1
|
Abadie C, Lalande J, Dourmap C, Limami AM, Tcherkez G. Leaf day respiration involves multiple carbon sources and depends on previous dark metabolism. PLANT, CELL & ENVIRONMENT 2024; 47:2146-2162. [PMID: 38444114 DOI: 10.1111/pce.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Day respiration (Rd) is the metabolic, nonphotorespiratory process by which illuminated leaves liberate CO2 during photosynthesis. Rd is used routinely in photosynthetic models and is thus critical for calculations. However, metabolic details associated with Rd are poorly known, and this can be problematic to predict how Rd changes with environmental conditions and relates to night respiration. It is often assumed that day respiratory CO2 release just reflects 'ordinary' catabolism (glycolysis and Krebs 'cycle'). Here, we carried out a pulse-chase experiment, whereby a 13CO2 pulse in the light was followed by a chase period in darkness and then in the light. We took advantage of nontargeted, isotope-assisted metabolomics to determine non-'ordinary' metabolism, detect carbon remobilisation and compare light and dark 13C utilisation. We found that several concurrent metabolic pathways ('ordinary' catabolism, oxidative pentose phosphates pathway, amino acid production, nucleotide biosynthesis and secondary metabolism) took place in the light and participated in net CO2 efflux associated with day respiration. Flux reconstruction from metabolomics leads to an underestimation of Rd, further suggesting the contribution of a variety of CO2-evolving processes. Also, the cornerstone of the Krebs 'cycle', citrate, is synthetised de novo from photosynthates mostly in darkness, and remobilised or synthesised from stored material in the light. Collectively, our data provides direct evidence that leaf day respiration (i) involves several CO2-producing reactions and (ii) is fed by different carbon sources, including stored carbon disconnected from current photosynthates.
Collapse
Affiliation(s)
- Cyril Abadie
- Institut de recherche en horticulture et semences, INRAe, Université d'Angers, Beaucouzé, France
- Ecophysiologie et génomique fonctionnelle de la vigne, Institut des Sciences de la Vigne et du Vin, INRAe, Université de Bordeaux, Villenave-d'Ornon, France
| | - Julie Lalande
- Institut de recherche en horticulture et semences, INRAe, Université d'Angers, Beaucouzé, France
| | - Corentin Dourmap
- Institut de recherche en horticulture et semences, INRAe, Université d'Angers, Beaucouzé, France
| | - Anis M Limami
- Institut de recherche en horticulture et semences, INRAe, Université d'Angers, Beaucouzé, France
| | - Guillaume Tcherkez
- Institut de recherche en horticulture et semences, INRAe, Université d'Angers, Beaucouzé, France
- Research School of Biology, ANU College of Science, Australian National University, Canberra, Australia
| |
Collapse
|
2
|
Griffin KL, Griffin ZM, Schmiege SC, Bruner SG, Boelman NT, Vierling LA, Eitel JUH. Variation in White spruce needle respiration at the species range limits: A potential impediment to Northern expansion. PLANT, CELL & ENVIRONMENT 2022; 45:2078-2092. [PMID: 35419840 DOI: 10.1111/pce.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
White spruce (Picea glauca) spans a massive range, yet the variability in respiratory physiology and related implications for tree carbon balance at the extremes of this distribution remain as enigmas. Working at both the most northern and southern extents of the distribution range more than 5000 km apart, we measured the short-term temperature response of dark respiration (R/T) at upper and lower canopy positions. R/T curves were fit to both polynomial and thermodynamic models so that model parameters could be compared among locations, canopy positions, and with previously published data. Respiration measured at 25°C (R25 ) was 68% lower at the southern location than at the northern location, resulting in a significantly lower intercept in R/T response in temperate trees. Only at the southern location did upper canopy leaves have a steeper temperature response than lower canopy leaves, likely reflecting canopy gradients in light. At the northern range limit respiration is nearly twice that of the average R25 reported in a global leaf respiration database. We predict that without significant thermal acclimation, respiration will increase with projected end-of-the-century warming and will likely constrain the future range limits of this important boreal species.
