been identified in various plant species. Modules consisting of miRNAs and the transcription factors they target were recently shown to be required for correct feeding site formation. Examples include miR396 and GRF in soybean syncytia and miR159 and MYB33 in Arabidopsis giant cells. Moreover, some conserved miRNA/target modules seem to have similar functions in feeding site formation in different plant species. These miRNAs may be master regulators of the reprogramming of expression occurring during feeding site formation. This review summarizes current knowledge about the role of these plant miRNAs in plant-nematode interactions.
Collapse
|
20
|
Hu Y, You J, Li J, Wang C. Loss of cytosolic glucose-6-phosphate dehydrogenase increases the susceptibility of Arabidopsis thaliana to root-knot nematode infection. ANNALS OF BOTANY 2019; 123:37-46. [PMID: 29992234 PMCID: PMC6344109 DOI: 10.1093/aob/mcy124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Root knot nematodes (RKNs, Meloidogyne spp.) are microscopic roundworms with a wide host range causing great economic losses worldwide. Understanding how metabolic pathways function within the plant upon RKN infection will provide insight into the molecular aspects of plant-RKN interactions. Glucose-6-phosphate dehydrogenase (G6PDH), the key regulatory enzyme of the oxidative pentose phosphate pathway (OPPP), is involved in plant responses to abiotic stresses and pathogenesis. In this study, the roles of Arabidopsis cytosolic G6PDH in plant-RKN interactions were investigated. METHODS Enzyme assays and western blotting were used to characterize changes in total G6PDH activity and protein abundance in wild-type Arabidopsis in response to RKN infection. The susceptibility of wild-type plants and the double mutant g6pd5/6 to RKNs was analysed and the expression of genes associated with the basal defence response was tested after RKN infection using quantitative reverse transcription PCR. KEY RESULTS RKN infection caused a marked increase in total G6PDH activity and protein abundance in wild-type Arabidopsis roots. However, the transcript levels of G6PDH genes except G6PD6 were not significantly induced following RKN infection, suggesting that the increase in G6PDH activity may occur at the post-transcriptional level. The double mutant g6pd5/6 with loss-of-function of the two cytosolic isoforms G6PD5 and G6PD6 displayed enhanced susceptibility to RKNs. Moreover, reactive oxygen species (ROS) production and gene expression involved in the defence response including jasmonic acid and salicylic acid pathways were suppressed in the g6pd5/6 mutant at the early stage of RKN infection when compared to the wild-type plants. CONCLUSIONS The results demonstrated that the G6PDH-mediated OPPP plays an important role in the plant-RKN interaction. In addition, a new aspect of G6PDH activity involving NADPH production by the OPPP in plant basal defence against RKNs is defined, which may be involved in ROS signalling.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jia You
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi, China
| | - Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- For correspondence. E-mail
| |
Collapse
|
21
|
Ruiz‐Ferrer V, Cabrera J, Martinez‐Argudo I, Artaza H, Fenoll C, Escobar C. Silenced retrotransposons are major rasiRNAs targets in Arabidopsis galls induced by Meloidogyne javanica. MOLECULAR PLANT PATHOLOGY 2018; 19:2431-2445. [PMID: 30011119 PMCID: PMC6638097 DOI: 10.1111/mpp.12720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 05/18/2023]
Abstract
Root-knot nematodes (RKNs, Meloidogyne spp.) are sedentary biotrophic pathogens that establish within the vascular cylinder of plant roots, forming a gall and inducing several feeding cells, giant cells (GCs), essential for completion of their life cycle. GCs suffer gene expression changes, repeated mitosis and endoreduplication events. Transcriptomics has revealed that an extensive down-regulation of transcripts, a molecular signature of early-developing galls and GCs that is conserved in tomato and Arabidopsis, may be achieved through small RNA (sRNA) gene silencing pathways. The role of some microRNAs (miRNAs) in plant-RKN interactions has recently been addressed, but little is known about the regulatory roles of other sRNA types. Here, we perform a differential accumulation analysis to show which repeat-associated small interfering RNAs (rasiRNAs) are distinctive or enriched in early Arabidopsis galls vs. uninfected roots. Those distinctive from galls are preferentially located in pericentromeric regions with predominant sizes of 24 and 22 nucleotides. Gall-distinctive rasiRNAs target primarily GYPSY and COPIA retrotransposons, which show a marked repression in galls vs. uninfected roots. Infection tests and phenotypic studies of galls from Meloidogyne javanica in Arabidopsis mutants impaired in post-transcriptional gene silencing and/or canonical RNA-directed DNA methylation (RdDM) pathways, as well as quantitative polymerase chain reaction analysis, suggest the implication of canonical and non-canonical RdDM pathways during gall formation, possibly through the regulation of retrotransposons. This process may be crucial for the maintenance of genome integrity during the reprogramming process of galls/GCs from their vascular precursor cells, and/or to ensure a faithful DNA replication during the repeated mitosis/endoreduplication that concurs with feeding site formation.
Collapse
Affiliation(s)
- Virginia Ruiz‐Ferrer
- Universidad de Castilla‐ La Mancha. Facultad de Ciencias Ambientales y Bioquímica. Avda. Carlos IIIs/n. 45071. ToledoSpain
| | - Javier Cabrera
- Universidad de Castilla‐ La Mancha. Facultad de Ciencias Ambientales y Bioquímica. Avda. Carlos IIIs/n. 45071. ToledoSpain
| | - Isabel Martinez‐Argudo
- Universidad de Castilla‐ La Mancha. Facultad de Ciencias Ambientales y Bioquímica. Avda. Carlos IIIs/n. 45071. ToledoSpain
| | - Haydeé Artaza
- Faculty of Medicine, Department of Clinical ScienceUniversity of Bergen5020BergenNorway
| | - Carmen Fenoll
- Universidad de Castilla‐ La Mancha. Facultad de Ciencias Ambientales y Bioquímica. Avda. Carlos IIIs/n. 45071. ToledoSpain
| | - Carolina Escobar
- Universidad de Castilla‐ La Mancha. Facultad de Ciencias Ambientales y Bioquímica. Avda. Carlos IIIs/n. 45071. ToledoSpain
| |
Collapse
|
22
|
Veronico P, Paciolla C, Pomar F, De Leonardis S, García-Ulloa A, Melillo MT. Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:40-50. [PMID: 30145275 DOI: 10.1016/j.jplph.2018.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 05/27/2023]
Abstract
Benzothiadiazole (BTH) acts as a priming agent in plant defence leading to a reduction in penetration and development of the root-knot nematode Meloidogyne incognita in susceptible tomato roots. Changes in lignin biosynthesis in the susceptible tomato cv. Roma following nematode infection and/or BTH treatment were investigated in comparison to the resistant cv. Rossol. Both untreated and BTH-treated susceptible infected roots (galls) showed an increased level of expression of lignin synthesis-related genes (PAL, C4H, HCT and F5H) at early times during infection (2-4 days post inoculation). Peroxidase (soluble and cell-wall bound, POX) enzyme activities increased after inoculation with M. incognita and the priming effect of BTH treatment was evident at later stages of infection (7 days post inoculation). As expected, the induction of PAL and POXs and lignin synthesis-related genes was faster and greater in resistant roots after infection. Histochemical analysis revealed accumulation of higher lignin levels at later infection stages in BTH-treated galls compared to untreated ones. Furthermore, the monomer composition of lignin indicated a different composition in guaiacyl (G) and syringyl (S) units in BTH-treated galls compared to untreated galls. The increase in G units made G/S ratio similar to that in the resistant genotype. Overall, lignin played a critical role in tomato defence to M. incognita in response to BTH.
