1
|
Li Z, Wang H, Li C, Liu H, Luo J. Genome-Wide Identification of the Remorin Gene Family in Poplar and Their Responses to Abiotic Stresses. Life (Basel) 2024; 14:1239. [PMID: 39459539 PMCID: PMC11509593 DOI: 10.3390/life14101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The Remorin (REM) gene family is a plant-specific, oligomeric, filamentous family protein located on the cell membrane, which is important for plant growth and stress responses. In this study, a total of 22 PtREMs were identified in the genome of Populus trichocarpa. Subcellular localization analysis showed that they were predictively distributed in the cell membrane and nucleus. Only five PtREMs members contain both Remorin_C- and Remorin_N-conserved domains, and most of them only contain the Remorin_C domain. A total of 20 gene duplication pairs were found, all of which belonged to fragment duplication. Molecular evolutionary analysis showed the PtREMs have undergone purified selection. Lots of cis-acting elements assigned into categories of plant growth and development, stress response, hormone response and light response were detected in the promoters of PtREMs. PtREMs showed distinct gene expression patterns in response to diverse stress conditions where the mRNA levels of PtREM4.1, PtREM4.2 and PtREM6.11 were induced in most cases. A co-expression network centered by PtREMs was constructed to uncover the possible functions of PtREMs in protein modification, microtube-based movement and hormone signaling. The obtained results shed new light on understanding the roles of PtREMs in coping with environmental stresses in poplar species.
Collapse
Affiliation(s)
- Zihui Li
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (H.W.); (C.L.)
| | - Hang Wang
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (H.W.); (C.L.)
| | - Chuanqi Li
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (H.W.); (C.L.)
| | - Huimin Liu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Jie Luo
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (H.W.); (C.L.)
| |
Collapse
|
2
|
Yang Z, Cheng G, Yu Q, Jiao W, Zeng K, Luo T, Zhang H, Shang H, Huang G, Wang F, Guo Y, Xu J. Identification and characterization of the Remorin gene family in Saccharum and the involvement of ScREM1.5e-1/-2 in SCMV infection on sugarcane. FRONTIERS IN PLANT SCIENCE 2024; 15:1365995. [PMID: 38463560 PMCID: PMC10920289 DOI: 10.3389/fpls.2024.1365995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Introduction Remorins (REMs) are plant-specific membrane-associated proteins that play important roles in plant-pathogen interactions and environmental adaptations. Group I REMs are extensively involved in virus infection. However, little is known about the REM gene family in sugarcane (Saccharum spp. hyrid), the most important sugar and energy crop around world. Methods Comparative genomics were employed to analyze the REM gene family in Saccharum spontaneum. Transcriptomics or RT-qPCR were used to analyze their expression files in different development stages or tissues under different treatments. Yeast two hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays were applied to investigate the protein interaction. Results In this study, 65 REMs were identified from Saccharum spontaneum genome and classified into six groups based on phylogenetic tree analysis. These REMs contain multiple cis-elements associated with growth, development, hormone and stress response. Expression profiling revealed that among different SsREMs with variable expression levels in different developmental stages or different tissues. A pair of alleles, ScREM1.5e-1/-2, were isolated from the sugarcane cultivar ROC22. ScREM1.5e-1/-2 were highly expressed in leaves, with the former expressed at significantly higher levels than the latter. Their expression was induced by treatment with H2O2, ABA, ethylene, brassinosteroid, SA or MeJA, and varied upon Sugarcane mosaic virus (SCMV) infection. ScREM1.5e-1 was localized to the plasma membrane (PM), while ScREM1.5e-2 was localized to the cytoplasm or nucleus. ScREM1.5e-1/-2 can self-interact and interact with each other, and interact with VPgs from SCMV, Sorghum mosaic virus, or Sugarcane streak mosaic virus. The interactions with VPgs relocated ScREM1.5e-1 from the PM to the cytoplasm. Discussion These results reveal the origin, distribution and evolution of the REM gene family in sugarcane and may shed light on engineering sugarcane resistance against sugarcane mosaic pathogens.
Collapse
Affiliation(s)
- Zongtao Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guangyuan Cheng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Quanxin Yu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wendi Jiao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kang Zeng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tingxu Luo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hai Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Heyang Shang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guoqiang Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fengji Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian, China
| | - Jingsheng Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Zhang Y, Guo S, Zhang F, Gan P, Li M, Wang C, Li H, Gao G, Wang X, Kang Z, Zhang X. CaREM1.4 interacts with CaRIN4 to regulate Ralstonia solanacearum tolerance by triggering cell death in pepper. HORTICULTURE RESEARCH 2023; 10:uhad053. [PMID: 37213684 PMCID: PMC10199716 DOI: 10.1093/hr/uhad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/17/2023] [Indexed: 05/23/2023]
Abstract
Remorins, plant-specific proteins, have a significant role in conferring on plants the ability to adapt to adverse environments. However, the precise function of remorins in resistance to biological stress remains largely unknown. Eighteen CaREM genes were identified in pepper genome sequences based on the C-terminal conserved domain that is specific to remorin proteins in this research. Phylogenetic relations, chromosomal localization, motif, gene structures, and promoter regions of these remorins were analyzed and a remorin gene, CaREM1.4, was cloned for further study. The transcription of CaREM1.4 in pepper was induced by infection with Ralstonia solanacearum. Knocking down CaREM1.4 in pepper using virus-induced gene silencing (VIGS) technologies reduced the resistance of pepper plants to R. solanacearum and downregulated the expression of immunity-associated genes. Conversely, transient overexpression of CaREM1.4 in pepper and Nicotiana benthamiana plants triggered hypersensitive response-mediated cell death and upregulated expression of defense-related genes. In addition, CaRIN4-12, which interacted with CaREM1.4 at the plasma membrane and cell nucleus, was knocked down with VIGS, decreasing the susceptibility of Capsicum annuum to R. solanacearum. Furthermore, CaREM1.4 reduced ROS production by interacting with CaRIN4-12 upon co-injection in pepper. Taken together, our findings suggest that CaREM1.4 may function as a positive regulator of the hypersensitive response, and it interacts with CaRIN4-12, which negatively regulates plant immune responses of pepper to R. solanacearum. Our study provides new evidence for comprehending the molecular regulatory network of plant cell death.
Collapse
Affiliation(s)
- Yanqin Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuangyuan Guo
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Feng Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Pengfei Gan
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Min Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Cong Wang
- College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Huankun Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Gang Gao
- College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Xiaojie Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | | | | |
Collapse
|
4
|
Su C, Rodriguez-Franco M, Lace B, Nebel N, Hernandez-Reyes C, Liang P, Schulze E, Mymrikov EV, Gross NM, Knerr J, Wang H, Siukstaite L, Keller J, Libourel C, Fischer AAM, Gabor KE, Mark E, Popp C, Hunte C, Weber W, Wendler P, Stanislas T, Delaux PM, Einsle O, Grosse R, Römer W, Ott T. Stabilization of membrane topologies by proteinaceous remorin scaffolds. Nat Commun 2023; 14:323. [PMID: 36658193 PMCID: PMC9852587 DOI: 10.1038/s41467-023-35976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
In plants, the topological organization of membranes has mainly been attributed to the cell wall and the cytoskeleton. Additionally, few proteins, such as plant-specific remorins have been shown to function as protein and lipid organizers. Root nodule symbiosis requires continuous membrane re-arrangements, with bacteria being finally released from infection threads into membrane-confined symbiosomes. We found that mutations in the symbiosis-specific SYMREM1 gene result in highly disorganized perimicrobial membranes. AlphaFold modelling and biochemical analyses reveal that SYMREM1 oligomerizes into antiparallel dimers and may form a higher-order membrane scaffolding structure. This was experimentally confirmed when expressing this and other remorins in wall-less protoplasts is sufficient where they significantly alter and stabilize de novo membrane topologies ranging from membrane blebs to long membrane tubes with a central actin filament. Reciprocally, mechanically induced membrane indentations were equally stabilized by SYMREM1. Taken together we describe a plant-specific mechanism that allows the stabilization of large-scale membrane conformations independent of the cell wall.