Collapse
Affiliation(s)
- Kevin L Griffin
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Zoe M Griffin
- Department of Geography & Environmental Sustainability, SUNY Oneonta, Oneonta, New York, USA
| | - Stephanie C Schmiege
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- New York Botanical Garden, Bronx, New York, USA
| | - Sarah G Bruner
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Natalie T Boelman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Lee A Vierling
- Department of Natural Resources and Society, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Jan U H Eitel
- Department of Natural Resources and Society, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
- McCall Outdoor Science School, College of Natural Resources, University of Idaho, McCall, Idaho, USA
| |
Collapse
|
3
|
Sturchio MA, Chieppa J, Chapman SK, Canas G, Aspinwall MJ. Temperature acclimation of leaf respiration differs between marsh and mangrove vegetation in a coastal wetland ecotone. GLOBAL CHANGE BIOLOGY 2022; 28:612-629. [PMID: 34653300 DOI: 10.1111/gcb.15938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/04/2021] [Indexed: 05/21/2023]
Abstract
Temperature acclimation of leaf respiration (R) is an important determinant of ecosystem responses to temperature and the magnitude of temperature-CO2 feedbacks as climate warms. Yet, the extent to which temperature acclimation of R exhibits a common pattern across different growth conditions, ecosystems, and plant functional types remains unclear. Here, we measured the short-term temperature response of R at six time points over a 10-month period in two coastal wetland species (Avicennia germinans [C3 mangrove] and Spartina alterniflora [C4 marsh grass]) growing under ambient and experimentally warmed temperatures at two sites in a marsh-mangrove ecotone. Leaf nitrogen (N) was determined on a subsample of leaves to explore potential coupling of R and N. We hypothesized that both species would reduce R at 25°C (R25 ) and the short-term temperature sensitivity of R (Q10 ) as air temperature (Tair ) increased across seasons, but the decline would be stronger in Avicennia than in Spartina. For each species, we hypothesized that seasonal temperature acclimation of R would be equivalent in plants grown under ambient and warmed temperatures, demonstrating convergent acclimation. Surprisingly, Avicennia generally increased R25 with increasing growth temperature, although the Q10 declined as seasonal temperatures increased and did so consistently across sites and treatments. Weak temperature acclimation resulted in reduced homeostasis of R in Avicennia. Spartina reduced R25 and the Q10 as seasonal temperatures increased. In Spartina, seasonal temperature acclimation was largely consistent across sites and treatments resulting in greater respiratory homeostasis. We conclude that co-occurring coastal wetland species may show contrasting patterns of respiratory temperature acclimation. Nonetheless, leaf N scaled positively with R25 in both species, highlighting the importance of leaf N in predicting respiratory capacity across a range of growth temperatures. The patterns of respiratory temperature acclimation shown here may improve the predictions of temperature controls of CO2 fluxes in coastal wetlands.
Collapse
Affiliation(s)
- Matthew A Sturchio
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - Jeff Chieppa
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| | - Samantha K Chapman
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, Pennsylvania, USA
| | - Gabriela Canas
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - Michael J Aspinwall
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
4
|
Caldararu S, Thum T, Yu L, Zaehle S. Whole-plant optimality predicts changes in leaf nitrogen under variable CO 2 and nutrient availability. THE NEW PHYTOLOGIST 2020; 225:2331-2346. [PMID: 31737904 DOI: 10.1111/nph.16327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Vegetation nutrient limitation is essential for understanding ecosystem responses to global change. In particular, leaf nitrogen (N) is known to be plastic under changed nutrient limitation. However, models can often not capture these observed changes, leading to erroneous predictions of whole-ecosystem stocks and fluxes. We hypothesise that an optimality approach can improve representation of leaf N content compared to existing empirical approaches. Unlike previous optimality-based approaches, which adjust foliar N concentrations based on canopy carbon export, we use a maximisation criterion based on whole-plant growth, and allow for a lagged response of foliar N to this maximisation criterion to account for the limited plasticity of this plant trait. We test these model variants at a range of Free-Air CO2 Enrichment and N fertilisation experimental sites. We show that a model based solely on canopy carbon export fails to reproduce observed patterns and predicts decreasing leaf N content with increased N availability. However, an optimal model which maximises total plant growth can correctly reproduce the observed patterns. The optimality model we present here is a whole-plant approach which reproduces biologically realistic changes in leaf N and can thereby improve ecosystem-level predictions under transient conditions.