Collapse
Affiliation(s)
- Pasqua Veronico
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy.
| | - Costantino Paciolla
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy.
| | - Federico Pomar
- Departamento de Biología Animal, Biología Vexetal e Ecología, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071, A Coruña, Spain.
| | - Silvana De Leonardis
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy.
| | - Alba García-Ulloa
- Departamento de Biología Animal, Biología Vexetal e Ecología, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071, A Coruña, Spain.
| | - Maria Teresa Melillo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy.
| |
Collapse
|
23
|
Barbosa EA, Bonfim MF, Bloch C, Engler G, Rocha T, de Almeida Engler J. Imaging Mass Spectrometry of Endogenous Polypeptides and Secondary Metabolites from Galls Induced by Root-Knot Nematodes in Tomato Roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1048-1059. [PMID: 29663868 DOI: 10.1094/mpmi-02-18-0049-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nematodes are devastating pests that infect most cultivated plant species and cause considerable agricultural losses worldwide. The understanding of metabolic adjustments induced during plant-nematode interaction is crucial to generate resistant plants or to select more efficient molecules to fight against this pest. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used herein for in situ detection and mapping endogenous polypeptides and secondary metabolites from nematode-induced gall tissue. One of the major critical features of this technique is sample preparation; mainly, the generation of intact sections of plant cells with their rigid cell walls and vacuolated cytoplasm. Our experimental settings allowed us to obtain sections without contamination of exogenous ions or diffusion of molecules and to map the differential presence of low and high molecular weight ions in uninfected roots compared with nematode-induced galls. We predict the presence of lipids in both uninfected roots and galls, which was validated by MALDI time-of-flight tandem mass spectrometry and high-resolution mass spectrometry analysis of lipid extracts. Based on the isotopic ion distribution profile, both esters and glycerophospholipids were predicted compounds and may be playing an important role in gall development. Our results indicate that the MALDI-MSI technology is a promising tool to identify secondary metabolites as well as peptides and proteins in complex plant tissues like galls to decipher molecular processes responsible for infection and maintenance of these feeding sites during nematode parasitism.
Collapse
Affiliation(s)
- Eder Alves Barbosa
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
| | - Mauro Ferreira Bonfim
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | - Carlos Bloch
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
| | - Gilbert Engler
- 4 INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Thales Rocha
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | | |
Collapse
|
24
|
Warmerdam S, Sterken MG, van Schaik C, Oortwijn MEP, Sukarta OCA, Lozano‐Torres JL, Dicke M, Helder J, Kammenga JE, Goverse A, Bakker J, Smant G. Genome-wide association mapping of the architecture of susceptibility to the root-knot nematode Meloidogyne incognita in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 218:724-737. [PMID: 29468687 PMCID: PMC6079644 DOI: 10.1111/nph.15034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/08/2018] [Indexed: 05/04/2023]
Abstract
Susceptibility to the root-knot nematode Meloidogyne incognita in plants is thought to be a complex trait based on multiple genes involved in cell differentiation, growth and defence. Previous genetic analyses of susceptibility to M. incognita have mainly focused on segregating dominant resistance genes in crops. It is not known if plants harbour significant genetic variation in susceptibility to M. incognita independent of dominant resistance. To study the genetic architecture of susceptibility to M. incognita, we analysed nematode reproduction on a highly diverse set of 340 natural inbred lines of Arabidopsis thaliana with genome-wide association mapping. We observed a surprisingly large variation in nematode reproduction among these lines. Genome-wide association mapping revealed four quantitative trait loci (QTLs) located on chromosomes 1 and 5 of A. thaliana significantly associated with reproductive success of M. incognita, none of which harbours typical resistance gene homologues. Mutant analysis of three genes located in two QTLs showed that the transcription factor BRASSINAZOLE RESISTANT1 and an F-box family protein may function as (co-)regulators of susceptibility to M. incognita in Arabidopsis. Our data suggest that breeding for loss-of-susceptibility, based on allelic variants critically involved in nematode feeding, could be used to make crops more resilient to root-knot nematodes.
Collapse
Affiliation(s)
- Sonja Warmerdam
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| | - Casper van Schaik
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| | - Marian E. P. Oortwijn
- Laboratory of Plant BreedingWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| | - Octavina C. A. Sukarta
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| | - Jose L. Lozano‐Torres
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| | - Johannes Helder
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| | - Jan E. Kammenga
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| | - Aska Goverse
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| | - Jaap Bakker
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen UniversityDroevendaalsesteeg 16708 PB Wageningenthe Netherlands
| |
Collapse
|
25
|
Shukla N, Yadav R, Kaur P, Rasmussen S, Goel S, Agarwal M, Jagannath A, Gupta R, Kumar A. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. MOLECULAR PLANT PATHOLOGY 2018; 19:615-633. [PMID: 28220591 PMCID: PMC6638136 DOI: 10.1111/mpp.12547] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/19/2017] [Accepted: 02/17/2017] [Indexed: 05/10/2023]
Abstract
Root-knot nematodes (RKNs, Meloidogyne incognita) are economically important endoparasites with a wide host range. We used a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time intervals from susceptible plants and two infection time intervals from resistant plants, grown under soil conditions. Differentially expressed genes during susceptible (1827, tomato; 462, RKN) and resistance (25, tomato; 160, RKN) interactions were identified. In susceptible responses, tomato genes involved in cell wall structure, development, primary and secondary metabolite, and defence signalling pathways, together with RKN genes involved in host parasitism, development and defence, are discussed. In resistance responses, tomato genes involved in secondary metabolite and hormone-mediated defence responses, together with RKN genes involved in starvation stress-induced apoptosis, are discussed. In addition, 40 novel differentially expressed RKN genes encoding secretory proteins were identified. Our findings provide novel insights into the temporal regulation of genes involved in various biological processes from tomato and RKN simultaneously during susceptible and resistance responses, and reveal the involvement of a complex network of biosynthetic pathways during disease development.