Collapse
Affiliation(s)
- Chao Su
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | | | - Beatrice Lace
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nils Nebel
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Casandra Hernandez-Reyes
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Pengbo Liang
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Eija Schulze
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Evgeny V Mymrikov
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Nikolas M Gross
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Julian Knerr
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Hong Wang
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Alexandra A M Fischer
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina E Gabor
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Eric Mark
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Claudia Popp
- Ludwig-Maximilians-University (LMU) Munich, Institute of Genetics, 82152, Martinsried, Germany
| | - Carola Hunte
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Wilfried Weber
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Thomas Stanislas
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Oliver Einsle
- Institute of Biochemistry, Faculty of Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Robert Grosse
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Ott
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
5
|
Structural determinants of REMORIN nanodomain formation in anionic membranes. Biophys J 2022:S0006-3495(22)03964-9. [PMID: 36582138 DOI: 10.1016/j.bpj.2022.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Remorins are a family of multigenic plasma membrane phosphoproteins involved in biotic and abiotic plant interaction mechanisms, partnering in molecular signaling cascades. Signaling activity of remorins depends on their phosphorylation states and subsequent clustering into nanosized membrane domains. The presence of a coiled-coil domain and a C-terminal domain is crucial to anchor remorins to negatively charged membrane domains; however, the exact role of the N-terminal intrinsically disordered domain (IDD) on protein clustering and lipid interactions is largely unknown. Here, we combine chemical biology and imaging approaches to study the partitioning of group 1 remorin into anionic model membranes mimicking the inner leaflet of the plant plasma membrane. Using reconstituted membranes containing a mix of saturated and unsaturated phosphatidylcholine, phosphatidylinositol phosphates, and sterol, we investigate the clustering of remorins to the membrane and monitor the formation of nanosized membrane domains. REM1.3 promoted membrane nanodomain organization on the exposed external leaflet of both spherical lipid vesicles and flat supported lipid bilayers. Our results reveal that REM1.3 drives a mechanism allowing lipid reorganization, leading to the formation of remorin-enriched nanodomains. Phosphorylation of the N-terminal IDD by the calcium protein kinase CPK3 influences this clustering and can lead to the formation of smaller and more disperse domains. Our work reveals the phosphate-dependent involvement of the N-terminal IDD in the remorin-membrane interaction process by driving structural rearrangements at lipid-water interfaces.
Collapse
|
6
|
Li J, Zhang M, Zhou L. Protein S-acyltransferases and acyl protein thioesterases, regulation executors of protein S-acylation in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:956231. [PMID: 35968095 PMCID: PMC9363829 DOI: 10.3389/fpls.2022.956231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Protein S-acylation, also known as palmitoylation, is an important lipid post-translational modification of proteins in eukaryotes. S-acylation plays critical roles in a variety of protein functions involved in plant development and responses to abiotic and biotic stresses. The status of S-acylation on proteins is dynamic and reversible, which is catalyzed by protein S-acyltransferases (PATs) and reversed by acyl protein thioesterases. The cycle of S-acylation and de-S-acylation provides a molecular mechanism for membrane-associated proteins to undergo cycling and trafficking between different cell compartments and thus works as a switch to initiate or terminate particular signaling transductions on the membrane surface. In plants, thousands of proteins have been identified to be S-acylated through proteomics. Many S-acylated proteins and quite a few PAT-substrate pairs have been functionally characterized. A recently characterized acyl protein thioesterases family, ABAPT family proteins in Arabidopsis, has provided new insights into the de-S-acylation process. However, our understanding of the regulatory mechanisms controlling the S-acylation and de-S-acylation process is surprisingly incomplete. In this review, we discuss how protein S-acylation level is regulated with the focus on catalyzing enzymes in plants. We also propose the challenges and potential developments for the understanding of the regulatory mechanisms controlling protein S-acylation in plants.
Collapse
Affiliation(s)
- Jincheng Li
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Manqi Zhang
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhou
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Ma T, Fu S, Wang K, Wang Y, Wu J, Zhou X. Palmitoylation Is Indispensable for Remorin to Restrict Tobacco Mosaic Virus Cell-to-Cell Movement in Nicotiana benthamiana. Viruses 2022; 14:1324. [PMID: 35746795 PMCID: PMC9227848 DOI: 10.3390/v14061324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Remorin (REM) is a plant-specific plasma membrane-associated protein regulating plasmodesmata plasticity and restricting viral cell-to-cell movement. Here, we show that palmitoylation is broadly present in group 1 remorin proteins in Nicotiana benthamiana and is crucial for plasma membrane localization and accumulation. By screening the four members of N. benthamiana group 1 remorin proteins, we found that only NbREM1.5 could significantly hamper tobacco mosaic virus (TMV) cell-to-cell movement. We further showed that NbREM1.5 interacts with the movement protein of TMV in vivo and interferes with its function of expanding the plasmodesmata size exclusion limit. We also demonstrated that palmitoylation is indispensable for NbREM1.5 to hamper plasmodesmata permeability and inhibit TMV cell-to-cell movement.
Collapse
Affiliation(s)
- Tingting Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Kun Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Kumar M, Carr P, Turner SR. An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function. NATURE PLANTS 2022. [PMID: 35681017 DOI: 10.1101/2020.05.12.090415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
S-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterized, largely as a result of the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. To address this gap in our knowledge, we used an optimized acyl-resin-assisted capture assay to perform a comprehensive analysis of plant protein S-acylation from six separate tissues. In our high- and medium-confidence groups, we identified 1,849 cysteines modified by S-acylation, which were located in 1,640 unique peptides from 1,094 different proteins. This represents around 6% of the detectable Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm the S-acylation of a number of proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity and are all predicted to possess a RING-type zinc finger at their amino terminus composed of eight cysteines. For CESA8, we find evidence for S-acylation of these cysteines that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING-type domain, the same region of CESA8 appears to have evolved a very different structure. Together, the data suggest that this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrating the importance of further work in this area.
Collapse
Affiliation(s)
- Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Carr
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Holiferm, Manchester, UK
| | - Simon R Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Kumar M, Carr P, Turner SR. An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function. NATURE PLANTS 2022; 8:670-681. [PMID: 35681017 DOI: 10.1038/s41477-022-01164-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/04/2022] [Indexed: 05/28/2023]
Abstract
S-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterized, largely as a result of the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. To address this gap in our knowledge, we used an optimized acyl-resin-assisted capture assay to perform a comprehensive analysis of plant protein S-acylation from six separate tissues. In our high- and medium-confidence groups, we identified 1,849 cysteines modified by S-acylation, which were located in 1,640 unique peptides from 1,094 different proteins. This represents around 6% of the detectable Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm the S-acylation of a number of proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity and are all predicted to possess a RING-type zinc finger at their amino terminus composed of eight cysteines. For CESA8, we find evidence for S-acylation of these cysteines that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING-type domain, the same region of CESA8 appears to have evolved a very different structure. Together, the data suggest that this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrating the importance of further work in this area.
Collapse
Affiliation(s)
- Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Carr
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Holiferm, Manchester, UK
| | - Simon R Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Wu W, Luo X, Ren M. Clearance or Hijack: Universal Interplay Mechanisms Between Viruses and Host Autophagy From Plants to Animals. Front Cell Infect Microbiol 2022; 11:786348. [PMID: 35047417 PMCID: PMC8761674 DOI: 10.3389/fcimb.2021.786348] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Viruses typically hijack the cellular machinery of their hosts for successful infection and replication, while the hosts protect themselves against viral invasion through a variety of defense responses, including autophagy, an evolutionarily ancient catabolic pathway conserved from plants to animals. Double-membrane vesicles called autophagosomes transport trapped viral cargo to lysosomes or vacuoles for degradation. However, during an ongoing evolutionary arms race, viruses have acquired a strong ability to disrupt or even exploit the autophagy machinery of their hosts for successful invasion. In this review, we analyze the universal role of autophagy in antiviral defenses in animals and plants and summarize how viruses evade host immune responses by disrupting and manipulating host autophagy. The review provides novel insights into the role of autophagy in virus–host interactions and offers potential targets for the prevention and control of viral infection in both plants and animals.