Collapse
Affiliation(s)
- Silvia Caldararu
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, Jena, 07745, Germany
| | - Tea Thum
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, Jena, 07745, Germany
| | - Lin Yu
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, Jena, 07745, Germany
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, Jena, 07745, Germany
- Michael Stifel Center Jena for Data-Driven and Simulation Science, Jena, 07745, Germany
| |
Collapse
|
5
|
Salomón RL, De Roo L, Oleksyn J, De Pauw DJW, Steppe K. TReSpire - a biophysical TRee Stem respiration model. THE NEW PHYTOLOGIST 2020; 225:2214-2230. [PMID: 31494939 DOI: 10.1111/nph.16174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Mechanistic models of plant respiration remain poorly developed, especially in stems and woody tissues where measurements of CO2 efflux do not necessarily reflect local respiratory activity. We built a process-based model of stem respiration that couples water and carbon fluxes at the organ level (TReSpire). To this end, sap flow, stem diameter variations, xylem and soil water potential, stem temperature, stem CO2 efflux and nonstructural carbohydrates were measured in a maple tree, while xylem CO2 concentration and additional stem and xylem diameter variations were monitored in an ancillary tree for model validation. TReSpire realistically described: (1) turgor pressure to differentiate growing from nongrowing metabolism; (2) maintenance expenditures in xylem and outer tissues based on Arrhenius kinetics and nitrogen content; and (3) radial CO2 diffusivity and CO2 solubility and transport in the sap solution. Collinearity issues with phloem unloading rates and sugar-starch interconversion rates suggest parallel submodelling to close the stem carbon balance. TReSpire brings a breakthrough in the modelling of stem water and carbon fluxes at a detailed (hourly) temporal resolution. TReSpire is calibrated from a sink-driven perspective, and has potential to advance our understanding on stem growth dynamics, CO2 fluxes and underlying respiratory physiology across different species and phenological stages.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Jacek Oleksyn
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62-035, Poland
| | - Dirk J W De Pauw
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| |
Collapse
|
6
|
He Y, Peng S, Liu Y, Li X, Wang K, Ciais P, Arain MA, Fang Y, Fisher JB, Goll D, Hayes D, Huntzinger DN, Ito A, Jain AK, Janssens IA, Mao J, Matteo C, Michalak AM, Peng C, Peñuelas J, Poulter B, Qin D, Ricciuto DM, Schaefer K, Schwalm CR, Shi X, Tian H, Vicca S, Wei Y, Zeng N, Zhu Q. Global vegetation biomass production efficiency constrained by models and observations. GLOBAL CHANGE BIOLOGY 2020; 26:1474-1484. [PMID: 31560157 DOI: 10.1111/gcb.14816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Plants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle models overestimate BPE, although models with carbon-nitrogen interactions tend to be more realistic. Using observation-based estimates of global photosynthesis, we quantify the global BP of non-cropland ecosystems of 41 ± 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 ± 11% in the model-estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).