Collapse
Affiliation(s)
- Neha Shukla
- Department of BotanyUniversity of DelhiDelhi110007India
| | - Rachita Yadav
- Department of Bio and Health InformaticsTechnical University of Denmark, Kemitorvet 208Lyngby2800Denmark
| | - Pritam Kaur
- Department of BotanyUniversity of DelhiDelhi110007India
| | - Simon Rasmussen
- Department of Bio and Health InformaticsTechnical University of Denmark, Kemitorvet 208Lyngby2800Denmark
| | | | - Manu Agarwal
- Department of BotanyUniversity of DelhiDelhi110007India
| | | | - Ramneek Gupta
- Department of Bio and Health InformaticsTechnical University of Denmark, Kemitorvet 208Lyngby2800Denmark
| | - Amar Kumar
- Department of BotanyUniversity of DelhiDelhi110007India
| |
Collapse
|
26
|
A Phenotyping Method of Giant Cells from Root-Knot Nematode Feeding Sites by Confocal Microscopy Highlights a Role for CHITINASE-LIKE 1 in Arabidopsis. Int J Mol Sci 2018; 19:ijms19020429. [PMID: 29389847 PMCID: PMC5855651 DOI: 10.3390/ijms19020429] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/19/2018] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Most effective nematicides for the control of root-knot nematodes are banned, which demands a better understanding of the plant-nematode interaction. Understanding how gene expression in the nematode-feeding sites relates to morphological features may assist a better characterization of the interaction. However, nematode-induced galls resulting from cell-proliferation and hypertrophy hinders such observation, which would require tissue sectioning or clearing. We demonstrate that a method based on the green auto-fluorescence produced by glutaraldehyde and the tissue-clearing properties of benzyl-alcohol/benzyl-benzoate preserves the structure of the nematode-feeding sites and the plant-nematode interface with unprecedented resolution quality. This allowed us to obtain detailed measurements of the giant cells’ area in an Arabidopsis line overexpressing CHITINASE-LIKE-1 (CTL1) from optical sections by confocal microscopy, assigning a role for CTL1 and adding essential data to the scarce information of the role of gene repression in giant cells. Furthermore, subcellular structures and features of the nematodes body and tissues from thick organs formed after different biotic interactions, i.e., galls, syncytia, and nodules, were clearly distinguished without embedding or sectioning in different plant species (Arabidopsis, cucumber or Medicago). The combination of this method with molecular studies will be valuable for a better understanding of the plant-biotic interactions.
Collapse
|
27
|
Díaz-Manzano FE, Cabrera J, Ripoll JJ, del Olmo I, Andrés MF, Silva AC, Barcala M, Sánchez M, Ruíz-Ferrer V, de Almeida-Engler J, Yanofsky MF, Piñeiro M, Jarillo JA, Fenoll C, Escobar C. A role for the gene regulatory module microRNA172/TARGET OF EARLY ACTIVATION TAGGED 1/FLOWERING LOCUS T (miRNA172/TOE1/FT) in the feeding sites induced by Meloidogyne javanica in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 217:813-827. [PMID: 29105090 PMCID: PMC5922426 DOI: 10.1111/nph.14839] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Root knot nematodes (RKNs) penetrate into the root vascular cylinder, triggering morphogenetic changes to induce galls, de novo formed 'pseudo-organs' containing several giant cells (GCs). Distinctive gene repression events observed in early gall/GCs development are thought to be mediated by post-transcriptional silencing via microRNAs (miRNAs), a process that is far from being fully characterized. Arabidopsis thaliana backgrounds with altered activities based on target 35S::MIMICRY172 (MIM172), 35S::TARGET OF EARLY ACTIVATION TAGGED 1 (TOE1)-miR172-resistant (35S::TOE1R ) and mutant (flowering locus T-10 (ft-10)) lines were used for functional analysis of nematode infective and reproductive parameters. The GUS-reporter lines, MIR172A-E::GUS, treated with auxin (IAA) and an auxin-inhibitor (a-(phenyl ethyl-2-one)-indole-3-acetic acid (PEO-IAA)), together with the MIR172C AuxRE::GUS line with two mutated auxin responsive elements (AuxREs), were assayed for nematode-dependent gene expression. Arabidopsis thaliana backgrounds with altered expression of miRNA172, TOE1 or FT showed lower susceptibility to the RKNs and smaller galls and GCs. MIR172C-D::GUS showed restricted promoter activity in galls/GCs that was regulated by auxins through auxin-responsive factors. IAA induced their activity in galls while PEO-IAA treatment and mutations in AuxRe motifs abolished it. The results showed that the regulatory module miRNA172/TOE1/FT plays an important role in correct GCs and gall development, where miRNA172 is modulated by auxins.
Collapse
Affiliation(s)
- Fernando E. Díaz-Manzano
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Javier Cabrera
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116 USA
| | - Iván del Olmo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Mari Fe Andrés
- Instituto de Ciencias Agrarias (ICA, CSIC), Protección Vegetal, Calle de Serrano 115, 28006 Madrid, Spain
| | - Ana Cláudia Silva
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Marta Barcala
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - María Sánchez
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Virginia Ruíz-Ferrer
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Janice de Almeida-Engler
- Institut National de la Recherche Agronomique (INRA) - University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Martin F. Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116 USA
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Jose Antonio Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Carmen Fenoll
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| | - Carolina Escobar
- Universidad de Castilla-La Mancha. Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal. Avda. Carlos III, s/n, 45071 Toledo, Spain
| |
Collapse
|
28
|
Aznar A, Chalvin C, Shih PM, Maimann M, Ebert B, Birdseye DS, Loqué D, Scheller HV. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:2. [PMID: 29321811 PMCID: PMC5759196 DOI: 10.1186/s13068-017-1007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/23/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Second-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production. RESULTS We have studied the basic mechanisms of cell wall biosynthesis and identified genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase and the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools. Plants were engineered to have up to fourfold more pectic galactan in stems by overexpressing GALS1, URGT1, and UGE2, a UDP-glucose epimerase. Furthermore, the increased galactan trait was engineered into plants that were already engineered to have low xylan content by restricting xylan biosynthesis to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells. CONCLUSION The results show that approaches to increasing C6 sugar content, decreasing xylan, and reducing lignin content can be combined in an additive manner. Thus, the engineered lines obtained by this trait-stacking approach have substantially improved properties from the perspective of biofuel production, and they do not show any obvious negative growth effects. The approach used in this study can be readily transferred to bioenergy crop plants.
Collapse
Affiliation(s)
- Aude Aznar
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Camille Chalvin
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Ecole Normale Supérieure de Cachan, 94230 Cachan, France
| | - Patrick M. Shih
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Michael Maimann
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Berit Ebert
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Devon S. Birdseye
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Dominique Loqué
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720 USA
| | - Henrik V. Scheller
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
29
|
Kakrana A, Kumar A, Satheesh V, Abdin MZ, Subramaniam K, Bhattacharya RC, Srinivasan R, Sirohi A, Jain PK. Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance. FRONTIERS IN PLANT SCIENCE 2017; 8:2049. [PMID: 29312363 PMCID: PMC5733009 DOI: 10.3389/fpls.2017.02049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/15/2017] [Indexed: 05/27/2023]
Abstract
The root-knot nematode (RKN), Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi) has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS) promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants.