Collapse
Affiliation(s)
- Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China.,Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
11
|
Bar-Sinai S, Belausov E, Dwivedi V, Sadot E. Collisions of Cortical Microtubules with Membrane Associated Myosin VIII Tail. Cells 2022; 11:cells11010145. [PMID: 35011707 PMCID: PMC8750215 DOI: 10.3390/cells11010145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
The distribution of myosin VIII ATM1 tail in association with the plasma membrane is often observed in coordination with that of cortical microtubules (MTs). The prevailing hypothesis is that coordination between the organization of cortical MTs and proteins in the membrane results from the inhibition of free lateral diffusion of the proteins by barriers formed by MTs. Since the positioning of myosin VIII tail in the membrane is relatively stable, we ask: can it affect the organization of MTs? Myosin VIII ATM1 tail co-localized with remorin 6.6, the position of which in the plasma membrane is also relatively stable. Overexpression of myosin VIII ATM1 tail led to a larger fraction of MTs with a lower rate of orientation dispersion. In addition, collisions between MTs and cortical structures labeled by ATM1 tail or remorin 6.6 were observed. Collisions between EB1 labeled MTs and ATM1 tail clusters led to four possible outcomes: 1—Passage of MTs through the cluster; 2—Decreased elongation rate; 3—Disengagement from the membrane followed by a change in direction; and 4—retraction. EB1 tracks became straighter in the presence of ATM1 tail. Taken together, collisions of MTs with ATM1 tail labeled structures can contribute to their coordinated organization.
Collapse
|
12
|
Zhu T, Sun Y, Chen X. Arabidopsis Tetraspanins Facilitate Virus Infection via Membrane-Recognition GCCK/RP Motif and Cysteine Residues. FRONTIERS IN PLANT SCIENCE 2022; 13:805633. [PMID: 35310653 PMCID: PMC8927881 DOI: 10.3389/fpls.2022.805633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/04/2022] [Indexed: 05/07/2023]
Abstract
Tetraspanins (TETs) function as key molecular scaffolds for surface signal recognition and transduction via the assembly of tetraspanin-enriched microdomains. TETs' function in mammalian has been intensively investigated for the organization of multimolecular membrane complexes, regulation of cell migration and cellular adhesion, whereas plant TET studies lag far behind. Animal and plant TETs share similar topologies, despite the hallmark of "CCG" in the large extracellular loop of animal TETs, plant TETs contain a plant specific GCCK/RP motif and more conserved cysteine residues. Here, we showed that the GCCK/RP motif is responsible for TET protein association with the plasma membrane. Moreover, the conserved cysteine residues located within or neighboring the GCCK/RP motif are both crucial for TET anchoring to membrane. During virus infection, the intact TET3 protein enhanced but GCCK/RP motif or cysteine residues-deficient TET3 variants abolished the cell-to-cell movement capability of virus. This study provides cellular evidence that the GCCK/RP motif and the conserved cysteine residues are the primary determinants for the distribution and function of TET proteins in Arabidopsis.
Collapse
Affiliation(s)
- Tingyu Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanbiao Sun
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Chen
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Xu Chen,
| |
Collapse
|
13
|
Huang C, Heinlein M. Function of Plasmodesmata in the Interaction of Plants with Microbes and Viruses. Methods Mol Biol 2022; 2457:23-54. [PMID: 35349131 DOI: 10.1007/978-1-0716-2132-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata (PD) are gated plant cell wall channels that allow the trafficking of molecules between cells and play important roles during plant development and in the orchestration of cellular and systemic signaling responses during interactions of plants with the biotic and abiotic environment. To allow gating, PD are equipped with signaling platforms and enzymes that regulate the size exclusion limit (SEL) of the pore. Plant-interacting microbes and viruses target PD with specific effectors to enhance their virulence and are useful probes to study PD functions.
Collapse
Affiliation(s)
- Caiping Huang
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
14
|
Martinière A, Zelazny E. Membrane nanodomains and transport functions in plant. PLANT PHYSIOLOGY 2021; 187:1839-1855. [PMID: 35235669 PMCID: PMC8644385 DOI: 10.1093/plphys/kiab312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
Far from a homogeneous environment, biological membranes are highly structured with lipids and proteins segregating in domains of different sizes and dwell times. In addition, membranes are highly dynamics especially in response to environmental stimuli. Understanding the impact of the nanoscale organization of membranes on cellular functions is an outstanding question. Plant channels and transporters are tightly regulated to ensure proper cell nutrition and signaling. Increasing evidence indicates that channel and transporter nano-organization within membranes plays an important role in these regulation mechanisms. Here, we review recent advances in the field of ion, water, but also hormone transport in plants, focusing on protein organization within plasma membrane nanodomains and its cellular and physiological impacts.
Collapse
Affiliation(s)
| | - Enric Zelazny
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
15
|
Fratini M, Krishnamoorthy P, Stenzel I, Riechmann M, Matzner M, Bacia K, Heilmann M, Heilmann I. Plasma membrane nano-organization specifies phosphoinositide effects on Rho-GTPases and actin dynamics in tobacco pollen tubes. THE PLANT CELL 2021; 33:642-670. [PMID: 33955493 PMCID: PMC8136918 DOI: 10.1093/plcell/koaa035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 05/04/2023]
Abstract
Pollen tube growth requires coordination of cytoskeletal dynamics and apical secretion. The regulatory phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is enriched in the subapical plasma membrane of pollen tubes of Arabidopsis thaliana and tobacco (Nicotiana tabacum) and can influence both actin dynamics and secretion. How alternative PtdIns(4,5)P2 effects are specified is unclear. In tobacco pollen tubes, spinning disc microscopy (SD) reveals dual distribution of a fluorescent PtdIns(4,5)P2-reporter in dynamic plasma membrane nanodomains vs. apparent diffuse membrane labeling, consistent with spatially distinct coexisting pools of PtdIns(4,5)P2. Several PI4P 5-kinases (PIP5Ks) can generate PtdIns(4,5)P2 in pollen tubes. Despite localizing to one membrane region, the PIP5Ks AtPIP5K2-EYFP and NtPIP5K6-EYFP display distinctive overexpression effects on cell morphologies, respectively related to altered actin dynamics or membrane trafficking. When analyzed by SD, AtPIP5K2-EYFP associated with nanodomains, whereas NtPIP5K6-EYFP localized diffusely. Chimeric AtPIP5K2-EYFP and NtPIP5K6-EYFP variants with reciprocally swapped membrane-associating domains evoked reciprocally shifted effects on cell morphology upon overexpression. Overall, active PI4P 5-kinase variants stabilized actin when targeted to nanodomains, suggesting a role of nanodomain-associated PtdIns(4,5)P2 in actin regulation. This notion is further supported by interaction and proximity of nanodomain-associated AtPIP5K2 with the Rho-GTPase NtRac5, and by its functional interplay with elements of Rho of plants signaling. Plasma membrane nano-organization may thus aid the specification of PtdIns(4,5)P2 functions to coordinate cytoskeletal dynamics and secretion.
Collapse
Affiliation(s)
- Marta Fratini
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Irene Stenzel
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mara Riechmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Monique Matzner
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Kirsten Bacia
- Department of Biophysical Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
16
|
Gouguet P, Gronnier J, Legrand A, Perraki A, Jolivet MD, Deroubaix AF, German-Retana S, Boudsocq M, Habenstein B, Mongrand S, Germain V. Connecting the dots: from nanodomains to physiological functions of REMORINs. PLANT PHYSIOLOGY 2021; 185:632-649. [PMID: 33793872 PMCID: PMC8133660 DOI: 10.1093/plphys/kiaa063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/31/2020] [Indexed: 05/11/2023]
Abstract
REMORINs (REMs) are a plant-specific protein family, proposed regulators of membrane-associated molecular assemblies and well-established markers of plasma membrane nanodomains. REMs play a diverse set of functions in plant interactions with pathogens and symbionts, responses to abiotic stresses, hormone signaling and cell-to-cell communication. In this review, we highlight the established and more putative roles of REMs throughout the literature. We discuss the physiological functions of REMs, the mechanisms underlying their nanodomain-organization and their putative role as regulators of nanodomain-associated molecular assemblies. Furthermore, we discuss how REM phosphorylation may regulate their functional versatility. Overall, through data-mining and comparative analysis of the literature, we suggest how to further study the molecular mechanisms underpinning the functions of REMs.