Collapse
Affiliation(s)
- Yue He
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shushi Peng
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yongwen Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Xiangyi Li
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Kai Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Paris, France
| | - M Altaf Arain
- School of Geography and Earth Sciences and McMaster Centre for Climate Change, McMaster University, Hamilton, ON, Canada
| | - Yuanyuan Fang
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Joshua B Fisher
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Daniel Goll
- Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Paris, France
| | - Daniel Hayes
- School of Forest Resources, University of Maine, Orono, ME, USA
| | - Deborah N Huntzinger
- School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Akihiko Ito
- National Institute for Environmental Studies, Tsukuba, Japan
- Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | - Atul K Jain
- Department of Atmospheric Sciences, University of Illinois, Urbana, IL, USA
| | - Ivan A Janssens
- Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Jiafu Mao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Campioli Matteo
- Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Anna M Michalak
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Changhui Peng
- Institute of Environment Sciences, Biology Science Department, University of Quebec at Montreal, Montreal, QC, Canada
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A & F University, Yangling, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Benjamin Poulter
- Institute on Ecosystems and the Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Dahe Qin
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- National Climate Center, China Meteorological Administration, Beijing, China
| | - Daniel M Ricciuto
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kevin Schaefer
- National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA
| | - Christopher R Schwalm
- Woods Hole Research Center, Falmouth, MA, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Xiaoying Shi
- Institute of Environment Sciences, Biology Science Department, University of Quebec at Montreal, Montreal, QC, Canada
| | - Hanqin Tian
- International Center for Climate and Global Change Research and School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | - Sara Vicca
- Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Yaxing Wei
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ning Zeng
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
| | - Qiuan Zhu
- Institute of Environment Sciences, Biology Science Department, University of Quebec at Montreal, Montreal, QC, Canada
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A & F University, Yangling, China
| |
Collapse
|
7
|
Hernández-Montes E, Tomás M, Escalona JM, Bota J, Medrano H. Leaf growth rate and nitrogen content determine respiratory costs during leaf expansion in grapevines. PHYSIOLOGIA PLANTARUM 2019; 165:746-754. [PMID: 29885063 DOI: 10.1111/ppl.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 05/13/2023]
Abstract
Respiration processes are well recognized as fundamental for the plant carbon balance, but little attention has been paid to the relationships among respiration rates, environment and genetic variability. This can be of particular interest to understand the differences in net carbon balances in crops as grapevines. Night respiration (Rn ) and its associated growth (Rg ) and maintenance (Rm ) components were evaluated during leaf expansion in two grapevine cultivars (Tempranillo cv. and Garnacha cv.) that differ in their plant growth pattern and carbon balance. Simultaneously, leaf traits as leaf mass area, nitrogen (N) and carbon (C) content were evaluated in order to relate to the respiratory processes and the leaf growth. The results showed the differences in respiration rates associated with the leaf expansion pattern. Tempranillo developed leaves with higher leaf area and lower dry weight per leaf unit than Garnacha. Although differences between cultivars were observed in terms of growth costs in expanding leaves, the maintenance costs were similar for both cultivars. Also, a significant linear regression was found between respiration rates and N content in expanding and mature leaves. The results indicate that differences in structure and nitrogen content of expanding leaves may lead to respiratory differences between cultivars. These results also demonstrate the importance of respiratory cost components in carbon balance calculations in grapevines.