Collapse
Affiliation(s)
- Atul Kakrana
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - Anil Kumar
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard University, New Delhi, India
| | | | - M. Z. Abdin
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard University, New Delhi, India
| | | | | | | | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep K. Jain
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| |
Collapse
|
30
|
Chinnapandi B, Bucki P, Braun Miyara S. SlWRKY45, nematode-responsive tomato WRKY gene, enhances susceptibility to the root knot nematode; M. javanica infection. PLANT SIGNALING & BEHAVIOR 2017; 12:e1356530. [PMID: 29271721 PMCID: PMC5792125 DOI: 10.1080/15592324.2017.1356530] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 05/21/2023]
Abstract
The fluctuation of tomato's WRKY defense regulators during infection by the root knot nematode Meloidogyne javanica was analyzed: and the spatial and temporal expression of SlWRKY45 was studied in depth with regard to its response to nematode infection, phytohormones, and wounding. Expression of WRKY45 increased substantially within 5 d upon infection and continued through feeding-site development and gall maturation. Histological analysis of nematode feeding sites indicated that WRKY45 was highly expressed within the feeding cells and associated vascular parenchyma cells. Responses of SlWRKY45 promoters to several phytohormones showed that WRKY45 was highly induced by specific phytohormones, including cytokinin, auxin, and the defense-signaling molecule salicylic acid (SA), but not by the jasmonates. Overexpressing tomato lines were generated, and infection tests showed that, significantly, roots over-expressing SlWRKY45 contained substantially increased number of females, indicating that WRKY45 overexpression supported faster nematode development. qRT-PCR tests have shown roots overexpressing WRKY45 suppressed the jasmonic acid and salicylic acid marker genes, proteinase inhibitor (PI), and pathogenesis related protein (PR1), respectively, and also the cytokinin response factors CRF1 and CRF6. Overall, this study indicated SlWRKY45 to be a potential transcription factor whose manipulation by the invading nematode might be critical for coordination of hormone signals supporting favorable condition for nematode development in root tissue.
Collapse
Affiliation(s)
- Bharathiraja Chinnapandi
- Department of Entomology and the Nematology and Chemistry Units, Agricultural Research Organization (ARO), the Volcani Center, Rishon Lezion, Israel
| | - Patricia Bucki
- Department of Entomology and the Nematology and Chemistry Units, Agricultural Research Organization (ARO), the Volcani Center, Rishon Lezion, Israel
| | - Sigal Braun Miyara
- Department of Entomology and the Nematology and Chemistry Units, Agricultural Research Organization (ARO), the Volcani Center, Rishon Lezion, Israel
- CONTACT Sigal Braun Miyara, PhD , Department of Entomology and the Nematology and Chemistry Units, ARO, Volcani Center, HaMaccabim Road, P.O. Box 15159, Rishon Lezion 7528809, Israel
| |
Collapse
|
31
|
Zhang HM, Wheeler SL, Xia X, Colyvas K, Offler CE, Patrick JW. Transcript Profiling Identifies Gene Cohorts Controlled by Each Signal Regulating Trans-Differentiation of Epidermal Cells of Vicia faba Cotyledons to a Transfer Cell Phenotype. FRONTIERS IN PLANT SCIENCE 2017; 8:2021. [PMID: 29234338 PMCID: PMC5712318 DOI: 10.3389/fpls.2017.02021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H2O2) and cytosolic Ca2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans-differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log2fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans-differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H2O2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca2+ (21%), auxin (18%) and ethylene (5%). The dominance by H2O2 was evident across all functional categories, but became more attenuated once trans-differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H2O2/Ca2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Simon L. Wheeler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Xue Xia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Kim Colyvas
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Christina E. Offler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - John W. Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
32
|
Palomares-Rius JE, Escobar C, Cabrera J, Vovlas A, Castillo P. Anatomical Alterations in Plant Tissues Induced by Plant-Parasitic Nematodes. FRONTIERS IN PLANT SCIENCE 2017; 8:1987. [PMID: 29201038 PMCID: PMC5697168 DOI: 10.3389/fpls.2017.01987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/03/2017] [Indexed: 05/08/2023]
Abstract
Plant-parasitic nematodes (PPNs) interact with plants in different ways, for example, through subtle feeding behavior, migrating destructively through infected tissues, or acting as virus-vectors for nepoviruses. They are all obligate biotrophic parasites as they derive their nutrients from living cells which they modify using pharyngeal gland secretions prior to food ingestion. Some of them can also shield themselves against plant defenses to sustain a relatively long lasting interaction while feeding. This paper is centered on cell types or organs that are newly induced in plants during PPN parasitism, including recent approaches to their study based on molecular biology combined with cell biology-histopathology. This issue has already been reviewed extensively for major PPNs (i.e., root-knot or cyst nematodes), but not for other genera (viz. Nacobbus aberrans, Rotylenchulus spp.). PPNs have evolved with plants and this co-evolution process has allowed the induction of new types of plant cells necessary for their parasitism. There are four basic types of feeding cells: (i) non-hypertrophied nurse cells; (ii) single giant cells; (iii) syncytia; and (iv) coenocytes. Variations in the structure of these cells within each group are also present between some genera depending on the nematode species viz. Meloidogyne or Rotylenchulus. This variability of feeding sites may be related in some way to PPN life style (migratory ectoparasites, sedentary ectoparasites, migratory ecto-endoparasites, migratory endoparasites, or sedentary endoparasites). Apart from their co-evolution with plants, the response of plant cells and roots are closely related to feeding behavior, the anatomy of the nematode (mainly stylet size, which could reach different types of cells in the plant), and the secretory fluids produced in the pharyngeal glands. These secretory fluids are injected through the stylet into perforated cells where they modify plant cytoplasm prior to food removal. Some species do not produce specialized feeding sites (viz. Ditylenchus, Subanguina), but may develop a specialized modification of the root system (e.g., unspecialized root galls or a profusion of roots). This review introduces new data on cell types and plant organs stimulated by PPNs using sources varying from traditional histopathology to new holistic methodologies.
Collapse
Affiliation(s)
- Juan E. Palomares-Rius
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| | - Carolina Escobar
- Plant Biotechnology and Molecular Biology Group, University of Castilla La Mancha, Toledo, Spain
| | - Javier Cabrera
- Plant Biotechnology and Molecular Biology Group, University of Castilla La Mancha, Toledo, Spain
| | | | - Pablo Castillo
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| |
Collapse
|
33
|
Genome-wide identification and characterization of miRNAome from tomato (Solanum lycopersicum) roots and root-knot nematode (Meloidogyne incognita) during susceptible interaction. PLoS One 2017; 12:e0175178. [PMID: 28426683 PMCID: PMC5398497 DOI: 10.1371/journal.pone.0175178] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022] Open
Abstract
Root-knot nematodes (RKNs, Meloidogyne spp.) are the most damaging plant parasites causing severe losses to crop production. The present study reports genome-wide identification and characterization of both tomato and RKN miRNAs simultaneously from RKN-infected susceptible tomato roots using high-throughput sequencing technique. RNAseq data from 11 small RNA libraries derived from 5 disease development stages identified 281 novel miRNAs of tomato in addition to 52 conserved and 4 variants of conserved miRNAs. Additionally, the same set of RNAseq data identified 38 conserved and 290 novel RKN miRNAs. Both tomato and RKN miRNAs showed differential expression at 5 stages of disease development based on digital expression profiles. In tomato, further validation through qRT-PCR confirmed that majority of miRNAs were significantly upregulated during susceptible response whereas downregulated during resistance response. The predicted targets of 8 conserved and 1 novel miRNAs were validated through 5’RLM-RACE. A negative correlation between expression profiles of a few conserved miRNAs (miR156, miR159, miR164 and miR396) and their targets (SBP, GAMYB-like, NAC and GRF1 transcription factor) was confirmed. A novel Sly_miRNA996 also showed a negative correlation with its target MYB-like transcription factor. These results indicate that the conserved and novel tomato miRNAs are involved in regulating developmental changes in host root during RKN infection. In RKN, the targets of conserved miRNAs were also predicted and a few of their predicted target genes are known to be involved in nematode parasitism. Further, the potential roles of both tomato and RKN miRNAs have been discussed.