Collapse
Affiliation(s)
- Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- ZMBP, Universität Tübingen, Auf der Morgenstelle 32 72076 Tübingen, Germany
| | - Julien Gronnier
- Department of Plant and Microbial Biology University of Zürich, Zollikerstrasse, Zürich, Switzerland
| | - Anthony Legrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, A11, Geoffroy Saint-Hilaire, Pessac, France
| | - Artemis Perraki
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
- Present address: Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
| | - Marie-Dominique Jolivet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| | - Anne-Flore Deroubaix
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| | - Sylvie German-Retana
- Equipe de Virologie, Institut Scientifique de Recherche Agronomique and Université de Bordeaux, BP81, 33883 Villenave d’Ornon, France
| | - Marie Boudsocq
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, Orsay, France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, A11, Geoffroy Saint-Hilaire, Pessac, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- Author for communication: (S.M.)
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
17
|
S-acylation in plants: an expanding field. Biochem Soc Trans 2020; 48:529-536. [DOI: 10.1042/bst20190703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
S-acylation is a common yet poorly understood fatty acid-based post-translational modification of proteins in all eukaryotes, including plants. While exact roles for S-acylation in protein function are largely unknown the reversibility of S-acylation indicates that it is likely able to play a regulatory role. As more studies reveal the roles of S-acylation within the cell it is becoming apparent that how S-acylation affects proteins is conceptually different from other reversible modifications such as phosphorylation or ubiquitination; a new mind-set is therefore required to fully integrate these data into our knowledge of plant biology. This review aims to highlight recent advances made in the function and enzymology of S-acylation in plants, highlights current and emerging technologies for its study and suggests future avenues for investigation.
Collapse
|
18
|
Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. THE NEW PHYTOLOGIST 2020; 225:2122-2139. [PMID: 31657467 DOI: 10.1111/nph.16285] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Group 1 Remorins (REMs) are extensively involved in virus trafficking through plasmodesmata (PD). However, their roles in Potyvirus cell-to-cell movement are not known. The plasma membrane (PM)-associated Ca2+ binding protein 1 (PCaP1) interacts with the P3N-PIPO of Turnip mosaic virus (TuMV) and is required for TuMV cell-to-cell movement, but the underlying mechanism remains elusive. The mutant plants with overexpression or knockout of REM1.2 were used to investigate its role in TuMV cell-to-cell movement. Arabidopsis thaliana complementary mutants of pcap1 were used to investigate the role of PCaP1 in TuMV cell-to-cell movement. Yeast-two-hybrid, bimolecular fluorescence complementation, co-immunoprecipitation and RT-qPCR assays were employed to investigate the underlying molecular mechanism. The results show that TuMV-P3N-PIPO recruits PCaP1 to PD and the actin filament-severing activity of PCaP1 is required for TuMV intercellular movement. REM1.2 negatively regulates the cell-to-cell movement of TuMV via competition with PCaP1 for binding actin filaments. As a counteractive response, TuMV mediates REM1.2 degradation via both 26S ubiquitin-proteasome and autophagy pathways through the interaction of VPg with REM1.2 to establish systemic infection in Arabidopsis. This work unveils the actin cytoskeleton and PM nanodomain-associated molecular events underlying the cell-to-cell movement of potyviruses.
Collapse
Affiliation(s)
- Guangyuan Cheng
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Zongtao Yang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Hai Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jisen Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jingsheng Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| |
Collapse
|
19
|
Daněk M, Angelini J, Malínská K, Andrejch J, Amlerová Z, Kocourková D, Brouzdová J, Valentová O, Martinec J, Petrášek J. Cell wall contributes to the stability of plasma membrane nanodomain organization of Arabidopsis thaliana FLOTILLIN2 and HYPERSENSITIVE INDUCED REACTION1 proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:619-636. [PMID: 31610051 DOI: 10.1111/tpj.14566] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 05/24/2023]
Abstract
Current models of plasma membrane (PM) postulate its organization in various nano- and micro-domains with distinct protein and lipid composition. While metazoan PM nanodomains usually display high lateral mobility, the dynamics of plant nanodomains is often highly spatially restricted. Here we have focused on the determination of the PM distribution in nanodomains for Arabidopsis thaliana flotillin (AtFLOT) and hypersensitive induced reaction proteins (AtHIR), previously shown to be involved in response to extracellular stimuli. Using in vivo laser scanning and spinning disc confocal microscopy in Arabidopsis thaliana we present here their nanodomain localization in various epidermal cell types. Fluorescence recovery after photobleaching (FRAP) and kymographic analysis revealed that PM-associated AtFLOTs contain significantly higher immobile fraction than AtHIRs. In addition, much lower immobile fractions have been found in tonoplast pool of AtHIR3. Although members of both groups of proteins were spatially restricted in their PM distribution by corrals co-aligning with microtubules (MTs), pharmacological treatments showed no or very low role of actin and microtubular cytoskeleton for clustering of AtFLOT and AtHIR into nanodomains. Finally, pharmacological alteration of cell wall (CW) synthesis and structure resulted in changes in lateral mobility of AtFLOT2 and AtHIR1. Accordingly, partial enzymatic CW removal increased the overall dynamics as well as individual nanodomain mobility of these two proteins. Such structural links to CW could play an important role in their correct positioning during PM communication with extracellular environment.
Collapse
Affiliation(s)
- Michal Daněk
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Jindřiška Angelini
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czech Republic
| | - Kateřina Malínská
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
| | - Jan Andrejch
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czech Republic
| | - Zuzana Amlerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czech Republic
| | - Daniela Kocourková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
| | - Jitka Brouzdová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czech Republic
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
| | - Jan Petrášek
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| |
Collapse
|
20
|
Yu M, Cui Y, Zhang X, Li R, Lin J. Organization and dynamics of functional plant membrane microdomains. Cell Mol Life Sci 2020; 77:275-287. [PMID: 31422442 PMCID: PMC11104912 DOI: 10.1007/s00018-019-03270-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
Plasma membranes are heterogeneous and laterally compartmentalized into distinct microdomains. These membrane microdomains consist of special lipids and proteins and are thought to act as signaling platforms. In plants, membrane microdomains have been detected by super-resolution microscopy, and there is evidence that they play roles in several biological processes. Here, we review current knowledge about the lipid and protein components of membrane microdomains. Furthermore, we summarize the dynamics of membrane microdomains in response to different stimuli. We also explore the biological functions associated with membrane microdomains as signal integration hubs. Finally, we outline challenges and questions for further studies.
Collapse
Affiliation(s)
- Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Cui
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
21
|
Reagan BC, Burch-Smith TM. Viruses Reveal the Secrets of Plasmodesmal Cell Biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:26-39. [PMID: 31715107 DOI: 10.1094/mpmi-07-19-0212-fi] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plasmodesmata (PD) are essential for intercellular trafficking of molecules required for plant life, from small molecules like sugars and ions to macromolecules including proteins and RNA molecules that act as signals to regulate plant development and defense. As obligate intracellular pathogens, plant viruses have evolved to manipulate this communication system to facilitate the initial cell-to-cell and eventual systemic spread in their plant hosts. There has been considerable interest in how viruses manipulate the PD that connect the protoplasts of neighboring cells, and viruses have yielded invaluable tools for probing the structure and function of PD. With recent advances in biochemistry and imaging, we have gained new insights into the composition and structure of PD in the presence and absence of viruses. Here, we first discuss viral strategies for manipulating PD for their intercellular movement and examine how this has shed light on our understanding of native PD function. We then address the controversial role of the cytoskeleton in trafficking to and through PD. Finally, we address how viruses could alter PD structure and consider possible mechanisms of the phenomenon described as 'gating'. This discussion supports the significance of virus research in elucidating the properties of PD, these persistently enigmatic plant organelles.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
22
|
Gronnier J, Legrand A, Loquet A, Habenstein B, Germain V, Mongrand S. Mechanisms governing subcompartmentalization of biological membranes. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:114-123. [PMID: 31546133 DOI: 10.1016/j.pbi.2019.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Membranes show a tremendous variety of lipids and proteins operating biochemistry, transport and signalling. The dynamics and the organization of membrane constituents are regulated in space and time to execute precise functions. Our understanding of the molecular mechanisms that shape and govern membrane subcompartmentalization and inter-organelle contact sites still remains limited. Here, we review some reported mechanisms implicated in regulating plant membrane domains including those of plasma membrane, plastids, mitochondria and endoplasmic reticulum. Finally, we discuss several state-of-the-art methods that allow nowadays researchers to decipher the architecture of these structures at the molecular and atomic level.