Collapse
Affiliation(s)
- Esther Hernández-Montes
- Research Group on Plant Biology Under Mediterranean Conditions, INAGEA (UIB-INIA-CAIB), Palma de Mallorca, 07122, Spain
| | - Magdalena Tomás
- Research Group on Plant Biology Under Mediterranean Conditions, INAGEA (UIB-INIA-CAIB), Palma de Mallorca, 07122, Spain
| | - José M Escalona
- Research Group on Plant Biology Under Mediterranean Conditions, INAGEA (UIB-INIA-CAIB), Palma de Mallorca, 07122, Spain
| | - Josefina Bota
- Research Group on Plant Biology Under Mediterranean Conditions, INAGEA (UIB-INIA-CAIB), Palma de Mallorca, 07122, Spain
| | - Hipolito Medrano
- Research Group on Plant Biology Under Mediterranean Conditions, INAGEA (UIB-INIA-CAIB), Palma de Mallorca, 07122, Spain
| |
Collapse
|
8
|
Smith NG, Dukes JS. Drivers of leaf carbon exchange capacity across biomes at the continental scale. Ecology 2018; 99:1610-1620. [PMID: 29705984 DOI: 10.1002/ecy.2370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/09/2018] [Accepted: 04/11/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Nicholas G. Smith
- Department of Biological Sciences; Texas Tech University; Lubbock Texas 79409 USA
- Department of Forestry and Natural Resources; Purdue University; West Lafayette Indiana 47907 USA
- Department of Biological Sciences; Purdue University; West Lafayette Indiana 47907 USA
- Purdue Climate Change Research Center; Purdue University; West Lafayette Indiana 47907 USA
| | - Jeffrey S. Dukes
- Department of Forestry and Natural Resources; Purdue University; West Lafayette Indiana 47907 USA
- Department of Biological Sciences; Purdue University; West Lafayette Indiana 47907 USA
- Purdue Climate Change Research Center; Purdue University; West Lafayette Indiana 47907 USA
| |
Collapse
|
9
|
Heskel MA. Small flux, global impact: Integrating the nuances of leaf mitochondrial respiration in estimates of ecosystem carbon exchange. AMERICAN JOURNAL OF BOTANY 2018; 105:815-818. [PMID: 29807386 DOI: 10.1002/ajb2.1079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Mary A Heskel
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| |
Collapse
|
10
|
|
11
|
Araki MG, Gyokusen K, Kajimoto T. Vertical and seasonal variations in temperature responses of leaf respiration in a Chamaecyparis obtusa canopy. TREE PHYSIOLOGY 2017; 37:1269-1284. [PMID: 28338803 DOI: 10.1093/treephys/tpx012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/06/2017] [Indexed: 05/15/2023]
Abstract
Leaf respiration (R) is a major component of carbon balance in forest ecosystems. Clarifying the variability of leaf R within a canopy is essential for predicting the impact of global warming on forest productivity and the potential future function of the forest ecosystem as a carbon sink. We examined vertical and seasonal variations in short-term temperature responses of leaf R as well as environmental factors (light and mean air temperature) and physiological factors [leaf nitrogen (N), leaf mass per area (LMA), and shoot growth] in the canopy of a 10-year-old stand of hinoki cypress [Chamaecyparis obtusa (Sieb. et Zucc.) Endl.] in Kyushu, Japan. Leaf respiration rate adjusted to 20 °C (R20) exhibited evident vertical gradients in each season and was correlated with light, LMA and leaf N. In contrast, the temperature sensitivity of leaf R (Q10) did not vary vertically throughout the seasons. Seasonally, Q10 was higher in winter than in summer and was strongly negatively correlated to mean air temperature. A negative correlation of R20 with mean air temperature was also observed for each of the three canopy layers. These results clearly indicate that leaf R was able to adjust to seasonal changes in ambient temperature under field conditions and down-regulate during warmer periods. We also found that the degree of thermal acclimation did not vary with canopy position. Overall, our results suggest that vertical and seasonal variations in temperature responses of leaf R within a hinoki cypress canopy could be predicted by relatively simple parameters (light and temperature). There was an exception of extremely high R20 values in April that may have been due to the onset of shoot growth in spring. Understanding thermal acclimation and variations in leaf R within forest canopies will improve global terrestrial carbon cycle models.