Collapse
|
34
|
Święcicka M, Skowron W, Cieszyński P, Dąbrowska-Bronk J, Matuszkiewicz M, Filipecki M, Koter MD. The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:51-55. [PMID: 28182967 DOI: 10.1016/j.plaphy.2017.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 05/20/2023]
Abstract
Potato cyst nematode Globodera rostochiensis is an obligate parasite of solanaceous plants, triggering metabolic and morphological changes in roots which may result in substantial crop yield losses. Previously, we used the cDNA-AFLP to study the transcriptional dynamics in nematode infected tomato roots. Now, we present the rescreening of already published, upregulated transcript-derived fragment dataset using the most current tomato transcriptome sequences. Our reanalysis allowed to add 54 novel genes to 135, already found as upregulated in tomato roots upon G. rostochiensis infection (in total - 189). We also created completely new catalogue of downregulated sequences leading to the discovery of 76 novel genes. Functional classification of candidates showed that the 'wound, stress and defence response' category was enriched in the downregulated genes. We confirmed the transcriptional dynamics of six genes by qRT-PCR. To place our results in a broader context, we compared the tomato data with Arabidopsis thaliana, revealing similar proportions of upregulated and downregulated genes as well as similar enrichment of defence related transcripts in the downregulated group. Since transcript suppression is quite common in plant-nematode interactions, we assessed the possibility of miRNA-mediated inverse correlation on several tomato sequences belonging to NB-LRR and receptor-like kinase families. The qRT-PCR of miRNAs and putative target transcripts showed an opposite expression pattern in 9 cases. These results together with in silico analyses of potential miRNA targeting to the full repertoire of tomato R-genes show that miRNA mediated gene suppression may be a key regulatory mechanism during nematode parasitism.
Collapse
Affiliation(s)
- Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Waldemar Skowron
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Piotr Cieszyński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Joanna Dąbrowska-Bronk
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Marek Daniel Koter
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland.
| |
Collapse
|
35
|
Leonetti P, Zonno MC, Molinari S, Altomare C. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. PLANT CELL REPORTS 2017; 36:621-631. [PMID: 28239746 DOI: 10.1007/s00299-017-2109-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/20/2017] [Indexed: 05/10/2023]
Abstract
Salicylic acid-signaling pathway and ethylene biosynthesis were induced in tomato treated with Trichoderma harzianum when infected by root-knot nematodes and limited the infection by activation of SAR and ethylene production. Soil pre-treatment with Trichoderma harzianum (Th) strains ITEM 908 (T908) and T908-5 decreased susceptibility of tomato to Meloidogyne incognita, as assessed by restriction in nematode reproduction and development. The effect of T. harzianum treatments on plant defense was detected by monitoring the expression of the genes PR-1/PR-5 and JERF3/ACO, markers of the SA- and JA/ET-dependent signaling pathways, respectively. The compatible nematode-plant interaction in absence of fungi caused a marked suppression of PR-1, PR-5, and ACO gene expressions, either locally or systemically, whilst expression of JERF3 gene resulted unaffected. Conversely, when plants were pre-treated with Th-strains, over-expression of PR-1, PR-5, and ACO genes was observed in roots 5 days after nematode inoculation. JERF3 gene expression did not change in Th-colonized plants challenged with nematodes. In the absence of nematodes, Trichoderma-root interaction was characterized by the inhibition of both SA-dependent signaling pathway and ET biosynthesis, and, in the case of PR-1 and ACO genes, this inhibition was systemic. JERF3 gene expression was systemically restricted only at the very early stages of plant-fungi interaction. Data presented indicate that Th-colonization primed roots for Systemic Acquired Resistance (SAR) against root-knot nematodes and reacted to nematode infection more efficiently than untreated plants. Such a response probably involves also activation of ET production, through an augmented transcription of the ACO gene, which encodes for the enzyme catalyzing the last step of ET biosynthesis. JA signaling and Induced Systemic Resistance (ISR) do not seem to be involved in the biocontrol action of the tested Th-strains against RKNs.
Collapse
Affiliation(s)
- Paola Leonetti
- Institute of Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 70126, Bari, Italy.
| | - Maria Chiara Zonno
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126, Bari, Italy
| | - Sergio Molinari
- Institute of Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 70126, Bari, Italy
| | - Claudio Altomare
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126, Bari, Italy
| |
Collapse
|
36
|
Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CMJ, Van Wees SCM. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. THE NEW PHYTOLOGIST 2017; 213:1363-1377. [PMID: 27801946 DOI: 10.1111/nph.14251] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/02/2016] [Indexed: 05/18/2023]
Abstract
Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the hormone signalling network in the host to induce resistance to nematodes. We investigated the role and the timing of the jasmonic acid (JA)- and salicylic acid (SA)-regulated defensive pathways in Trichoderma-induced resistance to the root knot nematode Meloidogyne incognita. A split-root system of tomato (Solanum lycopersicum) was used to study local and systemic induced defences by analysing nematode performance, defence gene expression, responsiveness to exogenous hormone application, and dependence on SA and JA signalling of Trichoderma-induced resistance. Root colonization by Trichoderma impeded nematode performance both locally and systemically at multiple stages of the parasitism, that is, invasion, galling and reproduction. First, Trichoderma primed SA-regulated defences, which limited nematode root invasion. Then, Trichoderma enhanced JA-regulated defences, thereby antagonizing the deregulation of JA-dependent immunity by the nematodes, which compromised galling and fecundity. Our results show that Trichoderma primes SA- and JA-dependent defences in roots, and that the priming of responsiveness to these hormones upon nematode attack is plastic and adaptive to the parasitism stage.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Ivan Fernandez
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Gerrit B Lok
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| |
Collapse
|
37
|
Medeiros HAD, Araújo Filho JVD, Freitas LGD, Castillo P, Rubio MB, Hermosa R, Monte E. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci Rep 2017; 7:40216. [PMID: 28071749 PMCID: PMC5223212 DOI: 10.1038/srep40216] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022] Open
Abstract
Root-knot nematodes (RKN) are major crop pathogens worldwide. Trichoderma genus fungi are recognized biocontrol agents and a direct activity of Trichoderma atroviride (Ta) against the RKN Meloidogyne javanica (Mj), in terms of 42% reduction of number of galls (NG), 60% of number of egg masses and 90% of number of adult nematodes inside the roots, has been observed in tomato grown under greenhouse conditions. An in vivo split-root designed experiment served to demonstrate that Ta induces systemic resistance towards Mj, without the need for the organisms to be in direct contact, and significantly reduces NG (20%) and adult nematodes inside tomato roots (87%). The first generation (F1) of Ta-primed tomato plants inherited resistance to RKN; although, the induction of defenses occurred through different mechanisms, and in varying degrees, depending on the Ta-Mj interaction. Plant growth promotion induced by Ta was inherited without compromising the level of resistance to Mj, as the progeny of Ta-primed plants displayed increased size and resistance to Mj without fitness costs. Gene expression results from the defense inductions in the offspring of Ta-primed plants, suggested that an auxin-induced reactive oxygen species production promoted by Ta may act as a major defense strategy during plant growth.