Collapse
Affiliation(s)
- Julien Gronnier
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Anthony Legrand
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, 33140 Villenave d'Ornon, France; Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, All, Geoffroy Saint-Hilaire, Pessac, France
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, All, Geoffroy Saint-Hilaire, Pessac, France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, All, Geoffroy Saint-Hilaire, Pessac, France
| | - Véronique Germain
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, 33140 Villenave d'Ornon, France
| | - Sébastien Mongrand
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, 33140 Villenave d'Ornon, France.
| |
Collapse
|
23
|
Zorrilla S, Mónico A, Duarte S, Rivas G, Pérez-Sala D, Pajares MA. Integrated approaches to unravel the impact of protein lipoxidation on macromolecular interactions. Free Radic Biol Med 2019; 144:203-217. [PMID: 30991143 DOI: 10.1016/j.freeradbiomed.2019.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein modification by lipid derived reactive species, or lipoxidation, is increased during oxidative stress, a common feature observed in many pathological conditions. Biochemical and functional consequences of lipoxidation include changes in the conformation and assembly of the target proteins, altered recognition of ligands and/or cofactors, changes in the interactions with DNA or in protein-protein interactions, modifications in membrane partitioning and binding and/or subcellular localization. These changes may impact, directly or indirectly, signaling pathways involved in the activation of cell defense mechanisms, but when these are overwhelmed they may lead to pathological outcomes. Mass spectrometry provides state of the art approaches for the identification and characterization of lipoxidized proteins/residues and the modifying species. Nevertheless, understanding the complexity of the functional effects of protein lipoxidation requires the use of additional methodologies. Herein, biochemical and biophysical methods used to detect and measure functional effects of protein lipoxidation at different levels of complexity, from in vitro and reconstituted cell-like systems to cells, are reviewed, focusing especially on macromolecular interactions. Knowledge generated through innovative and complementary technologies will contribute to comprehend the role of lipoxidation in pathophysiology and, ultimately, its potential as target for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Andreia Mónico
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sofia Duarte
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Germán Rivas
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María A Pajares
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
24
|
Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proc Natl Acad Sci U S A 2019; 116:21274-21284. [PMID: 31575745 PMCID: PMC6800329 DOI: 10.1073/pnas.1911892116] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plasmodesmata (PD) create cytoplasmic and membrane continuities between adjacent cells to facilitate cell–cell communication and virus movement. Plant cells have evolved diverse mechanisms to regulate PD plasticity against plant pathogens, including the accumulation of the defense hormone, salicylic acid (SA). However, the mechanism of how this occurs is not well understood. Here, we uncover a mechanism by which SA triggers Remorin-dependent membrane lipid nanodomain assembly, leading to enhancement of the liquid-ordered phase. The higher-ordered lipids, which are particularly enriched at PD membrane, decreased PD membrane plasticity, and thus restricted PD opening and impeded virus spreading. Our findings address a knowledge gap in plant defense mechanisms at the membrane level that rely on SA-controlled lipid order and PD closure. Plasmodesmata (PD) are plant-specific membrane-lined channels that create cytoplasmic and membrane continuities between adjacent cells, thereby facilitating cell–cell communication and virus movement. Plant cells have evolved diverse mechanisms to regulate PD plasticity in response to numerous environmental stimuli. In particular, during defense against plant pathogens, the defense hormone, salicylic acid (SA), plays a crucial role in the regulation of PD permeability in a callose-dependent manner. Here, we uncover a mechanism by which plants restrict the spreading of virus and PD cargoes using SA signaling by increasing lipid order and closure of PD. We showed that exogenous SA application triggered the compartmentalization of lipid raft nanodomains through a modulation of the lipid raft-regulatory protein, Remorin (REM). Genetic studies, superresolution imaging, and transmission electron microscopy observation together demonstrated that Arabidopsis REM1.2 and REM1.3 are crucial for plasma membrane nanodomain assembly to control PD aperture and functionality. In addition, we also found that a 14-3-3 epsilon protein modulates REM clustering and membrane nanodomain compartmentalization through its direct interaction with REM proteins. This study unveils a molecular mechanism by which the key plant defense hormone, SA, triggers membrane lipid nanodomain reorganization, thereby regulating PD closure to impede virus spreading.
Collapse
|
25
|
Badawi MA, Agharbaoui Z, Zayed M, Li Q, Byrns B, Zou J, Fowler DB, Danyluk J, Sarhan F. Genome-Wide Identification and Characterization of the Wheat Remorin ( TaREM) Family during Cold Acclimation. THE PLANT GENOME 2019; 12:180040. [PMID: 31290927 DOI: 10.3835/plantgenome2018.06.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Remorins (REMs) are plant-specific proteins that play an essential role in plant-microbe interactions. However, their roles in vernalization and abiotic stress responses remain speculative. Most remorins have a variable proline-rich -half and a more conserved -half that is predicted to form coils. A search of the wheat ( L.) database revealed the existence of 20 different genes, which we classified into six groups on the basis of whether they shared a common phylogenetic and structural origin. Analysis of the physical genomic distributions demonstrated that genes are dispersed in the wheat genome and have one to seven introns. Promoter analysis of genes revealed the presence of putative -elements related to diverse functions like development, hormonal regulation, and biotic and abiotic stress responsiveness. Expression levels of genes were measured in plants grown under field and controlled conditions and in response to hormone treatment. Our analyses revealed that 12 members of the REM family are regulated during cold acclimation in wheat in four different tissues (roots, crowns, stems, and leaves), with the highest expression in roots. Differential gene expression was found between wheat cultivars with contrasting degrees of cold tolerance, suggesting the implication of genes in cold response and tolerance. Additionally, eight genes were induced in response to abscisic acid and methyl jasmonate treatment. This genome-wide analysis of genes provides valuable resources for functional analysis aimed at understanding their role in stress adaptation.
Collapse
|
26
|
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutté Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog Lipid Res 2018; 73:1-27. [PMID: 30465788 DOI: 10.1016/j.plipres.2018.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022]
Abstract
The plasma membrane (PM) is the biological membrane that separates the interior of all cells from the outside. The PM is constituted of a huge diversity of proteins and lipids. In this review, we will update the diversity of molecular species of lipids found in plant PM. We will further discuss how lipids govern global properties of the plant PM, explaining that plant lipids are unevenly distributed and are able to organize PM in domains. From that observation, it emerges a complex picture showing a spatial and multiscale segregation of PM components. Finally, we will discuss how lipids are key players in the function of PM in plants, with a particular focus on plant-microbe interaction, transport and hormone signaling, abiotic stress responses, plasmodesmata function. The last chapter is dedicated to the methods that the plant membrane biology community needs to develop to get a comprehensive understanding of membrane organization in plants.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nelson Laurent
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France.
| |
Collapse
|
27
|
REM1.3's phospho-status defines its plasma membrane nanodomain organization and activity in restricting PVX cell-to-cell movement. PLoS Pathog 2018; 14:e1007378. [PMID: 30419072 PMCID: PMC6258466 DOI: 10.1371/journal.ppat.1007378] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/26/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Plants respond to pathogens through dynamic regulation of plasma membrane-bound signaling pathways. To date, how the plant plasma membrane is involved in responses to viruses is mostly unknown. Here, we show that plant cells sense the Potato virus X (PVX) COAT PROTEIN and TRIPLE GENE BLOCK 1 proteins and subsequently trigger the activation of a membrane-bound calcium-dependent kinase. We show that the Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE 3-interacts with group 1 REMORINs in vivo, phosphorylates the intrinsically disordered N-terminal domain of the Group 1 REMORIN REM1.3, and restricts PVX cell-to-cell movement. REM1.3's phospho-status defines its plasma membrane nanodomain organization and is crucial for REM1.3-dependent restriction of PVX cell-to-cell movement by regulation of callose deposition at plasmodesmata. This study unveils plasma membrane nanodomain-associated molecular events underlying the plant immune response to viruses. Viruses propagate in plants through membranous channels, called plasmodesmata, linking each cell to its neighboring cell. In this work, we challenge the role of the plasma membrane in the regulation of virus propagation. By studying the dynamics and the activation of a plant-specific protein called REMORIN, we found that the way this protein is organized inside the membrane is crucial to fulfill its function in the immunity of plants against viruses.