Collapse
Affiliation(s)
- Masatake G Araki
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
- Department of Plant Ecology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Koichiro Gyokusen
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 , Japan
| | - Takuya Kajimoto
- Department of Plant Ecology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687 , Japan
| |
Collapse
|
12
|
Maréchaux I, Chave J. An individual-based forest model to jointly simulate carbon and tree diversity in Amazonia: description and applications. ECOL MONOGR 2017. [DOI: 10.1002/ecm.1271] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Isabelle Maréchaux
- CNRS; Université Toulouse 3 Paul Sabatier; ENFA; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique); 118 route de Narbonne F-31062 Toulouse France
- AgroParisTech-ENGREF; 19 avenue du Maine F-75015 Paris France
| | - Jérôme Chave
- CNRS; Université Toulouse 3 Paul Sabatier; ENFA; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique); 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|
13
|
Stutz SS, Anderson J, Zulick R, Hanson DT. Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2849-2857. [PMID: 28575237 PMCID: PMC5853528 DOI: 10.1093/jxb/erx155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 04/07/2017] [Indexed: 05/18/2023]
Abstract
High concentrations of inorganic carbon in the xylem, produced from root, stem, and branch respiration, travel via the transpiration stream and eventually exit the plant through distant tissues as CO2. Unlike previous studies that focused on the efflux of CO2 from roots and woody tissues, we focus on efflux from leaves and the potential effect on leaf respiration measurements. We labeled transported inorganic carbon, spanning reported xylem concentrations, with 13C and then manipulated transpiration rates in the dark in order to vary the rates of inorganic carbon supply to cut leaves from Brassica napus and Populus deltoides. We used tunable diode laser absorbance spectroscopy to directly measure the rate of gross 13CO2 efflux, derived from inorganic carbon supplied from outside of the leaf, relative to gross 12CO2 efflux generated from leaf cells. These experiemnts showed that 13CO2 efflux was dependent upon the rate of inorganic carbon supply to the leaf and the rate of transpiration. Our data show that the gross leaf efflux of xylem-transported CO2 is likely small in the dark when rates of transpiration are low. However, gross leaf efflux of xylem-transported CO2 could approach half the rate of leaf respiration in the light when transpiration rates and branch inorganic carbon concentrations are high, irrespective of the grossly different petiole morphologies in our experiment.
Collapse
Affiliation(s)
- Samantha S Stutz
- Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Jeremiah Anderson
- Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Rachael Zulick
- Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - David T Hanson
- Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
14
|
Tracking the Orchestration of the Tricarboxylic Acid Pathway in Plants, 80 Years After the Discovery of the Krebs Cycle. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Cookson SJ, Yadav UP, Klie S, Morcuende R, Usadel B, Lunn JE, Stitt M. Temporal kinetics of the transcriptional response to carbon depletion and sucrose readdition in Arabidopsis seedlings. PLANT, CELL & ENVIRONMENT 2016; 39:768-786. [PMID: 26386165 DOI: 10.1111/pce.12642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
To investigate whether the transcriptional response to carbon (C) depletion and sucrose resupply depends on the duration and severity of the C depletion, Arabidopsis seedlings were grown in liquid culture and harvested 3, 6, 12, 24, 48 and 72 h after removing sucrose from the medium and 30 min after resupplying sucrose at each time. Expression profiling revealed early transcriptional inhibition of cell wall synthesis and remodelling of signalling, followed by induction of C recycling and photosynthesis and general inhibition of growth. The temporal sequence differed from the published response to progressive exhaustion of C during a night and extended night in vegetatively growing plants. The response to sucrose readdition was conserved across the C-depletion time course. Intriguingly, the vast majority of rapidly responding transcripts decreased rather than increased. The majority of transcripts that respond rapidly to sucrose and many transcripts that respond during C depletion also decrease after treating seedlings with the transcriptional inhibitor cordycepin A. Comparison with published responses to overexpression of otsA, AKIN10 and bZIP11 revealed that many genes that respond to C depletion, and especially sucrose resupply, respond to one or more of these C-signalling components. Thus, multiple factors contribute to C responsiveness, including many signalling components, transcriptional regulation and transcript turnover.
Collapse
Affiliation(s)
- Sarah Jane Cookson
- INRA, ISVV, EGFV, UMR 1287, Villenave d'Ornon, F-33140, France
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Umesh Prasad Yadav
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Sebastian Klie
- Targenomix GmbH, Am Mühlenberg 11, Potsdam-Golm, 14476, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Rosa Morcuende
- Instituto de Recursos Naturales y Agrobiología de Salamanca, CSIC, Apartado 257, Salamanca, 37071, Spain
| | - Björn Usadel
- Lehrstuhl für Botanik und Institut für Biologie I, RWTH Aachen, Worringer Weg 1, Aachen, 52062, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
16
|
Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc Natl Acad Sci U S A 2016; 113:3832-7. [PMID: 27001849 DOI: 10.1073/pnas.1520282113] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.