Collapse
Affiliation(s)
- Hugo Agripino de Medeiros
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
- Department of Phytopathology, Federal University of Viçosa, Viçosa Minas Gerais, Brazil
| | | | | | - Pablo Castillo
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - María Belén Rubio
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
38
|
Olmo R, Cabrera J, Moreno-Risueno MA, Fukaki H, Fenoll C, Escobar C. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program? FRONTIERS IN PLANT SCIENCE 2017; 8:875. [PMID: 28603536 PMCID: PMC5445185 DOI: 10.3389/fpls.2017.00875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/10/2017] [Indexed: 05/12/2023]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) induce feeding cells (giant cells; GCs) inside a pseudo-organ (gall) from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN-plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT)-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs), auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19, slr, and alf4. Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those prevalent during normal LR development.
Collapse
Affiliation(s)
- Rocío Olmo
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla La ManchaToledo, Spain
| | - Javier Cabrera
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla La ManchaToledo, Spain
| | - Miguel A. Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe UniversityKobe, Japan
| | - Carmen Fenoll
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla La ManchaToledo, Spain
| | - Carolina Escobar
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla La ManchaToledo, Spain
- *Correspondence: Carolina Escobar,
| |
Collapse
|
39
|
Hu Y, You J, Li C, Hua C, Wang C. Exogenous application of methyl jasmonate induces defence against Meloidogyne hapla in soybean. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phytohormones play important roles in plant defence against plant-parasitic nematodes, although the role of jasmonate (JA) in defence against root-knot nematodes (RKN, Meloidogyne spp.) in soybean (Glycine max) was unknown. In this study, two commercial soybean cultivars, cvs DongSheng1 (DS1) and SuiNong14 (SN14), were identified as susceptible and resistant, respectively, to M. hapla. Quantitative reverse transcription (qRT)-PCR analysis showed that the expression of genes involved in JA synthesis or signalling was significantly induced in both susceptible and resistant roots at 24 and 48 h after inoculation. Exogenous application of methyl jasmonate induced defence against RKN in susceptible cv. DS1, which might be involved in altered activities of defence-related enzymes (chitinase and β-1,3 glucanase) and pathogenesis-related gene PR5 expression. The results indicate that exogenous application of JA might be an alternative strategy to induce soybean resistance against RKN.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Jia You
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Chunjie Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Cui Hua
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| |
Collapse
|
40
|
Mantelin S, Bellafiore S, Kyndt T. Meloidogyne graminicola: a major threat to rice agriculture. MOLECULAR PLANT PATHOLOGY 2017; 18:3-15. [PMID: 26950515 PMCID: PMC6638252 DOI: 10.1111/mpp.12394] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
TAXONOMY Superkingdom Eukaryota; Kingdom Metazoa; Phylum Nematoda; Class Chromadorea; Order Tylenchida; Suborder Tylenchina; Infraorder Tylenchomorpha; Superfamily Tylenchoidea; Family Meloidogynidae; Subfamily Meloidogyninae; Genus Meloidogyne. BIOLOGY Microscopic non-segmented roundworm. Plant pathogen; obligate sedentary endoparasitic root-knot nematode. Reproduction: facultative meiotic parthenogenetic species in which amphimixis can occur at a low frequency (c. 0.5%); relatively fast life cycle completed in 19-27 days on rice depending on the temperature range. HOST RANGE Reported to infect over 100 plant species, including cereals and grass plants, as well as dicotyledonous plants. Main host: rice (Oryza sativa). SYMPTOMS Characteristic hook-shaped galls (root swellings), mainly formed at the root tips of infected plants. Alteration of the root vascular system causes disruption of water and nutrient transport, stunting, chlorosis and loss of vigour, resulting in poor growth and reproduction of the plants with substantial yield losses in crops. DISEASE CONTROL Nematicides, chemical priming, constant immersion of rice in irrigated fields, crop rotation with resistant or non-host plants, use of nematode-free planting material. Some sources of resistance to Meloidogyne graminicola have been identified in African rice species (O. glaberrima and O. longistaminata), as well as in a few Asian rice cultivars. AGRONOMIC IMPORTANCE Major threat to rice agriculture, particularly in Asia. Adapted to flooded conditions, Meloidogyne graminicola causes problems in all types of rice agrosystems.
Collapse
Affiliation(s)
- Sophie Mantelin
- The James Hutton Institute, Dundee Effector ConsortiumInvergowrieDundeeDD2 5DAUK
| | - Stéphane Bellafiore
- IRD‐CIRAD‐Université Montpellier II, UMR Interactions Plantes Microorganismes Environnement (IPME)34394MontpellierFrance
- LMI‐RICEHanoiVietnam
| | - Tina Kyndt
- Department of Molecular BiotechnologyGhent University9000GhentBelgium
| |
Collapse
|
41
|
Agarrwal R, Padmakumari AP, Bentur JS, Nair S. Metabolic and transcriptomic changes induced in host during hypersensitive response mediated resistance in rice against the Asian rice gall midge. RICE (NEW YORK, N.Y.) 2016; 9:5. [PMID: 26892000 PMCID: PMC4759115 DOI: 10.1186/s12284-016-0077-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/12/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND An incompatible interaction between rice (Oryza sativa) and the Asian rice gall midge (AGM, Orseolia oryzae Wood-Mason), that is usually manifested through a hypersensitive response (HR), represents an intricate relationship between the resistant host and its avirulent pest. We investigated changes in the transcriptome and metabolome of the host (indica rice variety: RP2068-18-3-5, RP), showing HR when attacked by an avirulent gall midge biotype (GMB1), to deduce molecular and biochemical bases of such a complex interaction. Till now, such an integrated analysis of host transcriptome and metabolome has not been reported for any rice-insect interaction. RESULTS Transcript and metabolic profiling data revealed more than 7000 differentially expressed genes and 80 differentially accumulated metabolites, respectively, in the resistant host. Microarray data revealed deregulation of carbon (C) and nitrogen (N) metabolism causing a C/N shift; up-regulation of tetrapyrrole synthesis and down-regulation of chlorophyll synthesis and photosynthesis. Integrated results revealed that genes involved in lipid peroxidation (LPO) were up-regulated and a marker metabolite for LPO (azelaic acid) accumulated during HR. This coincided with a greater accumulation of GABA (neurotransmitter and an insect antifeedant) at the feeding site. Validation of microarray results by semi-quantitative RT-PCR revealed temporal variation in gene expression profiles. CONCLUSIONS The study revealed extensive reprogramming of the transcriptome and metabolome of RP upon GMB1 infestation leading to an HR that was induced by the generation and release of reactive oxygen species i.e. singlet oxygen and resulted in LPO-mediated cell death. RP thus used HR as a means to limit nutrient supply to the feeding maggots and simultaneously accumulated GABA, strategies that could have led to maggot mortality. The integrated results of transcript and metabolic profiling, for the first time, provided insights into an HR+ type of resistance in rice against gall midge.