Collapse
|
28
|
Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains. Proc Natl Acad Sci U S A 2018; 115:5289-5294. [PMID: 29712849 DOI: 10.1073/pnas.1721868115] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plant cell infection is tightly controlled by cell surface receptor-like kinases (RLKs). Like other RLKs, the Medicago truncatula entry receptor LYK3 laterally segregates into membrane nanodomains in a stimulus-dependent manner. Although nanodomain localization arises as a generic feature of plant membrane proteins, the molecular mechanisms underlying such dynamic transitions and their functional relevance have remained poorly understood. Here we demonstrate that actin and the flotillin protein FLOT4 form the primary and indispensable core of a specific nanodomain. Infection-dependent induction of the remorin protein and secondary molecular scaffold SYMREM1 results in subsequent recruitment of ligand-activated LYK3 and its stabilization within these membrane subcompartments. Reciprocally, the majority of this LYK3 receptor pool is destabilized at the plasma membrane and undergoes rapid endocytosis in symrem1 mutants on rhizobial inoculation, resulting in premature abortion of host cell infections. These data reveal that receptor recruitment into nanodomains is indispensable for their function during host cell infection.
Collapse
|
29
|
Fu S, Xu Y, Li C, Li Y, Wu J, Zhou X. Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. MOLECULAR PLANT 2018; 11:269-287. [PMID: 29229567 DOI: 10.1016/j.molp.2017.11.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/02/2017] [Accepted: 11/23/2017] [Indexed: 05/23/2023]
Abstract
Remorins are plant-specific membrane-associated proteins and were proposed to play crucial roles in plant-pathogen interactions. However, little is known about how pathogens counter remorin-mediated host responses. In this study, by quantitative whole-proteome analysis we found that the remorin protein (NbREM1) is downregulated early in Rice stripe virus (RSV) infection. We further discovered that the turnover of NbREM1 is regulated by S-acylation modification and its degradation is mediated mainly through the autophagy pathway. Interestingly, RSV can interfere with the S-acylation of NbREM1, which is required to negatively regulate RSV infection by restricting virus cell-to-cell trafficking. The disruption of NbREM1 S-acylation affects its targeting to the plasma membrane microdomain, and the resulting accumulation of non-targeted NbREM1 is subjected to autophagic degradation, causing downregulation of NbREM1. Moreover, we found that RSV-encoded movement protein, NSvc4, alone can interfere with NbREM1 S-acylation through binding with the C-terminal domain of NbREM1 the S-acylation of OsREM1.4, the homologous remorin of NbREM1, and thus remorin-mediated defense against RSV in rice, the original host of RSV, indicating that downregulation of the remorin protein level by interfering with its S-acylation is a common strategy adopted by RSV to overcome remorin-mediated inhibition of virus movement.
Collapse
Affiliation(s)
- Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
30
|
Takahashi D, Uemura M, Kawamura Y. Freezing Tolerance of Plant Cells: From the Aspect of Plasma Membrane and Microdomain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:61-79. [PMID: 30288704 DOI: 10.1007/978-981-13-1244-1_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Freezing stress is accompanied by a state change from water to ice and has multiple facets causing dehydration; consequently, hyperosmotic and mechanical stresses coupled with unfavorable chilling stress act in a parallel way. Freezing tolerance varies widely among plant species, and, for example, most temperate plants can overcome deleterious effects caused by freezing temperatures in winter. Destabilization and dysfunction of the plasma membrane are tightly linked to freezing injury of plant cells. Plant freezing tolerance increases upon exposure to nonfreezing low temperatures (cold acclimation). Recent studies have unveiled pleiotropic responses of plasma membrane lipids and proteins to cold acclimation. In addition, advanced techniques have given new insights into plasma membrane structural non-homogeneity, namely, microdomains. This chapter describes physiological implications of plasma membrane responses enhancing freezing tolerance during cold acclimation, with a focus on microdomains.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences and Department of Plant-biosciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yukio Kawamura
- Cryobiofrontier Research Center and Department of Plant-biosciences, and United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
31
|
Ott T. Membrane nanodomains and microdomains in plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:82-88. [PMID: 28865975 DOI: 10.1016/j.pbi.2017.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/17/2017] [Accepted: 08/18/2017] [Indexed: 05/26/2023]
Abstract
During plant-microbe interactions, host cells need to keep stringent control over the approaching pathogens and symbionts. This requires specific spatio-temporal assemblies of pattern recognition receptors and other complex constituents and a strict physical separation of genetically overlapping pathways. Increasing evidence suggests that this is, at least partially, achieved by the formation of nanometer scale membrane platforms that might act as signaling hubs. These and other larger-scale sub-compartments have been termed 'membrane rafts', 'nanodomains' and 'microdomains'. This review focuses on recent advances in understanding these nano-scale signaling platforms during plant-microbe interactions and proposes a common definition meant to facilitate the precise discrimination between different types of membrane domains in the future.
Collapse
Affiliation(s)
- Thomas Ott
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
32
|
Gronnier J, Crowet JM, Habenstein B, Nasir MN, Bayle V, Hosy E, Platre MP, Gouguet P, Raffaele S, Martinez D, Grelard A, Loquet A, Simon-Plas F, Gerbeau-Pissot P, Der C, Bayer EM, Jaillais Y, Deleu M, Germain V, Lins L, Mongrand S. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. eLife 2017; 6:e26404. [PMID: 28758890 PMCID: PMC5536944 DOI: 10.7554/elife.26404] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022] Open
Abstract
Plasma Membrane is the primary structure for adjusting to ever changing conditions. PM sub-compartmentalization in domains is thought to orchestrate signaling. Yet, mechanisms governing membrane organization are mostly uncharacterized. The plant-specific REMORINs are proteins regulating hormonal crosstalk and host invasion. REMs are the best-characterized nanodomain markers via an uncharacterized moiety called REMORIN C-terminal Anchor. By coupling biophysical methods, super-resolution microscopy and physiology, we decipher an original mechanism regulating the dynamic and organization of nanodomains. We showed that targeting of REMORIN is independent of the COP-II-dependent secretory pathway and mediated by PI4P and sterol. REM-CA is an unconventional lipid-binding motif that confers nanodomain organization. Analyses of REM-CA mutants by single particle tracking demonstrate that mobility and supramolecular organization are critical for immunity. This study provides a unique mechanistic insight into how the tight control of spatial segregation is critical in the definition of PM domain necessary to support biological function.
Collapse
Affiliation(s)
- Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Jean-Marc Crowet
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Mehmet Nail Nasir
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, CNRS, University of BordeauxBordeauxFrance
| | - Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | | | - Denis Martinez
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Axelle Grelard
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Christophe Der
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| |
Collapse
|
33
|
Hemsley PA. An outlook on protein S-acylation in plants: what are the next steps? JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3155-3164. [PMID: 28158736 DOI: 10.1093/jxb/erw497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
S-acylation, also known as palmitoylation, is the reversible post-translational addition of fatty acids to proteins. Historically thought primarily to be a means for anchoring otherwise soluble proteins to membranes, evidence now suggests that reversible S-acylation may be an important dynamic regulatory mechanism. Importantly S-acylation affects the function of many integral membrane proteins, making it an important factor to consider in understanding processes such as cell wall synthesis, membrane trafficking, signalling across membranes and regulating ion, hormone and metabolite transport through membranes. This review summarises the latest thoughts, ideas and findings in the field as well discussing future research directions to gain a better understanding of the role of this enigmatic regulatory protein modification.