Collapse
|
17
|
Reich PB, Sendall KM, Stefanski A, Wei X, Rich RL, Montgomery RA. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 2016; 531:633-6. [DOI: 10.1038/nature17142] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/18/2016] [Indexed: 11/09/2022]
|
18
|
Vanderwel MC, Slot M, Lichstein JW, Reich PB, Kattge J, Atkin OK, Bloomfield KJ, Tjoelker MG, Kitajima K. Global convergence in leaf respiration from estimates of thermal acclimation across time and space. THE NEW PHYTOLOGIST 2015; 207:1026-1037. [PMID: 25898850 DOI: 10.1111/nph.13417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
Recent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical syntheses into a simple temperature-dependent respiration framework to compare the measured effects of respiration acclimation-over-time and variation-across-space to one another, and to a null model in which acclimation is ignored. Using these models, we projected the influence of thermal acclimation on: seasonal variation in R; spatial variation in mean annual R across a global temperature gradient; and future increases in R under climate change. The measured strength of acclimation-over-time produces differences in annual R across spatial temperature gradients that agree well with global variation-across-space. Our models further project that acclimation effects could potentially halve increases in R (compared with the null model) as the climate warms over the 21st Century. Convergence in global temperature-dependent patterns of R indicates that physiological adjustments arising from thermal acclimation are capable of explaining observed variation in leaf respiration at ambient growth temperatures across the globe.
Collapse
Affiliation(s)
- Mark C Vanderwel
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Martijn Slot
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama
| | - Jeremy W Lichstein
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Hans Knoell Str. 10, 07745, Jena, Germany
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australia National University, Building 134, Canberra, ACT, 2601, Australia
| | - Keith J Bloomfield
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australia National University, Building 134, Canberra, ACT, 2601, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Kaoru Kitajima
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Division of Forest and Biomaterial Science, Kyoto University, Kitashirakawa Oiwake-Cho, Kyoto, 606-8502, Japan
| |
Collapse
|
19
|
Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford MG, Cernusak LA, Cosio EG, Creek D, Crous KY, Domingues TF, Dukes JS, Egerton JJG, Evans JR, Farquhar GD, Fyllas NM, Gauthier PPG, Gloor E, Gimeno TE, Griffin KL, Guerrieri R, Heskel MA, Huntingford C, Ishida FY, Kattge J, Lambers H, Liddell MJ, Lloyd J, Lusk CH, Martin RE, Maksimov AP, Maximov TC, Malhi Y, Medlyn BE, Meir P, Mercado LM, Mirotchnick N, Ng D, Niinemets Ü, O'Sullivan OS, Phillips OL, Poorter L, Poot P, Prentice IC, Salinas N, Rowland LM, Ryan MG, Sitch S, Slot M, Smith NG, Turnbull MH, VanderWel MC, Valladares F, Veneklaas EJ, Weerasinghe LK, Wirth C, Wright IJ, Wythers KR, Xiang J, Xiang S, Zaragoza-Castells J. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. THE NEW PHYTOLOGIST 2015; 206:614-36. [PMID: 25581061 DOI: 10.1111/nph.13253] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/29/2014] [Indexed: 05/18/2023]
Abstract
Leaf dark respiration (Rdark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark . Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, Rdark at a standard T (25°C, Rdark (25) ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark (25) at a given photosynthetic capacity (Vcmax (25) ) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark (25) values at any given Vcmax (25) or [N] were higher in herbs than in woody plants. The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs).
Collapse
Affiliation(s)
- Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 0200, Australia; Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 0200, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rogers A, Medlyn BE, Dukes JS. Improving representation of photosynthesis in Earth System Models. THE NEW PHYTOLOGIST 2014; 204:12-14. [PMID: 25154642 DOI: 10.1111/nph.12972] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Belinda E Medlyn
- Department of Biological Science, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jeffrey S Dukes
- Department of Forestry and Natural Resources and Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907-2061, USA
| |
Collapse
|