Collapse
Affiliation(s)
- Ruchi Agarrwal
- />International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Ayyagari Phani Padmakumari
- />Indian Institute of Rice Research (formerly Directorate of Rice Research), Rajendranagar, Hyderabad, 500030 India
| | - Jagadish S. Bentur
- />Indian Institute of Rice Research (formerly Directorate of Rice Research), Rajendranagar, Hyderabad, 500030 India
- />Present address: AgriBiotech Foundation, Rajendranagar, Hyderabad, 500030 India
| | - Suresh Nair
- />International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
42
|
|
43
|
Baldacci-Cresp F, Sacré PY, Twyffels L, Mol A, Vermeersch M, Ziemons E, Hubert P, Pérez-Morga D, El Jaziri M, de Almeida Engler J, Baucher M. Poplar-Root Knot Nematode Interaction: A Model for Perennial Woody Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:560-572. [PMID: 27135257 DOI: 10.1094/mpmi-01-16-0015-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plant root-knot nematode (RKN) interaction studies are performed on several host plant models. Though RKN interact with trees, no perennial woody model has been explored so far. Here, we show that poplar (Populus tremula × P. alba) grown in vitro is susceptible to Meloidogyne incognita, allowing this nematode to penetrate, to induce feeding sites, and to successfully complete its life cycle. Quantitative reverse transcription-polymerase chain reaction analysis was performed to study changes in poplar gene expression in galls compared with noninfected roots. Three genes (expansin A, histone 3.1, and asparagine synthase), selected as gall development marker genes, followed, during poplar-nematode interaction, a similar expression pattern to what was described for other plant hosts. Downregulation of four genes implicated in the monolignol biosynthesis pathway was evidenced in galls, suggesting a shift in the phenolic profile within galls developed on poplar roots. Raman microspectroscopy demonstrated that cell walls of giant cells were not lignified but mainly composed of pectin and cellulose. The data presented here suggest that RKN exercise conserved strategies to reproduce and to invade perennial plant species and that poplar is a suitable model host to study specific traits of tree-nematode interactions.
Collapse
Affiliation(s)
- Fabien Baldacci-Cresp
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Pierre-Yves Sacré
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - Laure Twyffels
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
| | - Adeline Mol
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Marjorie Vermeersch
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
| | - Eric Ziemons
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - Philippe Hubert
- 2 University of Liege, CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, B36, B-4000 Liege, Belgium
| | - David Pérez-Morga
- 3 Center for Microscopy and Molecular Imaging-CMMI, Université libre de Bruxelles
- 4 Laboratoire de Parasitologie Moléculaire, Université libre de Bruxelles; and
| | - Mondher El Jaziri
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Janice de Almeida Engler
- 5 INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, F-06900 Sophia Antipolis, France
| | - Marie Baucher
- 1 Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| |
Collapse
|
44
|
Teixeira MA, Wei L, Kaloshian I. Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. THE NEW PHYTOLOGIST 2016; 211:276-87. [PMID: 26892116 DOI: 10.1111/nph.13893] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/10/2016] [Indexed: 05/08/2023]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) are plant parasites with a broad host range causing great losses worldwide. To parasitize their hosts, RKNs establish feeding sites in roots known as giant cells. The majority of work studying plant-RKN interactions in susceptible hosts addresses establishment of the giant cells and there is limited information on the early defense responses. Here we characterized early defense or pattern-triggered immunity (PTI) against RKNs in Arabidopsis thaliana. To address PTI, we evaluated known canonical PTI signaling mutants with RKNs and investigated the expression of PTI marker genes after RKN infection using both quantitative PCR and β-glucuronidase reporter transgenic lines. We showed that PTI-compromised plants have enhanced susceptibility to RKNs, including the bak1-5 mutant. BAK1 is a common partner of distinct receptors of microbe- and damage-associated molecular patterns. Furthermore, our data indicated that nematode recognition leading to PTI responses involves camalexin and glucosinolate biosynthesis. While the RKN-induced glucosinolate biosynthetic pathway was BAK1-dependent, the camalexin biosynthetic pathway was only partially dependent on BAK1. Combined, our results indicate the presence of BAK1-dependent and -independent PTI against RKNs in A. thaliana, suggesting the existence of diverse nematode recognition mechanisms.
Collapse
Affiliation(s)
- Marcella A Teixeira
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA, 92521, USA
- Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
45
|
Kumari C, Dutta TK, Banakar P, Rao U. Comparing the defence-related gene expression changes upon root-knot nematode attack in susceptible versus resistant cultivars of rice. Sci Rep 2016; 6:22846. [PMID: 26961568 PMCID: PMC4785349 DOI: 10.1038/srep22846] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/22/2016] [Indexed: 02/01/2023] Open
Abstract
Rice is one of the major staple food crops in the world and an excellent model system for studying monocotyledonous plants. Diseases caused by nematodes in rice are well documented and among them, root-knot nematode (RKN), Meloidogyne graminicola, causes extensive yield decline. It is therefore necessary to identify novel sources of natural resistance to RKN in rice and to investigate the rice-RKN interaction in detail to understand the basal plant defence mechanisms and nematode manipulation of the host physiology. To this end, six different cultivars of rice were initially screened for RKN infection and development; Pusa 1121 and Vandana were found to be most susceptible and resistant to RKN infection, respectively. In order to investigate the role of major hormone-regulated plant defence pathways in compatible/incompatible rice-RKN interaction, some well-identified marker genes involved in salicylate/jasmonate/ethylene pathway were evaluated for their differential expression through qRT-PCR. In general, our study shows a remarkable discrepancy in the expression pattern of those genes between compatible and incompatible rice-RKN interaction. As most information on the molecular interplay between plants and nematodes were generated on dicotyledonous plants, the current study will strengthen our basic understanding of plant-nematode interaction in the monocot crops, which will aid in defining future strategies for best plant health measures.
Collapse
Affiliation(s)
- Chanchal Kumari
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
46
|
Holbein J, Grundler FMW, Siddique S. Plant basal resistance to nematodes: an update. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2049-61. [PMID: 26842982 DOI: 10.1093/jxb/erw005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most plant-parasitic nematodes are obligate biotrophs feeding on the roots of their hosts. Whereas ectoparasites remain on the root surface and feed on the outer cell layers, endoparasitic nematodes enter the host to parasitize cells around or within the central cylinder. Nematode invasion and feeding causes tissue damage which may, in turn, lead to the activation of host basal defence responses. Hitherto, research interests in plant-nematode interaction have emphasized effector-triggered immunity rather than basal plant defence responses. However, some recent investigations suggest that basal defence pathways are not only activated but also play an important role in determining interaction outcomes. In this review we discuss the major findings and point out future directions to dissect the molecular mechanisms underlying plant basal defence to nematodes further.