Collapse
Affiliation(s)
- Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, UK
| |
Collapse
|
34
|
Bücherl CA, Jarsch IK, Schudoma C, Segonzac C, Mbengue M, Robatzek S, MacLean D, Ott T, Zipfel C. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 2017. [PMID: 28262094 DOI: 10.7554/elife.25114.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Cell surface receptors govern a multitude of signalling pathways in multicellular organisms. In plants, prominent examples are the receptor kinases FLS2 and BRI1, which activate immunity and steroid-mediated growth, respectively. Intriguingly, despite inducing distinct signalling outputs, both receptors employ common downstream signalling components, which exist in plasma membrane (PM)-localised protein complexes. An important question is thus how these receptor complexes maintain signalling specificity. Live-cell imaging revealed that FLS2 and BRI1 form PM nanoclusters. Using single-particle tracking we could discriminate both cluster populations and we observed spatiotemporal separation between immune and growth signalling platforms. This finding was confirmed by visualising FLS2 and BRI1 within distinct PM nanodomains marked by specific remorin proteins and differential co-localisation with the cytoskeleton. Our results thus suggest that signalling specificity between these pathways may be explained by the spatial separation of FLS2 and BRI1 with their associated signalling components within dedicated PM nanodomains.
Collapse
Affiliation(s)
| | - Iris K Jarsch
- Ludwig-Maximilians-Universität München, Institute of Genetics, Martinsried, Germany
| | - Christian Schudoma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Cécile Segonzac
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Malick Mbengue
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Daniel MacLean
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Thomas Ott
- Ludwig-Maximilians-Universität München, Institute of Genetics, Martinsried, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
35
|
Bücherl CA, Jarsch IK, Schudoma C, Segonzac C, Mbengue M, Robatzek S, MacLean D, Ott T, Zipfel C. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 2017; 6. [PMID: 28262094 PMCID: PMC5383397 DOI: 10.7554/elife.25114] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/04/2017] [Indexed: 12/23/2022] Open
Abstract
Cell surface receptors govern a multitude of signalling pathways in multicellular organisms. In plants, prominent examples are the receptor kinases FLS2 and BRI1, which activate immunity and steroid-mediated growth, respectively. Intriguingly, despite inducing distinct signalling outputs, both receptors employ common downstream signalling components, which exist in plasma membrane (PM)-localised protein complexes. An important question is thus how these receptor complexes maintain signalling specificity. Live-cell imaging revealed that FLS2 and BRI1 form PM nanoclusters. Using single-particle tracking we could discriminate both cluster populations and we observed spatiotemporal separation between immune and growth signalling platforms. This finding was confirmed by visualising FLS2 and BRI1 within distinct PM nanodomains marked by specific remorin proteins and differential co-localisation with the cytoskeleton. Our results thus suggest that signalling specificity between these pathways may be explained by the spatial separation of FLS2 and BRI1 with their associated signalling components within dedicated PM nanodomains. DOI:http://dx.doi.org/10.7554/eLife.25114.001 Unlike most animals, plants cannot move away if their environment changes for the worse. Instead, a plant must sense these changes and respond appropriately, for example by changing how much it grows. Disease-causing microbes in the immediate environment represent another potential threat to plants. To detect these microbes, plant cells have proteins called “pattern recognition receptors” in their surface membranes that sense certain molecules from the microbes (similar receptors are found in animals too). When a receptor protein recognises one such microbial molecule, it becomes activated and forms a complex with other proteins referred to as co-receptors. The protein complex then sends a signal into the cell to trigger an immune response. Plants also use similar receptor proteins to sense their own signalling molecules and regulate their growth and development. These growth-related receptors rely on many of the same co-receptors and signalling components as the immunity-related receptors. This posed the question: how can plant cells use the same proteins to trigger different responses to different signals? Bücherl et al. have now used high-resolution microscopy and the model plant Arabidopsis thaliana to show that the plant’s immune receptors and growth receptors are found in separate clusters at the plant cell’s surface membrane. These clusters are only a few hundred nanometres wide, and they also contained other signalling components that are needed to quickly relay the signals into the plant cell. Bücherl et al. suggest that, by organizing their receptors into these physically distinct clusters, plant cells can use similar proteins to sense different signals and respond in then different ways. This idea will need to be tested in future studies. Further work is also needed to understand how these clusters of signalling proteins are assembled and inserted at specific locations within the surface membrane of a plant cell. DOI:http://dx.doi.org/10.7554/eLife.25114.002
Collapse
Affiliation(s)
| | - Iris K Jarsch
- Ludwig-Maximilians-Universität München, Institute of Genetics, Martinsried, Germany
| | - Christian Schudoma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Cécile Segonzac
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Malick Mbengue
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Daniel MacLean
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Thomas Ott
- Ludwig-Maximilians-Universität München, Institute of Genetics, Martinsried, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
36
|
Li Y, Qi B. Progress toward Understanding Protein S-acylation: Prospective in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:346. [PMID: 28392791 PMCID: PMC5364179 DOI: 10.3389/fpls.2017.00346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/28/2017] [Indexed: 05/02/2023]
Abstract
S-acylation, also known as S-palmitoylation or palmitoylation, is a reversible post-translational lipid modification in which long chain fatty acid, usually the 16-carbon palmitate, covalently attaches to a cysteine residue(s) throughout the protein via a thioester bond. It is involved in an array of important biological processes during growth and development, reproduction and stress responses in plant. S-acylation is a ubiquitous mechanism in eukaryotes catalyzed by a family of enzymes called Protein S-Acyl Transferases (PATs). Since the discovery of the first PAT in yeast in 2002 research in S-acylation has accelerated in the mammalian system and followed by in plant. However, it is still a difficult field to study due to the large number of PATs and even larger number of putative S-acylated substrate proteins they modify in each genome. This is coupled with drawbacks in the techniques used to study S-acylation, leading to the slower progress in this field compared to protein phosphorylation, for example. In this review we will summarize the discoveries made so far based on knowledge learnt from the characterization of protein S-acyltransferases and the S-acylated proteins, the interaction mechanisms between PAT and its specific substrate protein(s) in yeast and mammals. Research in protein S-acylation and PATs in plants will also be covered although this area is currently less well studied in yeast and mammalian systems.
Collapse
|
37
|
Konrad SSA, Ott T. Molecular principles of membrane microdomain targeting in plants. TRENDS IN PLANT SCIENCE 2015; 20:351-61. [PMID: 25936559 DOI: 10.1016/j.tplants.2015.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 05/19/2023]
Abstract
Plasma membranes (PMs) are heterogeneous lipid bilayers comprising diverse subdomains. These sites can be labeled by various proteins in vivo and may serve as hotspots for signal transduction. They are found at apical, basal, and lateral membranes of polarized cells, at cell equatorial planes, or almost isotropically distributed throughout the PM. Recent advances in imaging technologies and understanding of mechanisms that allow proteins to target specific sites in PMs have provided insights into the dynamics and complexity of their specific segregation. Here we present a comprehensive overview of the different types of membrane microdomain and describe the molecular modes that determine site-directed targeting of membrane-resident proteins at the PM.
Collapse
Affiliation(s)
- Sebastian S A Konrad
- Ludwig-Maximilians-Universität München, Genetics, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Thomas Ott
- Ludwig-Maximilians-Universität München, Genetics, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
38
|
Sekereš J, Pleskot R, Pejchar P, Žárský V, Potocký M. The song of lipids and proteins: dynamic lipid-protein interfaces in the regulation of plant cell polarity at different scales. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1587-98. [PMID: 25716697 DOI: 10.1093/jxb/erv052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Successful establishment and maintenance of cell polarity is crucial for many aspects of plant development, cellular morphogenesis, response to pathogen attack, and reproduction. Polar cell growth depends on integrating membrane and cell-wall dynamics with signal transduction pathways, changes in ion membrane transport, and regulation of vectorial vesicle trafficking and the dynamic actin cytoskeleton. In this review, we address the critical importance of protein-membrane crosstalk in the determination of plant cell polarity and summarize the role of membrane lipids, particularly minor acidic phospholipids, in regulation of the membrane traffic. We focus on the protein-membrane interface dynamics and discuss the current state of knowledge on three partially overlapping levels of descriptions. Finally, due to their multiscale and interdisciplinary nature, we stress the crucial importance of combining different strategies ranging from microscopic methods to computational modelling in protein-membrane studies.
Collapse
Affiliation(s)
- Juraj Sekereš
- 1 Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic 2 Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 12844 Prague 2, Czech Republic
| | - Roman Pleskot
- 1 Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic 3 Institute of Organic Chemistry and Biochemistry, v. v. i., Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Přemysl Pejchar
- 1 Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Viktor Žárský
- 1 Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic 2 Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 12844 Prague 2, Czech Republic
| | - Martin Potocký
- 1 Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic, Rozvojová 263, 16502 Prague 6, Czech Republic
| |
Collapse
|
39
|
Hurst CH, Hemsley PA. Current perspective on protein S-acylation in plants: more than just a fatty anchor? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1599-606. [PMID: 25725093 DOI: 10.1093/jxb/erv053] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Membranes are an important signalling platform in plants. The plasma membrane is the point where information about the external environment must be converted into intracellular signals, while endomembranes are important sites of protein trafficking, organization, compartmentalization, and intracellular signalling. This requires co-ordinating the spatial distribution of proteins, their activation state, and their interacting partners. This regulation frequently occurs through post-translational modification of proteins. Proteins that associate with the cell membrane do so through transmembrane domains, protein-protein interactions, lipid binding motifs/domains or use the post-translational addition of lipid groups as prosthetic membrane anchors. S-acylation is one such lipid modification capable of anchoring proteins to the membrane. Our current knowledge of S-acylation function in plants is fairly limited compared with other post-translational modifications and S-acylation in other organisms. However, it is becoming increasingly clear that S-acylation can act as more than just a simple membrane anchor: it can also act as a regulatory mechanism in signalling pathways in plants. S-acylation is, therefore, an ideal mechanism for regulating protein function at membranes. This review discusses our current knowledge of S-acylated proteins in plants, the interaction of different lipid modifications, and the general effects of S-acylation on cellular function.
Collapse
Affiliation(s)
- Charlotte H Hurst
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, uk Cell and molecular sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, K
| | - Piers A Hemsley
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, uk Cell and molecular sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, K
| |
Collapse
|
40
|
Tapken W, Murphy AS. Membrane nanodomains in plants: capturing form, function, and movement. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1573-86. [PMID: 25725094 DOI: 10.1093/jxb/erv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.
Collapse
Affiliation(s)
- Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
41
|
Ebine K, Ueda T. Roles of membrane trafficking in plant cell wall dynamics. FRONTIERS IN PLANT SCIENCE 2015; 6:878. [PMID: 26539200 PMCID: PMC4609830 DOI: 10.3389/fpls.2015.00878] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/02/2015] [Indexed: 05/18/2023]
Abstract
The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall.
Collapse
Affiliation(s)
- Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kazuo Ebine,
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| |
Collapse
|
42
|
Gui J, Zheng S, Shen J, Li L. Grain setting defect1 (GSD1) function in rice depends on S-acylation and interacts with actin 1 (OsACT1) at its C-terminal. FRONTIERS IN PLANT SCIENCE 2015; 6:804. [PMID: 26483819 PMCID: PMC4590517 DOI: 10.3389/fpls.2015.00804] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/15/2015] [Indexed: 05/19/2023]
Abstract
Grain setting defect1 (GSD1), a plant-specific remorin protein specifically localized at the plasma membrane (PM) and plasmodesmata of phloem companion cells, affects grain setting in rice through regulating the transport of photoassimilates. Here, we show new evidence demonstrating that GSD1 is localized at the cytoplasmic face of the PM and a stretch of 45 amino acid residues at its C-terminal is required for its localization. Association with the PM is mediated by S-acylation of cysteine residues Cys-524 and Cys-527, in a sequence of 45 amino acid residues essential for GSD1 function in rice. Furthermore, the coiled-coil domain in GSD1 is necessary for sufficient interaction with OsACT1. Together, these results reveal that GSD1 attaches to the PM through S-acylation and interacts with OsACT1 through its coiled-coil domain structure to regulate plasmodesmata conductance for photoassimilate transport in rice.
Collapse
Affiliation(s)
| | | | | | - Laigeng Li
- *Correspondence: Laigeng Li, National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China,
| |
Collapse
|
43
|
Hemsley PA. The importance of lipid modified proteins in plants. THE NEW PHYTOLOGIST 2015; 205:476-89. [PMID: 25283240 DOI: 10.1111/nph.13085] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 05/18/2023]
Abstract
Membranes have long been known to act as more than physical barriers within and between plant cells. Trafficking of membrane proteins, signalling from and across membranes, organisation of membranes and transport through membranes are all essential processes for plant cellular function. These processes rely on a myriad array of proteins regulated in a variety of manners and are frequently required to be directly associated with membranes. For integral membrane proteins, the mode of membrane association is readily apparent, but many peripherally associated membrane proteins are outwardly soluble proteins. In these cases the proteins are frequently modified by the addition of lipids allowing direct interaction with the hydrophobic core of membranes. These modifications include N-myristoylation, S-acylation (palmitoylation), prenylation and GPI anchors but until recently little was truly known about their function in plants. New data suggest that these modifications are able to act as more than just membrane anchors, and dynamic S-acylation in particular is emerging as a means of regulating protein function in a similar manner to phosphorylation. This review discusses how these modifications occur, their impact on protein function, how they are regulated, recent advances in the field and technical approaches for studying these modifications.
Collapse
Affiliation(s)
- Piers A Hemsley
- Division of Plant Sciences, University of Dundee, Dundee, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| |
Collapse
|
44
|
Dörmann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Hückelhoven R. Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions. THE NEW PHYTOLOGIST 2014; 204:815-22. [PMID: 25168837 DOI: 10.1111/nph.12978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/16/2014] [Indexed: 05/07/2023]
Abstract
Plant cells dynamically change their architecture and molecular composition following encounters with beneficial or parasitic microbes, a process referred to as host cell reprogramming. Cell-autonomous defense reactions are typically polarized to the plant cell periphery underneath microbial contact sites, including de novo cell wall biosynthesis. Alternatively, host cell reprogramming converges in the biogenesis of membrane-enveloped compartments for accommodation of beneficial bacteria or invasive infection structures of filamentous microbes. Recent advances have revealed that, in response to microbial encounters, plasma membrane symmetry is broken, membrane tethering and SNARE complexes are recruited, lipid composition changes and plasma membrane-to-cytoskeleton signaling is activated, either for pre-invasive defense or for microbial entry. We provide a critical appraisal on recent studies with a focus on how plant cells re-structure membranes and the associated cytoskeleton in interactions with microbial pathogens, nitrogen-fixing rhizobia and mycorrhiza fungi.
Collapse
Affiliation(s)
- Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, D-53115, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Male-female communication triggers calcium signatures during fertilization in Arabidopsis. Nat Commun 2014; 5:4645. [PMID: 25145880 PMCID: PMC4143946 DOI: 10.1038/ncomms5645] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 07/09/2014] [Indexed: 12/11/2022] Open
Abstract
Cell-cell communication and interaction is critical during fertilization and triggers free cytosolic calcium ([Ca2+]cyto) as a key signal for egg activation and a polyspermy block in animal oocytes. Fertilization in flowering plants is more complex, involving interaction of a pollen tube with egg adjoining synergid cells, culminating in release of two sperm cells and their fusion with the egg and central cell, respectively. Here, we report the occurrence and role of [Ca2+]cyto signals during the entire double fertilization process in Arabidopsis. [Ca2+]cyto oscillations are initiated in synergid cells after physical contact with the pollen tube apex. In egg and central cells, a short [Ca2+]cyto transient is associated with pollen tube burst and sperm cell arrival. A second extended [Ca2+]cyto transient solely in the egg cell is correlated with successful fertilization. Thus, each female cell type involved in double fertilization displays a characteristic [Ca2+]cyto signature differing by timing and behaviour from [Ca2+]cyto waves reported in mammals.
Collapse
|