Collapse
Affiliation(s)
- Julia Holbein
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115 Bonn, Germany
| | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115 Bonn, Germany
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115 Bonn, Germany
| |
Collapse
|
47
|
Cabrera J, Barcala M, García A, Rio-Machín A, Medina C, Jaubert-Possamai S, Favery B, Maizel A, Ruiz-Ferrer V, Fenoll C, Escobar C. Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs. THE NEW PHYTOLOGIST 2016; 209:1625-40. [PMID: 26542733 DOI: 10.1111/nph.13735] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/25/2015] [Indexed: 05/20/2023]
Abstract
Root-knot nematodes (RKNs) induce inside the vascular cylinder the giant cells (GCs) embedded in the galls. The distinctive gene repression in early-developing GCs could be facilitated by small RNAs (sRNA) such as miRNAs, and/or epigenetic mechanisms mediated by 24nt-sRNAs, rasiRNAs and 21-22nt-sRNAs. Therefore, the sRNA-population together with the role of the miR390/TAS3/ARFs module were studied during early gall/GC formation. Three sRNA libraries from 3-d-post-inoculation (dpi) galls induced by Meloidogyne javanica in Arabidopsis and three from uninfected root segments were sequenced following Illumina-Solexa technology. pMIR390a::GUS and pTAS3::GUS lines were assayed for nematode-dependent promoter activation. A sensor line indicative of TAS3-derived tasiRNAs binding to the ARF3 sequence (pARF3:ARF3-GUS) together with a tasiRNA-resistant ARF3 line (pARF3:ARF3m-GUS) were used for functional analysis. The sRNA population showed significant differences between galls and controls, with high validation rate and correspondence with their target expression: 21-nt sRNAs corresponding mainly to miRNAs were downregulated, whilst 24-nt-sRNAs from the rasiRNA family were mostly upregulated in galls. The promoters of MIR390a and TAS3, active in galls, and the pARF3:ARF3-GUS line, indicated a role of TAS3-derived-tasiRNAs in galls. The regulatory module miR390/TAS3 is necessary for proper gall formation possibly through auxin-responsive factors, and the abundance of 24-nt sRNAs (mostly rasiRNAs) constitutes a gall hallmark.
Collapse
Affiliation(s)
- Javier Cabrera
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avda. Carlos III, s/n 45071, Toledo, Spain
| | - Marta Barcala
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avda. Carlos III, s/n 45071, Toledo, Spain
| | - Alejandra García
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avda. Carlos III, s/n 45071, Toledo, Spain
| | - Ana Rio-Machín
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Centro Nacional Investigaciones Oncológicas (CNIO), C/Melchor Fernández Almagro, 3, 28029 , Madrid, Spain
| | - Clémence Medina
- INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Stephanie Jaubert-Possamai
- INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Bruno Favery
- INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Alexis Maizel
- Centre for Organismal Studies University of Heidelberg, Im Neuenheimer Feld, 230-69120, Heidelberg, Germany
| | - Virginia Ruiz-Ferrer
- Centro de Investigaciones Biológicas, CSIC, Av. Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Carmen Fenoll
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avda. Carlos III, s/n 45071, Toledo, Spain
| | - Carolina Escobar
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, Avda. Carlos III, s/n 45071, Toledo, Spain
| |
Collapse
|
48
|
Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Sci Rep 2016; 6:19443. [PMID: 26797310 PMCID: PMC4726423 DOI: 10.1038/srep19443] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/14/2015] [Indexed: 01/13/2023] Open
Abstract
Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism.
Collapse
|
49
|
Favery B, Quentin M, Jaubert-Possamai S, Abad P. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. JOURNAL OF INSECT PHYSIOLOGY 2016. [PMID: 26211599 DOI: 10.1016/j.jinsphys.2015.07.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Among plant-parasitic nematodes, the root-knot nematodes (RKNs) of the Meloidogyne spp. are the most economically important genus. RKN are root parasitic worms able to infect nearly all crop species and have a wide geographic distribution. During infection, RKNs establish and maintain an intimate relationship with the host plant. This includes the creation of a specialized nutritional structure composed of multinucleate and hypertrophied giant cells, which result from the redifferentiation of vascular root cells. Giant cells constitute the sole source of nutrients for the nematode and are essential for growth and reproduction. Hyperplasia of surrounding root cells leads to the formation of the gall or root-knot, an easily recognized symptom of plant infection by RKNs. Secreted effectors produced in nematode salivary glands and injected into plant cells through a specialized feeding structure called the stylet play a critical role in the formation of giant cells. Here, we describe the complex interactions between RKNs and their host plants. We highlight progress in understanding host plant responses, focusing on how RKNs manipulate key plant processes and functions, including cell cycle, defence, hormones, cellular scaffold, metabolism and transport.
Collapse
Affiliation(s)
- Bruno Favery
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Michaël Quentin
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Stéphanie Jaubert-Possamai
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Pierre Abad
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France.
| |
Collapse
|
50
|
Díaz-Manzano FE, Barcala M, Engler G, Fenoll C, de Almeida-Engler J, Escobar C. A Reliable Protocol for In situ microRNAs Detection in Feeding Sites Induced by Root-Knot Nematodes. FRONTIERS IN PLANT SCIENCE 2016; 7:966. [PMID: 27458466 PMCID: PMC4936241 DOI: 10.3389/fpls.2016.00966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/16/2016] [Indexed: 05/21/2023]
Abstract
Galls induced by Meloidogyne spp. in plant roots are a complex organ formed by heterogeneous tissues; within them there are 5-8 giant cells (GCs) that root-knot nematodes use for their own nurturing. Subtle regulatory mechanisms likely mediate the massive gene repression described at early infection stages in galls, particularly in giant cells. Some of these mechanisms are mediated by microRNAs (miRNAs); hence we describe a reliable protocol to detect miRNAs abundance within the gall tissues induced by Meloidogyne spp. Some methods are available to determine the abundance of specific miRNAs in different plant parts; however, galls are complex organs formed by different tissues. Therefore, detection of miRNAs at the cellular level is particularly important to understand specific regulatory mechanisms operating within the GCs. In situ hybridization (ISH) is a classical, robust and accurate method that allows the localization of specific RNAs directly on plant tissues. We present for the first time an adapted and standardized ISH protocol to detect miRNAs in GCs induced by nematodes based on tissue embedded in paraffin and on-slide ISH of miRNAs. It can be adapted to any laboratory with no more requirements than a microtome and an optical microscope and it takes 10 days to perform once plant material has been collected. It showed to be very valuable for a quick detection of miRNAs expression pattern in tomato. We tested the protocol for miR390, as massive sequencing analysis showed that miR390 was induced at 3 dpi (days post-infection) in Arabidopsis galls and miR390 is 100% conserved between Arabidopsis and tomato. Successful localization of miR390 in tomato GCs constitutes a validation of this method that could be easily extended to other crops and/or syncytia induced by cyst nematodes. Finally, the protocol also includes guidance on troubleshooting.
Collapse
Affiliation(s)
- Fernando E. Díaz-Manzano
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La ManchaToledo, Spain
| | - Marta Barcala
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La ManchaToledo, Spain
| | - Gilbert Engler
- Institut Sophia Agrobiotech, Université de Nice-Sophia AntipolisSophia Antipolis, France
| | - Carmen Fenoll
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La ManchaToledo, Spain
| | - Janice de Almeida-Engler
- Institut Sophia Agrobiotech, Université de Nice-Sophia AntipolisSophia Antipolis, France
- *Correspondence: Janice de Almeida-Engler
| | - Carolina Escobar
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La ManchaToledo, Spain
- Carolina Escobar
| |
Collapse
|